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Zk2 -actions fixing {point} ∪ V n

by

Pedro L. Q. Pergher (São Carlos)

Abstract. We describe the equivariant cobordism classification of smooth actions
(Mm, Φ) of the group G = Zk2 on closed smooth m-dimensional manifolds Mm for which
the fixed point set of the action is the union F = p ∪ V n, where p is a point and V n is a
connected manifold of dimension n with n > 0. The description is given in terms of the
set of equivariant cobordism classes of involutions fixing p ∪ V n. This generalizes a lot of
previously obtained particular cases of the above question; additionally, the result yields
some new applications, namely with V n an arbitrary product of spheres and with V n any
n-dimensional closed manifold with n odd.

1. Introduction. The goal of this paper is to describe the equivariant
cobordism classification of smooth actions (Mm, Φ) of the group G = Zk2
on closed smooth m-dimensional manifolds Mm for which the fixed point
set of the action is the union F = p ∪ V n, where p is a point and V n is a
connected manifold of dimension n with n > 0. Here, G is considered as the
group generated by k commuting involutions T1, . . . , Tk.

According to [13], the equivariant cobordism class of (Mm, Φ) is de-
termined by the cobordism class of the fixed point data (F, {ν%}) consist-
ing of the fixed point set F and a list of vector bundles over F indexed
by the nontrivial irreducible real representations % of G; these representa-
tions of G are all one-dimensional and may be described by homomorphisms
% : G → Z2 = {+1,−1} which are onto, and G acts on the reals so that
g ∈ G acts as multiplication by %(g). Here ν% is the part of the normal bun-
dle of F in M on which G acts as the representation %. Specifically, ν% is the
normal bundle of F in the fixed point set FH of the subgroup H = ker(%).
Each s-dimensional component of (F, {ν%}) may be considered as an ele-
ment of Ns(

∏
% 6=0 BO(n%)), the bordism of s-dimensional manifolds with a
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map into a product of classifying spaces BO(n%) for n%-dimensional vector
bundles, where n% denotes the dimension of ν% over the component. For
p ∪ V n, the bundle (F, ν%) is the union of two bundles (p, µ%) and (V n, ε%)
over the two fixed point set components. Since every bundle over a point is
trivial, the cobordism class of (p, {µ%}) is completely determined by the list
of integers dim(µ%) given by the dimensions of the bundles. To complete the
classification, it suffices to describe (V n, {ε%}). For this one has

Proposition. There is a vector bundle ηl over V n and a cobordism of
(V n, {ε%}) to (V n, {ε′%}), where each ε′% is either

(a) the trivial 0-dimensional bundle (and dim(µ%) = 0),
(b) the tangent bundle τV of V n (and dim(µ%) = 0), or
(c) ηl ⊕ (dim(ε%)− l) (and dim(µ%) = n+ dim(ε%)).

Note. In this description, one needs to know which representations %
have ε′% of each type. The pattern of this correspondence is a standard
pattern which was described in [7].

Note. For each % with ε′% = ηl ⊕ (dim(ε%) − l), the component of the
fixed point set of H = ker(%) containing p is a manifold with involution
induced by the action of Z2 = G/H fixing p∪ V n. These involutions form a
family of involutions fixing p ∪ V n for which the normal bundles of V n are
all stably cobordant.

In order to better understand this result suppose one has an involution
(W,T ) for which the fixed point set of T is p∪V n. For each t with 1 ≤ t ≤ k
one may form an action of G on the product W 2t−1

= W×. . .×W (2t−1 fac-
tors) by letting T1(w1, . . . , w2t−1) = (T (w1), . . . , T (w2t−1)), letting T2, . . . , Tt
be involutions which permute the factors of W 2t−1

so that the points fixed
by T2, . . . , Tt are the diagonal copy of W , and letting Tt+1, . . . , Tk be the
identity map. Denote this action by Γ kt (W,T ).

One notices that this action of G on W 2t−1
has fixed point set p ∪ V n

(given by the copy of p ∪ V n inside the diagonal copy of W ). There are
2k − 2t bundles ε% with dim(ε%) = 0 given by the representations % for
which H = ker(%) does not contain all the involutions Tt+1, . . . , Tk. There
are 2t−1 − 1 bundles ε% with ε% = τV and 2t−1 bundles ε% for which ε%
is the normal bundle of V in W . These are given by the representations
% for which H = ker(%) contains Tt+1, . . . , Tk and which either contain T1

(for ε% = τV ) or do not contain T1 (for ε% = the normal bundle of V
in W ).

Finally, if σ : G → G is an automorphism one may obtain a G-action
σΓ kt (W,T ) by applying the automorphism to G and then using the action
just described.
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Note. The choice of an automorphism amounts to choosing a set of
generating involutions for the action. This can change the cobordism class
of the action, since in particular the subgroup of G fixing the manifold
changes.

In [9] it was shown that if a G-action (N,Ψ) has fixed point data (F, {ν%})
and one of the normal bundles νθ is isomorphic to ν ′θ ⊕ 1, then there is an
action (N ′, Ψ ′) with fixed point data (F, {ν ′%}) where ν ′% = ν% for % 6= θ and
ν′θ is the subbundle. In particular, if (W,T ) is an involution fixing p ∪ V n

and if the normal bundle of V in W has a section, then 2t−1 of the normal
bundles of σΓ kt (W,T ) have sections.

The proposition may then be restated

Proposition. Every G-action (Mm, Φ) fixing p∪V n is cobordant to an
action obtained from an involution (W,T ) fixing p∪V n by removing sections
from the normal bundles of some σΓ kt (W,T ).

Note. There may be many sections of the bundles ν% and one may
remove different numbers of sections for the various choices of %.

We emphasize that the equivariant cobordism classifications obtained in
[5] (for V n = Sn or Sp × Sq), [7] (for V n = RP (n) with n odd), [8] (for
V n = RP (n) with n even and k = 2) and [9] (for V n = RP (n) with n even
and any k) are particular cases of the above Proposition. In Section 4 we
will include two new particular cases (Theorems 1 and 2), which we were
not able to get before.

Theorem 1. If (Mm, Φ) is a G-action fixing p ∪ V n with n odd and
V n connected , then (Mm, Φ) is equivariantly cobordant to one of the actions
σΓ kt (RP (n+ 1), T ) where T is the involution

T ([x0, x1, . . . , xn, xn+1]) = [x0, x1, . . . , xn,−xn+1].

Note. This extends to any V n with n odd the result for V n=RP (2p+1)
obtained in [7].

For a sequence N = (n1, . . . , np) of natural numbers, consider the carte-
sian product of spheres SN = Sn1 × . . .× Snp . Denote by Ω the set formed
by the sequences N = (n1, . . . , np) such that n1 + . . . + np = 2s for some
s ≥ 0; if s ≥ 4, we additionally require N to be a refinement of (8, . . . , 8)
(2s−3 copies). From [6] one knows that for each N = (n1, . . . , np) ∈ Ω there
is an involution (W 2n

N , T ) fixing p ∪ SN , where n = n1 + . . .+ np.

Theorem 2. If (Mm, Φ) is a G-action fixing p ∪ SN with N = (n1, . . .
. . . , np) and n = n1 + . . . + np, then N ∈ Ω and (Mm, Φ) is equivariantly
cobordant to one of the actions σΓ kt (W 2n

N , T ); in particular , m = 2tn.
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Note. This extends to an arbitrary product of spheres the results for
V n = Sn or Sp × Sq of [5].

Suppose (Mm, T ) is an involution fixing p∪ V n with V n not necessarily
connected. Since the fixed point data of (Mm, T ) is not a boundary, one
sees from the work of Boardman ([1], [2]) that m ≤ 5

2n. In [11], we showed
that this bound may be improved to what is utmost generality; in fact, we
established the upper bound for m, for each n. Writing n = 2pq with q odd,
set

m(n) =
{

2p+1q + p+ 1− q if p ≤ q,
2p+1q + 2p−q if p ≥ q.

We proved in [11] that m ≤ m(n) and there are involutions with m = m(n)
fixing a point and some V n for each n. As another consequence of our result,
we will generalize this fact to G-actions, assuming that V n is connected.

Theorem 3. If (Mm, Φ) is a G-action fixing p∪V n with V n connected ,
then m ≤ 2k−1m(n); moreover , this bound is best possible for V n connected.

2. Involutions fixing p ∪ V n. Suppose (Mm, Φ) is a G-action with
fixed point set p ∪ V n. Since m =

∑
dim(µ%), there is always at least one

% for which dim(µ%) > 0. For any such %, the component of the fixed point
set of H = ker(%) containing p, F%, is a manifold of positive dimension on
which G acts, and since H acts trivially, this is an action of G/H ∼= Z2,
or an involution on F%. Since an involution on a manifold of positive di-
mension cannot fix a single point, F% must contain V n. Thus, one ob-
tains an involution (F%, T ) fixing p ∪ V n, with the normal bundles being
µ% and ε%.

Thus, one needs to know involutions (W,T ) fixing p ∪ V n.
Following Conner and Floyd, the cobordism class of an involution

(Ww, T ) fixing p ∪ V n is determined by the cobordism class of the nor-
mal bundle to the fixed point set, the trivial w-plane bundle over p, and a
(w−n)-plane bundle νw−n over V n. Among all the bundles over V n cobor-
dant to νw−n there will be a smallest l for which νw−n is cobordant to a
bundle ηl ⊕ (w − n− l).

From [3; 26.4], it follows that there are involutions (W n+l+i, T ) fixing
p ∪ V n for which the normal bundle of V n in Wn+l+i is ηl ⊕ i for 0 ≤ i ≤
w − n− l, with (Wn+l+(w−n−l), T ) cobordant to (Ww, T ).

Further, one knows how to add additional trivial bundles to the normal
bundle of an involution. If (Ww, T ) fixes p ∪ V n with normal bundle νw−n

over V n, one may form

Γ (W,T ) =
(
S1 ×Ww

−1× T , conjugation× 1
)
.
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The fixed point set of this involution consists of a copy of the fixed point
set of (Ww, T ) (the points {±i}×(p∪V n)

−1×T ) with normal bundle νw−n ⊕ 1 over

V n and a copy of Ww (the points {±1}×Ww

−1×T ) with normal bundle a trivial
line bundle. If Ww bounds as a manifold, (Ww, 1) bounds as a bundle and
Γ (W,T ) is cobordant to an involution fixing p ∪ V n with normal bundle
νw−n ⊕ 1 over V n.

Thus, the involutions (Ww, T ) fixing p∪V n belong to families with νw−n

cobordant to ηl⊕(w−n−l) with n+l ≤ w ≤ w0, where Ww0 is nonbounding
as a manifold.

Note. This is one of the key points in Boardman’s approach to involu-
tions [1], [2].

The assertion of the Proposition is that all the involutions (F%, T ) fixing
p∪ V n belong to the same family. Further, the normal bundles are simulta-
neously cobordant to bundles of the form ηl ⊕ i.

These results for involutions have analogues for G = Zk2 -actions.
In [9], it was shown that if a G-action (Mm, Φ) fixes (F, {ν%}) and if

some ν% has a section, then there is another G-action (Mm−1, Φ) fixing F
for which the section has been removed.

If (Mm, T1, . . . , Tk) is a manifold with G-action, one may form

M̃m+1 =
S1 ×Mm

−1× T1

with the involutions T̃1 = conjugation × 1, and T̃i = 1 × Ti for i > 1. The
fixed point set of T̃1 for this action consists of a copy of the fixed point set of
T1, (±i)×FT1

−1×T1
, and a copy of Mm, (±1)×Mm

−1×T1
. The normal bundle of FT̃1

has
an additional trivial line bundle added, and the normal bundle of the copy of
Mm is a trivial line bundle. The fixed point set of the action of G on M̃m+1

is a copy of the fixed point set of the action of G on Mm ( (±i)×F
−1×T ), and the

normal bundle in M̃m+1 is obtained by adding a trivial line bundle to the
normal bundle ν%, where % is the representation with ker(%) = H = subgroup
generated by T2, . . . , Tk, and a copy of the fixed point set ofH acting onMm,
(±1)×FH
−1×T . If the restriction of Mm to H bounds equivariantly, the action of

H on Mm with a trivial line bundle bounds, and also the normal bundle of
the copy of FH bounds. Thus the action of G on M̃m+1 is cobordant to an
action having the same fixed point set as Mm but with a trivial line bundle
added to ν%.

Note. For the action Γ kt (W,T ) described in the introduction, the re-
striction to H is W × . . . ×W (2t−1 copies) with T2, . . . , Tk acting as per-
mutations. If W bounds as a manifold, this action bounds.



88 P. L. Q. Pergher

Thus, the actions of G also lie in families. The proposition says that the
G-actions fixing p ∪ V n lie in a family with minimal element σΓ kt (W1, T1)
and maximal element σΓ kt (W2, T2), where (W1, T1) and (W2, T2) are the
elements of minimal and maximal dimension of a family of involutions fixing
p ∪ V n.

3. Proof of the main result. Denote by A the collection of all equiv-
ariant cobordism classes of involutions containing a representative (W,T )
with p∪ V n as fixed point set; A is a disjoint union of families as described
in the previous section. From the strengthened Boardman 5/2-theorem of
[4] one deduces that A is always finite, and we can identify each element
[W,T ] of A with the class of the component of the normal bundle over V n,
κ → V n, since the component over the point is determined by κ → V n. In
this way, we can write

A = {[κ1 → V n], [κ2 → V n], . . . , [κr → V n]}.
We now consider (M,Φ), Φ = (T1, . . . , Tk), a G-action fixing p∪V n. Let

(p, {µ%}) ∪ (V n, {ε%}) be the fixed point data of Φ. The main result of [7]
says that in this situation the list {ε%} contains 2t−1 eigenbundles bordant
to κi’s, 2t−1 − 1 eigenbundles bordant to τV and 2k − 2t zero bundles for
some 1 ≤ t ≤ k, and up to some automorphism σ : G → G these bundles
are included in {ε%} in the following way:

(i) if H = ker(%) contains Tt+1, Tt+2, . . . , Tk and does not contain T1,
then ε% is bordant to some κi;

(ii) if H contains T1, Tt+1, Tt+2, . . . , Tk, then ε% is bordant to τV ; and
(iii) if H does not contain all the involutions Tt+1, Tt+2, . . . , Tk, then ε%

is the zero bundle.

Moreover, when ε% is bordant to some κi, the corresponding µ% must be
the trivial bundle n+si → p, where si = dim(κi); in the other cases, µ% = 0.

Now choose a nontrivial representation %1 : G → Z2 for which ε%1 is
bordant to τV (we suppose t ≥ 2, since for t = 1 there is nothing to prove),
and take T 6∈ H = ker(%1). Then G is H ×Z2, with the Z2 summand being
generated by T . The other nontrivial representations occur in pairs %′, %′′

which are the same homomorphism on H, with %′(T ) = 1 and %′′(T ) = −1.
One may consider the nontrivial homomorphisms from H into Z2 as being
indexed by the homomorphisms %′.

If one considers the restriction Φ|H of (M,Φ) to the subgroup H, one may
let F0 ⊂ M be the component of the fixed point set of Φ|H which contains
V n. The normal bundle of V n in F0 is ε%1 → V n, so F0 has dimension 2n;
since in this case µ%1 → p is the zero bundle, p does not belong to F0, which
means that V n is the unique component of the fixed point set of Φ contained
in F0.
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The normal bundle of F0 in M decomposes under the action of H as
the Whitney sum of subbundles ε0

%′ for the nontrivial homomorphisms %′|H :
H → Z2. The submanifold F0 ⊂ M is invariant under the action of G,
and the subbundles ε0

%′ are also invariant under G, with G acting by bundle
maps covering the action of G on F0. Of course, H acts trivially on F0, so
one really has only the action of T on F0 as an involution, and T acts as an
involution on ε0

%′ by bundle maps covering the action on F0. Thus one has
an object

(F0, {ε0
%′})

given by a manifold with a list of bundles together with their involutions
induced by T , which can be considered as an element of the equivariant
bordism group

NZ2
2n

(∏

%′

BO(m%′)
)

of a product of classifying spaces for bundles with involution, where m%′ =
dim(ε0

%′). The fixed point set of T acting on F0 is V n, and when restricted
to V n each bundle ε0

%′ splits as the Whitney sum of subbundles on which T
acts as +1 in the fibers (i.e. ε%′) and on which T acts as −1 in the fibers
(i.e. ε%′′).

If one now removes from F0 the interior of a tubular neighborhood U of
V n, invariant under T , one obtains a manifold with boundary F1 = F 0 −
int(U) having boundary ∂U = S(ε%1), the sphere bundle of ε%1 . On F1 the
involution T is free, therefore for each %′ one finds that T acts freely on the
total space of ε0

%′|F1
. Thus

(S(ε%1), {ε0
%′|S(ε%1 )}),

the sphere bundle of ε%1 with a list of bundles together with their free
involutions induced by T , bounds a corresponding list

(F1, {ε0
%′|F1
})

of bundles over F1 with free involution. This may be considered in

N̂Z2
2n−1

(∏

%′

BO(m%′)
)
,

the equivariant bordism group of a product of classifying spaces for bundles
with free involution.

This determines a bordism involving the corresponding quotient bundles,
obtained from the above bordism by dividing out the free involution T . That
is, the quotient F1

T is a manifold with boundary

∂U

T
=
S(ε%1)
(−1)
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which is the real projective space bundle RP (ε%1). Considering the double
cover F1 → F1

T as a line bundle, there is a line bundle λ→ F1
T which restricts

on RP (ε%1) to the line bundle of the double cover S(ε%1)→ RP (ε%1), which
will be denoted by ξ.

Now for each %′, ε0
%′ restricts over the boundary ∂U = S(ε%1) to the

pullback of the bundle ε%′ ⊕ ε%′′ , and T acts as 1 in ε%′ and as −1 in ε%′′ .
Thus each quotient bundle

(ε0
%′|F1

)

T
→ F1

T

has boundary
ε%′ ⊕ (ξ ⊗ ε%′′)→ RP (ε%1).

In this way,
(RP (ε%1), ξ, {ε%′ ⊕ (ξ ⊗ ε%′′)}),

the projective space bundle of ε%1 with its standard line bundle and bundles
ε%′ ⊕ (ξ ⊗ ε%′′), bounds the corresponding list of bundles over F1

T given by
(
F1

T
, λ,

{
ε0
%′|F1

T

})
.

This may be considered in

N2n−1

(
BO(1)×

∏

%′

BO(m%′)
)
,

the bordism of classifying spaces for vector bundles.
The above argument is identical with that of [10; Section 2]. The crucial

point is that F0 does not contain the point fixed by Φ. Also the next lemma
is similar to the lemma at the start of Section 3 of [10]; to ease the reading
and mainly to establish some notations, we will rewrite it.

Lemma 1. (V n, ε%1 , {ε%′ , ε%′′}) is cobordant to (V n, τV , {ε%′ , ε%′′}).

Proof. One lets

W (V n) = 1 + w1 + . . .+ wn

be the Stiefel–Whitney class of V n and

W (ε%) = 1 + u%1 + . . .+ u%n%

be the Stiefel–Whitney class of ε% for any %, where n% = dim(ε%).
Letting c ∈ H1(RP (ε%1);Z2) be the first Stiefel–Whitney class of the

line bundle ξ for the double cover S(ε%1) → RP (ε%1), one knows that the
Stiefel–Whitney class of RP (ε%1) is

W (RP (ε%1)) = (1+w1 + . . .+wn){(1+c)n%1 +u%1
1 (1+c)n%1−1 + . . .+u%1

n%1
},
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the Stiefel–Whitney class of ξ is

W (ξ) = 1 + c,

and the Stiefel–Whitney class of the bundle ε%′ ⊕ (ξ ⊗ ε%′′) is

W (ε%′ ⊕ (ξ ⊗ ε%′′)) = (1 + u%
′

1 + . . .+ u%
′
n%′

)

· {(1 + c)n%′′ + u%
′′

1 (1 + c)n%′′−1 + . . .+ u%
′′
n%′′
}.

Because (RP (ε%1 , ξ, {ε%′ ⊕ (ξ⊗ ε%′′)}) is a boundary, any class of dimen-
sion 2n− 1 given by a product of the classes

wi(RP (ε%1)), c, wj(ε%′ ⊕ (ξ ⊗ ε%′′))
gives a zero characteristic number for RP (ε%1). We will apply this using
certain special classes, which are polynomials in the above-displayed ones,
and were initially introduced in [11] and also used in [10].

Specifically, for any r, one lets

W [r] =
W (RP (ε%1))
(1 + c)n%1−r

and W%′ [r] =
W (ε%′ ⊕ (ξ ⊗ ε%′′))

(1 + c)n%′′−r

so that

W [r] = (1 + w1 + . . .+ wn)

· {(1 + c)r + u%1
1 (1 + c)r−1 + . . .+ u%1

n%1
(1 + c)r−n%1}

and

W%′ [r] = (1 + u%
′

1 + . . .+ u%
′
n%′

)

· {(1 + c)r + u%
′′

1 (1 + c)r−1 + . . .+ u%
′′
n%′′

(1 + c)r−n%′′}.

For these classes, one then has the special properties:

W [r]2r = wrc
r + terms with smaller c powers,

W [r]2r+1 = (wr+1 + u%1
r+1)cr + terms with smaller c powers,

W [r]2r+2 = u%1
r+1c

r+1 + terms with smaller c powers,

and in the same way

W%′ [r]2r = u%
′
r c

r + terms with smaller c powers,

W%′ [r]2r+1 = (u%
′

r+1 + u%′′r+1)cr + terms with smaller c powers,

W%′ [r]2r+2 = u%
′′

r+1c
r+1 + terms with smaller c powers.

For a sequence ω = (i1, . . . , is) of integers, one lets |ω| = i1 + . . . + is,
and for u = 1 + u1 + . . .+ up, one lets uω = ui1 . . . uis be the product of the
classes ui.
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Then given sequences ω = (i1, . . . , is) and ω% = (i%1, . . . , i
%
s%), and a

natural number r with

|ω|+
∑

%

|ω%|+ r = n,

one may form the class

X =
∏

i∈ω
W [i]2i ·

∏

i∈ω%1

W [i− 1]2i

·
∏

%′

{( ∏

i∈ω%′
W%′ [i]2i

)
·
( ∏

i∈ω%′′
W%′ [i− 1]2i

)}
·W [r − 1]2r−1.

This is a characteristic class of RP (ε%1) of dimension 2n − 1, and has the
form

X = wωu
%1
ω%1
·
∏

%′

u%
′
ω%′
·
∏

%′′

u%
′′
ω%′′
· (wr + u%1

r )cn−1

+ terms with smaller powers of c.

Because H∗(RP (ε%1);Z2) is the free H∗(V n;Z2)-module on

1, c, c2, . . . , cn%1−1,

it follows that

0 = X[RP (ε%1)] = wωu
%1
ω%1
·
∏

%′

u%
′
ω%′
·
∏

%′′

u%
′′
ω%′′
· (wr + u%1

r )[V n]

or

wωu
%1
r u

%1
ω%1
·
∏

u%
′
ω%′
·
∏

u%
′′
ω%′′

[V n] = wωwru
%1
ω%1
·
∏

u%
′
ω%′
·
∏

u%
′′
ω%′′

[V n].

This says that any class u%1
r in a characteristic number of (V n, ε%1 , {ε%′ , ε%′′})

may be replaced by wr without changing the value of the characteristic
number, which means that (V n, ε%1 , {ε%′ , ε%′′}) and (V n, τV , {ε%′ , ε%′′}) have
the same characteristic numbers. This gives the result.

Lemma 2. Let %a and %b be two different nontrivial representations of G
for which dim(µ%a) > 0 and dim(µ%b) > 0. Then

(i) The representation %1 = %a%b has dim(µ%1) = 0 and dim(ε%1) = n,
and if H = ker(%1) then %a|H = %b|H so that %a and %b are paired with
respect to %1.

(ii) If dim(ε%a) ≤ dim(ε%b) and s = dim(ε%b)− dim(ε%a), then

(V n, ε%a , ε%b , {ε%}%6=%a,%b)
is cobordant to

(V n, ε%a , ε%a ⊕ s, {ε%}%6=%a,%b).
Proof. (i) Let Ha = ker(%a), Hb = ker(%b) and let Fa (respectively Fb)

be the component of p in the fixed point set of Ha (respectively Hb). One has
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V n ⊂ Fa (respectively V n ⊂ Fb) and dim(µ%a) = n + dim(ε%a) = dim(Fa)
(respectively dim(µ%b) = n + dim(ε%b) = dim(Fb)). Choose involutions Ta
and Tb where Ta 6∈ Ha and Ta ∈ Hb (respectively Tb 6∈ Hb and Tb ∈ Ha).

Let F0 be the component of the fixed point set of Ha ∩Hb containing p.
Then Fa ⊂ F0 and Fb ⊂ F0. Since G acts on F0 with Ha ∩ Hb acting
trivially, this gives an action of G/Ha ∩Hb

∼= Z2×Z2 on F0 with generators
the involutions Ta and Tb. The subgroup H is the subgroup of G generated
by Ha ∩Hb and the involution TaTb, with µ%1 being the normal bundle of p
in F0 ∩ FH and ε%1 being the normal bundle of V n in F0 ∩ FH .

Now one has

n+ dim(ε%a) + dim(ε%b) + dim(ε%1) = dim(F0)

= dim(µ%a) + dim(µ%b) + dim(µ%1)

= (n+ dim(ε%a)) + (n+ dim(ε%b)) + dim(µ%1).

If dim(µ%1) > 0 one has dim(µ%1) = n+ dim(ε%1) and

n+ dim(ε%a) + dim(ε%b) + dim(ε%1) = 3n+ dim(ε%a) + dim(ε%b) + dim(ε%1),

contradicting the assumption that n > 0. Thus dim(µ%1) = 0 and

n+ dim(ε%a) + dim(ε%b) + dim(ε%1) = dim(µ%a) + dim(µ%b)

= 2n+ dim(ε%a) + dim(ε%b),

giving dim(ε%1) = n.
Clearly, %a agrees with %b on Ha ∩Hb for

Ha ∩Hb ⊂ Ha = ker(%a), Ha ∩Hb ⊂ Hb = ker(%b)

and

%a(TaTb) = %a(Ta)%a(Tb) = −1 · 1 = −1

and similarly %b(TaTb) = −1, so %a|H = %b|H . For T = Ta, T 6∈ H and
%a(T ) = −1, %b(T ) = 1 and for T = Tb, T 6∈ H and %a(T ) = 1, %b(T ) = −1.
Thus the representations %a and %b are paired with respect to %1.

(ii) In the geometric discussion developed before Lemma 1 we can use
the representation %1 of part (i) to conclude that

(RP (ε%1), ξ, ε%a ⊕ (ξ ⊗ ε%b), {ε%′ ⊕ (ξ ⊗ ε%′′)}(%′,%′′)6=(%a,%b))

bounds as an element of N2n−1(BO(1)×∏BO(m%′)).
We use now the same arguments and notations of Lemma 1. For se-

quences ω = (i1, . . . , is) and ω% = (i%1, . . . , i
%
s%), and a natural number r

with

|ω|+
∑
|ω%|+ r = n,
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one may form the class

X =
(∏

i∈ω
W [i]2i

)
·
( ∏

i∈ω%1

W [i− 1]2i
)

·
∏

%′ 6=%a

{( ∏

i∈ω%′
W%′ [i]2i

)
·
( ∏

i∈ω%′′
W%′ [i− 1]2i

)}

·
( ∏

i∈ω%a

W%a [i]2i
)
·
( ∏

i∈ω%b

W%a [i− 1]2i
)
·W%a [r − 1]2r−1.

As in Lemma 1, this is a characteristic class of RP (ε%1) of dimension 2n− 1
and has the form

X = wωu
%1
ω%1

u%aω%au
%b
ω%b
·
∏

%′ 6=%a
u%
′
ω%′
·
∏

%′′ 6=%b
u%
′′
ω%′′
· (u%ar + u%br )cn−1

+ terms with smaller powers of c.

Then

0 = X[RP (ε%1)] = wωu
%1
ω%1

u%aω%au
%b
ω%b
·
∏

%′ 6=%a
u%
′
ω%′
·
∏

%′′ 6=%b
u%
′′
ω%′′
· (u%ar + u%br )[V n]

or

wωu
%1
ω%1

u%aω%au
%b
ω%b

u%br ·
∏

%′ 6=%a
u%
′
ω%′
·
∏

%′′ 6=%b
u%
′′
ω%′′

[V n]

= wωu
%1
ω%1

u%aω%au
%b
ω%b

u%ar ·
∏

%′ 6=%a
u%
′
ω%′
·
∏

%′′ 6=%b
u%
′′
ω%′′

[V n].

This says that any class u%br in a characteristic number of

(V n, ε%a , ε%b , {ε%}%6=%a,%b)
may be replaced by u%ar without changing the value of the characteristic
number; in particular, for r > dim(ε%a), any class u%br may be replaced by
the zero class. In this way,

(V n, ε%a , ε%b , {ε%}%6=%a,%b) and (V n, ε%a , ε%a ⊕ s, {ε%}%6=%a,%b)
have the same characteristic numbers, and the result follows.

To end the proof of our result we make the iterative use of Lemma 1
and Lemma 2(ii). First we use Lemma 1 2t−1 − 1 times to conclude that
(V n, {ε%}) is cobordant to

(V n, {τV }, {ε%}1, {0}),
where {τV } contains 2t−1−1 copies of τV , {ε%}1 is the sublist of {ε%} formed
by the 2t−1 bundles ε% for which dim(µ%) > 0, and {0} means the list of
2k−2t zero bundles. Next choose ηl ∈ {ε%}1 with l = dim(ηl) ≤ dim(ε%) for
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any ε% ∈ {ε%}1. Using Lemma 2(ii) 2t−1 − 1 times, one then deduces that

(V n, {τV }, {ε%}1, {0})
is cobordant to

(V n, {τV }, ηl, {γ%}1, {0}),
where {γ%}1 is the list obtained from {ε%}1 by excluding ηl and replacing
each remaining ε% by

γ% = ηl ⊕ (dim(ε%)− l).
Therefore (V n, {ε%}) is cobordant to this last list and the Proposition is
proved.

Note. With the above notation, choose a representation %0 such that
ε%0 ∈ {ε%}1 and dim(ε%0) ≥ dim(ε%) for any ε% ∈ {ε%}1. Take T ∈ G so that
T 6∈ H = ker(%0) and denote by F%0 the component of the fixed point set
of H containing p. Then the involution (F%0 , T ) fixes p ∪ V n and (Mm, Φ)
is equivariantly cobordant to an action obtained by removing sections from
the normal bundles of σΓ kt (F%0 , T ). This is the second formulation of our
Proposition given in the introduction.

4. Applications. In this section we will prove Theorems 1–3, which
are consequences of our Proposition. First suppose V n is a connected closed
n-dimensional manifold for which the set A of all equivariant cobordism
classes of involutions containing a representative fixing p ∪ V n contains a
single element, say A = {[W,S]}. Let η → V n be the normal bundle of V n

in W .

Lemma. Suppose (Mm, Φ) is a G-action fixing p∪V n, with V n as above.
Then (Mm, Φ) is equivariantly cobordant to one of the actions σΓ kt (W,S).

Proof. Let (p, {µ%}) ∪ (V n, {ε%}) be the fixed point data of Φ. For any
representation % for which dim(µ%) > 0, the involution (F%, T ), where T 6∈
ker(%) and F% is the component of the fixed point set of ker(%) containing
p, is an involution fixing p ∪ V n, and from the hypothesis on A one finds
that (F%, T ) is cobordant to (W,S), so ε% → V n is cobordant to η → V n.
Then obviously ε% → V n has maximal dimension in {ε% : dim(µ%) > 0}
(and has no section because A is unitary). From the Proposition it follows
that (Mm, Φ) is equivariantly cobordant to one of the actions σΓ kt (F%, T ),
which in turn is equivariantly cobordant to σΓ kt (W,S).

Theorem 1. If (Mm, Φ) is a G action fixing p ∪ V n with n odd and
V n connected , then (Mm, Φ) is equivariantly cobordant to one of the actions
σΓ kt (RP (n+ 1), T ) where T is the involution

T ([x0, x1, . . . , xn, xn+1]) = [x0, x1, . . . , xn,−xn+1].
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Proof. As in the proof of the above Lemma, p ∪ V n is fixed by the
involutions (F%, T ) for the representations % with dim(µ%) > 0. Since n is
odd, one then sees from [12] that each (F%, T ) is cobordant to (RP (n+1), T );
in other words, A = {[RP (n+1), T ]}. The result then follows from the above
Lemma.

Theorem 2. If (Mm, Φ) is a G-action fixing p ∪ SN with N = (n1, . . .
. . . , np) and n = n1 + . . . + np, then N ∈ Ω and (Mm, Φ) is equivariantly
cobordant to one of the actions σΓ kt (W 2n

N , T ); in particular , m = 2tn.

Proof. For any representation % with dim(µ%) > 0, take the involution
(F%, T ) fixing p∪SN . The main result of [6] says that in this situationN ∈ Ω,
dim(F%) = 2n and (F%, T ) is equivariantly cobordant to (W 2n

N , T ); that is,
A = {[W 2n

N , T ]} in this case, and the result follows from the Lemma.

Finally we prove Theorem 3, recalling from the introduction that m(n)
means the upper bound for the dimensions of manifolds M with involution
T : M → M fixing some p ∪ V n, for each n (with V n not necessarily
connected).

Theorem 3. If (Mm, Φ) is a G-action fixing p∪V n with V n connected ,
then m ≤ 2k−1m(n); moreover , this bound is best possible for V n connected.

Proof. The result of [11] cited in the introduction implies that each of
the 2t−1 eigenbundles ε% → V n of the fixed point data of (Mm, Φ) for which
dim(µ%) > 0 has dimension less than or equal to m(n)− n, while obviously
each of the 2t−1− 1 eigenbundles bordant to τV has dimension n. Therefore

m ≤ n+ 2t−1(m(n)− n) + (2t−1 − 1)n

≤ n+ 2k−1(m(n)− n) + (2k−1 − 1)n = 2k−1m(n).

To show that this bound is best possible for V n connected, consider the
maximal involution (Mm(n), T ) constructed in [11]. This involution fixes a
p ∪ V n with V n nonconnected. Let η → V n be the normal bundle of V n in
Mm(n). Then η → V n is cobordant to a bundle κ→ Fn with Fn connected,
by taking Fn to be the connected sum of the components of V n and sewing
the bundles together, and (m(n)→ p)∪ (κ→ F n) is the fixed point data of
an involution (Wm(n), T ) equivariantly cobordant to (Mm(n), T ).

Then Γ kk (Wm(n), T ) shows that 2k−1m(n) is the desired upper bound.
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