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G-functors, G-posets and
homotopy decompositions of G-spaces

by

Stefan Jackowski and Jolanta Słomińska (Warszawa)

Abstract. We describe a unifying approach to a variety of homotopy decompositions
of classifying spaces, mainly of finite groups. For a group G acting on a poset W and an
isotropy presheaf d : W→ S(G) we construct a natural G-map hocolimWd

G/d(−)→ |W|
which is a (non-equivariant) homotopy equivalence, hence hocolimWd

EG×GFd → EG×G
|W| is a homotopy equivalence. Different choices of G-posets and isotropy presheaves on
them lead to homotopy decompositions of classifying spaces. We analyze higher limits
over the categories associated to isotropy presheaves Wd; in some important cases they
vanish in dimensions greater than the length of W and can be explicitly calculated in low
dimensions. We prove a cofinality theorem for functors F : C → O(G) into the category
of G-orbits which guarantees that the associated map αF : hocolimC EG×G F (−)→ BG
is a mod-p-homology decomposition.

Introduction. Let G be a discrete group and let C be a small category
equipped with a G-action. We introduce the notion of a G-structure on a
functor from C to the category of spaces. Here a space is either a topological
space or a simplicial set. The key property of a G-functor X : C → Sp
(where Sp is a category of simplicial sets or topological spaces) is that there
is a natural action of G on the homotopy colimit hocolimCX. Of course such
an action exists whenever X takes values in the category of G-spaces since
we can take the trivial action on C. But the notion of a G-functor provides
additional flexibility. Many examples fit into the framework of G-functors,
e.g. the geometric realization of a small category equipped with a G-action
(i.e. the homotopy colimit of a constant functor) with induced G-space.

We note that classical cofinality theorems for homotopy colimits carry
over to G-functors. The maps establishing the relevant homotopy equiva-
lences turn out to be G-maps, although in general not G-homotopy equiv-
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alences (cf. Prop. 2.5, 2.6). We show that the language of G-functors and
cofinality theorems provides a unifying approach to a variety of questions
involving decompositions of classifying spaces of groups into a homotopy
colimit of classifying spaces of subgroups.

We denote by S(G) a G-poset of subgroups of G on which the group
acts by conjugation. Let W be a partially ordered set (poset) equipped
with a G-action. An isotropy presheaf on W is a morphism of G-posets
d : W → S(G) such that d(w) is a subgroup of the isotropy group Gw, for
every w ∈W.

Any isotropy presheaf on W leads to a G-functor and then to a homo-
topy decomposition of the space |W|. More precisely, (following [Sł1]) to
an isotropy presheaf d we assign a small category Wd whose objects are
the elements of W and morphisms w → w′ are equivalence classes modulo
d(w′) of elements g ∈ G such that w ≤ gw′. There is an obvious inclusion of
categories ι : W ⊂ Wd. We observe that the left homotopy Kan extension
along ι of a constant G-functor on |W| is equivalent (as a G-functor) to the
functor Fd(w) := G/d(w). Hence we obtain a natural G-map

hocolimWd
Fd → |W|

which is is a (non-equivariant) homotopy equivalence (Theorem 4.1). This
decomposition leads to a homotopy decomposition of the homotopy orbit
space (Borel construction) of |W|; the induced map

hocolimWd
EG×G Fd → EG×G |W|

is a homotopy equivalence. Extending the terminology introduced by Dwyer
[Dw1] for posets of subgroups, a G-poset W will be called h∗-ample if the
fibration EG ×G |W| → BG induces an isomorphism in the cohomology
theory h∗. Thus every isotropy presheaf on an h∗-ample G-poset W provides
an h∗-cohomology decomposition of the classifying space BG:

(∗) hocolimWd
EG×G Fd → BG.

All known homology decompositions of classifying spaces ([JM], [JMO1],
[Dw1-2]) fit into this framework, at least for discrete groups. In particular
the present approach provides a clear picture of the relations between the
subgroup, centralizer and normalizer decompositions considered by Dwyer
in [Dw1-2]; the decompositions correspond to different choices of an isotropy
presheaf on a poset of subgroups or its barycentric subdivision. Indeed, the
inclusion of a subposet ι : W ⊂ S(G) is obviously an isotropy presheaf
and the associated category Wι is a subcategory of the category of G-orbits
OW(G) ⊂ O(G) consisting of orbits G/H such that H ∈ W; the functor
Fι is just the inclusion functor. Taking intersections of the normalizers pro-
vides an isotropy presheaf on the barycentric subdivision of W. Another
important example is the centralizer isotropy presheaf. It is a contravariant
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functor c : Wop → S(G) such that c(H) := CG(H). If W = Ap(G) is the
Quillen poset of non-trivial elementary abelian subgroups [Q2] then Ap(G)c
is precisely the category of elementary abelian p-subgroups introduced by
Quillen [Q3].

Decompositions of spaces are useful in homotopy theory when we can
control higher limits over the indexing category. Again following Dwyer,
we call an h∗-decomposition (∗) of BG sharp if the Bousfield–Kan spectral
sequence [BK], which computes the cohomology of hocolimWd

EG ×G Fd,
collapses at the E2-term; i.e., limq

Wd
h∗(EG ×G Fd) = 0 for all q > 0 and

consequently
h∗(BG) ' limWd

h∗(EG×G Fd).
Properties of higher limits of functors on the categories Wd can often

be read off more directly from the poset W and the isotropy presheaf d.
We begin the discussion of higher limits in a more general setting. For a
pair C′ ⊂ C of small categories and a contravariant functor M : C → Ab we
introduce (Sec. 5) the relative higher inverse limit H∗(C, C′;M) which fits
into an exact sequence

. . .→ H i(C;M)→ H i(C′;M)→ H i+1(C, C′;M)→ H i+1(C;M)→ . . .

We calculate the relative groups in the case when C ′ is obtained from an or-
dered category C (a category in which all endomorphisms are isomorphisms)
by removing a single object b ∈ C. We prove (Prop. 5.8) that there is a nat-
ural isomorphism

H∗(C, C′;M) ' H∗(AutC(b);L∗(b;M)),

where the right hand side denotes the hypercohomology of the automor-
phism group of b with coefficients in a certain cochain complex L∗(b;M).
This complex depends only on the category of morphisms in C originat-
ing and terminating at b. The above result provides a useful description of
higher limits of an atomic functor concentrated on b, i.e. that it vanishes on
all objects non-isomorphic to the object b. This generalizes a similar result
of Oliver [O].

Next we specialize to higher limits over categories associated with isotro-
py presheaves. For an arbitrary G-poset morphism f : W → W′ and
isotropy presheaves d : W→ S(G), d′ : W′ → S(G) such that d ≤ d′ ◦ f the
left fiber f∗/w′ (cf. Sec. 1) of the induced functor f∗ :Wd →W ′d′ over w′ ∈
W′ is expressed (Thm. 3.4) in terms of the poset f/w′, and if d = d′◦f then
the right fibers w′\f∗ ' w′\f are equivalent. This result is crucial for trans-
lating homotopy properties of posets of subgroups into results concerning
higher limits and homotopy decompositions of classifying spaces (cf. Sec. 7).

For a pair of isotropy presheaves d1 ≤ d2 : W → S(G) and an arbitrary
functor M :Wd2 → Ab the Leray spectral sequence of the induced functor
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ι∗ :Wd1 →Wd2 has the form

Hm(Wd2 ;Hn(d2(−)/d1(−),M(−)))⇒ Hn+m(Wd1 ;M)

where for any w ∈W the group Hn(d2(w)/d1(w),M(w)) is just the group
cohomology. The spectral sequence can be used to calculate H∗(Wd;M) in
terms of the cohomology of the quotient space |W|/G with coefficients in
a sheaf. More precisely, under mild finiteness assumptions on W, there is a
spectral sequence

(∗∗) Hm(sd(W)/G;Hn(G−/d(−),M(−)))⇒ Hn+m(Wd;M)

where the E2-term is the cohomology of the quotient poset of the barycentric
subdivision with coefficients in a simplicial sheaf.

At this point we should mention that higher limits on the categoriesWd

associated to isotropy presheaves can be interpreted as equivariant Bredon
cohomology groups [Br1]. For every contravariant functor N : OG → Ab

there is a natural isomorphism

H∗(Wd;N ◦ Fd) ' H∗G(hocolimWd
Fd;N).

The groups appearing in the E2-term in (∗∗) can be interpreted as equiv-
ariant Bredon cohomology with local coefficients.

It turns out that under certain assumptions (which are often satisfied by
various important posets of subgroups) the spectral sequence (∗∗) degener-
ates at the E2-term and H∗(Wd;M) ' H∗(sd(W)/G;H0(G−/d(−),M(−)),
hence higher limits vanish above the length of the poset W (cf. Theo-
rem 6.6), and in low dimensions only slightly depend on d! This result should
be compared with the homotopy equivalence hocolimWd

Fd
'→ |W|, which

means that the homotopy type of the homotopy colimit associated to an
isotropy presheaf d does not depend upon d.

As an illustration of the abstract results we describe a uniform approach
to many results on decompositions of classifying spaces, in particular those
of Dwyer [Dw1-2]. Further applications can be obtained by considering other
isotropy presheaves on posets of subgroups as well as by looking at other
G-posets—this work is in progress.

We conclude the paper with a cofinality theorem (Thm. 8.1), appro-
priate for constructing H∗(−;Fp)-decompositions of classifying spaces. Let
Dp(G) be the poset of subgroups whose order is divisible by p; we denote
the corresponding orbit category by O(p)(G) for short. The poset Dp(G) is
Fp-ample, and the associated subgroup decomposition O(p)(G) 3 G/H  
EG ×G G/H ∈ Sp of the classifying space BG is Fp-sharp. An arbitrary
functor F : C → O(p)(G) defines a map

αF : hocolimC EG×G F (−)→ BG.
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Theorem 8.1 describes conditions on F under which the map αF is an
H∗(−;Fp)-decomposition, and other conditions for the decomposition to
be sharp.

The present paper grew out of the second author’s preprint [Sł4]. Sec-
tions 3, 4 and 6–8 contain most of the results of that preprint, usually with
more elaborate proofs.

Notation. Posets are denoted by bold capitals and their morphisms by
small roman characters; general categories are denoted by script capitals;
functors by roman capitals and natural transformations by Greek characters.

1. Small categories and their geometric realizations. We describe
basic constructions related to homotopy theory of small categories which we
shall be using throughout the paper. Our notation follows [Q1], [Q2].

Let F : C′ → C be a functor between small categories. For any object c ∈
ob C one defines the left fiber of F over c as the category F/c whose objects
are pairs (c′, F (c′) → c). A morphism (c′1, F (c′1) → c) → (c′2, F (c′2) → c) in
F/c is a morphism c′1 → c′2 in C′ for which the corresponding triangle over c
commutes. The right fiber of F under c, denoted by c\F , is defined dually;
its objects are pairs (c′, c → F (c′)). If C′ ⊂ C is an inclusion functor then
we denote the corresponding fiber categories by C ′/− and −\C′ respectively.
There are obvious projection functors from the left and right fiber categories
to C′. Also note that assigning to an object c ∈ C the corresponding left (resp.
right) fiber extends to a covariant (resp. contravariant) functor from C to
the category Cat of small categories.

We shall also need the notion of semi-fibers. For every c ∈ ob C the
right semi-fiber of F under c is defined to be the full subcategory c\\F ⊂
c\F consisting of those pairs (c′, c → F (c′)) where the arrow is not an
isomorphism. The left semi-fiber F//c is defined analogously.

Fiber categories are involved in the definitions of Kan extensions of a
functor. Let S be a category with colimits and limits of diagrams defined
over any small category. For a functor F : C ′ → C, the pull-back functor
F ∗ : Hom(C,S)→ Hom(C′,S) between categories of covariant functors into
S has a left adjoint F] and a right adjoint F[,

F], F[ : Hom(C′,S)→ Hom(C,S),

defined as follows: F]M(d) := colimF/dM and F[M(d) := limd\F M . For
more details cf. [HS, IX.5] or [GZ, App. 2, Sec. 3; JMO2].

Let us recall that there is a classifying space functor from the category
of small categories to the category of simplicial sets. It assigns to every
functor F : C′ → C a simplicial map BF : BC′ → BC between the nerves
of the categories. The nerve of a category C is a simplicial set whose q-
dimensional simplices are sequences c0 → c1 → . . .→ cq of morphisms in C;
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boundary maps are defined by composition of morphisms (for details cf. [S]).
On the subcategory consisting of partially ordered sets it coincides with the
geometric realization functor | − |, considered by Quillen [Q2]; thus we shall
use his notation for posets and BC for general small categories.

1.1. Proposition. Every natural transformation Φ : F ′ → F between
functors F,F ′ : C′ → C induces a simplicial homotopy between the induced
simplicial maps BF ′, BF : BC′ → BC.

Proof. A simplicial homotopy hi : (BC′)q → (BC)q+1, 0 ≤ i ≤ q (cf.
[May], Sect. 5), is defined by the formula

hi([c0 → c1 → . . .→ cq])

:= [F ′(c0)→ . . .→ F ′(ci)
Φ(ci)−→ F (ci)→ . . .→ F (cq)].

We shall often identify the nerve of a category with its geometric real-
ization. We shall say that a functor F : C ′ → C is a homotopy equivalence if
the map BF is a homotopy equivalence. Similarly, other topological notions
can be assigned to small categories and functors.

Recall that for any simplicial set X = (Xn, ∂∗, σ∗) its chain complex
C∗(X) consists of free abelian groups Cn(X) generated by the sets Xn of
n-simplices and boundary maps given by the alternating sums of the homo-
morphisms defined by the face maps ∂∗ in X. In particular, for an arbitrary
small category C we shall denote by C∗(C) the chain complex of its nerve BC.
It is clearly a functor from the category of small categories to the category
of chain complexes. According to Proposition 1.1 a natural transformation
Φ : F ′ → F defines a chain homotopy between the induced chain homomor-
phisms F∗, F ′∗ : C∗(C′)→ C∗(C) (cf. [May, 5.3]). Note that if C is non-empty
then its chain complex is augmented by a map ε : C0(C)→ Z sending each
object to 1. The chain complex C∗(C) is chain homotopy equivalent to the
singular chain complex of the classifying space BC.

2. G-functors and homotopy colimits. We recall briefly the def-
inition of homotopy colimit. For every diagram of spaces, i.e. a functor
X : C → Sp where Sp denotes a category of simplicial sets (or topologi-
cal spaces), one defines

hocolimC X := B(−\C)×C X
where the right hand side is a coequalizer of the diagram

∐

c′′→c′
B(c′\C)×X(c′′)−→→

∐

c

B(c\C)×X(c).

For a functor into a category of topological spaces we can identify the homo-
topy colimit with the realization of a topological category CX whose object
space is the disjoint union of X(c) over c ∈ C. The homotopy colimit of a
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constant functor is simply the geometric realization of the indexing category
considered in Section 1. For details cf. [HV], [JMO2] etc.

Recall also that the cohomology of a homotopy colimit is related to the
cohomology of spaces and maps occurring in the diagram via the Bousfield–
Kan spectral sequence [BK]:

Ep,q2 = Hp(C;hq(X))⇒ hp+q(hocolimCX)

where Hp(C;hq(X)) := limp
C(h

q ◦ X) denotes the p-th higher inverse limit
of the functor hq(X) : Cop → Ab defined as hq(X)(c) := hq(X(c)). Higher
limits will be discussed in detail in Section 5.

Let G be a discrete group. We shall define an additional structure on a
diagram X : C → Sp which provides a G-action on its homotopy colimit.
We shall be particularly interested in the behavior of homotopy colimits
equipped with such an action with respect to pulling back and pushing
forward a diagram by a functor between small categories.

2.2. Definition. Let C be a small category and D an arbitrary category.
A (left) G-functor is a functor X : C → D equipped with the following
structure:

(a) a left G-action on C,
(b) for each g ∈ G a natural transformation Φg : X ◦ g → X such that

Φgg′ = Φg ◦ Φg′ .
Morphisms (natural transformations) of G-functors are defined in the

obvious way.
Alternatively G-functors can be described in terms of the Grothendieck

construction (introduced in [T] and extensively used in [Sł1] and [Dw1-2].)
Recall that for a small category C equipped with a G-action the Grothendieck
construction is defined as a category whose objects are objects of C and a
morphism c → c′ is any pair (g, c→ gc′). We shall denote this category by
ChG to emphasize that BChG ' EG ×G BC is the homotopy orbit space of
the action of G on BC. There is an obvious inclusion functor ιC : C → ChG
which is clearly a G-functor. Moreover, G-structures on a functor X : C → D
correspond to its extensions X̃ : ChG → D.

2.3. Proposition. If C′, C are categories equipped with G-actions,
C′ F→ C is an G-equivariant functor and D Y→ D′ is any functor then the
composition Y ◦X ◦ F : C′ → D′ is a G-functor.

The notion of a G-functor generalizes functors to G-spaces. Indeed, if the
action on C is trivial then a G-functor is precisely a functor to the category
whose objects are objects of D equipped with a G-action. An important
example of aG-functor is the following: let S(G) be the poset of all subgroups
of G, on which G acts via conjugation, and let OG denote the category of
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G-orbits and equivariant maps. Then the functor S(G)→ OG sending each
subgroup H to the orbit G/H is a G-functor; other examples will appear in
later sections.

2.4. Proposition. If X : C → Sp is a left G-functor then hocolimC X is
equipped with a natural left G-action such that the projection hocolimCX →
BC is a G-map. Moreover , natural transformations of G-functors induce
G-equivariant maps of the corresponding homotopy colimits.

Proof. A G-structure on a functor X defines a G-action on the spaces
which occur in the diagram defining the homotopy colimit. Indeed, for every
g ∈ G and a morphism c′ → c′′ we have a map g : B(c′\C) × X(c′′) →
B(gc′\C) × X(gc′′) defined as g(c′ → c0 → . . . → cn, x) := (gc′ → gc0 →
. . .→ gcn, Φg(c′′)(x)).

If we identify hocolimC X with the realization of the category CX then a
G-action on it is defined on objects by the formula g(c, x) := (gc, Φg(c)(x))
and it extends in the obvious way to morphisms.

Let X ′ : C′ → Sp be any diagram in the category of spaces. We recall
the definition of the left homotopy Kan extension of X ′ to C along a functor
F : C′ → C denoted by Fh]X ′ and defined as follows:

Fh]X
′(c) := hocolimF/cX

′πC′ .

There is a natural transformation Fh] → F], thus for every functor Y : C →
Sp there is a natural map

HomC′(X,Y ◦ F )→ HomC(Fh]X,Y ).

Assume now that F : C′ → C and X ′ : C′ → Sp are G-functors. For
each object c ∈ C the group G acts on the fiber F/c : g(c′, F (c′) → c) :=
(gc′, F (gc′) → F (c′) → c), and the projection πC′ : F/c → C′ is clearly G-
equivariant. Thus the composition X ′πC′ : F/c → Sp is a G-functor, hence
by Proposition 2.4 the functor C 3 c→ hocolimF/cX

′πC′ takes values in the
category of G-spaces. Thus we have the following extension to G-functors
of the push down theorem for homotopy colimits (cf. [DK, Thm. 9.8], [HV,
Thm. 5.5]).

2.5. Proposition. For any G-functors X ′ : C′ → Sp and F : C′ → C
the collection of maps Fh]X ′(c)→ hocolimC′ X ′ extends to a G-equivariant
map

hocolimC Fh]X ′
'→ hocolimC′ X ′

which is a homotopy equivalence (although not necessarily a G-homotopy
equivalence.)

Now we turn to the reduction theorem (cf. [DK, Thm. 9.6] and [HV,
Thm. 4.4]), i.e. a situation when we “pull back” functors from C to C ′ along
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a functor F . If F : C′ → C is a G-equivariant functor between categories
equipped with G-actions, then as we noticed in Proposition 2.3 for any
G-functor X : C → D the composition X ◦F : C ′ → Sp is again a G-functor.

The reduction map % : hocolimC′ X ◦ F → B(−\F ) ×C X is induced
by a map from the diagram defining the homotopy colimit to the diagram
defining the target coequalizer:

% :
∐

c′′→c′
B(c′\C)×X(F (c′′))→

∐

c2→c1
B(c1\F )×X(c2).

The map % sends the summand indexed by a morphism c′′ → c′ to the
summand indexed by the morphism F (c′′) → F (c′) and it is given by the
formula %(c′ → c′0 → . . . , x) := (F (c′)→ F (c′0)→ . . . , x).

Since the functor F is G-equivariant the target space admits a G-action
and the map % isG-equivariant. Note that the forgetful mapB(−\F )×CX →
B(−\C)×C X = hocolimC X is also G-equivariant.

2.6. Proposition. For any G-equivariant functor F : C ′ → C and a
G-functor X : C → Sp the natural map

hocolimC′ X ◦ F → B(−\F )×C X
is G-equivariant and a (non-equivariant) homotopy equivalence.

We shall introduce several variants of cofinality. A functor F is called

(1) conically right cofinal ,
(2) right cofinal ,
(3) right h∗-cofinal (where h∗ is a cohomology theory)

if for every object c ∈ C the right fiber c\F is respectively:

(1) conical, i.e. it contains either an initial or a terminal object,
(2) contractible,
(3) h∗-acyclic.

Obviously (1)⇒(2)⇒(3).

2.7. Corollary. If a G-equivariant functor F : C ′ → C is right cofinal
(resp. right h∗-cofinal) then for any G-functor X : C → Sp the natural
G-map

hocolimC′ X ◦ F → hocolimC X

is a (non-equivariant) homotopy equivalence (resp. h∗-equivalence.)

We shall introduce a useful notion of a quasi-terminal object in a cate-
gory.

2.8. Definition. An object c0 ∈ C is called quasi-terminal if for every
object c ∈ C there is a morphism c → c0 and for any two morphisms φi :
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c→ c0, i = 1, 2, there exists a unique endomorphism ψ : c0 → c0 such that
ψφ1 = φ2.

A motivating example is the category OG,≤H of G-orbits whose isotropy
subgroups are contained in a given normal subgroup H ⊂ G. The object
G/H is obviously quasi-terminal in OG,≤H .

2.9. Proposition. If c0 ∈ C is a quasi-terminal object then the full
subcategory of C with the single object c0 is conically right cofinal in C.

Proof. For any c ∈ ob C consider the right fiber over c of the inclusion
functor. Its objects are pairs (c, c → c0). By definition every object in this
category is terminal.

We conclude the section by recalling an interesting equivariant version
of 2.5 and 2.7 applied to posets and constant functors, due to Thévenaz and
Webb [TW].

Recall that a G-poset is a partially ordered set on which a group G
acts preserving the partial order. The G-posets form a category in which
morphisms are order preserving equivariant maps.

If f : V → W is a morphism of G-posets then for every w ∈ W the
left fiber f/w and the right fiber w\f are equipped with an action of the
isotropy group Gw and the action clearly preserves the corresponding semi-
fibers contained in the fibers.

2.10. Theorem ([TW, Thm. 1]). Let f : V → W be a morphism of
G-posets. Suppose that either all left fibers f/w or all right fibers w\f are
Gw-contractible, where w ∈W. Then f induces a G-homotopy equivalence
|f | : |V| → |W|.

2.11. Corollary ([TW, Prop. 1.7]). Let W be a G-poset of finite length
and ι : V ⊂W a G-subposet such that for each w ∈W\V, the left semi-fiber
ι//w (resp. the right semi-fiber w\\i) is Gw-contractible. Then the inclusion
ι is a G-homotopy equivalence.

3. Isotropy presheaves on G-posets and related categories. Let
G be a discrete group. Clearly a G-poset can be considered as a small cate-
gory with G-action. Recall that by S(G) we denote the poset of all subgroups
of G, equipped with the G-action by conjugation. There is a G-functor
Q : S(G) → OG to the category of G-orbits sending a subgroup H to the
orbit G/H. Recall the definition of an isotropy presheaf on a G-poset.

3.1. Definition. Let W be a G-poset. An isotropy presheaf on W is a
morphism d : W → S(G) of G-posets such that for each w ∈ W, d(w) ⊂
Gw := {g ∈ G : gw = w}.
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Remark. Such morphisms of G-posets were introduced in [Sł3] and they
were called admissible functions, but the present terminology seems to be
more intuitive. Most of the results in this section were contained, with dif-
ferent proofs, in [Sł1-2].

Note that if d : W → S(G) is an isotropy presheaf then d(w) ⊂ Gw is
a normal subgroup. Indeed, since the map d is G-equivariant, gd(w)g−1 =
d(gw) = d(w) for each w ∈W and g ∈ Gw.

For an isotropy presheaf d : W → S(G) one defines a small category
Wd as a quotient category of the Grothendieck construction WhG. We set
ob(Wd) := W and MorWd

(w,w′) := MorWhG
(w,w′)/d(w′). (Note that the

isotropy group Gw′ acts on MorWhG
(w,w′).) Equivalently, a morphism w →

w′ in Wd is an equivariant map f : G/d(w) → G/d(w′) such that w ≤ gw′

where g ∈ f([e]). Note that since d(w) ⊂ Gw the element gw′ does not
depend upon the choice of g ∈ f([e]).

Note that composition of an isotropy presheaf d : W → S(G) with the
canonical G-functor Q : S(G)→ OG is a G-functor Qd : W→ OG and thus
it has an extension Q̃d : WhG → OG to the Grothendieck construction. The
functor Qd clearly factors through the categoryWd and we denote the corre-
sponding functor by Fd :Wd → OG. The functor Fd assigns to every object
w the orbit G/d(w) and to a morphism w → w′ the corresponding G-map.

Remark. If a G-poset has a largest element wmax then wmax is a quasi-
terminal object in Wd (cf. 2.8) and its automorphism group is G/d(wmax).

Note that an isotropy presheaf d : W → S(G) on a G-poset can be
restricted to any subgroup H ⊂ G. We define an H-poset map d|H : W →
S(H) by the formula (d|H)(w) := d(w)∩H. The restriction is a right adjoint
functor to the extension functor which assigns to an isotropy presheaf t :
V → S(H), defined on an H-poset V, its extension id×Ht : G ×H V →
S(G). There is an obvious functor ιGH : Wd|H → Wd. If H = e is the
trivial subgroup thenWd|e = W and the functor coincides with the inclusion
ι : W→Wd. It is easy to identify the left fibers of ιGH :

3.2. Proposition. There is a natural transformation from the functor
defined by Wd 3 w  ιGH/w ∈ Cat to the functor Wd 3 w  H\G/d(w) ∈
Cat (where sets of double cosets are considered as discrete categories) which
for every object w ∈ Wd is a homotopy equivalence of categories.

Proof. We define a functor H\G/d(w) → ιGH/w assigning to a coset

Hgd(w) the object (gw,G/d(gw)∩H)
[g]→ (w,G/d(w)). Since the right fibers

of this functor are contractible, the conclusion follows from 2.7.

We shall consider morphisms f : (W1, d1)→ (W2, d2) between G-posets
equipped with isotropy sheaves. Such a morphism is a G-poset map f :
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W1 → W2 such that for every w ∈ W1, d1w ≤ d2fw. Clearly G-posets
equipped with isotropy presheaves and their morphisms form a category
denoted by Preiso

G .
Isotropy presheaves on a givenG-poset form a poset with the unique min-

imal object de(w) := e. If for any w ≤ w′ we have the inclusion Gw ⊂ Gw′ of
isotropy groups then we define the maximal isotropy presheaf diso(w) := Gw.
Note that for every G-poset W its barycentric subdivision sd(W) (cf. [Q2,
1.4] and Sec. 4) has the above property.

To summarize: for a fixed group G we consider the category FunOG of
functors from small categories into the orbit category OG. A morphism in
FunOG between two functors Fi : Ci → OG, i = 1, 2, consists of a functor
φ : C1 → C2 and a natural transformation T : F1 → F2φ.

3.3. Proposition. Assigning to every G-poset equipped with an isotropy
presheaf d : W → S(G) the functor Fd : Wd → OG extends to a functor
Preiso

G → FunOG .

Proof. It remains to define natural transformations induced by mor-
phisms of G-posets equipped with isotropy presheaves. For a morphism
f : (W1, d1) → (W2, d2) we set f∗(w) := f(w); now the definition of the
natural transformation Fd1 → Fd2f∗ is obvious.

Let f∗ : Wd → W′
d′ be a functor induced by a morphism f . Since we

are going to apply to such functors various cofinality arguments (cf. 2.5,
2.7) we need to identify the fiber categories f∗/w′ and w′\f∗ in terms of the
corresponding subposets f/w′ and w′\f .

Note that the poset f/w′ is equipped with an action of the group d′(w′) ⊂
Gw′ and with an isotropy presheaf f/w′ → S(d′w′) defined by d and denoted
with the same letter: d(w, f(w) → w′) := d(w). Assigning to w′ ∈ W′ the
small category (f/w′)d defines a functor on the poset W′, but not on the
category W ′d′ .

3.4. Theorem. For an arbitrary morphism f : (W, d)→ (W′, d′) there
are natural transformations of functors defined on the poset W′ ⊂ W ′d′ :

(f/w′)d → f∗/w
′

and , if d = d′f ,
w′\f → w′\f∗,

which for each w ∈W′ are equivalences of categories.

Proof. To prove the first assertion we construct an equivalence of cat-
egories Φ : (f/w′)d → f∗/w′. An object of (f/w′)d is an element w ∈ W
such that f(w) ≤ w′, thus we set Φ(w) := [e] : f(w) → w′. Every object
of f∗/w′ is up to isomorphism in the image of Φ since if f(w) ≤ gw′ for
some g ∈ G then f(g−1w) ≤ w′. It remains to define Φ on the morphism
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sets and prove that it is bijective. If [g] : w → v where g ∈ d′(w′) is a
morphism in (f/w′)d then Φ([g]) := [g] is clearly a well defined morphism
f(w)→ f(v) over w′ and Φ is clearly injective. It is also surjective since for
every morphism g : v → w which defines a morphism f(w)→ f(v) over w′

the element g must belong to d′(w′).
The proof of the second assertion is even more straightforward.

The next corollary turns out to be a very practical tool for comparing
colimits over categories related to G-posets.

3.5. Corollary. Let i : (W, d1)→ (W, d2) be a comparison morphism
(i.e. i = id and d1 ≤ d2). Then for every w ∈W,

(a) the category i∗/w has a quasi-terminal object (w,w = w) whose group
of endomorphisms is d2(w)/d1(w),

(b) the natural transformation ih]Fd1(w) → Fd2(w) of G-functors, ad-
joint to Fd1 → Fd2i∗, is a homotopy equivalence.

Proof. Part (a) is a very special case of 3.4. Part (b) follows from the
definition of the homotopy left Kan extension given in Section 2, part (a)
and Proposition 2.9.

4. Homotopy decompositions defined by isotropy presheaves.
We shall explain how isotropy presheaves on a G-poset lead to homotopy
decompositions of its geometric realization. Recall that to distinguish geo-
metric realizations of posets from classifying spaces of general small cate-
gories we shall keep denoting the former by | − |.

4.1. Theorem. For any G-poset W equipped with an isotropy presheaf
d : W→ S(G) there exists a natural G-equivariant map α : hocolimWd

Fd →
|W|. For any subgroup H ⊂ G its restriction to the fixed point set of H
is a homotopy equivalence αH : (hocolimWd

Fd)H
'→ |H\d| ⊂ |W|H . In

particular α is a homotopy equivalence.

First proof. Consider the embedding ı : W ⊂ Wd, which is a G-functor,
and a constant functor on the poset c : W → Sp sending each object to
a point, considered as a G-functor. We apply the push down theorem for
homotopy colimits (Proposition 2.5). Proposition 3.2 implies that there is
a natural homotopy equivalence of G-functors ıh]c

'→ Fd. Thus 2.5 implies
that there exists a G-map hocolimWd

ıh]c → hocolimW c = |W| which is
a homotopy equivalence. For every subgroup H ⊂ G we have a restriction
αH : (hocolimWd

Fd)H ' hocolimWd
FHd → |W |H . The same argument

as in 2.5 shows that the homotopy Kan extension of the constant functor
along the inclusion functor H\d ⊂ Wd is equivalent to (Fd)H , hence αH :
(hocolimWd

Fd)H
'→ |H\d|.
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Second proof. The homotopy colimit hocolimWd
Fd is by definition hom-

eomorphic to the classifying space of the category (Wd)Fd whose objects are
pairs ([g], w) and a single morphism ([g], w) → ([g′], w′) exists if w ≤ hw′

where gh = g′ mod d(w′). The action µ : G×W→W defines a functor Mµ :
(Wd)Fd → W which is clearly a G-map and an equivalence of categories,
thus it induces a homotopy equivalence of their classifying spaces. For every
subgroup H ⊂ G the restriction MH

µ : (Wd)HFd → d\H is also an equivalence
of categories.

Recall that we call a G-poset h∗-ample if the associated bundle map
π : EG×G |W| → BG is an h∗-equivalence. Note that the Borel construction
EG ×G |W| is homotopy equivalent to the classifying space BWe, and the
projection π corresponds to the map induced on classifying spaces by the
obvious projection We → G.

4.2. Corollary. Let d : W → S(G) be an isotropy presheaf. Assume
that X is a G-CW-complex such that for every x ∈ X the poset W is
h∗-ample as a Gx-poset. Then the functor Wd 3 w  EG ×d(w) X is an
h∗-decomposition of the Borel construction EG×G X, i.e. the map

αG(X) : hocolimWd
EG×d(−) X → EG×G X

is an h∗-equivalence.

Proof. Consider the functor Fd ×X :Wd → G-Sp. Theorem 4.1 implies
that we have a homotopy equivalence hocolimWd

EG ×d(−) X → EG ×G
(|W| ×X). The standard Leray spectral sequence argument applied to the
projection onto the second factor EG ×G (|W| ×X) → EG ×G X implies
that it is an h∗-equivalence if for every isotropy group Gx the projection
EG×Gx |W| → BGx is an h∗-equivalence.

A G-poset equipped with an isotropy presheaf d : W → S(G) will
be called h∗-ample and sharp if W is h∗-ample and the associated h∗-
decomposition of BG is sharp, i.e. H i(Wd;h∗(EG ×G Fd)) = 0 for i > 0.
The above terminology extends the terminology introduced by Dwyer [Dw1]
beyond posets of subgroups.

Note that some standard constructions on posets preserve ampleness:
The opposite poset of an h∗-ample poset is h∗-ample. If f : V → W is an
equivariant map between posets and an h∗-equivalence then W is h∗-ample
if and only if V is h∗-ample. In particular W is h∗-ample if its barycentric
subdivision sd(W) is h∗-ample. (Recall for further reference that sd(W) is
a G-poset whose points are simplices of W (i.e. ascending sequences of ele-
ments of W), ordered by inverse inclusion. Obviously, a G-action on W in-
duces an action on sd(W). The barycentric subdivision is equipped with two
canonical projections p0 : sd(W) → W and pe : sd(W) → Wop which in-
duce G-homotopy equivalences of the corresponding geometric realizations.)
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Sharpness is an even more delicate property. In general it is not preserved
by homotopy equivalence. However if a morphism of isotropy presheaves
f : (V, dV) → (W, dW), where dV = dW ◦ f , is right cofinal then the
decomposition associated to (V, dV) is sharp if and only if the decomposition
associated to (W, dW) is sharp (cf. 2.5, 3.4, 5.4). In particular an isotropy
presheaf (W, dW) is h∗-ample and sharp if and only if (sd(W), dW ◦ p0) is
h∗-ample and sharp.

Let W′ ⊂W be a G-subposet and d : W→ S(G) an isotropy presheaf.
We introduce another G-subposet Clh∗(W′, d) ⊂ W, called the h∗-closure
of W. Note that for every w ∈ W the isotropy group Gw acts on the
poset W′

≤w := {w′ ∈ W′ |w′ ≤ w}. The G-subposet Clh∗(W′, d) ⊂ W
consists of w ∈ W for which the d(w)-poset W≤w is h∗-ample. Obviously
W′ ⊂ Clh∗(W′) ⊂W.

Similarly we define a collection Enh∗(W, d) of subgroups, called the h∗-
envelope of W, consisting of those w ∈ W for which (W′

≤w, dw), where
dw : W′

≤w → S(d(w)) is the restriction of d, is h∗-ample and sharp.

4.3. Proposition. Let W′ ⊂W′′ ⊂W be a triple of G-posets equipped
with an isotropy presheaf d : W → S(G). If W′ ⊂W′′ ⊂ Clh∗(W′, d) then
the induced map EG×G |W′| → EG×G |W′′| is an h∗-equivalence. If also
W′ ⊂ W′′ ⊂ Enh∗(W′, d) then H∗(W ′′d ;h∗ ◦ Fd) → H∗(W ′d;h∗ ◦ Fd) is an
isomorphism.

Proof. As we have noticed the Borel construction EG×G |W| is homo-
topy equivalent to BWe. Thus it is enough to notice that the fibers of the
inclusion functor ι : W ′e ⊂ W ′′e are h∗-acyclic. Indeed, Theorem 3.4 tells us
that for any w′′ ∈W′′ we have an equivalence ι/w′′ ' (W′

≤w′′)e 'W′
≤w′′ .

The Leray spectral sequence (5.3) implies the desired conclusion. Similarly
to prove the second assertion we apply the spectral sequence 5.3 to the
inclusion functor ι :W ′d ⊂ W ′′d .

We shall describe some decompositions of the Borel construction on
a G-space X associated to posets of subgroups of G. For any given G-
subposet W ⊂ S(G) and any isotropy presheaf on it we shall construct
a decomposition of the W-fixed point set XW :=

⋃
H∈W XH . Note that

XW is a G-subspace of X. A G-space X defines the fixed point G-functor
FixX : Wop → Sp on the opposite poset where FixX(H) := XH . We write
XtW := hocolimWop FixX and call it the thick W-fixed point set. According
to Proposition 2.4 the thick W-fixed point set is also a G-space, the action
being induced by conjugation on W and the original action on X. There
are two natural G-maps

|Wop| π← XtW η→ XW ⊂ X;

the map π is the canonical projection from the colimit over an indexing
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category while η is the canonical map from the homotopy colimit to the
ordinary colimit. As usual it is interesting to compare the homotopy colimit
to the ordinary colimit. The thick fixed point set is the geometric realization
of the category whose objects are pairs (H,x) where x ∈ XH ; the morphisms
correspond to inverse inclusions of subgroups; theG-action on the category is
given by the formula g(H,x) := (Hg, gx). Thus XtW is homotopy equivalent
to a subspace of X×|W| which is the union of simplices (x,H0 ⊃ . . . ⊃ Hq)
such that x ∈ XH0 . The structure maps η, π correspond to projections onto
factors.

4.4. Proposition. Let X be a G-space and W ⊂ S(G).

(π) If for each H ∈ W the fixed point set XH is h∗-acyclic (resp. con-
tractible) then π : XtW → |W| is an h∗-equivalence (resp. a homotopy
equivalence).

(η) If for each x ∈ X the poset W≤Gx is h∗-acyclic (resp. contractible)
then the map η : XtW → XW is an h∗-equivalence (resp. a homotopy
equivalence).

(η′) If for each x ∈ X the poset W≤Gx is h∗-ample then the map id×Gη :
EG×G XtW → EG×G XW is an h∗-equivalence.

Proof. (π) follows directly from the Bousfield–Kan spectral sequence cal-
culating cohomology of the homotopy colimit (or equivalently the Leray
spectral sequence of the map π in the cohomology theory h∗).

(η), (η′). Note that the fiber of the map η over a point x ∈ X is the union
of simplices of the form (x;H0 ⊃ H1 ⊃ . . . ⊃ Hn) where Gx ⊃ H0, i.e. it is
homotopy equivalent to the subposet W≤Gx ⊂W consisting of all elements
of W which are contained in the isotropy subgroup Gx.

The following proposition extends the decomposition of Theorem 4.1 to
G-spaces.

4.5. Proposition. Let W be a G-subposet of S(G) and d : Wop →
S(G) be an isotropy presheaf. Then for any G-space X there exists a natural
G-map

hocolimWop
d
G×d(−) FixX → XtW,

which is a (non-equivariant) homotopy equivalence.

Proof. The proof is similar to that of 4.1.

First proof. We consider an embedding ı : Wop ⊂ Wop
d . The left ho-

motopy Kan extension of the functor FixX : Wop → Sp is equivalent to
G ×d(−) FixX (cf. 3.5) and the homotopy equivalence defined in Proposi-
tion 2.5 is a G-map.

Second proof. We define a functor between the categories defining the
two colimits. The first one is the geometric realization of the category whose
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objects are triples (H, [g, x]) where x ∈ XH , and a morphism (H ′, [g′, x′])→
(H, [g, x]) is an element a ∈ G such that Ha ⊂ H ′, g′ = ga, x = a−1x′. The
action of G is given on objects by the formula g′′(H, [g, x]) := (H, [g′′g, x])
and it extends in an obvious way to morphisms. Objects of the second cat-
egory are pairs (H,x) where x ∈ XH ; morphisms correspond to inverse
inclusions of subgroups; a G-action on the category is given by the formula
g(H,x) := (Hg, gx). To a triple (H, g, x) we assign the pair (Hg, gx); this
is clearly a G-map. Its inverse is given by sending a pair (H,x) to (H, e, x),
which is an equivalence of categories (but not a G-map!).

4.6. Corollary. If the map EG ×G XtW → EG ×G XW is an h∗-
equivalence (cf. 4.4) then the functor Wd 3 H  EG ×d(H) X

H is an h∗-
decomposition of the space EG×GXW, i.e. the map induced by the inclusions
XH ⊂ XW induces an h∗-equivalence

hocolimWop
d
EG×d(−) FixX

'→ EG×G XW.

The last corollary generalizes Henn’s result [H].
We shall discuss in detail the decomposition defined by the maximal

isotropy presheaf on a G-poset. Recall that if Gw ⊂ Gw′ for all w ≤ w′ ∈
W then the formula diso(w) := Gw defines a maximal isotropy presheaf.
Observe that the category Wdiso is itself equivalent to a poset if the action
satisfies some further regularity condition (cf. [Br2, III.1]).

4.7. Definition. Let W be a G-poset.

(a) W is regular if for any w,w′ ∈ W, g ∈ G the inequalities w ≤ w′

and w ≤ gw′ imply that gw′ = w′.
(b) W is normal if Gw ⊂ Gw′ for all w ≤ w′ ∈W.
(c) W satisfies condition (EI) if gw = w for all g ∈ G and w ∈W such

that w ≤ gw.

Clearly a regular G-poset must be normal and satisfy condition (EI).
Unfortunately, many interesting examples of G-posets are not regular, even
not normal. However we shall see that the barycentric subdivision of every
G-poset W is normal and, if W satisfies condition (EI), it is even regular.

Observe that for a G-poset W satisfying condition (EI) the set W/G
of orbits is also a poset and the canonical projection π : W → W/G is a
quotient map with the obvious universality property.

4.8. Proposition. If W is a regular G-poset then the projection W→
W/G induces a canonical equivalence of categories Π :Wdiso →W/G.

Proof. It is easy to see that the formula Π(w) := [w] defines an equiva-
lence.

4.9. Examples. A G-poset W satisfies condition (EI) if one of the fol-
lowing conditions holds:
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(1) the group G is finite,
(2) all strictly ascending sequences w0 < w1 < . . . < wn of elements

of W have bounded length (i.e. the geometric realization of W is finite-
dimensional),

(3) W is the barycentric subdivision of some G-poset.

The following proposition corresponds to Proposition III.1.1 in [Br2].

4.10. Proposition. For every G-poset W its barycentric subdivision
sd(W) is normal. Moreover , if W satisfies condition (EI) then sd(W) is
regular.

Proof. Elements of the barycentric subdivision sd(W) are simplices of
W, ordered by inverse inclusion. Note that for every w. := (w0, w1, . . . , wn)
its isotropy group Gw. is equal to Gw0 ∩ . . . ∩ Gwn , thus if w. ≤ v. then
Gw. ≤ Gv. . Hence sd(W) is normal.

Assume now that in W an inequality w ≤ gw implies that gw = w. Let
w. ≤ v. and w. ≤ gv. for some g ∈ G, thus gv. ∪ v. ⊂ w. Since w. is a
chain, every vi ∈ v. is comparable with gvi. Since we have assumed that W
satisfies (EI) we obtain g ∈ Gvi , hence g ∈ Gv. .

Note that for a regular G-poset W Theorem 4.1 implies that

α : hocolimW/G π
−1 → |W|

is indeed a G-homotopy equivalence. Thus we obtain

4.11. Corollary. For every G-poset W which satisfies condition (EI)
the natural map

hocolim[s.]∈sd(W)/GG/Gs. → |W|
is a G-homotopy equivalence. Thus if W is h∗-ample then the map induces
an h∗-equivalence

hocolim[s.]∈sd(W)/G EG×G G/Gs. → BG.

A generalized homotopy push-out is the homotopy colimit of a functor
defined on a poset. The fundamental group of the generalized homotopy
push-out is given by a generalization of the van Kampen theorem. Note
that the last corollary provides a way of converting general homotopy col-
imits which appear in Proposition 4.2 into generalized homotopy push-outs
(cf. [Sł1]).

4.12. Example. Let a discrete group G act simplicially on a tree T .
Then the simplicial barycentric subdivision sd(T ) is a simplicial complex
defined by a regular G-poset which we denote by T ′. The elements of T ′ are
the vertices and the edges of T , ordered by inclusion. The isotropy group of
an edge is the intersection of the isotropy groups of its ends. The resulting
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decomposition

hocolimT ′ EG×G G/G− → BG

is precisely the one considered by Serre and others in combinatorial group
theory and leads to the presentation of G as the amalgamated product of the
isotropy groups of the vertices along their intersections corresponding to the
edges. The example generalizes to actions on higher dimensional contractible
simplicial complexes.

5. Higher limits and pruning of ordered categories. Let C be an
arbitrary small category. We write C-mod for the category of C-modules,
i.e. the abelian category of contravariant functors M : C → Ab. There is a
functor lim←−C : C-mod→ Ab which assigns to every M its inverse limit

lim←−C
(M) := HomC(Z,M)

where Z denotes the constant functor.
We want to study the derived functors lim←−

i
C of the inverse limit. In or-

der to emphasize the analogy with group cohomology, we shall denote the
functors lim←−

i
C by

Hi(C;−) : C-mod→ Ab.

Recall the basic long exact sequence of derived functors:

5.1. Proposition. For any small category C, and any short exact se-
quence of C-modules 0 → M ′ → M → M ′′ → 0 in C-mod, there exists a
functorial long exact sequence

. . .→ H i(C;M ′)→ Hi(C;M)→ H i(C;M ′′)→ Hi+1(C;M)→ . . .

From general nonsense in homological algebra it follows that instead of
taking an injective resolution for M when computing higher inverse limits,
one can choose a single projective resolution P∗ of the constant functor Z,
and then H∗(C;M) ' H∗(HomC(P∗,M)) for all C-modules M . We shall
describe how fiber categories lead to such resolutions. Consider the relative
case: for a subcategory C′ ⊂ C we define the relative chain complex functor
which assigns to an object c ∈ C the chain complex

C∗(c\C, c\C′) := C∗(c\C)/C∗(c\C′).
(The chain complex of a small category was defined in Section 1.)

5.2. Proposition. For every n ≥ 0 the functor Cn(−\C,−\C′) is a pro-
jective C-module. If C′ is empty , then the augmented chain complex C∗(−\C)
is a projective resolution in C-mod of the constant functor Z.
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Proof. We shall prove that for an arbitrary epimorphism M ′ → M of
C-modules the induced homomorphism

HomC(Cn(−\C,−\C′),M ′)→ HomC(Cn(−\C,−\C′),M)

is also an epimorphism. For every C-mod M we have a bijection

HomC(Cn(−\C,−\C′),M)→
∏

[c0→...→cn]6∈(BC′)n
M(c0)

sending each natural transformation Φ to Φ(c0 = c0 → . . . → cn) . The
cartesian product preserves epimorphisms. To prove that the augmented
complex C∗(c\C) is acyclic it is enough to note that the category c\C has

an initial object (c, c id→ c), thus Proposition 1.1 provides a contracting
homotopy.

We introduce the relative cohomology of categories. Recall that for a
homomorphism f : C∗ → D∗ of non-negative chain complexes of modules
over a ring R one defines the mapping cone by ∆n(f) := Cn−1 ⊕ Dn and
∂∆∗(c, d) := (−∂C∗(c), ∂D∗(d) + f(c)). The mapping cone fits into a short
exact sequence

0→ D∗ → ∆∗(f)→ ΣC∗ → 0

where ΣC∗ denotes the suspension of C∗, i.e. (ΣC∗)n := Cn−1. If F =
ι : C∗ ⊂ D∗ is a map of complexes such that for every n, ιn : Cn ⊂ Dn

is a split inclusion of projective R-modules, then the obvious projection
∆∗(ι) → D∗/C∗ is a chain homotopy equivalence (cf. [Bro, I.8.4]). For a
functor F : C′ → C we define its cone ∆∗(F ) as the chain complex in C-mod
which for each c ∈ C is the mapping cone of the chain map F∗ : C∗(c\F )→
C∗(c\C) sending an object (c′, c→ F (c′)) to (F (c′), c→ F (c′)).

Let C′ ⊂ C. For an arbitrary functorM : C → Ab the relative cohomology
H∗(C, C′;M) is defined as the cohomology of the relative cochain complex
C∗(C, C′;M), or equivalently the cohomology of the mapping cone ∆∗(ιn).
Hence the relative groups fit into an exact sequence relating higher limits
over C′ and C:
. . .→ H i(C;M)→ H i(C′;M)→ H i+1(C, C′;M)→ H i+1(C;M)→ . . .

The following proposition generalizes Shapiro’s lemma (the subgroup the-
orem), often used in calculating group cohomology (cf. [Bro, III.6.2]). For
general categories it takes the form of a spectral sequence (cf. [GZ, Ap-
pendix 2, Thm. 3.6] for the dual statement involving homology groups).

5.3. Proposition. Let F : C′ → C be a functor between small categories.
For any contravariant functor M ′ : C′ → Ab there exists a spectral sequence

Hm(C;Hn(F/−;M ′πC′))⇒ Hn+m(C′;M ′).
Note that H0(F/c ;M ′πC′) = F[M

′(c) is the right Kan extension of M ′.
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5.4. Proposition. Let F : C′ → C be a functor between small cate-
gories. For any contravariant functor M : C → R-mod there is a canonical
isomorphism of chain complexes

HomC′(C∗(−\C′),M ◦ F ) ≈→ HomC(C∗(−\F ),M)

and of cohomology groups

Hm(C′,M ◦ F ) ' Hm(HomC(C∗(−\F ),M)).

Moreover if the functor F is right R-cofinal then F ∗ : H∗(C′;M ◦ F ) '→
H∗(C;M).

Proof. It suffices to note that the functor C∗(−\F ) is the left Kan ex-
tension of the functor C∗(−\C′) along F . The isomorphism of cohomology
follows since, by Proposition 5.2, C∗(−\C′) provides a projective resolution
that can be used to calculate higher limits. Note that C∗(−\F ) as the left
Kan extension of a projective object in C ′-mod is a projective object in
C-mod, hence the last assertion follows.

Let C be an ordered category, i.e. a small category in which all endomor-
phisms are isomorphisms. Fix an object d ∈ ob C. We denote by C − [d] the
full subcategory of C consisting of objects not isomorphic to d. Following
Dwyer [Dw2] we say that C− [d] is obtained from C by pruning the object d.
The aim of the section is to compare higher limits over C and C ′ := C − [d]
by expressing the relative cohomology groups H∗(C, C′;M) as cohomology
of the automorphism group A(d) with coefficients in a local cochain complex
at d.

For any object d ∈ C consider the forgetful functor C/d → C. Its right
fiber under an object c ∈ C, denoted by c\C/d, is the category whose objects
are pairs of morphisms c→ d′ → d and morphisms those morphisms d′ → d′′

which make the corresponding diagrams commute. Note that composition
of morphisms defines an action of the group A(d) := MorC(d, d) on c\C/d.
Varying c we obtain a functor from C to the category of small categories
equipped with an A(d)-action.

We use the notation for semi-fibers introduced in Section 2. Recall that
C//d (resp. d\\C) denotes the subcategory of C/d (resp. d\C) consisting of
the morphisms c → d (resp. d → c) which are not isomorphisms. Thus
c\C//d ⊂ c\C/d consists of the sequences c → d′ → d such that d′ → d
is not an isomorphism. The following main theorem of the present section
describes explicitly the effect of pruning on chain complex functors.

5.5. Theorem. Let C′ be the subcategory of an ordered category C, ob-
tained by pruning an object d ∈ C. Then there exists a natural homotopy
equivalence of functors defined on the category C:

Φ : C∗(−\C/d,−\C//d)⊗A(d) C∗(d\C, d\\C) '→ C∗(−\C,−\C′).
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For the proof we can assume that d is the only object in its isomorphism
class. To construct a homomorphism Φ we need to replace the tensor product
with some other homotopy equivalent chain complex. This is done in the next
lemmas.

5.6. Lemma. (a) For each p ≥ 0 the functor Cp(−\C/d,−\C//d) is a
projective C-module.

(b) For every q ≥ 0 the A(d)-module Cq(d\C, d\\C) is free.

Proof. (a) Indeed, as in Proposition 5.2, for any C-module M we have

HomC(Cp(−\C/d,−\C//d),M) =
∏

[c=c0→...→cp=d→d]

M(c).

(b) A free A(d)-basis consists of the elements of the form [d id→ d = c0 →
. . .→ cq].

Let us consider the set of morphisms MorC(c, d) as a discrete category
(i.e. with identity morphisms only) equipped with a right A(d)-action. Then
composition of morphisms yields an A(d)-equivariant functor µ : c\C/d →
MorC(c, d) which is a homotopy equivalence. The homotopy inverse is in-

duced by the functor which sends a morphism c→ d to the pair c→ d
id→ d.

Varying c we obtain a natural (non-equivariant) homotopy equivalence be-
tween functors into the category of small categories with A(d)-action.

Let ι(c)∗ : C∗(c\C//d) ⊂ C∗(c\C/d) be the inclusion and let

η := µ ◦ ι : C∗(c\C//d)→ Mor(c, d).

We shall shorten notation by defining

C∗ := C∗(d\C, d\\C) and C ′∗(−) := C∗(−\C/d,−\C//d).

5.7. Lemma. There are natural homotopy equivalences of functors on C:
∆∗(η)⊗A(d) C∗

'← ∆∗(ι)⊗A(d) C∗
'→ C∗(−\C/d,−\C//d)⊗A(d) C∗.

Proof. Observe first that the natural maps

∆∗(η) '← ∆∗(ι)
'→ C∗(−\C/d,−\C//d)

preserve A(d)-actions and they are natural chain homotopy equivalences.
To see this note that in the composition η := µ ◦ ι the first map is a natu-
ral chain equivalence and all the functors involved are projective C-modules
(Lemma 5.6(a)). The maps remain natural homotopy equivalences after ten-
soring with C∗. Indeed, by Lemma 5.6(b), C∗ is a free A(d)-module, thus
tensoring over A(d) with C∗ amounts to taking a direct sum of an appropri-
ate number of the tensored module. And direct sums clearly preserve chain
homotopy equivalences.
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Proof of Theorem 5.5. To define a natural homotopy equivalence we first
replace the chain complex C∗(c\C/d, c\C//d)⊗ C∗ by ∆∗(η)⊗ C∗. Now we
shall exhibit an isomorphism

⊕

p+q=n

∆p(η)⊗A(d) Cq(d\C, d\\C)→ Cn(−\C,−\C′).

Recall that ∆p(η) = Cp−1(c\C//d) for p > 0 and C0(η) = Z[MorC(c, d)].
Since Cp−1(c\C//d) is the free abelian group generated by sequences c →
c0 → . . .→ cp−1

6'→ d, it follows (cf. Lemma 5.6(b)) that the tensor product
Cp−1(c\C/d) ⊗ Cq is the free abelian group generated by the tensors [c →
c0 → . . . → cp−1

6'→ d] ⊗ [d id→ d = c′0 → . . . → c′q]. To such a generator
we assign the simplex [c → c0 → . . . → cp−1 → d = c′0 → . . . → c′q].
The resulting homomorphism establishes a bijection of bases (over Z) of the
source and target groups.

We shall express the relative cohomology H∗(C, C′;M) as the hyperco-
homology of the group of endomorphisms A(d) with coefficients in a certain
chain-cochain complex depending on “neighborhoods” of d in C.

We define a cochain complex of A(d)-modules with coefficients in a con-
travariant functor M : C → Ab as follows:

L∗(d;M) := HomC(C ′∗(−)⊗ C∗,M)) ' Hom(C∗,D∗(C, d;M))

where D∗(C, d;M) := HomC(C ′∗(−),M).

5.8. Proposition. Let C′ be the subcategory of a category C, obtained
by pruning an object d ∈ C, and M : C → Ab be a contravariant functor.
Then there is a natural isomorphism

H∗(C, C′;M) ' H∗(A(d);L∗(d;M)).

Proof. We have to calculate H∗(HomC(C ′∗(−) ⊗A(d) C∗,M)); the de-
sired expression follows from the adjunction properties of tensor product.
Indeed HomC(C ′∗(−) ⊗A(d) C∗,M) ' HomA(d)(C∗,HomC(C ′∗(−),M)). Let
C∗(EA(d)) = C∗(d\d) be the chain complex of the universal contractible
free A(d)-space. The augmentation homomorphism C∗(EA(d))→ Z induces
a weak equivalence C∗(EA(d))⊗C∗ → C∗. Since C∗ is a free A(d)-module it
is a chain homotopy equivalence and therefore we have a cochain homotopy
equivalence

HomA(d)(C∗,HomC(C ′∗(−),M))

' HomA(d)(C∗(EA(d))⊗ C∗,HomC(C ′∗(−),M));

since the last cochain complex is isomorphic to

HomA(d)(C∗(EA(d)),Hom(C∗,HomC(C ′∗(−),M)))

the assertion follows.
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We define several full subcategories of C playing the role of “neighbor-
hoods of d in C”. The star-categories are defined as full subcategories of C:

st+
C (d) := {d′ ∈ C : ∃d→ d′}, st−C (d) := {d′ ∈ C : ∃d′ → d},

stC(d) := st+
C (d) ∪ st−C (d).

Analogously we define the link-categories

lkC(d) := lk+
C (d) ∪ lk−C (d)

as full subcategories of the corresponding star-categories consisting of ob-
jects not isomorphic to d.

We shall see that the star-subcategories play a crucial role in comparing
higher limits over C′ and C. Recall that we have defined the chain complex
D∗(C/d, C//d;M) := HomC(C∗(−\C/d,−\C//d),M).

5.9. Proposition. The restriction maps

D∗(C/d, C//d;M)→ D∗(st−C (d)/d, lk−C (d)/d;M),

C∗(d\C, d\\C)→ C∗(d\st+
C (d), d\lk+

C (d))

are isomorphisms.

Proof. The first map is clearly injective since C∗(−\C/d,−\C//d) van-
ishes outside stC(d). It remains to observe that it is surjective, i.e. to check
that the obvious extension of a natural transformation over st−C (d) to ob-
jects in C is also a natural transformation. The assertion about the second
restriction map is even more straightforward.

We conclude the section by expressing the “local cohomology” H∗(A(d);
L(d;M)) in simpler terms if the object d is either maximal (i.e. every mor-
phism d → c is an isomorphism) or minimal (i.e. every morphism c → d is
an isomorphism). This is a typical situation in many applications. Note that
the element d is minimal (resp. maximal) in st+

C (d) (resp. st−C (d)).

5.10. Corollary. If d = dmax (resp. dmin) is a maximal (resp. mini-
mal) object in a category C then there are natural isomorphisms

H∗(A(dmax);L(dmax;M)) ' H∗(A(dmax);D∗(C/dmax, C//dmax;M)),

H∗(A(dmin);L(dmin;M))

' H∗(A(dmin); Hom(C∗(dmin\C, dmin\\C),M(dmin))),

H∗(C, C\[dmin];M) ' H∗(HomA(dmin)(C∗,M(dmin))).

Proof. If dmax is a maximal object then

C∗(dmax\C, dmax\\C) ' C∗(dmax\C) ' C∗(EA(dmax)),

hence by adjunction we obtain the first isomorphism.
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Let now dmin be a minimal object. Then st−C (dmin) = {dmin}. Hence,
again by adjunction, we obtain the second isomorphism. The last isomor-
phism follows directly from 5.6.

As an application of the last proposition we shall calculate higher limits
of atomic functors. A functor M : C → Ab is called atomic, concentrated
on c if M(c′) = 0 for all objects not isomorphic to c. Note that atomic
functors concentrated on c can be identified with A(c)-modules.

Note that every functor M : C → Ab defined on an ordered category
admits a filtration by subfunctors 0 = M0 ⊂ M1 ⊂ . . . ⊂ M such that the
subquotients Mi/Mi−1 are sums of atomic functors and moreover for every
object c ∈ C one of the three terms of the short exact sequence

0→Mi−1(c)→Mi(c)→Mi(c)/Mi−1(c)→ 0

vanishes (cf. [JMO2]).
A subcategory C′ ⊂ C is called upward saturated if all morphisms in C

originating from objects of C ′ belong to C′. In particular C′ is a full subcat-
egory.

5.11. Proposition. Let C′ ⊂ C be an upward saturated subcategory and
M : C → Ab a functor such that M(c) = 0 for all c 6∈ C ′. Then the inclusion
C′ ⊂ C induces an isomorphism H∗(C;M) '→ H∗(C′;M).

Proof. It follows from the definitions that HomC(C∗(−\C,−\C′),M)
= 0, and thus the relative groups vanish.

The object d is minimal in st+
C (d) so the last proposition implies that for

an atomic functor concentrated on d the cohomology H∗(st+
C (d);M) can be

calculated using Proposition 5.10.
Finally, we shall observe that Proposition 5.10 is closely related to a re-

sult of Oliver [O] who studied higher limits over ordered categories with sub-
objects. Since we consider contravariant functors whereas Oliver considered
covariant functors, we give the dual definition of a category with quotients.

5.12. Definition. A category with quotients is a pair of ordered cate-
gories D ⊂ C such that obD = ob C and

(a) |MorD(x, y)| ≤ 1 for any pair of objects,
(b) each morphism f ∈ MorC(x, y) can be written in a unique way as a

composite x
p→ y′

a→ y where a ∈ IsoC(y′, y) and p ∈MorD(x, y′).

Note that (a) & (b) implies that the category D is defined by a partially
ordered set which we shall denote by (D,≤). Condition (b) implies that
for every object c ∈ D the automorphism group MorC(c, c) acts on Dc≤ :=
{c′ ∈ D : c ≤ c′}.
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5.13. Remark. Observe that a category with quotients (C,D) is not
only ordered but also all morphisms are epimorphisms. Indeed, it suffices
to show that all morphisms which belong to D are epimorphisms. Suppose

that x
p→ y is in D and for two morphisms y

fi→ z we have f1 ◦ p = f2 ◦ p.
According to (b) each fi decomposes into y

qi→ zi
ai→ z where qi ∈ D and

ai is an isomorphism, thus a1 ◦ q1 ◦ p = a2 ◦ q2 ◦ p. Since p ∈ D and the
decomposition in (b) is unique we infer that z1 = z2, q1 ◦ p = q2 ◦ p and
a1 = a2. Since there are no more than one morphism between objects in D
we conclude that q1 = q2, hence f1 = f2.

Now we are ready to show a generalization of Oliver’s [O, Proposition 3].

5.14. Theorem. If dmin is a minimal object in an ordered category with
quotients C ⊃ D then for any functor M : C → Ab there is a natural
isomorphism

H∗(A(d);L(dmin;M)) ' H∗(EA×A(dmin) (|Ddmin≤|, |Ddmin<|);M(dmin)).

Proof. The isomorphism follows easily from 5.10. We have to observe
that the complex C∗(dmin\C, dmin\\C) of A(dmin)-modules is isomorphic to
C∗(|Ddmin≤|, |Ddmin<|). Indeed the condition (b) in Definition 5.12 implies
that there is an equivalence of categories dmin\C ' dmin\D ' Ddmin≤ and
by definition it preserves the A(dmin)-action.

6. Higher limits on categories associated to isotropy presheaves.
Let d : W→ S(G) be an isotropy presheaf on a G-poset W, and M :Wd →
R-mod a coefficient system on the associated category. We shall prove several
results concerning the cohomology groups (higher limits) H∗(Wd;M).

Let f : (W, dW)→ (V, dV) be a morphism of isotropy presheaves. As we
noticed in Theorem 3.4 fibers of the induced functor f∗ :WdW → VdV can be
expressed in terms of the fibers of the poset map f . This observation implies
certain relations between higher limits on WdW and VdV . In particular if
dW = dV ◦ f and the right fibers v\f of the poset map are R-acyclic for all
v ∈ V then for every coefficient system N : VdV → R-mod Proposition 5.4
provides an isomorphism

(6.A) f∗ : H∗(VdV ;N) '→ H∗(WdW ;N ◦ f).

Note that in general in Propositions 5.3 and 5.4 applied to the functor f∗
the fiber categories f∗/− and −\f∗ cannot be replaced by (f/−)dW and (if
dW = dV◦f) −\f respectively, since the equivalences of categories described
in Proposition 3.4 are natural on the poset V but not on the category VdV .

In certain cases calculations of higher limits over Wd can be reduced to
more familiar higher limits over orbit categories. Recall that for V ⊂ S(G)
we denote by OG(V) the category of orbits G/H such that H ∈ V.
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6.1. Proposition. Let d : W→ S(G) be an isotropy presheaf such that
d(W) ⊂ V, where V ⊂ S(G) is a G-subposet. Assume moreover that for
any H ∈ V the right fiber H\d is R-acyclic. Then

(a) the induced map |d| : |W| → |V| is an R-equivalence,
(b) the induced functor Fd :Wd → OG(V) is right R-cofinal ,
(c) for every coefficient system M : OG(V) → R-mod the induced ho-

momorphism d∗ : H∗(OG(V);M)→ H∗(Wd;M ◦ Fd) is an isomorphism.

Proof. Let ι : S(G) → S(G) be the identity isotropy presheaf. Asser-
tions (a)–(c) follow immediately from the isomorphism (6.A) applied to
d : (W, d)→ (V, ι|V), interpreted as a map of isotropy presheaves.

In the next proposition we specify an important situation when the re-
striction homomorphism H∗(Wd;M) → H∗(W ′d;M) induced by an inclu-
sion W′ ⊂W is an isomorphism; the proposition extends to higher limits a
result of Thévenaz and Webb (cf. 2.11).

6.2. Proposition. Let ι : W′ ⊂W be a G-subposet such that for every
w ∈W\W′ the right fiber |Ww≤| of the inclusion is finite-dimensional and
the right semi-fiber |Ww<| is R-acyclic. Then

(a) the inclusion |ι| : |W′| ⊂ |W| is an R-equivalence,
(b) the inclusion functor ι :W ′d ⊂ Wd is right R-cofinal ,
(c) for every coefficient system M : Wd → R-mod the induced homo-

morphism ι∗ : H∗(Wd;M)→ H∗(W ′d;M) is an isomorphism.

Proof. Thévenaz–Webb ([TW, Prop. 1.7], quoted as 2.11 above) con-
structed a chain W′ = Wn ⊂ . . . ⊂ W0 = W of G-subposets such that
the right fibers of every inclusion Wi ⊂ Wi+1 are R-acyclic. (A similar
argument can be applied to prove that all fibers |Ww≤| are R-acyclic.) Now
assertions (a)–(b) follow from the isomorphism (6.A).

We shall establish a relation between higher limits over categories as-
sociated to different isotropy presheaves on the same G-poset. Let d1 ≤
d2 : W → S(G) be a pair of isotropy presheaves. Then we have a functor
i∗ : Wd1 → Wd2 . According to Corollary 3.4 for every w ∈ W the right
fiber i∗/w is equivalent to the category defined by the group d2(w)/d1(w).
Moreover the equivalence is natural up to inner automorphisms on Wd2 .
Thus for a coefficient system M : Wd1 → Ab the Leray spectral sequence
5.3 has the form

(6.B) Hm(Wd2 ;Hn(d2(−)/d1(−);M(−)))⇒ Hn+m(Wd1 ;M)

where the coefficient system in the E2-term is given by assigning to w ∈
Wd2 the group cohomology H∗(d2(w)/d1(w);M(w)); note that since M has
been defined on Wd1 , for every w ∈ W the group M(w) is a Gw/d1(w)-
module. The spectral sequence is clearly natural with respect to morphisms
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of isotropy presheaves. If d1 = e is a minimal isotropy presheaf then the
spectral sequence is convergent to the cohomology of the poset W.

If W is a regular G-poset (cf. 4.7 and 4.8), then for d2 = dmax and an
arbitrary isotropy presheaf d : W→ Ab we have a spectral sequence

(6.C) Hm(W/G;Hn(G−/d(−);M(−)))⇒ Hn+m(Wd;M).

Here the E2-term is the cohomology of the quotient poset with coefficients
in the simplicial presheaf, defined by the functor on the poset W/G.

Recall that for any G-poset W satisfying condition (EI) its barycentric
subdivision sd(W) is regular (cf. 4.9). The projection p0 : sd(W) → W is
right cofinal. The composition d0 := d◦p0 is an isotropy presheaf on sd(W),
hence for any M : Wd → Ab we have an isomorphism p∗0 : H∗(Wd;M) '→
H∗(sd(W)d0 ;M ◦p0). Therefore applying (6.C) to (sd(W), d0) we obtain an
important spectral sequence

(6.D) Hm(sd(W)/G;Hn(G−/d0(−);M(−)))⇒ Hn+m(Wd;M).

It turns out that under certain assumptions (which are often satisfied by
various important posets of subgroups) the E2-term of the spectral sequence
reduces to the first row. Thus H∗(Wd;M) almost does not depend on the
particular choice of the isotropy presheaf d (cf. Theorem 6.6)! This result
should be compared with (4.1) where we noticed the homotopy equivalence
hocolimWd

Fd
'→ |W|; thus the homotopy type of the homotopy colimit

associated to an isotropy presheaf d does not depend on d.
For the proof of Theorem 6.6 we shall need an interpretation of higher

limits overWd as equivariant Bredon cohomology of certain G-spaces. Recall
that the Bredon cohomology of a G-space with coefficients in a contravari-
ant functor N : OG → Ab is defined as the cohomology of the cochain
complex HomOG(C∗(X), N) where C∗(X)(G/H) := C∗(XH) and C∗(−) is
the singular (or simplicial) chain complex functor (cf. [Br1]).

6.3. Lemma. Let C be an arbitrary small category equipped with a functor
F : C → OG. Then for any coefficient system N : OG → Ab there is a
natural isomorphism

H∗(C;N ◦ F ) ' H∗G(B(G\F );N).

(G\F denotes the right fiber of F under the free G-orbit equipped with the
left G-action.)

Proof. We have an isomorphism of the corresponding chain complexes
provided by the obvious adjointness property:

HomC(C∗(−\C), N ◦ F ) ' HomOG(C∗(−\F ), N).

Now it suffices to notice the natural equivalence of functors on the orbit
category: (G/H)\F ' (G\F )H .
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6.4. Corollary. Let d : W → S(G) be an isotropy presheaf on a G-
poset W. Then for every coefficient system N : OG → Ab there is a natural
isomorphism

H∗(Wd;N ◦ Fd) ' H∗G(hocolimWd
Fd;N).

In particular for a regular G-poset W there is a natural isomorphism

H∗(Wiso;N ◦ Fiso) ' H∗G(|W|;N).

Proof. The functor Fd : Wd → OG was defined in Section 3. A direct
inspection exhibits an isomorphism G\Fd ' (Wd)Fd of categories equipped
with G-action, and by definition hocolimWd

Fd coincides with the (geometric
realization of) the nerve of (Wd)Fd (cf. Sec. 2). For a regular G-poset the
map hocolimWiso Fiso → |W| (cf. 4.11) is a G-homotopy equivalence, thus
the second isomorphism follows.

The interpretation of higher limits as equivariant cohomology turns out
to be often more flexible and geometrically more intuitive (cf. [JMO1]).
Following [S l3] we shall describe briefly a construction of the transfer map
in Bredon cohomology which will be used to prove the vanishing of certain
higher limits in the next theorem. Another, more categorical approach to
transfers was described in [J].

Let G be a finite group and M : OG → Ab be a coefficient system which
extends to an additive functor on the Hecke category ZSG of finite G-sets.
We call M a Hecke functor (cf. [Wa, Def. 2.1]); in particular M is a Mackey
functor as defined in [JM]. Recall that a morphism S → T in ZSG is a
G-homomorphism ZS → ZT of the free abelian groups generated by S and
T respectively. For any G-space X, a Hecke functor M and an orbit G/K
one defines a transfer map tr : H∗K(X;M)→ H∗G(X;M) as the composition

H∗K(X;M) ' H∗G(X;M(G/K ×−))→ H∗G(X;M)

where the first isomorphism is induced by the adjunction isomorphism of
the corresponding chain complexes and the second map is induced by the
fundamental transfer homomorphism Z[S] → Z[G/K × S] defined for any
G-set S. The restriction homomorphism res : H∗G(X;M) → H∗K(X;M)
is induced simply by the projection G/K × S → S. As usual we need to
understand the composition of the restriction and the transfer.

6.5. Lemma. For any Hecke coefficient system M the composition

H∗G(X;M) res→ H∗K(X;M) tr→ H∗G(X;M)

is multiplication by the index |G : K|.
Proof. The composition tr ◦ res is induced by the natural transforma-

tion Z[S] tr→ Z[G/K × S]
pr→ Z[S] of coefficient systems, which is clearly

multiplication by |G : K|.
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Group cohomology is an important example of the Hecke functor. More
precisely for an arbitrary G-module A consider the functor H∗[G](−;A) :
OG → Ab defined as H∗[G](S;A) := H∗(EG×GS;A). By the Shapiro lemma
H∗[G] easily extends to a Hecke functor.

6.6. Theorem. Let d : W → S(G) be an isotropy presheaf defined on
a G-poset W of finite length. Assume moreover that for every w ∈ W the
group A(w) := Gw/d(w) is finite and that for every non-trivial p-subgroup
P ⊂ A(w), H∗(|Ww≤|P , |Ww<|P ;Fp) = 0. Then for any coefficient system
M :Wd → Fp-mod in the spectral sequence (6.D), Ep,q2 = 0 for q > 0, hence
there is a natural isomorphism

H∗(sd(W)/G;M0) '→ H∗(Wd;M)

where for each w.= (w0, . . . , wn), M0(w.) := H0(Gw. ;M(w0)) = M(w0)Gw.
and Gw. = Gw0 ∩Gw1 ∩ . . . ∩Gwn .

Proof. Note that a G-poset of finite length must satisfy condition (EI)
(cf. Ex. 4.9). Thus its barycentric subdivision sd(W) is regular (4.10) and
we can consider the spectral sequence (6.D). We have to prove that for
n > 0, Hm(sd(W)iso;Mn) = 0, where Mn(w.) := Hn(Gw./d(w0),M(w0)).
We begin by proving it in the case when M is an atomic functor on Wd

concentrated on an object w ∈ Wd. We write A := A(w) for short. We have
the following isomorphisms in cohomology:

H∗(sd(W)iso;Mn)
(1)→ H∗(sd(GWw≤)iso;Mn)
(2)→ H∗(sd(GWw≤, GWw<)iso;Mn)
(3)→ H∗((G×Gw sd(Ww≤,Ww<))iso;Mn)
(4)→ H∗(sd(Ww≤,Ww<)iso;Mn|A)
(5)→ H∗(sd(Ww≤,Ww<)iso; M̃n).

The isomorphism (1) is induced by the inclusion of G-posets GWw≤ ⊂W
(GWw≤ denotes the union ofG-orbits of points from Ww<) and follows from
Proposition 5.11. The isomorphism (2) follows from the exact sequence of a
pair (cf. Sec. 5) since Mn vanishes on the subcategory sd(GWw<)iso. The
isomorphism (3) is induced by the canonical map α : G×Gw sd(Ww≤,Ww<)
→ (GWw≤, GWw<) of G-posets since it induces a bijection on the corre-
sponding chain complexes.

For (4) note that (Ww≤,Ww<) is a pair of A-posets. Indeed, the sub-
group d(w) acts trivially on every element w′ > w since from the defini-
tion of an isotropy presheaf we obtain d(w) ⊂ d(w′) ⊂ Gw′ . Moreover for
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any subgroup H ⊂ G, a regular H-poset V and a coefficient system N :
(G×H V)iso → Ab we have an obvious isomorphism H∗((G×H V)iso;N) '
H∗(Viso;N |H) where N |H is the restriction of N to Viso ⊂ (G×HV)iso. Note
that the system Mn|A is given by Mn|A(w.) = Hn(Gw./d(w0);M(w0)) =
Hn(Aw./(d(w0)/d(w));M(w0)).

In the last cohomology group (the target of (5)) the coefficient system
is defined as M̃n(w.) = Hn(Aw. ;M(w)) and the isomorphism (5) is given
by the morphism of the coefficient systems induced by the homomorphisms
Aw. → Aw./(d(w0)/d(w)). (Note that the morphism is an isomorphism
outside sd(Ww<).)

We shall use the transfer to prove that H∗(sd(Ww≤,Ww<)iso; M̃n) = 0
for n > 0. It is convenient to identify the latter groups with equivariant
Bredon cohomology H∗A(sd(Ww≤,Ww<); M̃n) with coefficients in the coef-
ficient system M̃n : OA → Fp-mod given by

M̃n(A/K) := Hn(EA×A A/K;M(w)).

Since Bredon equivariant cohomology is a topological invariant we shall
denote it by H∗A(|Ww≤|, |Ww<|; M̃n) for short. Let P ⊂ A be a Sylow p-
subgroup. According to Lemma 6.5 and the remarks following it the restric-
tion homomorphism H∗A(|Ww≤|, |Ww<|; M̃n) → H∗P (|Ww≤|, |Ww<|; M̃n)
is a monomorphism.

For an arbitrary G-space X we denote by Sing(X) the union of fixed
point sets of all non-trivial subgroups. Thus we have an isomorphism

H∗P (|Ww≤|, |Ww<|; M̃n) '→ H∗P (Sing(|Ww≤|, |Ww<|); M̃n) = 0.

Indeed restriction to the singular set is an isomorphism since on the free orbit
M̃n(P/e) = 0 for n > 0. The target group vanishes by general properties of
equivariant cohomology since we have assumed that the relative cohomology
of the fixed point sets of all non-trivial subgroups of P vanishes (cf. [JMO1,
Lemma A.10] and [We]).

Now we shall pass from atomic functors to arbitrary coefficient systems
M :Wd → Fp-mod. There exists a filtration 0 = M0 ⊂M1 ⊂ . . . ⊂Mn = M
such that for every i > 0 the quotient functor Mi/Mi−1 is a direct sum
of atomic functors and in the short exact sequence 0 → Mi−1 → Mi →
Mi/Mi−1 → 0 one of the three terms vanishes. This guarantees that the
induced sequence of functors 0 → Mn

i−1 → Mn
i → Mn

i /M
n
i−1 → 0 is

also exact, hence H∗(sd(W)iso;Mn) = 0 for an arbitrary functor M and
n > 0.

6.7. Corollary. Let d : W → S(G) be an isotropy presheaf satisfying
the assumptions of Theorem 6.6. Then Hq(Wd;M) = 0 for all q greater than
the length of the poset W (thus independent of d).
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The last corollary generalizes some vanishing results proved in [JMO1]
and [O]. A result closely related to 6.6 in the special case of some orbit
categories has recently been proved by J. Grodal [G].

7. Posets of subgroups. In this section we specialize our considera-
tions to posets of subgroups equipped with the conjugation action; note that
the isotropy group of a subgroup is its normalizer. Let p be a fixed prime.
For a finite group G recall the following important examples of G-subposets
of S(G):

• Dp(G) — subgroups of order divisible by p,
• Np(G) — subgroups which contain a non-trivial normal p-subgroup,
• Zp(G) — subgroups H ⊂ G such that p divides the order |Z(H)| of

the center,
• Sp(G) — p-subgroups,
• S̃p(G) — non-trivial p-subgroups,
• Rp(G) — p-stubborn subgroups (i.e. p-subgroups P ⊂ G such that P

is the maximal normal p-subgroup in its normalizer NG(P )),
• Bp(G) — non-trivial p-stubborn subgroups (Bouc’s collection),
• Cp(G) — centric p-subgroups (i.e. P ⊂ G such that CG(P ) ' Z(P )×Q

where (p, |Q|) = 1,
• Ap(G) — non-trivial elementary abelian p-subgroups,
• Adist

p (G) — distinguished, non-trivial elementary abelian p-subgroups
(i.e. those which are maximal elementary abelian p-subgroups of their
centralizers; cf. [Be]).

There are three important isotropy presheaves on an arbitrary G-subposet
W ⊂ S(G) which have been studied by many authors:

• (sub) the subgroup presheaf ιG : W ⊂ S(G),
• (norm) the normalizer presheaf nG : sd(W)→ S(G); it is the maximal

isotropy function on the barycentric subdivision of W, given by the
intersections of the normalizers: nG(H0, . . . ,Hq) := NH0 ∩ . . .∩NHq.
• (cen) the centralizer presheaf cG : Wop → S(G), cG(K) := CG(K).

Other examples can be produced by replacing subgroups, centralizers and
normalizers with other group-theoretical constructions.

The following lemma due to Quillen [Q2] and Thévenaz–Webb [TW] is
crucial for comparing homotopy types of G-posets and higher limits over
associated categories:

7.1. Lemma (Quillen, Thévenaz–Webb). Let P ∈ S̃p(G). Then

(a) if G contains a normal non-trivial p-subgroup then S̃p(G) is G-
contractible,

(b) Sp(G)P< is NG(P )-homotopy equivalent to S̃p(NG(P )/P ),
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(c) Sp(G)P< is NG(P )-contractible if and only if P 6∈ Bp(G),
(d) S̃p(G)<P is NG(P )-contractible if and only if P 6∈ Ap(G).

Lemma 7.1 combined with Theorem 3.4 gives a variety of cofinality re-
sults for functors induced by morphisms of posets equipped with isotropy
presheaves. Before we state the next theorem recall that a subposet W′ ⊂W
is called upward saturated if for each w′ ∈ W′ every element w ≥ w′ also
belongs to W′.

7.2. Theorem. (a) Suppose that W ⊂ Sp(G) is an upward saturated
G-subposet. Let W′ ⊂ W be a G-subposet such that W ∩ Rp(G) ⊂ W′

and let d : W→ S(G) be an arbitrary isotropy presheaf. Then the inclusion
functor I∗ :W ′d ⊂ Wd is right cofinal.

(b) Let Ap(G) ⊂ W ⊂ Np(G) and let d : Wop → S(G) be an isotropy
presheaf. Then the inclusion functor I∗ : Ap(G)op

d ⊂Wop
d is right cofinal.

Proof. (a) We have to prove that for every P ∈W the right fiber P\I∗
is contractible. From Theorem 3.4 we obtain an equivalence of categories
P\I∗ ' P\I ' W′

P≤. Since we have assumed that W ⊂ Sp(G) is upward
saturated and W ∩ Rp(G) ⊂ W′ we obtain the inclusions Rp(G)P≤ =
W ∩ Rp(G)P≤ ⊂ W′

P≤. For every P ∈ W′ the fiber W′
P≤ is obviously

contractible. For each P ∈W\W′ Lemma 7.1(c) implies that Rp(G)P≤ =
Rp(G)P< is contractible and the inclusion Rp(G)P≤ ⊂W′

P≤ is right cofinal.
(b) Let H ∈ Np(G). Then H\I∗ ' H\I ' {E ⊂ H | E ∈ Ap(G)} =

Ap(H) ' ∗, by Lemma 7.1(a).

Note that the last theorem generalizes the well known homotopy equiv-
alences of posets of subgroups.

The next result reduces in some cases calculations of higher limits over
all non-trivial elementary abelian subgroups to distinguished subgroups (cf.
definition at the beginning of the section). Note that the inclusion I :
Adist
p (G) ⊂ Ap(G) admits a retraction r : Ap(G) → Adist

p (G) given by
r(E) := ZpCG(E), where Zp(H) denotes the maximal elementary abelian
p-subgroup of the center of H.

7.3. Proposition. For any isotropy presheaf d : Adist
p (G)op → S(G)

the induced functor r∗ : Ap(G)op
d′ → Adist

p (G)op
d , where d′ := d ◦ r, is right

cofinal.

Proof. For every distinguished elementary abelian p-subgroup E we have
the equivalences E\r∗'E\r'{E′∈Ap(G) |E⊃ZpCG(E′)}'Ap(E)'∗.

Note that the last proposition does not imply that the inclusion of cat-
egories I : Adist

p (G)d ⊂ Ap(G)d is cofinal. However, applied to the minimal
isotropy presheaf, together with Theorem 4.1, it implies that I : Adist

p (G) ⊂
Ap(G) is a homotopy equivalence (cf. [Be]).



282 S. Jackowski and J. Słomińska

The next consequence of 7.1 is a sort of duality theorem. Note that
the centralizer presheaf cG : Ap(G)op → S(G) has values in the subposet
Zp(G) ⊂ S(G), since for every non-trivial elementary abelian p-subgroup E
obviously E ⊂ Z(CG(E)).

7.4. Proposition. For any isotropy presheaf d : Zp(G) → S(G) the
induced functor cG∗ : Ap(G)op

d◦c → Zp(G)d is right cofinal.

Proof. For every object H ∈ Zp(G)d we have H\c∗ ' H\c = {E ∈
Ap(G) | H ⊂ CG(E)} = Ap(CG(H)) and Zp(H) is a normal subgroup of
the centralizer, thus by 7.1(a), H\c is contractible.

Observe that up to now we have just been comparing the homotopy
properties of various posets and associated categories. The rest of the section
will be devoted to showing that many interesting posets are ample with
respect to a cohomology theory associated to an Fp[G]-module.

We recall the definition of functors Λ∗ [JMO1]. Let G be finite group
and let M be an Fp[G]-module. The module M defines an atomic functor
on the orbit category Op(G) := Sp(G)id given by M̃e(G/e) = M . In [JMO1]
the authors defined the functor

Λ∗(G;M) := H∗(Op(G);Me).

These functors play an important role in calculating higher limits over orbit
categories due to the following

7.5. Theorem. (a) ([JMO1, Lemma 5.4]) For any atomic functor F :
Op(G)→ Fp-mod concentrated on the orbit G/P ,

H∗(Op(G);F ) ' Λ∗(NP/P ;F (G/P )).

(b) ([JMO1, Thm. 5.5]) If M is an Fp[G]-module such that ker{G →
Aut(M)} is divisible by p then Λ∗(G;M) = 0.

If an Fp[G]-module satisfies the assumption of (b) then we call it p-non-
faithful ; an important example is the trivial G-module Fp if p divides |G|.

For a G-module M we define an equivariant Borel cohomology theory

H∗[G](X;M) := H∗(EG×G X;π∗M)

where π : EG ×G X → BG. Recall that a G-poset |W| is M -ample if
π∗ : H∗(BG;M) '→ H∗(EG×G |W|;π∗M) is an isomorphism.

As an application of general considerations in the earlier sections we shall
give a proof of a theorem of Dwyer [Dw2]:

7.6. Theorem. Let M be a p-non-faithful Fp[G]-module. Then the G-
poset S̃p(G) equipped with the subgroup isotropy presheaf ι : S̃p(G) ⊂ S(G)
is M -ample and sharp. Moreover if every cyclic subgroup of order p acts
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trivially on M then any G-subposet S̃p(G) ⊂W ⊂ Dp(G) equipped with the
subgroup isotropy presheaf is M -ample and sharp.

Proof. The poset Sp(G) of all p-subgroups contains the smallest element
(trivial subgroup), thus it is contractible and by [J], [Mi], [JM] the associated
subgroup decomposition is sharp. Thus to prove that the subgroup isotropy
presheaf S̃p(G) ⊂ S(G) is M -ample and sharp it suffices (cf. 5.8, 5.14) to
show that H∗(EG×G (|Sp(G)|, |S̃p(G)|);M) = 0. By 5.14 and 5.11 the latter
group can be identified with Λ∗(G;M) defined above and it vanishes by 7.5.
The last assertion of the theorem follows from 4.3 and the observation that
EnH∗(−;M)(S̃p(G), id) = Dp(G).

The last theorem together with 7.2 implies easily that the posets Rp(G),
Bp(G) are M -ample. Moreover we prove another result of Dwyer’s:

7.7. Corollary. Let CRp(G) := Cp(G) ∩ Rp(G) ⊂ Sp(G) be the G-
subposet consisting of the p-subgroups which are both centric and stubborn.
Then the subgroup isotropy presheaf ι : CRp(G) ⊂ S(G) is Fp-ample and
sharp.

Proof. Note that the poset of p-centric subgroups is upward saturated,
thus Theorem 7.2(a) implies that for every isotropy presheaf d : Cp(G) →
S(G) the inclusion functor CRp(G)d ⊂ Cp(G)d is right cofinal. It remains
to prove that the restriction map H∗(Op(G);H) → H∗(Cp(G);H) is an
isomorphism for H(G/P ) := H∗(EG ×G G/P ;Fp). The functor H can be
filtered by a sequence of functors with atomic quotients (cf. discussion fol-
lowing 5.10), thus it is enough to observe that Λ∗(N(P )/P ;H(G/P )) = 0
for every P 6∈ Cp(G). Indeed, if P is not centric then PC(P )/P ⊂ N(P )/P
is a non-trivial subgroup of order divisible by p acting trivially on H(G/P ),
hence an application of 7.5 concludes the proof.

We conclude the section with a result concerning the centralizer isotropy
presheaf.

7.8. Corollary. Let G be a group of order divisible by p and let M be
an Fp[G]-module such that every cyclic subgroup of order p acts trivially on
M . Any G-poset W satisfying Ap(G) ⊂W ⊂ Dp(G) is M -ample. If more-
over W ⊂ Np(G) then W equipped with the centralizer isotropy presheaf
cG : Wop → S(G) is also sharp.

Proof. Since S̃p(G) ⊂ Zp(G) ⊂ Dp(G) we know from 7.6 that Zp(G)
is M -ample, hence (by 7.4) Ap(G) is also M -ample. Now for an arbitrary
G-subposet Ap(G) ⊂W ⊂ Dp(G) the same conclusion follows from 4.3 be-
cause Dp(G) = ClH∗(−;M)(Ap(G)). To see this, note that for any subgroup
H ⊂ G we have Ap(G)≤H = Ap(H).
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Next we prove that cG : Ap(G)op → S(G) is M -sharp. This is a well
known theorem for constant coefficients (cf. [JM]), extended by Dwyer [Dw2]
to twisted coefficients. Here we shall give a different proof based on 7.4 and
7.6. Indeed by 7.4 we have an isomorphism

H∗(Ap(G)op
c ;H∗(BCG(−);M)) '→ H∗(Zp(G)ι;H∗(B(−);M)).

To prove that the last higher limits vanish we notice that S̃p(G) ⊂ Zp(G) ⊂
Dp(G) and apply Theorem 7.6. Now the conclusion follows immediately
from 7.2(b).

8. Cofinality in orbit categories. Let G be a finite group, p a fixed
prime and O(p)(G) the category of G-orbits whose order of isotropy group
is divisible by p.

8.1. Theorem. Let F : C → O(p)(G) be a functor.

(1) If for every non-trivial elementary abelian p-subgroup E ⊂ G the
category (G/E)\F is Fp-acyclic then the map

hocolimC EG×G F (−)→ BG

is an Fp-cohomology equivalence.
(2) If moreover the categories (G/P )\F are Fp-acyclic for all non-trivial

p-subgroups P ⊂ G then the above decomposition is sharp.

Proof of (1). Let X := hocolimC F = B(G\F ). We apply Proposi-
tion 4.4(η′) to the space X and the poset Ap(G). Indeed, for every point
x ∈ X the order of the isotropy group is divisible by p, hence the poset
Ap(G)≤Gx = Ap(Gx) is Fp-ample. Therefore the map

id×Gη : EG×G XtAp(G) → EG×G X
is an Fp-equivalence. Now Proposition 4.4(π) and Theorem 7.6 imply that
EG×GXtAp(G) '→EG×G |Ap(G)| '→BG, where ' denotes Fp-equivalence.

The second assertion could be proved along the same lines, replacing
Borel cohomology with Bredon cohomology H∗G(−;H∗[G]) with coefficients in
the Borel cohomology functor. We give a different proof based on the next
lemma which compares higher limits in a more general categorical setting.

Suppose Fi : Ci → D, i = 0, 1, are functors into the same category and let
N be a D-module. We shall compare higher limits of the pull-backs N ◦ F0

and N ◦ F1. We denote by Di the image of Fi.

8.2. Lemma. Suppose that for every d0 ∈ D0 the right fiber d0\F1 is
acyclic and for every d1 ∈ D1 the canonical map N(d1)→ H∗(F0/d1;N ◦F0)
is an isomorphism. Then there is a natural isomorphism H∗(C0;N ◦ F0) '
H∗(C1;N ◦ F1).
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Proof. We define a new category C with two full inclusions Ik : Ck ⊂ C
and a functor F : C → D such that F |Ck = Fk, k = 0, 1. The category C is de-
fined as follows: ob C := ob C0 ∪ ob C1; MorC(c0, c1) := MorD(F0(c0), F1(c1))
and MorC(c1, c0) := ∅. Let M := N ◦ F . We prove that the inclusions in-
duce isomorphisms H∗(C0;M) '← H∗(C;M) '→ H∗(C1;M). For the functor
I0 : C0 ⊂ C and the C0-module M consider the Leray spectral sequence
(Prop. 5.3)

H∗(C;H∗(C0/−;M))⇒ H∗(C0;M).

Observe that the second term degenerates off the first column. Indeed, we
have H∗(C0/c0;M) = M(c0) since the category C0/c0 has a terminal ob-
ject. For an object c1 ∈ C1 ⊂ C we have isomorphisms H∗(C0/c1;M) '
H∗(F0/c1;M) = M(c1), the last one by assumption. Therefore we have
shown that I∗0 : H∗(C;M) '→ H∗(C0;M). To show that I∗1 is an isomor-
phism we apply Proposition 5.4 to the inclusion I0 : C0 ⊂ C. We obtain an
isomorphism

H∗(C1;M) ' H∗(HomC(C∗(−\C1),M)).

Now we have equivalences of categories c0\C1 ' F0(c0)\F1 and c1\C1
' ∗, therefore in both cases they are acyclic. Thus we conclude that I∗1 :
H∗(C;M) '→ H∗(C1;M).

Proof of 8.1(2). To prove that the decomposition is sharp we need to
show that Hp(C;H∗(EG ×G F )) = 0 for p > 0. We shall prove that
Hp(C;H∗(EG ×G F )) ' H∗(Õp(G);H∗(EG ×G −)) where Õp(G) denotes
the category of orbits whose isotropy groups are non-trivial p-groups. The
vanishing of higher limits on that category follows from Theorem 7.6. We
apply Lemma 8.2 to the pair of functors I : Õp(G) ⊂ O(p)(G) and F :
C → O(p)(G). We have assumed that for every orbit G/P ∈ Õp(G) the
fiber (G/P )\F is Fp-acyclic. For any object G/K ∈ O(p)(G) the category
I/(G/K) is equivalent to the category of K-orbits Õ(p)(K) and the functor
on I/(G/K) we are interested in corresponds to the functor H∗(EG×K −).
Thus by Theorem 7.5 the functor is acyclic and therefore the assumptions
of Lemma 8.2 are satisfied.

References

[Be] D. J. Benson, Representations and Cohomology II : Cohomology of Groups and
Modules, Cambridge Univ. Press, 1991.

[BK] A. K. Bousfield and D. M. Kan, Homotopy Limits, Completions and Localiza-
tions, Lecture Notes in Math. 304, Springer, 1972.

[Br1] G. E. Bredon, Equivariant Cohomology Theory , Lecture Notes in Math. 34,
Springer, 1967.



286 S. Jackowski and J. Słomińska

[Br2] G. E. Bredon, Transformation Groups, Academic Press, 1972.
[Bro] K. S. Brown, Cohomology of Groups, Springer, 1982.
[Dw1] W. G. Dwyer, Homology approximations for classifying spaces of finite groups,

Topology 36 (1997), 783–804.
[Dw2] —, Sharp homology decompositions for classifying spaces of finite groups, in:

Proc. Sympos. Pure Math. 63, Amer. Math. Soc., 1998, 197–220.
[DK] W. G. Dwyer and D. M. Kan, A classification theorem for diagrams of simplicial

sets, Topology 23 (1984), 139–155.
[GZ] P. Gabriel and M. Zisman, Calculus of Fractions and Homotopy Theory , Sprin-

ger, 1967.
[G] J. Grodal, Higher limits via subgroup complexes, preprint, June 19, 1999.
[H] H. W. Henn, Centralizers of elementary abelian p-subgroups, the Borel construc-

tion of the singular locus and applications to the cohomology of discrete groups,
Topology 36 (1997), 271–286.

[HS] P. Hilton and U. Stammbach, A Course in Homological Algebra, Springer, 1970.
[HV] J. Hollender and R. M. Vogt, Modules of topological spaces, applications to

homotopy limits and E∞ stuctures, Arch. Math. (Basel) 59 (1992), 115–129.
[J] S. Jackowski, A transfer map in cohomology of small categories, Bull. Polish

Acad. Sci. 35 (1987), 161–166.
[JM] S. Jackowski and J. McClure, Homotopy decomposition of classifying spaces via

elementary abelian subgroups, Topology 31 (1992), 113–132.
[JMO1] S. Jackowski, J. McClure and B. Oliver, Homotopy classification of self-maps

of BG via G-actions, Ann. of Math. 135 (1992), 183–270.
[JMO2] —, —, —, Homotopy theory of classifying spaces of compact Lie groups, in:

Algebraic Topology and Its Applications, Springer, 1994, 81–123.
[May] J. P. May, Simplicial Objects in Algebraic Topology , Van Nostrand, 1967.
[Mi] G. Mislin, The homotopy classification of self-maps of infinite quaternionic pro-

jective space, Quart. J. Math. Oxford 38 (1987), 245–257.
[O] B. Oliver, Higher limits via Steinberg representations, Comm. Algebra 22 (1994),

1381–1393.
[Q1] D. Quillen, Higher algebraic K-theory , in: Lecture Notes in Math. 341, Springer,

1973, 85–147.
[Q2] —, Homotopy properties of the poset of nontrivial p-subgroups of a group, Adv.

Math. 28 (1978), 101–128.
[Q3] —, The spectrum of an equivariant cohomology ring I , II , Ann. of Math. 94

(1971), 549–602.
[S] G. Segal, Classifying spaces and spectral sequences, Publ. Math. IHES 34 (1968),

105–112.
[Sł1] J. Słomińska, Homotopy colimits on E-I-categories, in: Algebraic Topology (Poz-

nań, 1989), Lecture Notes in Math. 1474, Springer, 1991, 273–294.
[Sł2] —, Some spectral sequences in Bredon cohomology , Cahiers Topologie Géom.

Différentielle Catég. 33 (1992), 99–134.
[Sł3] J. Słomińska, Hecke structure on Bredon cohomology , Fund. Math. 140 (1991),

1–30.
[Sł4] —, Homology decompositions of the Borel construction, preprint, 1996.
[TW] J. Thévenaz and P. J. Webb, Homotopy equivalences of posets with a group

action, J. Combin. Theory Ser. A 56 (1991), 173–181.
[T] R. W. Thomason, Homotopy colimits in the category of small categories, Proc.

Cambridge Philos. Soc. 85 (1979), 91–109.



Homotopy decompositions of G-spaces 287

[Wa] S. Waner, A generalization of the cohomology groups, Proc. Amer. Math. Soc.
85 (1982), 469–474.

[We] P. J. Webb, A split exact sequence of Mackey functors, Comment. Math. Helv.
66 (1991), 34–69.

Institute of Mathematics
Warsaw University
Banacha 2
02-097 Warszawa, Poland
E-mail: S.Jackowski@mimuw.edu.pl

Faculty of Mathematics and Information Sciences
Warsaw Technical University

Pl. Politechniki 1
00-661 Warszawa, Poland

E-mail: jolslom@snowman.impan.gov.pl

Received 12 April 2000;
in revised form 28 February 2001


