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Z%-actions fixing {point} U V"
by

Pedro L. Q. Pergher (Sao Carlos)

Abstract. We describe the equivariant cobordism classification of smooth actions
(M™ @) of the group G = Z§ on closed smooth m-dimensional manifolds M™ for which
the fixed point set of the action is the union F = pU V", where p is a point and V" is a
connected manifold of dimension n with n > 0. The description is given in terms of the
set of equivariant cobordism classes of involutions fixing p U V™. This generalizes a lot of
previously obtained particular cases of the above question; additionally, the result yields
some new applications, namely with V" an arbitrary product of spheres and with V" any
n-dimensional closed manifold with n odd.

1. Introduction. The goal of this paper is to describe the equivariant
cobordism classification of smooth actions (M™,®) of the group G = Z§
on closed smooth m-dimensional manifolds M™ for which the fixed point
set of the action is the union F' = p U V"™, where p is a point and V" is a
connected manifold of dimension n with n > 0. Here, G is considered as the
group generated by k commuting involutions 17, ..., Tk.

According to [13], the equivariant cobordism class of (M™,®) is de-
termined by the cobordism class of the fixed point data (F,{v,}) consist-
ing of the fixed point set F' and a list of vector bundles over F' indexed
by the nontrivial irreducible real representations ¢ of G; these representa-
tions of GG are all one-dimensional and may be described by homomorphisms
0: G — Zy = {+1,—1} which are onto, and G acts on the reals so that
g € G acts as multiplication by o(g). Here v, is the part of the normal bun-
dle of F'in M on which G acts as the representation p. Specifically, v, is the
normal bundle of F' in the fixed point set Fy of the subgroup H = ker(p).
Each s-dimensional component of (F,{v,}) may be considered as an ele-
ment of Ns([],.o BO(n,)), the bordism of s-dimensional manifolds with a
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map into a product of classifying spaces BO(n,) for n,-dimensional vector
bundles, where n, denotes the dimension of v, over the component. For
p U V™, the bundle (F,v,) is the union of two bundles (p, u,) and (V",¢,)
over the two fixed point set components. Since every bundle over a point is
trivial, the cobordism class of (p, {,}) is completely determined by the list
of integers dim(j,) given by the dimensions of the bundles. To complete the
classification, it suffices to describe (V",{e,}). For this one has

PROPOSITION. There is a vector bundle n over V™ and a cobordism of
(V" {eo}) to (V" {e,}), where each €, is either

(a) the trivial 0-dimensional bundle (and dim(u,) = 0),
(b) the tangent bundle 7 of V™ (and dim(u,) =0), or
(c) n* @ (dim(e,) — 1) (and dim(u,) = n + dim(e,))

NoOTE. In this description, one needs to know which representations g
have 6’9 of each type. The pattern of this correspondence is a standard
pattern which was described in [7].

NoOTE. For each ¢ with ¢/, = n' & (dim(e,) — I), the component of the
fixed point set of H = ker(p) containing p is a manifold with involution
induced by the action of Zy = G/H fixing p U V™. These involutions form a
family of involutions fixing p U V™ for which the normal bundles of V" are
all stably cobordant.

In order to better understand this result suppose one has an involution
(W, T) for which the fixed point set of T is pUV™. For each t with 1 < ¢ < k
one may form an action of G on the product W2~ = W x...x W (2!~ fac-
tors) by letting T4 (w1, . . ., woe-1) = (T(w1), ..., T(wge-1)), letting Ts, ..., T}
be involutions which permute the factors of W2 so that the points fixed
by T5,...,T; are the diagonal copy of W, and letting T3 ,1,...,7T% be the
identity map. Denote this action by I'*(W,T).

One notices that this action of G on W2 ' has fixed point set p U V"
(given by the copy of p U V"™ inside the diagonal copy of W). There are
2% — 2! bundles ¢, with dim(e,) = 0 given by the representations o for
which H = ker(p) does not contain all the involutions 7341, ...,Tk. There
are 2'=! — 1 bundles ¢, with £, = 7 and 2!~! bundles ¢, for which ¢,
is the normal bundle of V' in W. These are given by the representations
o for which H = ker(p) contains T}41,...,T; and which either contain T}
(for ¢, = 7y) or do not contain T (for €, = the normal bundle of V'
in W).

Finally, if 0 : G — G is an automorphism one may obtain a G-action
olF(W,T) by applying the automorphism to G' and then using the action
just described.



Z& -actions fizing {point} U V™ 85

NOTE. The choice of an automorphism amounts to choosing a set of
generating involutions for the action. This can change the cobordism class
of the action, since in particular the subgroup of G fixing the manifold
changes.

In [9] it was shown that if a G-action (N, ¥) has fixed point data (F, {r,})
and one of the normal bundles vy is isomorphic to vy @ 1, then there is an
action (N',¥’) with fixed point data (F,{v,}) where v, = v, for ¢ # 6 and
v, is the subbundle. In particular, if (W,T') is an involution fixing pU V"
and if the normal bundle of V in W has a section, then 2¢~! of the normal
bundles of o I'¥(W, T) have sections.

The proposition may then be restated

PROPOSITION. Every G-action (M™,®) fixing pUV™ is cobordant to an
action obtained from an involution (W, T) fixing pUV™ by removing sections
from the normal bundles of some o I'F(W,T).

NOTE. There may be many sections of the bundles v, and one may
remove different numbers of sections for the various choices of o.

We emphasize that the equivariant cobordism classifications obtained in
[5] (for V™ = S™ or SP x S?), [7] (for V" = RP(n) with n odd), [8] (for
V"™ = RP(n) with n even and k = 2) and [9] (for V" = RP(n) with n even
and any k) are particular cases of the above Proposition. In Section 4 we
will include two new particular cases (Theorems 1 and 2), which we were
not able to get before.

THEOREM 1. If (M™,®) is a G-action fixzing p U V™ with n odd and
V™ connected, then (M™,®) is equivariantly cobordant to one of the actions
olF(RP(n+1),T) where T is the involution

T([xo,T1y- -+ Tny Tni1]) = [Toy X1y oy Tny —Tpp1]-

NOTE. This extends to any V" with n odd the result for V" =RP(2p+1)
obtained in [7].

For a sequence N = (nq,...,n,) of natural numbers, consider the carte-
sian product of spheres S = S™ x ... x S". Denote by {2 the set formed
by the sequences N = (ni,...,n,) such that ny + ...+ n, = 2° for some
s > 0; if s > 4, we additionally require N to be a refinement of (8,...,8)
(2573 copies). From [6] one knows that for each N = (n1,...,n,) € §2 there
is an involution (W32, T) fixing p U SY, where n =nj + ...+ n,.

THEOREM 2. If (M™,®) is a G-action fizing p U SN with N = (nq,...
.o, np) and n =ny + ...+ ny, then N € 2 and (M™,P) is equivariantly
cobordant to one of the actions JFtk(W]%,”, T); in particular, m = 2'n.
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NoOTE. This extends to an arbitrary product of spheres the results for
V™ = 8" or SP x S9 of [5].

Suppose (M™,T) is an involution fixing p U V™ with V"™ not necessarily
connected. Since the fixed point data of (M™,T) is not a boundary, one
sees from the work of Boardman ([1], [2]) that m < 3n. In [11], we showed
that this bound may be improved to what is utmost generality; in fact, we
established the upper bound for m, for each n. Writing n = 2Pq with ¢ odd,
set

_ [+ p+1—q ifp<gq,
m(n) = { 2Ptly 4 2p—4 if p>q.

We proved in [11] that m < m(n) and there are involutions with m = m(n)
fixing a point and some V'™ for each n. As another consequence of our result,
we will generalize this fact to G-actions, assuming that V" is connected.

THEOREM 3. If (M™,®) is a G-action fizing pUV™ with V™ connected,
then m < 2¥~1m(n); moreover, this bound is best possible for V™ connected.

2. Involutions fixing p U V™. Suppose (M™, @) is a G-action with
fixed point set p U V™. Since m = ) dim(y,), there is always at least one
o for which dim(gu,) > 0. For any such p, the component of the fixed point
set of H = ker(p) containing p, F,, is a manifold of positive dimension on
which G acts, and since H acts trivially, this is an action of G/H = Zs,
or an involution on F,. Since an involution on a manifold of positive di-
mension cannot fix a single point, F, must contain V™. Thus, one ob-
tains an involution (F,,T) fixing p U V", with the normal bundles being
o and €,.

Thus, one needs to know involutions (W, T) fixing p U V™.

Following Conner and Floyd, the cobordism class of an involution
(Ww.T) fixing p U V™ is determined by the cobordism class of the nor-
mal bundle to the fixed point set, the trivial w-plane bundle over p, and a
(w —n)-plane bundle v~ over V. Among all the bundles over V" cobor-
dant to v ™" there will be a smallest [ for which v~ is cobordant to a
bundle 7' & (w —n —1).

From [3; 26.4], it follows that there are involutions (W"H+¢ T) fixing
pU V™ for which the normal bundle of V" in Wnt+i is nl @i for 0 < i <
w —n — 1, with (WnH+w=n=0 T cobordant to (W, T).

Further, one knows how to add additional trivial bundles to the normal
bundle of an involution. If (W™, T) fixes p U V"™ with normal bundle v*~"
over V", one may form

St x Www

rovn) = (50

conjugation X 1> .
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The fixed point set of this involution consists of a copy of the fixed point

set of (W™, T) (the points %) with normal bundle v*~" & 1 over

V™ and a copy of W (the points %) with normal bundle a trivial

line bundle. If W™ bounds as a manifold, (W™, 1) bounds as a bundle and
I'(W,T) is cobordant to an involution fixing p U V™ with normal bundle
v~ " @1 over V™.

Thus, the involutions (W*,T') fixing pUV™ belong to families with v*~"
cobordant to n'@® (w—n—1) with n+1 < w < wy, where W™° is nonbounding
as a manifold.

NoOTE. This is one of the key points in Boardman’s approach to involu-
tions [1], [2].

The assertion of the Proposition is that all the involutions (F,,T’) fixing
pU V™ belong to the same family. Further, the normal bundles are simulta-
neously cobordant to bundles of the form n' @ i.

These results for involutions have analogues for G = Z4-actions.

In [9], it was shown that if a G-action (M™,®) fixes (F,{v,}) and if
some v, has a section, then there is another G-action (M™~! @) fixing F
for which the section has been removed.

If (M™,Ty,...,Ty) is a manifold with G-action, one may form
Mm+1 _ Sl X Mm
—1 x T1

with the involutions T, = conjugation x 1, and T, =1 xT; for i > 1. The

fixed point set of T for this action consists of a copy of the fixed point set of
7, E)xFry (£ xM™
Ly T Z1xTy “1xT1

an additional trivial line bundle added, and the normal bundle of the copy of
M™ is a trivial line bundle. The fixed point set of the action of G on M™*!

is a copy of the fixed point set of the action of G on M™ ((j_ti);; ), and the

normal bundle in M™+! is obtained by adding a trivial line bundle to the
normal bundle v,, where g is the representation with ker(¢) = H = subgroup
generated by Tb, ..., T, and a copy of the fixed point set of H acting on M™,
(i_lf—:;f’. If the restriction of M™ to H bounds equivariantly, the action of
H on M™ with a trivial line bundle bounds, and also the normal bundle of
the copy of Fg bounds. Thus the action of G on M™*! is cobordant to an
action having the same fixed point set as M™ but with a trivial line bundle

added to v,.

, and a copy of M™, . The normal bundle of Fz has

NoOTE. For the action I'¥(W,T) described in the introduction, the re-
striction to H is W x ... x W (2!~! copies) with Ty, ..., T acting as per-
mutations. If W bounds as a manifold, this action bounds.
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Thus, the actions of GG also lie in families. The proposition says that the
G-actions fixing p U V™ lie in a family with minimal element o I'F(Wy,T})
and maximal element oI'F(Wo,Ty), where (W1, Ty) and (Wa,Ty) are the
elements of minimal and maximal dimension of a family of involutions fixing
puUV™,

3. Proof of the main result. Denote by A the collection of all equiv-
ariant cobordism classes of involutions containing a representative (W, T)
with pU V™ as fixed point set; A is a disjoint union of families as described
in the previous section. From the strengthened Boardman 5/2-theorem of
[4] one deduces that A is always finite, and we can identify each element
[W,T)] of A with the class of the component of the normal bundle over V",
k — V™ since the component over the point is determined by x — V". In
this way, we can write

A=A{[k1 = V"], [k2 = V"],...,[kr — V"]}.

We now consider (M, ®), & = (T4, ...,Tx), a G-action fixing pU V™. Let
(p, {1o}) U (V™ {e,}) be the fixed point data of ¢. The main result of [7]
says that in this situation the list {e,} contains 2¢~! eigenbundles bordant
to K;’s, 271 — 1 eigenbundles bordant to 7y and 2¥ — 2! zero bundles for
some 1 <t < k, and up to some automorphism ¢ : G — G these bundles
are included in {g,} in the following way:

(i) if H = ker(p) contains Ty41,T342,..., Tk and does not contain 77,
then €, is bordant to some k;;
(ii) if H contains 11, Ty41, Tiy2, . - ., Tk, then €, is bordant to 7y; and
(iii) if H does not contain all the involutions Ty41, Ti42, ..., Tk, then g,
is the zero bundle.

Moreover, when ¢, is bordant to some k;, the corresponding p, must be
the trivial bundle n+s; — p, where s; = dim(k;); in the other cases, p1, = 0.

Now choose a nontrivial representation ¢; : G — Z3 for which ¢,, is
bordant to 7y (we suppose t > 2, since for ¢ = 1 there is nothing to prove),
and take T'¢ H = ker(p1). Then G is H x Z3, with the Z5 summand being
generated by T. The other nontrivial representations occur in pairs o', o”
which are the same homomorphism on H, with ¢'(T') =1 and " (T) = —1.
One may consider the nontrivial homomorphisms from H into Z5 as being
indexed by the homomorphisms o'

If one considers the restriction @z of (M, @) to the subgroup H, one may
let Fy C M be the component of the fixed point set of @y which contains
V™. The normal bundle of V" in Fy is €,, — V", so Fy has dimension 2n;
since in this case p,, — p is the zero bundle, p does not belong to Fy, which
means that V" is the unique component of the fixed point set of @ contained
in Fo.
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The normal bundle of Fy in M decomposes under the action of H as
the Whitney sum of subbundles 52/ for the nontrivial homomorphisms QT -
H — Z5. The submanifold Fy C M is invariant under the action of G,
and the subbundles 52, are also invariant under G, with G acting by bundle
maps covering the action of G on Fy. Of course, H acts trivially on Fjy, so
one really has only the action of T' on Fj as an involution, and 7" acts as an
involution on 52, by bundle maps covering the action on Fj. Thus one has
an object

(FU) {82/ })
given by a manifold with a list of bundles together with their involutions
induced by T, which can be considered as an element of the equivariant

bordism group
Nz (T] BO(m,))
g/

of a product of classifying spaces for bundles with involution, where my, =
dim(e),). The fixed point set of T" acting on Fy is V", and when restricted
to V™ each bundle 52, splits as the Whitney sum of subbundles on which T
acts as +1 in the fibers (i.e. €,) and on which T acts as —1 in the fibers
(i.e. EQ//).

If one now removes from F{ the interior of a tubular neighborhood U of
V™, invariant under 7', one obtains a manifold with boundary F; = FY —
int(U) having boundary OU = S(g,, ), the sphere bundle of €,,. On F; the
involution T is free, therefore for each ¢’ one finds that T" acts freely on the
total space of Eg,l P Thus

(S(EQl )7 {52'\5(591 ) })7

the sphere bundle of ¢, with a list of bundles together with their free
involutions induced by 7', bounds a corresponding list

(FrA{egm })

of bundles over F; with free involution. This may be considered in
Nz (TIBOwny)).
g/

the equivariant bordism group of a product of classifying spaces for bundles
with free involution.

This determines a bordism involving the corresponding quotient bundles,
obtained from the above bordism by dividing out the free involution 7". That
is, the quotient % is a manifold with boundary

oUu  S(e,,)
T  (-1)



90 P. L. Q. Pergher

which is the real projective space bundle RP(g,, ). Considering the double
cover I, — % as a line bundle, there is a line bundle A — % which restricts
on RP(g,,) to the line bundle of the double cover S(g,,) — RP(e,, ), which
will be denoted by €.

Now for each ¢, ag/ restricts over the boundary OU = S(g,,) to the
pullback of the bundle €, © €y, and T" acts as 1 in €, and as —1 in g,.

Thus each quotient bundle

has boundary
o B (E®ey) — RP(gy,).

In this way,
(RP(Egl)v 57 {EQ/ ® (g ® EQ”)}>7

the projective space bundle of ¢,, with its standard line bundle and bundles
ey ® (£ ®e,r), bounds the corresponding list of bundles over £t given by

) A 6(Q)'IFl
T T ’
This may be considered in

Now1 (BO) x T] BO(m,)),

the bordism of classifying spaces for vector bundles.

The above argument is identical with that of [10; Section 2]. The crucial
point is that Fjy does not contain the point fixed by @. Also the next lemma
is similar to the lemma at the start of Section 3 of [10]; to ease the reading
and mainly to establish some notations, we will rewrite it.

LEMMA 1. (V™ e, ,{€y,€07}) ts cobordant to (V™, 1y, {ey,c07}).
Proof. One lets
WiV ) =14w; +... 4w,
be the Stiefel-Whitney class of V™ and
Wi(eo) =1+uf +...+up

be the Stiefel-Whitney class of €, for any p, where n, = dim(e,).

Letting ¢ € HY(RP(g,,); Z2) be the first Stiefel-Whitney class of the
line bundle ¢ for the double cover S(g,,) — RP(g,,), one knows that the
Stiefel-Whitney class of RP(e,,) is

W(RP(g,,)) = (1+wi+...+wu){(1+)" +uf (1+e)"a " 4 ufl
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the Stiefel-Whitney class of £ is
W) =1+c,
and the Stiefel-Whitney class of the bundle ey @& (§ ® €,) is

Wity & (E®ep) =(1+uf +...+ug )
A+ +uf A+ o T+ ud )

Because (RP(g,,,&, {e, ® (£ ®eyr)}) is a boundary, any class of dimen-
sion 2n — 1 given by a product of the classes

wi(RP(gq,)), ¢ wjey ®({®epr))

gives a zero characteristic number for RP(e,, ). We will apply this using
certain special classes, which are polynomials in the above-displayed ones,
and were initially introduced in [11] and also used in [10].
Specifically, for any r, one lets
W(RP(eg,))

Wir] = W and Wyr] =

Wiey ® (€@e0))
(L4c¢)me” ™"

so that
Wirl=1+ w1 +...+wy,)
AQ+ ) +uf (T +e) "l (1) e}
and
Wy lr] = (1 —|—qu +... —|—u$l/g,)
A{Q+e)" + uf”(l +o) T+ ufll;” (14c)" ™"},
For these classes, one then has the special properties:

W{r|a, = wyc” + terms with smaller ¢ powers,

Wirler41 = (w1 + ufly)c” + terms with smaller ¢ powers,

r+1

Wir|are = ufl1¢" " + terms with smaller ¢ powers,

and in the same way

Wy [r]or = u? ¢ + terms with smaller ¢ powers,

W lrlars1 = (ugyy +u[ )c" + terms with smaller ¢ powers,

1’
Wy [r]orye = u§+lcr+1 + terms with smaller ¢ powers.

For a sequence w = (i1,...,is) of integers, one lets |w| = i1 + ... + is,
and for u = 1 +wu; + ...+ up, one lets u, = u;, ...u;, be the product of the
classes u;.
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Then given sequences w = (i1,...,%5) and w, = (if,...,ig’g), and a

natural number r with
W+ |wel + 7 =n,
0
one may form the class

X = [Iwihilai- TT Wi - 12

1€Ww 1EWo

H{(HW ) - (TT Warli=112i) |- Wlr = 1Jara.

ZGUJ ’ zEw 1

This is a characteristic class of RP(e,,) of dimension 2n — 1, and has the
form
X =wyug, Hu Huw o (wy +ult)e !

+ terms Wlth smaller powers of c.

Because H*(RP(e,,); Z2) is the free H*(V™; Z3)-module on

2 Mg, —1
l,e,c”y ... ¢t

it follows that
0= X[RP(,,)] = wull Hu Huw ; + uft)[V"]

or

gl "] o
W, Ur' U, ||u ||Uw,,V = W,Wr U, || Uy, ||uw,,

This says that any class u¢' in a characteristic number of (V™ ey, {€ps €0 })
may be replaced by w, without changing the value of the characteristic
number, which means that (V™,¢,,,{ey,co7}) and (V™, 7y, {4, 0 }) have
the same characteristic numbers. This gives the result. m

LEMMA 2. Let o, and gy be two different nontrivial representations of G
for which dim(p,,) > 0 and dim(u,,) > 0. Then

(i) The representation g1 = 40 has dim(p,,) = 0 and dim(e,,) = n,
and if H = ker(o1) then g4 = opm so that g, and gy are paired with
respect 1o 01.

(i) If dim(e,,) < dim(e,,) and s = dim(e,,) — dim(e,, ), then

(Vn’EQa7€Qb7 {5@}97@(17@1;)
is cobordant to
(V" €0u+E0a ® S, {0} 004,00)-

Proof. (i) Let H, = ker(o,), Hp = ker(op) and let F,, (respectively F})

be the component of p in the fixed point set of H, (respectively H}). One has
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V"™ C F, (respectively V" C Fp) and dim(p,,) = n + dim(e,,) = dim(F,)
(respectively dim(pu,,) = n + dim(e,,) = dim(F}p)). Choose involutions T,
and Ty, where T, ¢ H, and T,, € Hy, (respectively Ty, ¢ Hy, and Ty, € H,).

Let Fy be the component of the fixed point set of H, N H}, containing p.
Then F, C Fy and F, C Fy. Since G acts on Fy with H, N H, acting
trivially, this gives an action of G/H, N Hy, & Zy X Zs on F, with generators
the involutions T, and Tp. The subgroup H is the subgroup of G generated
by H, N Hy and the involution 7,7}, with p,, being the normal bundle of p
in Fy N Fg and €,, being the normal bundle of V" in Fy N Fy.

Now one has
n + dim(e,, ) + dim(e,, ) + dim(e,, ) = dim(Fp)
= dim(p,, ) + dim(p,,) + dim(p,, )
= (n+dim(e,,)) + (n + dim(e,, ) + dim(p,, ).
If dim(fep, ) > 0 one has dim(p,, ) = n + dim(e,, ) and
n+dim(e,, ) + dim(e,, ) + dim(e,, ) = 3n +dim(e,, ) + dim(e,, ) + dim(e,, ),
contradicting the assumption that n > 0. Thus dim(u,,) = 0 and
n + dim(e,, ) + dim(e,,) + dim(e,, ) = dim(p,, ) + dim(pp, )
= 2n + dim(e,, ) + dim(e,, ),
giving dim(e,, ) = n.
Clearly, o, agrees with o, on H, N Hy for
H,NH, C H, =ker(p,), H,NHy,C Hp=ker(op)
and
0a(ToTy) = 0a(Ta)0a(Ty) = —1-1=—1

and similarly o5(7,7;) = —1, 50 04y = g For T = Ty, T ¢ H and
0a(T)=—-1, 0p(T)=1and for T =T,, T ¢ H and 0,(T) =1, 0p(T) = —1.
Thus the representations o, and g, are paired with respect to 9.

(ii) In the geometric discussion developed before Lemma 1 we can use
the representation p; of part (i) to conclude that

(RP(gg,):€,60, D (E®@Eg,), {0 ® (@ 59”)}(9/,9”)#(@a,9b))

bounds as an element of N,_1(BO(1) x [[ BO(my)).

We use now the same arguments and notations of Lemma 1. For se-
quences w = (i1,...,is) and w, = (if,...,i¢ ), and a natural number r
with

Wl + ) |we| + 7 =n,
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one may form the class

- (HW[@]%) ( I1 W[i—1]2i>

' 1;[ {(61;[ Wylila:) (E]:[ Woli— 1121 }
(TT Weulite) - ( TT Warli = 1) Wofr = oo

As in Lemma 1, this is a characteristic class of RP(e,, ) of dimension 2n — 1
and has the form

01 ,,0 o ov)n—1
X =wou, ul’ ul - Hu Huw” (ule +ul®)c"
0'#ea o' #ob
+ terms with smaller powers of c.

Then
0= X[RP(e,,)] = wougs, uls uts, - T] g, - [T g, - (ut +ue)v™
0'#0a Q"' F#ev
or
91 Oa 06 ,0b
WUy, U, Uy, U H ug H uw o
0'#0a 0" #eb
— 91 Qa 4,00 g0 .
R | R | R
0'#0a o' #ob

This says that any class u2® in a characteristic number of

(an €0a1€0ps {gg}giga,@b)

may be replaced by u2* without changing the value of the characteristic
number; in particular, for » > dim(e,, ), any class u2 may be replaced by
the zero class. In this way,

(V" €0urE0n> 1€0} 0#0a,00) aDd (V™. €0,,60, D 8,{0} 0%0a.05)

have the same characteristic numbers, and the result follows. m

To end the proof of our result we make the iterative use of Lemma 1
and Lemma 2(ii). First we use Lemma 1 2!~! — 1 times to conclude that
(V™ {e,}) is cobordant to

(an {TV}a {59}17 {0})7

where {7y} contains 2!~ —1 copies of 1/, {€,}1 is the sublist of {¢,} formed
by the 2¢=1 bundles ¢, for which dim(u,) > 0, and {0} means the list of
2k — 2 zero bundles. Next choose n' € {¢,}1 with [ = dim(n;) < dim(e,) for



Z& -actions fizing {point} U V™ 95

any €, € {€,}1. Using Lemma 2(ii) 2/~ — 1 times, one then deduces that

(V" {rv{eohr, {0})
is cobordant to

(an {TV}’ 77[7 {79}1’ {O})’

where {7,}1 is the list obtained from {e,}; by excluding ' and replacing
each remaining €, by

Yo =" @ (dim(e,) = 1),
Therefore (V",{g,}) is cobordant to this last list and the Proposition is
proved.

NoTe. With the above notation, choose a representation gg such that
€00 € {€o}1 and dim(e,,) > dim(e,) for any €, € {e,}1. Take T' € G so that
T ¢ H = ker(po) and denote by F,, the component of the fixed point set
of H containing p. Then the involution (F,,,T) fixes pU V"™ and (M™,P)
is equivariantly cobordant to an action obtained by removing sections from
the normal bundles of oI'F(F,,,T). This is the second formulation of our
Proposition given in the introduction.

4. Applications. In this section we will prove Theorems 1-3, which
are consequences of our Proposition. First suppose V" is a connected closed
n-dimensional manifold for which the set A of all equivariant cobordism
classes of involutions containing a representative fixing p U V™ contains a
single element, say A = {[W, S]}. Let n — V™ be the normal bundle of V™
in W.

LEMMA. Suppose (M™,®) is a G-action fixzing pUV™, with V™ as above.
Then (M™,®) is equivariantly cobordant to one of the actions aI'F(W,S).

Proof. Let (p,{po}) U (V"™ {e,}) be the fixed point data of . For any
representation o for which dim(u,) > 0, the involution (F,,T), where T' ¢
ker(p) and Fj, is the component of the fixed point set of ker(p) containing
p, is an involution fixing p U V™, and from the hypothesis on A one finds
that (F,,T) is cobordant to (W, S), so ¢, — V" is cobordant to n — V™.
Then obviously €, — V" has maximal dimension in {e, : dim(u,) > 0}
(and has no section because A is unitary). From the Proposition it follows
that (M™,®) is equivariantly cobordant to one of the actions o I'F(F,,T),
which in turn is equivariantly cobordant to oI'F(W,S). m

THEOREM 1. If (M™,®) is a G action fizing p U V"™ with n odd and
V™ connected, then (M™, ®) is equivariantly cobordant to one of the actions
ol'F(RP(n+1),T) where T is the involution

T([l‘o, Tiyeen, xnva:n—l-l]) = [':E(]vajla ce sy Ty _$n+1]-
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Proof. As in the proof of the above Lemma, p U V" is fixed by the
involutions (F,,T') for the representations ¢ with dim(u,) > 0. Since n is
odd, one then sees from [12] that each (F,, T) is cobordant to (RP(n+1),T);
in other words, A = {[RP(n+1),T]}. The result then follows from the above
Lemma.

THEOREM 2. If (M™,®) is a G-action fizing p U SN with N = (n1,...
c.,np) and n=mnq + ...+ ny, then N € 2 and (M™, D) is equivariantly
cobordant to one of the actions o IF(W32*, T); in particular, m = 2'n.

Proof. For any representation ¢ with dim(u,) > 0, take the involution
(F,,T) fixing pUS™. The main result of [6] says that in this situation N € £2,
dim(F,) = 2n and (F,,T) is equivariantly cobordant to (W32, T); that is,
A= {[W3",T]} in this case, and the result follows from the Lemma. =

Finally we prove Theorem 3, recalling from the introduction that m(n)
means the upper bound for the dimensions of manifolds M with involution
T : M — M fixing some p U V", for each n (with V" not necessarily
connected).

THEOREM 3. If (M™,®) is a G-action fizing pUV™ with V™ connected,
then m < 2¥~1m(n); moreover, this bound is best possible for V™ connected.

Proof. The result of [11] cited in the introduction implies that each of
the 2! eigenbundles £, — V™ of the fixed point data of (M™,®) for which
dim(s,) > 0 has dimension less than or equal to m(n) — n, while obviously
each of the 2= — 1 eigenbundles bordant to 7y has dimension n. Therefore

m<n+27 mmn) —n)+ 27 = 1n
<n+28"Ym(n) —n) + (281 — 1)n = 28" Lm(n).

To show that this bound is best possible for V™ connected, consider the
maximal involution (M™™) T) constructed in [11]. This involution fixes a
pU V™ with V" nonconnected. Let  — V™ be the normal bundle of V" in
M™™) _ Then n — V™ is cobordant to a bundle x — F™ with F” connected,
by taking F™ to be the connected sum of the components of V" and sewing
the bundles together, and (m(n) — p) U (k — F") is the fixed point data of
an involution (W™ T) equivariantly cobordant to (M™™) T).

Then I'F(W™™ T) shows that 2¥~1m(n) is the desired upper bound. =
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