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The class of 2-dimensional neat reducts is not elementary

by

Tarek Sayed Ahmed (Giza)

Abstract. SC, CA, QA and QEA stand for the classes of Pinter’s substitution
algebras, Tarski’s cylindric algebras, Halmos’ quasipolyadic algebras and Halmos’ quasi-
polyadic algebras with equality, respectively. Generalizing a result of Andréka and Németi
on cylindric algebras, we show that for K ∈ {SC,QA,CA,QEA} and any β > 2 the class
of 2-dimensional neat reducts of β-dimensional algebras in K is not closed under forming
elementary subalgebras, hence is not elementary. Whether this result extends to higher
dimensions is open.

0. Introduction. Neat reducts and related notions like neat embed-
dings play a central role in Algebraic Logic. One of the main representation
methods used in the theory of cylindric algebras and variants thereof like
polyadic algebras is based on the Neat Embedding Theorem, to be recalled
below. (See also [15, p. 400] and [16, Thm. 3.2.10]). It is known (cf. [29]
or [31]) that the Neat Embedding Theorem, or NET for short, proved by
Henkin in the fifties is an algebraization of Henkin’s celebrated proof of the
completeness of first order logic. Ever since, variants of the NET have been
successfully applied to (algebraically) prove completeness of other versions
of quantifier logics (e.g. Keisler’s logics, cf. [12]). Other works adressing the
notion of neat reducts, in one way or another, include [1], [29] and [27]. In
[1] and [29], neat reducts are studied in connection to (isomorphism types
of) algebras of sentences of first order logic. In [27] a NET is formulated
and proved which implies the completeness of certain finitary fragments of
Keisler’s logics that are also expansions of first order logic without equal-
ity. This provides a solution to the so-called finitization problem in Alge-
braic Logic. In fact, the NET has proved to be a successful strategy to
address different versions of the finitization problem (see e.g. [35]). Very
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roughly the finitization problem is: Find a structural (in the sense of [10])
extension or modification of first order logic that admits a strongly complete
finite Hilbert-style axiomatization in the sense of [6]. The finitization prob-
lem, traced back at least to the works of Alfred Tarski on relation algebras
in the forties (cf. [36]), is currently a very active and rich research direc-
tion in Algebraic Logic (cf. [24, the subsections on finitization], [27], [30]
and [26]). The connection of neat reducts to other metalogical properties
like the Beth-definability property and omitting types can be found in [30].
This (and other) connection(s) are investigated more thoroughly in [25], [20],
[21], [23], [13], [14], [5], [8], [31] and [34]. We should point out that this list
of references addressing the important notion of neat reducts in Algebraic
Logic is far from being complete.

History (Previous results). Let α < β be ordinals. Solving problem 2.11
of [15], Németi proves in [23] that the class NrαCAβ, of α-dimensional
neat reducts of β-dimensional cylindric algebras, though closed under ho-
momorphic images and products, is not a variety (i.e. it is not closed un-
der forming subalgebras). Independently, Maddux [21] obtained a partial
solution of problem 2.11 of [15] proving that Nr3CAβ is not closed un-
der forming subalgebras for β ≥ 5. The significance of the closure of the
class of neat reducts under forming subalgebras in connection to prov-
ing amalgamation results was discovered by Pigozzi [25, Lemma 2.2.12],
and this tie is further emphasized and pursued in [34] and [31]. In [34]
Németi’s result—concerning closure of the class of neat reducts under form-
ing subalgebras—is generalized to other classes frequently studied in Al-
gebraic Logic. These include Halmos’ quasipolyadic algebras and Pinter’s
substitution algebras and various reducts thereof. In particular, it is shown
in [34] that forK ∈ {SC,QA,QEA}, the class NrαKβ of α-dimensional neat
reducts of β-dimensional algebras in K is not closed under forming subalge-
bras for α ≥ 2 and β > α. In particular, this class—though closed under ho-
momorphic images and products and hence under ultraproducts (1)—cannot
be axiomatized by any set of equations (cf. [34]). Motivated to give some
(hopefully first order) characterization of such classes, it is thus natural
to ask whether the class of neat reducts is perhaps closed under forming
elementary subalgebras, so that it is an elementary (i.e. first order axioma-
tizable) class. In [17, II.8.6, p. 266], Andréka and Németi provide a negative
answer for the cylindric case but only for the lowest value of α. They show
that the class Nr2CAβ for β > 2 is not even closed under forming elemen-
tary subalgebras. That Nr1CAβ is a variety is proved by Németi in [23].
Nr0CAβ is just the class of boolean algebras and thus is also a variety.
In [30] this result is generalized to higher dimensions, but only for cylindric

(1) Recall that an ultraproduct is a homomorphic image of a product.
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algebras. Thus for any pair of ordinals 1 < α < β the class NrαCAβ is
not closed under forming elementary subalgebras, hence this class is not ele-
mentary. This confirms a conjecture of Németi formulated in [23] and solves
problem 4.4 of [16]. Here, as indicated in the abstract, we extend this result
to Halmos’ quasipolyadic algebras and Pinter’s substitution algebras, but
again only for the lowest values of α, namely when α = 2. It seems that the
generalization of this result to higher dimensions is not trivial. We conjec-
ture, though, that it can proved—using a combination of the ideas presented
herein with those in [30]—that for any pair of ordinals 2 < α < β the class
NrαKβ is not first order axiomatizable. As it is closed under ultraprod-
ucts, this amounts to showing that it is not closed under elementary equiva-
lence or equivalently—by the celebrated Keisler–Shelah ultrapower theorem
(cf. [11, Theorem 6.15])—under ultraroots.

Organization. In Section 0, we review the basic notions and formulate
the main theorems. The proofs are given in Section 1.

0. Basic notions and main results. To formulate our results we re-
view some basic notions from [16] and [24]. We start by defining the algebras
we shall be dealing with. From now on, K ∈ {SC,CA,QA,QEA}, where
SC, CA, QA and QEA abbreviate the classes of substitution, cylindric,
quasipolyadic, and quasipolyadic equality algebras, respectively. Kα, α an
ordinal, stands for the class of all algebras in K of dimension α, sometimes
referred to as α-dimensional algebras. Algebras will be denoted by calli-
graphic letters, and when we write A then we will be tacitly assuming that
A will denote the universe of A. Let A ∈ Kα. Then A is a boolean algebra
with extra operations. In fact, A will be a boolean algebra with operators.
In particular, the non-boolean extra operations are required to distribute
over the boolean join. The basic boolean operations of A will be denoted by
∪, ∩, r, 0, 1, standing for join, meet, complementation, least and greatest
elements, respectively.

An algebra in SCα is of the form A = 〈A,∪,∩,r, 0, 1, ci, sji 〉i,j∈α where

(1) 〈A,∪,∩,r, 0, 1〉 is a boolean algebra (BA), hereafter denoted by BlA.

(2) ci and sji (i, j ∈ α) are unary operations on A satisfying a finite
schema of equations. As we shall be mostly dealing with the concrete versions
of SCα’s, the so-called representable ones, we do not have to remember all
those schemas; we recall from [24] only those we need.

Proposition 0.1. Let A ∈ SCα. Then the following equations hold for
any i, j, k ∈ α and any x, y ∈ A:

(E1) cj0 = 0, x ≤ cix, ci(x ∩ ciy) = cix ∩ ciy, and cicjx = cjcix.
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In other words the ci’s are complemented closure operators and ci, cj com-
mute.

(E2) siix = x.
(E3) sij are BA endomorphisms.

(E4) sijcix = cix.

(E5) cis
i
jx = sijx whenever i 6= j.

(E6) sijckx = cks
i
jx whenever k 6∈ {i, j}.

(E7) cis
j
ix = cjs

i
jx.

(E8) sijs
k
i cix = skj cix.

In our treatment of CAα’s, we follow the monographs [15], [16], while in
our treatment of QAα’s and QEAα’s, we rather follow [28]. In more detail,
we think of QAα’s as algebras of the form 〈A, pij〉i,j∈α, where A ∈ SCα,
and for all i, j ∈ α, pij are unary operations on A, which also happen to
be boolean endomorphisms. QEAα’s, on the other hand, are expansions of
QAα’s by diagonal elements (dij , i, j ∈ α). For an explicit finite schema of
equations axiomatizing the variety Kα, we refer the reader to the appendix
of [24] (2). For the purposes of the present paper, however, it is, enough to
know that all algebras considered are expansions of SCα’s; that is, ifA ∈ Kα,
its SC reduct obtained by deleting the pij ’s and dij ’s, if any, in symbols
RdSC A, is (term equivalent to) an SCα. In particular, if A ∈ Kα, then
RdSC A |= (E1)–(E8). Here by reduct we understand a generalized reduct.
That is, the SC operations may not be basic in the algebras considered,
but are term definable. For example, in the standard formalism of CA’s [15]
and QEA’s [28], [24], sij is not a basic operation but is term definable by
sij = ci(x ∩ dij). However when dealing with QEA’s, and for that matter
with CA’s, we shall often treat the term definable operation sij for all i, j,
as a basic operation.

We now recall from [15, Def. 2.6.28] a notion that prevails throughout
this paper, namely that of neat reducts.

Definition. 0.2. (i) Let B ∈ Kβ and let x ∈ B. Then ∆x, the dimension
set of x, is defined to be the set {i ∈ β : cix 6= x}.

(ii) Let α < β be ordinals. Let B ∈ Kβ. Then the neat α-reduct of B, in
symbols N rαB, is the Kα with universe NrαB = {b ∈ B : ∆b ⊆ α}, and
whose operations are those of the similarity type of Kα restricted to NrαB.

(2) It is known that 〈Kα : ω ≤ α〉 forms a system of varieties definable by schemas, a
concept originating with Monk from cylindric algebras, and further investigated in its own
right by Andréka and Németi (cf. [16, pp. 260–263] for a sample of Andréka and Németi’s
results).
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It is not hard to see that N rαB is closed under the indicated operations,
so the definition ofN rαB is sound. It is also easy to see thatN rαB ∈ Kα. We
should point out that neat reducts are subreducts (subalgebras of reducts)
in the universal algebraic sense: when forming the neat α-reduct of a Kβ ,
we throw away not only operations, but also some elements of the algebra.
We refer the reader to [7] where neat reducts were investigated in a (more
general) “universal algebraic” setting.

Notation. For L ⊆ Kβ, NrαL denotes the class of all neat α-reducts
of algebras in L. That is, NrαL = {N rαB : B ∈ L}.

It is known (see e.g. [15] or [29, Chapter 4] that SNrαKβ is a variety. Here
S stands for the operation of forming subalgebras. Borrowing terminology
from [15, Remark 2.6.26], algebras in the class SNrαKα+ω are said to have
the neat embedding property , or NEP for short. A ∈ Kα has the NEP iff A
is neatly embeddable in a Kα+n for every n ∈ ω. A central theorem in the
representation theory of such algebras, the so-called neat embedding theorem
of [15], states that the class of algebras in Kα having the NEP is precisely
the class of representable Kα’s (RKα). In symbols (see [16, Theorem 3.2.10],
[29, Sec. 5.2])

RKα = SNrαKα+ω =
⋂

n∈ω
SNrαKα+n.

According to the conventions of the monograph [15], [16], an RKα is a Kα

that is isomorphic to a subdirect product of (weak) set algebras of dimen-
sion α. To unify notation, we write Ks and Ksα to denote K set algebras
and K set algebras of dimension α, respectively. By the same token, WKsα
stands for weak K set algebras of dimension α, that is, A ∈ WKsα if A is
a boolean field of sets with greatest element (unit) a weak cartesian space,
i.e. a set of the form

αU (p) = {s ∈ αU : |{i ∈ α : si 6= pi}| < ω}
for some U and p ∈ αU . In addition, A of course has to be closed under the
extra non-boolean Kα operations. For the sake of completeness, we recall
from [24] the concrete interpretation of the non-boolean QEAα operations
on α-ary relations over V ⊆ αU . Let X ⊆ V and i, j < α. Then

ci(X) = {s ∈ V : there exists t ∈ X such that sj = tj for all j 6= i},
sji (X) = {s ∈ V : s ◦ [i|j] ∈ X}.

Here, [i|j] denotes the transformation on α that sends i to j and is the
identity on αr {i}. Next

pij(X) = {s ∈ V : s ◦ [i, j] ∈ X}
where [i, j] denotes the transposition on α that interchanges i and j. And
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finally,
dij = {s ∈ V : si = sj}.

Assume that A ∈ QEAs2 with base U , i.e. A has greatest element U×U .
Then p01R for a binary relation R ∈ A, R ⊆ U ×U , is just forming the con-
verse of R. d01, on the other hand, is simply the identity relation on U . For
their geometric meaning, ci is called the ith cylindrification while dij is called
a diagonal element . sji (pij) is called the substitution operation correspond-
ing to the transformation [i|j]([i, j]), or even simply a substitution. This
stems rather from their metalogical interpretation, the latter being substitu-
tion of the variable xi for xj (interchanging the free occurrences of xi and xj);
cf. [24] or [29, Chapter 2], for further elaboration on such connections.

Unlike boolean algebras, not every Kα, α > 2, is representable. In fact,
the following is known. Let α < β. Then SNrαKβ = Kα = RKα if α ≤ 1.
Here S denotes the operation of forming subalgebras. For α > 2, the se-
quence Kα ⊇ SNrαKα+1 ⊇ SNrαKα+2 ⊇ . . . is not eventually constant.
This was proved and used by Monk for CA’s to show that RCAα, for α > 2,
is not finite schema axiomatizable (3). The analogous result for SC’s, QA’s
and QEA’s was proved by Johnson (the finite-dimensional case) [19], and
Sain and Thompson (the infinite-dimensional case) [28]. When α = 2, then
all diagonal free algebras, i.e. algebras in SC2 and QA2, are representable
(see [16, Theorem 5.4.33]). Though there are non-representable algebras in
K2 (K ∈ {CA,QEA}), RK2 is finitely axiomatizable. Also RK2 = SNr2Kβ

for all β > 2. The latter two results are due to Henkin. The reader is re-
ferred to the comments in [16, below Theorem 4.1.44, pp. 125–126] for a
fuller discussion of such results for CA’s. The SC, QA and QEA analogues
can be found in [3], [24] or/and [29, Chapter 4], and the references therein.
We hasten to add that we shall be mostly dealing with (concrete) set al-
gebras of dimension 2. We are now ready to formulate the main results
concerning Kα’s. Theorem 1 is proved in Section 1.

Theorem 1 (Main Theorem). Let β > 2. Let L be any class such that
WKsβ ⊆ L ⊆ Kβ. Then Nr2L is not closed under forming elementary
subalgebras, hence is not elementary. In particular , the classes Nr2RKβ

and Nr2Kβ are not elementary.

1. Proofs. In this section we prove Theorem 1. We construct an algebra
A ∈ Ks2∩Nr2WKsβ for all β > 2 and B ⊆ A such that B is an elementary

(3) Lately Hirsch, Hodkinson and Maddux [18] proved that the above sequence for
ω > α > 2 is strictly decreasing, i.e. there is no k ∈ ω such that SNrαCAα+k+1 =
SNrαCAα+k. This solves the long-standing open (neat embedding) problem 2.12 in [15].
It seems that their proof generalises to SC’s, QA’s and QEA’s. The infinite analogue for
CA’s was settled by Pigozzi (unpublished).
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subalgebra of A and B is not (isomorphic to an algebra) in Nr2Kβ for all
β > 2. We start off by fixing the notation.

Some notation. Our notation is mostly in conformity with that adopted
in the monograph [15]. It is worthwhile though to review the notation mostly
used.

For a set X, ℘(X) denotes the set of all subsets of X, i.e. the powerset
of X. Ordinals will be identified with the set of smaller ordinals. In partic-
ular, for finite n we have n = {0, . . . , n − 1}. ω denotes the least infinite
ordinal, which is the set of all finite ordinals.

AB denotes the set of functions from A to B. If f ∈ AB and X ⊆ A then
f�X denotes the restriction of f to X. We denote by Do f and Rg f the
domain and range of a given function f , respectively. We frequently identify
f with the sequence 〈fx : x ∈ Do f〉. We write fx or fx or f(x) to denote
the value of f at x. We define composition so that the right hand function
acts first, thus for given functions f, g, f ◦ g(x) = f(g(x)) whenever the left
hand side is defined, i.e.c when g(x) ∈ Do f .

Let X be a set. Then f(X) denotes the image of X under f , i.e. f(X) =
{f(x) : x ∈ X}. |X| denotes the cardinality of X and IdX , or simply Id
when X is clear from context, denotes the identity function on X. A set X
is countable if |X| ≤ ω. Let Y be a set. Then X ⊆ω Y denotes that X is
a finite subset of Y . For a given class K of algebras, IK denotes the class
obtained by taking all isomorphic copies of algebras in K. Finally, given
algebras A and B having the same signature, we let Ism(A,B) denote the
set of all isomorphisms of A into B.

1.1. Construction of the algebras. R denotes the set of real numbers.
Let U = R× 3. Note that U is simply 3 disjoint copies of R. C denotes the
full polyadic set algebra with unit 2U , that is,

C = 〈℘(2U),∩,∪,r, ∅, 2U, ci, dij, pij , s
j
i 〉i,j<2.

Let u = 〈u0, u1〉 ∈ 23. For r ∈ R, we define p(u, r) to be the following binary
relation on U :

p(u, r) = {〈〈a0, u0〉, 〈a1, u1〉〉 ∈ 2U : a0 = a1 + r}
and we let

P (u) = {p(u, r) : r ∈ R}.
Note that P (u) is an uncountable set of binary relations on U . Let N be a
fixed countably infinite subset of R (4). That is, N ⊆ R and |N | = ω. We
set

Pω(u) = {p(u, r) : r ∈ N}.

(4) We point out that countability of N is not essential. In fact any infinite subset N
of R with |N | < |R| will do just as well.
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The subscript ω indicates that Pω(u) has countably many binary relations.
Finally we let

S = {u ∈ 23 : u0 ≤ u1}.
For an algebra A and X ⊆ A, SgAX or simply SgX denotes the subal-

gebra of A generated by X.
Now we define A ∈ QEAs2 and B ⊆ A as follows:

A = SgC(
⋃{P (u) : u ∈ S})

and
B = SgA(

⋃{P (u) : u ∈ S r {〈0, 2〉}} ∪ Pω(〈0, 2〉)).
Plan of the proof. We will show that:

(1) A ∈ Nr2WQEAsβ for all β > 2.
(2) B is an elementary subalgebra of A.
(3) RdSC B 6∈ INr2SCβ for all β > 2.

From (1)–(3), Theorem 1 will immediately follow by passing to reducts.
In more detail, let K ∈ {SC,QA,CA,QEA} and let β > 2. Given D ∈
QEAα, α an ordinal, let RdK D ∈ Kα denote the Kα reduct of D. Then it
follows from (1) that RdK A ∈ Nr2WKsβ , from (3) that RdK B 6∈ INr2Kβ

and from (2) that RdK B is an elementary subalgebra of RdK A (in the first
order language of K2).

1.2. A is a neat reduct. In this section we show that A ∈ Nr2WQEAsβ
for all β > 2. This will be done in two steps. First we show that A ∈⋂

2≤k<ω Nr2QEAsk, then we show that A ∈ Nr2WQEAsβ for infinite β
using a limiting construction. Throughout, unless otherwise specified, n =
{0, . . . , n− 1} denotes a finite ordinal > 1.

Notation. R = 〈R,+,−, r〉r∈R denotes the group of real numbers ex-
panded with constants. L denotes the first order language of R. For φ an
L-formula, we let var(φ) denote the set of variables occurring in φ, and we
let fr(φ) denote the set of variables occurring free in φ.

Let u = 〈u0, . . . , un−1〉 ∈ n3. For φ an L-formula with fr(φ) ⊆ {x0, . . .
. . . , xn−1}, we let E(u, φ) denote the following n-ary relation on U :

E(u, φ) = {〈〈a0, u0〉, . . . , 〈an−1, un−1〉〉 ∈ nU : R |= φ[a0, . . . , an−1]}.
We let

P (n) = {E(u, xi = xj + r) : u ∈ n3, r ∈ R and i, j ∈ n, i < j},
A(n) = SgC(n)(P (n)),

where C(n) is the full QEAsn with unit nU .
It is easy to see that A = A(2).
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We will show that for 1 < l < m < ω, A(l) ∼= N rlA(m). For that we
need some more definitions:

F (n) = {xi = xj + r, xi 6= xj + r : i, j ∈ n and r ∈ R}.
Forming finite conjunctions of formulas in F (n), we let

F (n)∗ = {∧J : J ⊆ω F (n)}.
Forming finite disjunctions of formulas in F (n)∗, we let

F (n)∗∗ = {∨J : J ⊆ω F (n)∗}.
Now set

G(n) = {E(u, φ) : u ∈ n3 and φ ∈ F (n)∗∗};
and finally

G(n)∗ = {⋃ J : J ⊆ω G(n)}.
Fact 1.2.1. Let n > 1. Then A(n) = G(n)∗.

Proof. First we prove that A(n) ⊆ G(n)∗. Since P (n) ⊆ G(n)∗ and
A(n) is generated by P (n), it suffices to show that G(n)∗ is the universe of
a QEAn, i.e. is closed under the polyadic set operations.

(1) G(n)∗ is closed under the boolean operations. Indeed, let u, v ∈ n3
and φ1, φ2 ∈ F (n)∗∗. Then

E(u, φ1) ∩ E(v, φ2) = E(u, φ1 ∧ φ2) if u = v

and is zero otherwise, while
nU rE(u, φ1) =

⋃{E(v,>) : v ∈ n3r {u}} ∪E(u,¬φ1).

From the definition of G(n)∗, and by noting that for φ1 and φ2 in F (n)∗∗,
there exist η and θ in F (n)∗∗ such that R |= φ1∧φ2 ↔ η and R |= ¬φ1 ↔ θ,
we get the desired conclusion.

(2) G(n)∗ contains the diagonal elements. Let i < j < n. Then

dij =
⋃{E(u, xi = xj) : u ∈ n3, ui = uj}.

and so by the definition of F (n) we get dij ∈ G(n)∗.

(3) G(n)∗ is closed under cylindrifications. First a piece of useful nota-
tion. For u, v ∈ n3 and i < n we write u ≡i v iff u and v agree off i, i.e.
u(j) = v(j) for all j 6= i. Now let g ∈ G(n)∗ and i < n. Since the ci’s (∃)
distribute(s) over joins (∨) we can and will assume that g = E(u, φ) with
u ∈ n3 and φ ∈ F (n)∗∗. Computing we get

cig = ciE(u, φ) =
⋃{E(v,∃xiφ) : v ≡i u}.

Now we make use of the following consequence of the fact that R is in a
sense “saturated”, which we abbreviate by (∗):
(∗) Given φ ∈ F (n)∗∗ and i < n, there exists ψ ∈ F (n)∗∗ such that

xi 6∈ var(ψ) and R |= ∃xiφ↔ ψ.
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Note that (∗) is a form of elimination of quantifiers. Now applying (∗) we
see that cig ∈ G(n)∗.

(4) G(n)∗ is closed under substitutions. Since sij(x) = ci(x ∩ dij) for
i 6= j and sii(x) = x, so that the sij ’s are term definable, it suffices to check
only those substitutions of the form pij . So let φ ∈ F (n)∗∗, u ∈ n3 and
i, j < n be distinct. Abusing notation slightly, we let pijφ stand for the
formula obtained from φ by interchanging the free occurrences of xi and xj ,
and we let piju = u ◦ [i, j]. Since pij is a boolean endomorphism, it suffices
to show that for all u ∈ n3 and all φ ∈ F (n) we have pijE(u, φ) ∈ G(n)∗∗.
But this follows from the facts that

pijE(u, φ) = E(piju, pijφ)

and that pijφ ∈ F (n) for φ ∈ F (n).
Next we show that G(n)∗ ⊆ A(n). It clearly suffices to show that for all

u ∈ n3 and φ ∈ F (n), we have E(u, φ) ∈ A(n). Let u and φ be as indicated.
Suppose that φ is xi = xj + r for some i, j ∈ n and some r ∈ R. If i < j,
then E(u, φ) ∈ P (n). If i > j then E(u, φ) = E(u, xj = xi + (−r)), which
also belongs to P (n). Thus we are left with the case i = j. We have two
subcases.

Case a. r 6= 0 and so E(u, φ) = 0 ∈ A(n).

Case b. r = 0, then E(u, φ) = E(u,>). In order to show that the latter
belongs to A(n), we let k ∈ nr {i}. This is possible because n > 1. Then a
straightforward computation gives

ciE(u, xi = xk) ∩ ckE(u, xi = xk) = E(u,>),

thus the latter is in A(n). Finally by noting that E(u,¬φ) = E(u,>) r
E(u, φ) we infer (using the above reasoning) that E(u, xi 6= xj + r) is also
in A(n), for all u ∈ n3 and i, j ∈ n.

Having shown that G(n)∗ = A(n), and in particular that G(n)∗ is closed
under the QEAn operations, we let G(n)∗ denote the QEAsn with universe
G(n)∗.

For further use we shall need

Definition. For m ≥ 1, let C(m) denote the full QEAsm with unit
mU , i.e. the universe of C(m) is ℘(mU). Now let 1 ≤ l < k. Let i(l, k) be the
following (neat embedding) function:

i(l, k) : C(l)→ C(k), a 7→ {t ∈ kU : t�l ∈ a}.
Fact 1.2.2. Let 1 < l < k < ω. Then i(l, k)G(l)∗ = N rlG(k)∗. In

particular , A ∈ ⋂2≤k<ω Nr2QEAsk.
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Proof. Let 1 ≤ l < k. Assume that k, hence l, is finite. Then it is easy
to check that

i(l, k)�G(l)∗ ∈ Ism(G(l)∗,N rlC(k)).

We claim that, in fact, we have i(l, k)G(l)∗ ⊆ G(k)∗. To see this, let u ∈ l3
and φ ∈ F (l). Then

i(l, k)E(u, φ) = {s ∈ kU : s�l ∈ E(u, φ)}
=
⋃{E(v, φ) : v ∈ k3 and v�l ⊆ u}.

The latter is in G(k)∗ because F (l) ⊆ F (k), φ ∈ F (l) and k < ω. Since
G(k)∗ is a QEAsk, we find that i(l, k)E(u, φ) ∈ G(k)∗ for any u ∈ l3 and
φ ∈ F (l)∗∗. As NrlG(k)∗ = G(k)∗ ∩NrlC(k), we deduce that

i(l, k)�G(l)∗ ∈ Ism(G(l)∗,N rlG(k)∗).

Next we show that i(l, k) is actually onto N rlG(k)∗, i.e. i(l, k)G(l)∗ =
NrlG(k)∗. This will be proved by using the fact that the structure R ad-
mits elimination of quantifiers as expressed in (∗) above. In more detail,
since the ci’s are additive, it suffices to show that for all g ∈ G(k), there
exists a ∈ G(l)∗ such that

i(l, k)a = clcl+1 . . . ck−1g.

So let g = E(u, φ) be as specified with u ∈ k3 and φ ∈ F (k)∗∗. Suppose
further that φ = φ0 ∨ φ1 ∨ . . . ∨ φm with φj ∈ F (k)∗ for 0 ≤ j ≤ m. For
brevity set v = u�l. Note that v ∈ l3. Then an easy computation gives, for
every j ≤ m,

clcl+1 . . . ck−1E(u, φj) = i(l, k)E(v,∃xl∃xl+1 . . .∃xk−1φj).

Now (∗) guarantees the existence of ψj ∈ F (l)∗∗ for every j ≤ m such that

R |= ∃xl∃xl+1 . . .∃xk−1φj ↔ ψj .

Now computing we get

clcl+1 . . . ck−1E(u, φ) = clcl+1 . . . cl . . . ck−1E(u, φ0 ∨ . . . ∨ φm)

= clcl+1 . . . ck−1E(u, φ0) ∪ . . . ∪ clcl+1 . . . ck−1E(u, φm)

= i(l, k)E(v, ψ0) ∪ . . . ∪ i(l, k)E(v, ψm) = i(l, k)E(v, ψ0 ∨ . . . ∨ ψm).

Since by definition ψ0 ∨ . . . ∨ ψm ∈ F (l)∗∗, we are done.

Fact 1.2.3. Let 2 ≤ n < ω and β be infinite. Then G(n)∗ ∈ NrnQEAβ.
In particular , A ∈ Nr2QEAα for every α > 2.

Proof. Fix β ≥ ω. Let

G(β) = SgC(β)(
⋃{i(k, β)G(k)∗ : n ≤ k < ω}).

Here, as in Fact 1.2.2, C(β) denotes the full Csβ with unit βU ; and for
a ∈ G(k)∗ recall that i(k, β)a = {s ∈ βU : s�k ∈ a}. Let a ∈ G(β). We will
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show that a ∈ NrnG(β) iff a ∈ i(n, β)G(n)∗, from which it readily follows
that i(n, β)G(n)∗ = NrnG(β), and so G(n)∗ ∼= N rnG(β). First note that⋃{i(k, β)G(k)∗ : n ≤ k < ω} is a subuniverse of G(β). This is straightfor-
ward. Thus

G(β) =
⋃{i(k, β)G(k)∗ : n ≤ k < ω}.

It then follows that a = i(l, β)g for some n ≤ l < ω and g ∈ G(l)∗. Now
suppose that a ∈ NrnG(β). Then g = cjg for all n ≤ j < ω and so g ∈
NrnG(l)∗. By Fact 1.2.2 we have NrnG(l)∗ = i(n, l)G(n)∗; thus g = i(n, l)g′

say, for some g′ ∈ G(n)∗. But

a = i(l, β)g = i(l, β) ◦ i(n, l)g′ = i(n, β)g′.

This shows that a ∈ i(n, β)G(n)∗. Conversely if a ∈ i(n, β)G(n)∗, then
it is easy to see that a ∈ NrnG(β). We have shown that i(n, β)G(n)∗ =
NrnG(β). Since A ∼= G(2)∗∗, and G(β) ∈ QEAβ , we conclude that A ∈
Nr2QEAβ for all β > 2.

In Facts 1.2.2–3, we have proved that A ∈ ⋂2≤k<ω Nr2QEAsk and that
A ∈ Nr2QEAβ for infinite β, as well. In Fact 1.2.4 below we show that we
can replace the class QEAβ by the smaller classes WQEAsβ and QEAsβ
for infinite β. For this we need a definition.

Definition. Let β be an ordinal. We recall from [16, Def. 3.1.1(viii)]
that A ∈ Ksβ with unit βU is regular if for all x ∈ A and all f, g ∈ βU ,
whenever f�∆x ⊆ g and f ∈ X then g ∈ X. A ∈ Kβ is locally finite if ∆x
is finite for every element in A.

Notation. Let β be an infinite ordinal. Then Ksreg
β and Lf Kβ stand

for the classes of regular K set algebras, and locally finite K algebras of
dimension β, respectively.

It is known (cf. [16, 3.1.70]) (5) that for infinite β we have

Ksreg
β ∩ Lf Kβ ⊆ IWKsβ .

Fact 1.2.4. G(n)∗ ∈ NrnWQEAsβ for infinite β. In particular ,
A ∈ Nr2WQEAsβ for infinite β.

Proof. Fix β ≥ ω. Let F(β) = SgG(β) i(n, β)(G(n)∗), where G(β), as
usual, denotes the full quasipolyadic set algebra with unit βU . Then, as is
easily checked, we have F(β) ∈ QEAsreg

β ∩Lf QEAβ , and G(n)∗ ∼= N rnF(β).
Since IQEAsreg

β ∩ Lf QEAβ ⊆ IWQEAsβ , we are done.

Remarks. (1) The class Lf Kβ ∩Ksreg
β is the algebraic counterpart of

first order models. For more on such connections the reader is referred to [24],

(5) We should point out that Theorem 3.1.70 in [16] is formulated only for cylindric
algebras. However the proof easily adapts to SC’s, QA’s and QEA’s, as shown for example
in [29] or [3].
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[16, Sec. 4.3], [3] and [29, Chapter 4]. In fact, one can define an isomorphism
h : Models → Lf Kω ∩ Ksreg

ω definable in ZFC by an absolute formula
without parameters (cf. [23, p. 406]).

(2) Following the referee, we give a simpler description of the algebra A.
Consider a first order language L consisting of binary relation symbols δru
for all u ∈ 23 and all real numbers r. Let M be the L-structure with domain
consisting of three disjoint copies R0, R1, R2 of the real numbers, and with

M |= δru(a, b) iff a ∈ Ru0 , b ∈ Ru1 , and b− a = r.

Now A is isomorphic to the first order definable subsets of 2M . In more
detail, for β > 2, any v ∈ βM can be regarded as an assignment of variables
xi (i < β) to M . Let D be the set of all subsets of βM of the form {v ∈
βM : M |= φ[v]} where φ is a first order L-formula written with variables
xi, i < β, and the operations are defined as for set algebras. Here we are
adopting the usual notion: M |= φ[v] if v satisfies φ in M . Then, of course,
D ∈ QEAsβ . In fact, D ∈ Lf QEAβ ∩ QEAsreg

β . On the other hand, A is
isomorphic to the set algebra consisting of all subsets of 2M of the form
{v ∈ 2M : M |= φ[v]} where φ is an L-formula written with two variables
x0, x1, and with operations defined by restricting those of D to the first
two dimensions. By the proof of Fact 1.2.1, M has quantifier elimination, so
A ∼= N r2D. This also proves Fact 1.2.4.

Henceforth we only deal with the 2-dimensional polyadic set algebras A
and B.

1.3. B is an elementary subalgebra of A. In this section we show that
the QEAs2 A admits a particularly rich set of automorphisms, a property
we use to show that B is elementarily equivalent to A.

Notation. For u = 〈u0, u1〉 ∈ 23 we let 1u0u1 , and sometimes simply 1u,
denote E(u,>). For a ∈ A and X ⊆ A, we let RlaX denote the relativization
of X to a, that is, RlaX = {x ∈ X : x ≤ a}.

Fact 1.3.1. Let u ∈ 23. For brevity , set V = E(u,>). Then:

(i) RlV A = {E(u, φ) : φ ∈ F (u)∗∗}.
(ii) RlV A is an atomic boolean algebra and the set of its atoms is equal

to P (u) = {p(u, r) : r ∈ R}. In particular , RlV A (as a boolean algebra) is
generated by its atoms.

(iii) For all non-zero a ∈ RlV A and for all i < 2 we have cia = ciV .
(iv) For all a ∈ A and for all i < 2 we have cia ∩ V ∈ {0, V }.
Proof. (i) follows from the fact that A = G(2). (ii) follows from the fact

that for u ∈ 23 and r1, r2 distinct elements of R we have

p(u, r1) ∩ p(u, r2) = 0.

(iv) follows from (iii). Now we prove (iii).
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Let a ∈ RlV A. Then a ≤ V . By (i), a = E(u, φ) for some φ ∈ F (2)∗∗.
Now suppose that 0 6= a and i < 2. Then by (ii) there exists an atom in
RlV A below a, i.e. an r ∈ R such that E(u, x0 = x1 + r) = p(u, r) ≤ a. Now
we have

cia ≤ ciV =
⋃{E(v,>) : v ∈ 23, v ≡i u}

= ciE(u, x0 = x1 + r) = ci(p(u, r)) ≤ cia.
We have proved (iii).

Remark. Notice that the set {1u : u ∈ 23} forms a partition of the unit
1 =

⋃{1u : u ∈ 23} of the algebra A so that the boolean structure of A is
rather simple. It is isomorphic to the product of Rl1u A indexed by 23, the
isomorphism being

h(a) = 〈a ∩ 1u : u ∈ 23〉 for a ∈ A.
Rl1u A has an even simpler boolean structure. It is isomorphic to the boolean
algebra (with universe) ℘(R) generated by the singletons, which is the same
as the finite co-finite boolean algebra on R, i.e. the algebra with universe

{X ⊆ R : X or RrX is finite}.
Note too that P (u) constitutes further an uncountable partition of 1u that is
a splitting of 1u in the sense of Andréka [2]. This means that every element
in P (u) is cylindrically equivalent to 1u, i.e. cix = ci1u for every i < 2 and
every x ∈ P (u). So in a sense (at the least in the above one) the elements in
P (u) are “big”. Being atoms in Rl1u A (and even more, as is easily checked,
inA), they are also “small”. Andréka [2] refers to such elements as big atoms.
It is precisely the “duality” in the nature of such elements (the big atoms)
that will enable us, in Fact 1.3.2 below, to extend given permutations on
the set P = {p(u, r) : u ∈ 23, u0 ≤ u1, r ∈ R} to automorphisms on A. A
in this respect resembles the free structure on P .

Fact 1.3.2. Let P = {p(u, r) : u ∈ 23, u0 ≤ u1, r ∈ R}. Let f be a
permutation of P (〈0, 2〉). Then there exists an automorphism h of A such
that f ⊆ h and h�(P r [P (〈0, 2〉) ∪ P (〈2, 0〉)]) = Id.

Proof. Let f be a given permutation of P (〈0, 2〉). Define

f∗ = p01 ◦ f ◦ p01.

Then, as is easily checked, f ∗ is a permutation of P (〈2, 0〉). By Fact 1.3.1,
Rl102 A is generated as a boolean algebra by the set P (〈0, 2〉) of its atoms. It
follows that there exists an automorphism h1 of Bl Rl102 A such that f ⊆ h1.
Similarly there exists an automorphism h2 of Bl Rl120 A such that f∗ ⊆ h2.
For x ∈ A let

h(x) = h1(x ∩ 102) ∪ h2(x ∩ 120) ∪⋃{x ∩ 1u : u ∈ 23 and Rg u 6= {0, 2}}.
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We show that h is the desired automorphism. Clearly h is a boolean auto-
morphism that extends f and is the identity on P r [P (〈0, 2〉) ∪ P (〈2, 0〉)].
So all we have to check is that h also preserves the extra non-boolean oper-
ations.

(1) h preserves the diagonal element. Indeed,

h(d01) = h1(d01∩102)∪h2(d01∩120)∪⋃{d01∩1u : u ∈ 23 and Rg u 6= {0, 2}}.
Since d01 ∩ 102 = d01 ∩ 120 = 0, and h1, h2 are automorphisms of Rl102 A
and Rl120 A, respectively, so that h1(d01 ∩ 102) = h2(d01 ∩ 120) = 0, we have

h(d01) =
⋃{d01 ∩ 1u : u ∈ 23 and Rg u 6= {0, 2}} = d01.

(2) h preserves p01. Let Y = {p(u, r) : u ∈ 23, r ∈ R}. Let X = {cia :
a ∈ A, i < 2}∪{d01}, and let D be the boolean algebra generated by X∪Y .
We claim that D is a subuniverse of A. Since D contains d01 and is closed
under the boolean set operations, it suffices to show that D is closed under
c0, c1 and p01. So let a ∈ D and i < 2. As D ⊆ A we have a ∈ A and
so, by definition, cia ∈ D. Since p01 is a boolean endomorphism, it suffices
to check that for x ∈ Y ∪ X we have p01x ∈ D. But this is true because
x ∈ Y iff p01x ∈ Y , x ∈ X iff x = 0 or there is a subset J of 23 such that
x = {1u : u ∈ J} and p011u0u1 = 1u1u0 . Thus we have shown that D is a
subuniverse of A. Since Y ⊆ D, Y generates A, and D ⊆ A, we get D = A.
Now let X ′ = {1u : u ∈ 23} ∪ {d01} and let D′ be the boolean algebra
generated by X ′ ∪ Y . Then D = D′ because every non-zero element of X
is a finite union of elements in X ′. Thus D′ = A. Since p01 is a boolean
endomorphism, to prove that h preserves p01, it is enough to show that
h(p01x) = p01h(x) for all x ∈ Y ∪X ′. To this end, let x ∈ Y ∪X ′. If u ∈ 23,
Rg u 6= {0, 2} and x ∈ {p(u, r), 1u}, then

p01x ∩ 1v = 0 for v ∈ {〈0, 2〉, 〈2, 0〉}
thus

h(p01x) =
⋃{p01x ∩ 1u : u ∈ 23 and Rg u 6= {0, 2}}

= p01x = p01h(x) (since h(x) = x).

Else

x = p(u, r) or x = 1u with Rg u = {0, 2}.
Suppose that u = 〈0, 2〉 and that x = p(〈0, 2〉, r). (The subcases x = 102 or
x = 120 or x = p(〈2, 0〉, r) can be treated analogously and are left to the
reader.) By noting that p01x = p(〈2, 0〉,−r) and computing we get

h(p01x) = h2(p(〈2, 0〉,−r)) = f∗(p(〈2, 0〉,−r)) = p01 ◦ f ◦ p01[p(〈2, 0〉,−r)]
= p01 ◦ f ◦ p01 ◦ p01(x) = p01 ◦ f(x) = p01(h(x)).
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(3) Finally we check cylindrifications. Let k < 2 and x ∈ A. Then com-
puting we get

(∗) ckh(x)

= ck(h1(x ∩ 102) ∪ h2(x ∩ 120) ∪⋃u∈23{x ∩ 1u : Rg u 6= {0, 2}})
= ckh1(x ∩ 102) ∪ ckh2(x ∩ 120) ∪⋃u∈23{ck(x ∩ 1u) : Rg u 6= {0, 2}}.

Since h1 is an automorphism of Rl102 A and x ∩ 102 ≤ 102, we get

h1(x ∩ 102) ≤ h1(102) = 102.

Since x ∩ 102 = 0 iff h1(x ∩ 102) = 0, by Fact 1.3.1(iii) we have

ck(h1(x ∩ 102)) = ck(x ∩ 102).

By exactly the same reasoning it follows that

ck(h2(x ∩ 120)) = ck(x ∩ 120).

Substituting in (∗) we obtain

ckh(x) = ck(x ∩ 102) ∪ ck(x ∩ 120) ∪⋃u∈23{ck(x ∩ 1u) : Rg u 6= {0, 2}}
= ck(x ∩

⋃{1u : u ∈ 23}) = ckx.

Now computing h(ckx) we get

h(ckx) = h1(ckx ∩ 102) ∪ h2(ckx ∩ 120)(∗∗)
∪⋃u∈23{ckx ∩ 1u : Rg u 6= {0, 2}}.

That h1(ckx ∩ 102) = ckx ∩ 102 and h2(ckx ∩ 120) = ckx ∩ 120 follows from
Fact 1.3.1(iv) upon noting that h1 and h2 are boolean automorphisms; thus
we have

h(ckx) = ckx ∩
⋃{1u : u ∈ 23} = ckx.

We have shown that ckh(x) = hck(x) = ckx (6), thus h preserves cylindrifi-
cations.

Fact 1.3.3. B is an elementary subalgebra of A.

Proof. We shall use the Tarski–Vaught criterion to show that B is an
elementary subalgebra of A. So let ∃xnφ(x0, . . . , xn) be any first order for-
mula in the language of QEA2. Suppose that b0, . . . , bn−1 ∈ B, and that
A |= φ(b0, . . . , bn−1, a) for some a ∈ A. We want to find bn ∈ B such that
A |= φ(b0, . . . , bn−1, bn). Since A is generated by P = {p(u, r) : u ∈ 23, u0 ≤
u1, r ∈ R}, there exists a finite subset H0 of P such that a ∈ SgAH0. Let

P ′ = {p(u, r) : u ∈ 23, u0 ≤ u1, u 6= 〈0, 2〉, r ∈ R} ∪ Pω(〈0, 2〉).

(6) We used the “bigness” condition to show that h preserves cylindrifications. Loosely
speaking, when a cylindric or polyadic algebra A is generated by a set of big atoms, then
we can forget about cylindrifications when constructing automorphisms of A. This method
is also referred to as the method of eliminating cylindrifications.
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Since b0, . . . , bn−1 ∈ B, and B is generated by P ′, there exists a finite sub-
set H1 of P ′ such that (H0 ∩ B) ∪ {b0, . . . , bn−1} ⊆ SgBH1. Let f be a
permutation of P (〈0, 2〉) such that

f�P (〈0, 2〉) ∩H1 ⊆ Id and f(H0 rH1) ⊆ Pω(〈0, 2〉).
Such a permutation exists, since |H0| < ω, |H1| < ω and |Pω(〈0, 2〉)| = ω.
By Fact 1.3.2, f extends to an automorphism h of A such that

h�(P r P (〈0, 2〉)) ⊆ Id.

But
A |= φ(b0, . . . , bn−1, a)

and so
A |= φ(h(b0), . . . , h(bn−1), h(a)).

Since h�H1 ⊆ Id and {b0, . . . , bn} ⊆ SgBH1, it follows that h(bi) = bi for all
i < n. Since h(H0) ⊆ B and a ∈ SgAH0, we get h(a) ∈ B. This completes
the proof.

Remark. We have shown that first order logic (Lω,ω) cannot distinguish
betweenA and B. It can be proved that stronger logics like Lk,ω where k is an
infinite cardinal also cannot distinguish between A and B. Recall that Lk,ω
is obtained from Lω,ω by adding k-ary conjunction to the logical connectives.
In particular, B is a complete subalgebra of A. That is, if X ⊆ B is such
that supX (the supremum of X) exists in A, then supX exists in B, and
they are equal, in symbols

∑AX =
∑BX.

1.4. B is not a neat reduct. Here we show that B is not a neat reduct.
Recall that B was obtained from A by an infinite “cardinality twist”, namely
by keeping only countably many atoms below 1Id and deleting the rest. In
this section we show that first order logic cannot “see” this infinite cardi-
nality twist. We start off by showing that the set of all elements in B below
102 remains countable.

Fact 1.4.1. The set {b ∈ B : b ≤ 102} is countable.

Proof. Let Y = {p(u, r) : u ∈ 23 and Rg u 6= {0, 2}} ∪ Pω(〈0, 2〉) ∪
Pω(〈2, 0〉). (Recall that Pω(〈u0, u1〉) = {p(〈u0, u1〉, r) : r ∈ N}, where N is a
fixed countable subset of R.) Let X = {cia : i < 2, a ∈ A}∪{d01}. Let D be
the boolean subalgebra of A generated by Y ∪X. Then D is a subuniverse
of A; the proof is similar to that of (2) in Fact 1.3.1 and so we omit it. Since
Y ⊆ D, we have B ⊆ D (in fact, B = D, but we do not need that much),
and so Rl102 B ⊆ Rl102 D. It clearly suffices to show that |Rl102 D| ≤ ω.
To this end, let rl102 denote the following endomorphism of the structure
〈A,∪,∩,r〉:

rl102 a = a ∩ 102, a ∈ A.
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Then Rl102 D = SgBl(A) rl102(X ∪ Y ). But rl102(X ∪ Y ) is countable because
|Pω(〈0, 2〉)| = ω and |X| < ω. Therefore Rl102 D, generated as a boolean
algebra by a countable set, is also countable.

Next we show that, were B a neat reduct, Rl102 B would be an uncount-
able set. This contradicts Fact 1.4.1. From this we infer that B is not a neat
reduct. For this we need:

Fact 1.4.2. Let τ(x, y) denote the SC2 term c1(c0x∩ s0
1c1y)∩ c1x∩ c0y.

Let τ3(x, y) denote the SC3 term c2(s1
2c2x ∩ s0

2c2y). Then:

(i) τB(101, 112) = 102.
(ii) SC3 |= τ3(x, y) ≤ τ(c2x, c2y).

Proof. (i) We have

τB(101, 112) = c1(c0101 ∩ s0
1c1112) ∩ c1101 ∩ c0112.

We first compute s0
1c1112:

s0
1c1112 = c0(d01 ∩ (112 ∪ 111 ∪ 110)) = c0(d01 ∩ 111)

= c0111 (by Fact 1.3.1(iv))

= c0101.

Thus

τB(101, 112) = c1(c0101 ∩ c0101) ∩ c1101 ∩ c0112 = c1101 ∩ c0112 = 102.

(ii) In our derivation we use the axiomatization given in Proposition 0.1.
Now computing we get

τ3(x, y) = c2(s1
2c2x ∩ s0

2c2y)

≤ c2(s1
2(c0c2x ∩ c1c2x) ∩ s0

2(c0c2y ∩ c1c2y))

= c2(s1
2c0c2x ∩ s1

2c1c2x ∩ s0
2c0c2y ∩ s0

2c1c2y)

= c2(s1
2c0c2x ∩ c1c2x ∩ c0c2y ∩ s0

2c1c2y))

= c2(s1
2c0c2x ∩ s0

2c1c2y) ∩ c1c2x ∩ c0c2y

= c2(s1
2c0c2x ∩ s1

2s
0
1c1c2y) ∩ c1c2x ∩ c0c2y

= c2s
1
2(c0c2x ∩ s0

1c1c2y) ∩ c1c2x ∩ c0c2y

= c1s
2
1(c0c2x ∩ s0

1c1c2y) ∩ c1c2x ∩ c0c2y

= c1s
2
1c2(c0c2x ∩ s0

1c1c2y) ∩ c1c2x ∩ c0c2y

= c1c2(c0c2x ∩ s0
1c1c2y) ∩ c1c2x ∩ c0c2y

= c1(c0c2x ∩ s0
1c1c2y) ∩ c1c2x ∩ c0c2y

= τ(c2x, c2y).

Remark. τ3(x, y) is more commonly denoted in the literature by x; y.
x; y abstracts composition of binary relations (cf. [16]).
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Fact 1.4.4. Let RdSC B denote the SC reduct of B.

(i) Suppose that RdSC B ⊆ N r2(C) with C ∈ SC3. Let

D = {τC3 (x, y) : x, y ∈ Nr2(C), x ≤ 101, y ≤ 112}.
Then |D| > ω. In fact , P (〈0, 2〉) ⊆ D.

(ii) RdSC B 6∈ Nr2SC3.

Proof. (i) Assume first that C is a set algebra. Then the result follows
by noting that

τC3 (p(〈0, 1〉, r1), p(〈1, 2〉, r2)) = p(〈0, 2〉, r1 + r2).

Now if C is not a set algebra, then replacing C by E = SgC B, we deduce that
E is isomorphic to a set algebra by [22] (7). This is so because E is an atomic
algebra that is generated by a set of atoms, namely the set of atoms of B
that are functions. Indeed, every p(u, r) for u ∈ 23 and r ∈ R is a binary
relation that is a function. The same argument as above, but now applied
to E , works.

(ii) Assume, seeking a contradiction, that RdSC B = N r2C, say, with
C ∈ SC3. Let x, y ∈ B be such that x ≤ 101 and y ≤ 112. Then x and y are
2-closed , i.e. c2x = x and c2y = y. Also τC3 (x, y) ∈ B. Now

τC3 (x, y) ≤ τC3 (101, 112) ≤ τC(c2101, c2112) = τB(101, 112)

= 102 (by Fact 1.4.2(i)).

In other words we have

D = {τC3 (x, y) : x ≤ 101, y ≤ 112} ⊆ {b ∈ B : b ≤ 102}.
By Fact 1.4.1, D must be countable. But this contradicts Fact 1.4.4(i). Thus,
the proof of Theorem 1 is complete.

Remark. We have actually proved the following: Let β > 2. Let L be
any class such that Ksreg

β ∩Lf Kβ ⊆ L ⊆ Kβ . Then Nr2L is not closed under
forming elementary subalgebras, hence is not elementary. We conjecture
that a slight modification of our construction can lift this result to higher
dimensions. In this connection, [32] and [30] might be useful.

Acknowledgements. Thanks are due to an anonymous referee for
careful reading and valuable suggestions. The author also wishes to thank
Gábor Sági and Hajnal Andréka for fruitful discussions.

(7) Strictly speaking the result of Maddux and Tarski says that if A is an atomic
relation algebra whose atoms are functions, then A is representable. Unpublished work of
Andréka and Givant generalizes this result to CA-like algebras of relations. For results of
this kind—giving sufficient conditions for representability of atomic algebras of relations
by imposing conditions on the atoms like density—we refer the reader to [4].
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