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Countable 1-transitive coloured linear orderings II
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Abstract. This paper gives a structure theorem for the class of countable 1-transitive
coloured linear orderings for a countably infinite colour set, concluding the work begun
in [1]. There we gave a complete classification of these orders for finite colour sets, of
which there are ℵ1. For infinite colour sets, the details are considerably more complicated,
but many features from [1] occur here too, in more marked form, principally the use (now
essential it seems) of coding trees, as a means of describing the structures in our list, of
which there are now 2ℵ0 .

1. Introduction. In a companion paper to the present one [1], we in-
troduced the class of countable 1-transitive coloured linear orders, and gave
a complete classification of these structures in the case where the colour set
is finite. In addition we classified all the countable homogeneous coloured
linear orders, for finite or infinite colour set. We now turn to the consider-
ably more complex case of countably infinitely coloured 1-transitive linear
orders, that is, ones in which the colour set C has cardinality ℵ0. For a start
there are 2ℵ0 pairwise non-isomorphic infinitely coloured orders, as opposed
to the ℵ1 finitely coloured ones (since for instance there are this number
of pairwise non-isomorphic countable linear orders, and we can colour the
points of any such by countably many distinct colours to give trivially pair-
wise non-isomorphic countable 1-transitive coloured orders). Now there are
immediate analogues of all the examples we encountered earlier, for instance
the “coloured rationals” Qℵ0 with infinitely many colours, and concatena-
tions in arbitrary countable order types of disjointly coloured 1-transitive
linear orders. To keep track of all of them is quite complicated, and the use
of coding trees begun in [1] now seems unavoidable.

The basic definitions are as follows. A coloured linear order (or coloured
chain) has the form (X,<,F ) where (X,<) is a linearly ordered set, and F
is a function from X into (we may assume onto) a set C, called the set of
colours. By saying that (X,<,F ) is 1-transitive we mean that for any two
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points having the same colour, there is an automorphism taking the first to
the second. Our task is to describe all the countable 1-transitive coloured
linear orders, which generalizes work by Morel [3] in which all monochro-
matic ones (that is, with |C| = 1) were listed. Now in the classification given
in [1] of all the examples for which C is finite, we used “coding trees” as
a method of describing the general construction of such a coloured chain.
This was not strictly necessary, as there each structure can be fairly easily
described in an inductive manner. The added complications in the infinitely
coloured case seem to make them indispensable here.

The definition of “coding tree” in this context is given in Section 2. For
an infinite coding tree it is not even clear what should be meant by saying
that it “encodes” a particular coloured linear order, and this is explained in
Section 3. With this notion we are able to show that any coding tree encodes
a coloured linear order, that it is countable and 1-transitive, subject to this
it is unique, and that any countable 1-transitive linear order is encoded by
some coding tree. More precisely, we have the following:

Theorems 3.3 and 3.5. Any coding tree encodes some coloured linear
order , and this linear order is countable and 1-transitive.

Theorem 3.4. The coloured linear order described in the above theorem
is unique up to isomorphism.

Theorem 4.12. Any countable 1-transitive coloured linear order is en-
coded by some coding tree.

These results therefore describe the very close connection between the
method of encoding, and the structures we are aiming to classify. It is true
that the coding trees which arise can themselves have extremely complicated
structures, so one might object that one is classifying one class of objects
in terms of another, which is just as hard to describe. Nevertheless it seems
clear that the above theorems definitely provide a great deal of information,
which throws considerable light on the possibilities for countable 1-transitive
coloured linear orders. We give examples to illustrate non-uniqueness of an
ordering encoded by a coding tree once one relaxes the countability require-
ment.

In view of the above remarks, we refer to our main results as providing
a “structure theorem” rather than a “classification”. Ideally, for a class C of
structures to be classified, the family of classifiers should be simpler than
the members of C, and it should be possible to “read off” information about
the structures and the relations between them directly, and more easily,
from the classifiers alone. In many cases this is true even here, since some
of the coding trees are indeed only modest extensions of finite coding trees
(they may be well-founded or conversely well-founded for instance). In the
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general case, however, this is not true. The fact that a family of countable
structures has size continuum is not in itself a reason for saying that it is
unclassifiable, as is illustrated most clearly by Cherlin’s classification of the
countable homogeneous directed graphs [2] (see also [6] which gives another
example), where there are continuum many structures “listed” in terms of
sets of integers. Where the classifiers are themselves more complicated, it is
less clear that one can regard it as a classification.

Despite this, the classifiers used, “coding trees”, do quite directly repre-
sent the way in which the coloured linear orders are built up, in a manner
directly generalizing the inductive method expected for a finite coding tree.
The problem is that since coding trees are no longer necessarily well-founded
or conversely well-founded, we somehow have to express what limit points
in the tree represent. The solution to this is to introduce an intermediate
notion, which we call “expanded coding tree”. The idea is that this has a
much closer connection with the encoded ordering, and we may view it as
obtained from the coding tree by actually “carrying out” the instructions
at each vertex, and putting in below it not just the code for what happens
in the linear order, but the full ordering described at that point.

To illustrate how this works in a simple case, a vertex of the coding tree
may be labelled by Q, and it will then have a single child. The intention is
that the ordering encoded at this point should represent Q “copies” of what-
ever ordering is encoded at the child. In the expanded coding tree associated
with a given coding tree, there may be many vertices which correspond to
this parent vertex, but each of these will now have infinitely many children
indexed by Q. So the “intention” in the original label, to take Q copies, has
actually been “carried out” in the expanded coding tree. There are several
clauses in each of the principal definitions (of “coding tree”, “expanded cod-
ing tree”, and “encodes”), and this key idea is followed in each case. The
main difference from the case of finite coding trees is the presence of limits,
both from above and below, and special but natural conditions to handle
these are also imposed. The other additional label, selectn, is more mysteri-
ous, and further explanation of the need for this, and how it is handled, is
given later.

Expanded coding trees are used in the definition of “encodes” in the
following way. Since an expanded coding tree ““associated with” a coding
tree tells us the intended meaning of the coding tree, we can say that a
coding tree encodes a coloured linear order if it is isomorphic to the set
of leaves of some associated expanded coding tree. This accords with the
intuition that as we pass down the coding tree, we find out more and more
detailed information about the ordering actually represented.

We remark on one technical point. The decision was taken to require that
coding trees be Dedekind–MacNeille complete (a notion explained in [5]),
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and to require this also for expanded coding trees. This may not be strictly
necessary, but in view of the proof of Theorem 4.12 it seems entirely natural,
since the maximal tree of “clumps” used in the proof is “nearly” Dedekind–
MacNeille complete (just requiring adjunction of ramification points for
this), and the corresponding family of convex subsets coloured by members
of the maximal tree actually is Dedekind–MacNeille complete. We briefly
recall this notion here, as described in [5].

For any partially ordered set (X,<), if I ⊆ X, we write
∨
I = {x ∈ X :

(∀y ∈ I)(y ≤ x)} and
∧
I = {x ∈ X : (∀y ∈ I)(x ≤ y)}. A Dedekind ideal is

a subset I of X such that I and
∨
I are non-empty, and

∧∨
I = I. Dedekind

ideals of the form X≤x = {y ∈ X : y ≤ x} are called principal and (X,<)
is Dedekind–MacNeille complete if every Dedekind ideal is principal. For
any (X,<), the family of Dedekind ideals then forms a Dedekind–MacNeille
complete partial order XD under ⊂ in which X embeds via x 7→ X≤x, and
this is called its Dedekind–MacNeille completion. The Dedekind–MacNeille
completion of a linear order coincides with its Dedekind completion in the
usual sense, and in this paper the notion will only be required for trees (see
below), for which the Dedekind–MacNeille completion is also necessarily a
tree.

2. Coding trees. We start by defining what a coding tree will mean in
this paper. This definition generalizes the one used in [1]. As with the finite
coding trees, every leaf will represent a singleton colour, so this time the
coding trees may be infinite, and even have dense branches. Hence we are
not able to define levels on the tree, and so the construction of a linear
order from a tree and the definition of “encodes” used in [1] no longer
work. As mentioned above, we also require the coding trees to be Dedekind–
MacNeille complete, which means that they could even be uncountable,
though only countably many points contribute in a non-trivial way to the
encoding process. The labelling is similar to that for finite ones, with the
addition of lim and selectn as new possible first labels, lim given to vertices
having no child, and selectn given to certain vertices with no parent. Here a
vertex labelled lim stands for the union of orders coded at points below it,
and one labelled selectn stands for an order encoded at one of its children.
(Each such point of the tree will stand for many subsets of the finally encoded
order, and this one chosen child will not be the same at each occurrence.)

For us a tree is a partial order in which any two vertices have an upper
bound, and the points above any element are linearly ordered. A labelled tree
is a tree together with a function L on its vertices. A maximal element (which
must also be greatest) is called the root , and minimal elements are called
leaves. If x ≺ y in a tree and there is no point in between, then x is a child
of y, and y is a parent of x. Distinct children of the same parent are siblings.
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A maximal chain containing a leaf is called a branch. A ramification point is
a vertex which is the supremum of two incomparable vertices. Ramification
points always exist in the Dedekind–MacNeille completion of a tree, and,
in fact, for a tree to be Dedekind–MacNeille complete it is sufficient to say
that all its branches are Dedekind-complete as linear orderings, and that all
its ramification points lie in the tree.

If t is a vertex of a tree (τ,≺), then the relation ∼t on {a ∈ τ : a ≺ t}
given by a ∼t b if there is c ∈ τ with a, b � c ≺ t is an equivalence relation,
and the ∼t-classes are called cones at t. (See [6] for instance.) The number
of cones at t is its ramification order , and it is clear that t has ramification
order > 1 if and only if it is a ramification point. We shall also require that
in any coding tree, each cone of a ramification point has a greatest element.
We are grateful to the referee for pointing out that this property is not an
automatic consequence of Dedekind–MacNeille completeness.

A particular coloured order which features throughout is Qn for 1 < n
≤ ℵ0, which is defined to be the rationals Q under the usual ordering, and
with a colouring function F : Q → n such that between each pair of ratio-
nals, all colours appear. This exists and is unique up to isomorphism (see [4]
for example). If Yi are coloured linear orders, then Qn(Y0, Y1, . . . , Yn−1) is
obtained from Qn by replacing every point coloured i by Yi. (We shall write
Qn(Y0, Y1, . . . , Yn−1) etc. even though n may be infinite, but in that case,
this is to be interpreted as Qn(Y0, Y1, . . .).) If (γ,<) is a linear order, and
{Yi : i ∈ γ} is a family of coloured linear orders, then their concatenation is
obtained by replacing i for i ∈ γ by Yi throughout (retaining the original
order and colours within each Yi and ordering points in different Yis accord-
ing to their position in γ). Throughout we shall write Z to stand for some
countable (monochromatic) non-trivial 1-transitive linear order (that is, Zα
with α ≥ 1 or Q · Zα, α ≥ 0, for some countable ordinal α, see [1]).

We are now ready to give the definition of “coding tree”.

Definition 2.1. A coding tree is a labelled tree (τ,≺ L) such that

(i) τ has a root r,
(ii) τ has at most ℵ0 leaves,
(iii) every vertex is a leaf or is above a leaf,
(iv) τ is Dedekind–MacNeille complete,
(v) all cones at ramification points of τ have greatest elements,
(vi) if t, u, v ∈ τ satisfy t ≺ u ≺ v, then there is w ∈ τ such that

t � w ≺ v having a sibling,
(vii) there are at most countably many vertices with only one child,
(viii) L is a labelling function L : τ → L, where L is a set of ordered

pairs of the form (F(t),S(t)) described below.

The first label F(t) of a vertex t is:
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(a) Qn for some n with 1 < n ≤ ℵ0, together with a bijection between n
and the children of t, provided that t has ramification order n, and
t either has no parent, or has a parent and a sibling, or

(b) a countable linearly ordered set (γ,<), together with a bijection
between γ and the children of t, provided that t is a ramification
point, or

(c) selectn for some n with 1 < n ≤ ℵ0, together with a bijection between
n and the children of t, provided that t is an infimum of points
labelled by some Qm or Z (m, Z not required all to be the same),
or

(d) Z, provided that t has just one child, or
(e) lim, provided that t has just one cone, but no children, or
(f) 1, provided that t is a leaf.

The second label S(t) of t must satisfy:

(a) if t has children, then S(t) is equal to the disjoint union of S(u) over
all children u of t,

(b) if F(t) = lim, then S(t) =
⋃
u≺t S(u),

(c) if t 6= r and t has no parent, then S(t) =
⋂{S(u) : t ≺ u},

(d) if t is a leaf, then S(t) is a singleton {c} for some c ∈ C, and all
leaves have distinct second labels.

We remark that a non-trivial countable 1-transitive linear order may
occur as F(t) in two possible guises, as a lexicographic product, or a con-
catenation, corresponding to clauses (d) and (b) respectively of the above
definition. Since we can easily tell which is which by ramification order, we
do not bother to signal this in the labelling. Although the bijections referred
to are an integral part of the definition of the labels, we often ignore them in
practice. For instance, we may talk about labels being “the same”, or possi-
bly “the same apart from the bijections”, if we are just thinking of whether
the label is a Qn or a γ, together with the colour set (second label).

In Figures 1–5 we give some examples of coding trees, and we remark on
the reasons for certain clauses in the definition.
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(Q2, {c0, c1, c2, c3, . . .})

(Q2, {c1, c2, c3, . . .})

(Q2, {c2, c3, . . .})

(Q2, {c3, . . .})

(1, {c0})

(1, {c1})

(1, {c2})

Fig. 1. In this tree every vertex is a leaf or is above a leaf
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Note that every vertex in the tree in Figure 1 is a leaf or is above a
leaf, as required, despite the fact that the sequence of vertices on the right
has no infimum. So condition (iii) is fulfilled. We can modify this example
by adding an infimum for this sequence, or indeed a whole new part of
the tree at this point. For instance, the tree in Figure 2 is obtained in this
way, where the infimum is labelled lim. Note that the presence of this point
ensures Dedekind–MacNeille completeness. The tree in Figure 3 is another
example, giving a typical occurrence of selectn.
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(Q2, {c0, c1, c2, c3, . . . , cω, cω+1, . . .})
(Q2, {c1, c2, c3, . . . , cω, cω+1, . . .})

(Q2, {c2, c3, . . . , cω, cω+1, . . .})
(Q2, {c3, . . . , cω, cω+1, . . .})

(lim, {cω, cω+1, cω+2, . . .})

(Q2, {cω, cω+1, cω+2, cω+3})
(Q2, {cω, cω+1, cω+2})

(Q2, {cω, cω+1})
(1, {cω})

(1, {c0})

(1, {c1})
(1, {c2})

(1, {cω+3})
(1, {cω+2})

(1, {cω+1})

Fig. 2. The right-hand branch of this tree is Dedekind-complete
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(Q2, {c0, c1, c2, c3, . . . , c, c′})

(Q2, {c1, c2, c3, . . . , c, c′})

(Q2, {c2, c3, . . . , c, c′})

(Q2, {c3, . . . , c, c′})

(1, {c0})

(1, {c1})

(1, {c2})

(select2, {c, c′})

(1, {c}) (1, {c′})
Fig. 3. A modification of the tree in Figure 1 involving select

We remark that since τ is Dedekind–MacNeille complete, it contains
all its ramification points. Since any ramification point is the supremum of
two leaves, of which there are at most ℵ0, it follows that there are only
countably many ramification points. The actual cardinality of τ may still be
uncountable, though there are only countably many vertices of τ which have
any “impact” on what is encoded. The others (irrational cuts in maximal
chains) could be omitted, but it seems marginally simpler to include them.

Condition (vi) generalizes a similar condition imposed in the definition of
coding tree in [1], and its role is to rule out having two or more consecutive
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lexicographic products (on the grounds that they can be performed in one
go). It reads a little differently from the finite case since we also want to cover
the possibility that there may be dense parts of the tree, so that “immediate
successors” may not exist. The difference does mean for instance that the
tree in Figure 4 is allowed, despite the fact that there are two consecutive
vertices neither of which has a sibling.
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(Q2, {c0, c1, c2, c3, . . . , cω, cω+1, . . .})
(Q2, {c1, c2, c3, . . . , cω, cω+1, . . .})

(Q2, {c2, c3, . . . , cω, cω+1, . . .})
(Q2, {c3, . . . , cω, cω+1, . . .})

(Z, {cω, cω+1, cω+2, . . .})

(lim, {cω, cω+1, cω+2, . . .})

(Q2, {cω, cω+1, cω+2, cω+3})

(Q2, {cω, cω+1, cω+2})
(Q2, {cω, cω+1})

(1, {cω})

(1, {c0})

(1, {c1})

(1, {c2})

(1, {cω+3})

(1, {cω+2})
(1, {cω+1})

Fig. 4. This tree does not branch at every “two discrete levels”

Since every cone at a ramification point t has a greatest element, t must
represent either a concatenation (now of a possibly infinite family), some
Qn-combination, or a “selection” (to be explained later). For finite trees
these ramification points would automatically have children; here we need
to require this explicitly. For concatenations, the order in which the children
are concatenated is important. In [1] the ordering was included as part of
the definition of “coding tree”; here instead at this point we have said that
there is a bijection given between the set of children and the order over
which we are concatenating (which has essentially the same effect). Hence
the greatest elements of the cones at every ramification point are linearly
ordered, and this induces a linear ordering on the set of branches of the
tree. See Figure 5 for an example. For vertices labelled Qn, the order of the
children is not important, but we still need to know which is which, so we
fix a bijection between n and the children.

Condition (vii) ensures that there are at most countably many vertices
representing lexicographic products immediately above a vertex labelled lim
(without this condition, the encoded order would be uncountable). Vertices
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with no child are labelled lim, and will stand for the union of all the linear
orders represented at the vertices below them. Since the trees are Dedekind–
MacNeille complete, there may be uncountably many such points.
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(Zα, {c0, c1, c2, c3, . . .})

(Q, {c0, c1, c2, . . .})

(1, {c2}) (1, {c0}) (1, {c1})

Fig. 5. The children of the vertex labelled Q are ordered like Q

The labelling on infinite coding trees generalizes the one imposed on fi-
nite trees in [1]. Vertices with more than one cone may be labelled by any
order type which is in 1-1 correspondence with their children, so any count-
able order type may appear as the first label. Note that here, in contrast to
[1], we allow consecutive points labelled by order types (representing con-
catenations). It would be possible to rule this out, but this would result
in additional, perhaps not very illuminating, technicalities. Furthermore,
adopting this strategy considerably eases constructing a coding tree from a
linear order (and in fact we find that concatenations over two-element sets
suffice).

The conditions imposed on the second label are exactly the same as those
for the finite coding trees, with natural extensions corresponding to upward
or downward limit points. We remark that if t0 and t1 are incomparable,
then S(t0) ∩ S(t1) = ∅, and that if t0 ≺ t1, then S(t0) ⊆ S(t1).

We have only given some relatively simple examples of coding trees. More
complicated ones may involve for instance branches that embed densely
ordered sets, which are harder to visualize (and for which it is particularly
hard to imagine what the encoded orderings look like) but which still obey
the definition.

3. How a coding tree encodes a linear order. Coding trees are
meant to help us to describe all the coloured orderings in our class. Since
they need not be well-founded either upwards or downwards, no straightfor-
ward definition of what it means for such a tree to “encode” a coloured lin-
ear order is available. A further complication arises from “selection”, which
works rather differently from the other labels. To achieve what is wanted,
we introduce the idea of an “expanded coding tree”, which provides a good
intermediate stage between code and encoded object. This will enable us
to clarify the situation, and indeed it seems to be necessary even to define
what we mean by saying that a coding tree encodes a coloured linear order.
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Definition 3.1. An expanded coding tree is a labelled tree (E,≺,L)
such that:

(i) E has a root r,
(ii) E has at most ℵ0 leaves,
(iii) every vertex is a leaf or is above a leaf,
(iv) E is Dedekind–MacNeille complete,
(v) all cones at ramification points of τ have greatest elements,
(vi) if t, u, v ∈ E satisfy t ≺ u ≺ v, then there is w ∈ E labelled Qn, γ,

or selectn such that t ≺ w � v,
(vii) L is a labelling function L : E → L for L as in Definition 2.1 such

that each t ∈ E satisfies (exactly) one of the following:

(a) F(t) isQn for some n with 1 < n ≤ ℵ0 together with a bijection
f between Qn and the set of children of t, such that for x, y ∈
Qn, S(f(x)) = S(f(y))⇔ x, y have the same colour, and then
the trees below f(x) and f(y) are isomorphic, and the family
of distinct S(f(x))s forms a partition of S(t),

(b) F(t) is a non-trivial countable linear order γ together with
a bijection f between γ and the set of children of t, and
{S(f(x)) : x ∈ γ} forms a partition of S(t),

(c) t is an infimum of points labelled by some Qm or Z (m, Z
not all required to be the same), F(t) is selectn, t just has one
child t− say, and S(t−) ⊂ S(t),

(d) F(t) is a non-trivial countable 1-transitive linear order Z, t has
children {tz : z ∈ Z}, the trees below any two of the children
are isomorphic, and for each z ∈ Z, S(tz) = S(t),

(e) F(t) = lim, there is just one cone below t, t has no children,
and S(t) =

⋃{S(u) : u ≺ t},
(f) F(t) = 1, t is a leaf, and |S(t)| = 1,

and in addition, if t 6= r has no parent, then S(t) =
⋂{S(u) : t ≺ u}.

Any expanded coding tree has a natural “left-right” ordering on the
branches (equivalently, leaves) given by B1 < B2 if at the point t at which
distinct branches B1 and B2 diverge, the child of t in B1 is less than the
child of t in B2. Note that by Dedekind–MacNeille completeness, B1 ∩ B2
must have a least point, and it must be a ramification point, hence labelled
Qn, γ, or Z, so the ordering on the children is well-defined. This is referred
to as the “branch order”. It also induces an order on any antichain.

We remark that clause (vi) is slightly different from the corresponding
clause in Definition 2.1. There w was asserted to exist which has a sibling;
here it is its parent w′ which is asserted to exist, and this will fulfil u ≺ w′ � v
rather than u � w ≺ v.
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Next we indicate the connection between “coding tree” and “expanded
coding tree”. Roughly speaking, the latter is a “fattened” version of the
former, where all the labels have been filled out in line with their intended
meanings.

Definition 3.2. Let (τ,≺,L) be a coding tree, and (E,≺,L′) be an
expanded coding tree. We say that E is associated with τ if there is a function
ϕ from E to τ which takes the root of E to the root of τ , each leaf of E to
some leaf of τ , and

(i) t1 ≺ t2 ⇒ ϕ(t1) ≺ ϕ(t2),
(ii) for each vertex t of E not labelled selectn, ϕ maps {u ∈ E : u � t}

onto {u ∈ τ : u � ϕ(t)}, and for any leaf l of E, ϕ maps [l, r] onto
[ϕ(l), ϕ(r)],

(iii) L(ϕ(t)) = L′(t) (as far as the second components are concerned,
and also the first parts of the first components—compatibility of the
bijections is ensured by the other clauses), and

(iv) if t ∈ τ and F(t) = selectn, and the children of t under the given
bijection with n are t0, t1, t2, . . . , tn−1, then {s ∈ E : ϕ(s) = t}
is isomorphic to Qn under the branch order, where the colouring
F : Qn → n is given by ϕ(s−) = tF (s) (where s− is the unique child
of s in E—see Definition 3.1(vii)(c)).

Finally, we say that the coding tree (τ,≺,L) encodes the coloured linear
order (X,<,F ) if there is an expanded coding tree (E,≺,L) associated
with τ such that X is (order and colour-) isomorphic to the set of leaves of
E under the branch order.

The tricky point in the above definition is working out how to handle
points labelled selectn. Since we shall see later that the convex sets through-
out the linear order corresponding to such a vertex t are in fact ordered
like Qn, and furthermore this holds below each vertex strictly above t, we
have decided to include this as part of the definition, though at each oc-
currence in the encoded order, only one of these colours actually arises. It
follows from this that there are (many) expanded coding trees which are
not associated with any coding tree, but it does not seem worth strengthen-
ing the definition of expanded coding tree just for this purpose. The reason
why the definition of “encodes” is so involved is that a vertex labelled selectn
stands for different convex sets throughout the encoded order, so to describe
how it is meant to be interpreted, we somehow have to refer to the whole
order. A vertex with any other label always stands for the same convex set
(up to isomorphism).

We remark that it would be possible to allow points to be labelled selectn
even if they are not the infima of vertices labelled Qm or Z; however this
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use is unnecessary, since any coloured order so encoded can also be encoded
without the use of such points. For instance, the ordering encoded by a
five-element coding tree {r, t, l0, l1, l2}, where the root r is labelled Q2, t is
labelled select2, l0 and t are the children of r, and l1 and l2 are the children
of t, is isomorphic to Q3, so can be more simply encoded.

Theorem 3.3. Any coding tree encodes some coloured linear order.

Proof. We begin by assuming that no vertices of the given coding tree
τ are labelled by selectn. We shall then obtain the encoding of a general
coding tree as a subset of that for a suitable selectn-free coding tree.

The definition requires us to find an expanded coding tree associated
with τ . Let B be a branch of τ . Then B is a linear order which has a least
element (the leaf of B) and a greatest element (the root of τ), but which
may not be countable or well-ordered. We define functions, which we call
“decoding functions” and generally write as σ, on vertices in B whose first
label is Qn or Z. Although the domain of σ is only a subset of B, for ease
we refer to the whole of B as domσ. The idea is that each σ will correspond
to one point in the final structure: the linear order encoded by τ . Hence, if l
is the leaf of B, the decoding functions defined on B will correspond to the
points coloured S(l) in the linear order encoded.

A decoding function is a function σ defined on a branch B of τ , such that
for each t ∈ B with F(t) = Qn or Z,

(i) if F(t) = Qn, with 1 < n ≤ ℵ0, so that t has n children, say
t0, . . . , tn−1, with ti the child of t in B, then σ(t) is a point of Qn
coloured i,

(ii) if F(t) is a countable 1-transitive linear order, then σ(t) ∈ F(t).

Now we cannot take all decoding functions, for two main reasons. First,
the result would (usually) be uncountable. Second, since we want decoding
functions to be linearly ordered by first difference (from the top down), we
need to ensure that there always is a point of first difference. If we take all
decoding functions, this need not be the case.

To cut down suitably, we choose suitable “default values”, which the
decoding functions will be required to take at all but finitely many points.
For each Qn, and each colour i < n, we choose a point ai in Qn coloured i,
and for each Z, we choose a point a of Z. These are called default values.
The family Στ of coding functions associated with τ comprises all coding
functions σ defined on a branch B of τ which take the default value at all
but finitely many (Qn or Z) vertices.

We observe that Στ may be naturally linearly ordered by first difference
(from top down). For let σ1, σ2 be distinct members of Στ , having domains
B1 and B2 respectively. By Dedekind–MacNeille completeness of τ , u =
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inf(B1 ∩ B2) lies in τ . If σ1(t) 6= σ2(t) for some t � u, then as B1 and B2
agree above u, and σ1, σ2 each take only finitely many non-default values,
there is a greatest such point t, and we let σ1 < σ2 ⇔ σ1(t) < σ2(t) in that
copy ofQn or Z. If σ1 and σ2 agree above u, then as u is clearly a ramification
point, it must be labelled by some γ, and we let σ1 < σ2 ⇔ t1 < t2 under
the given 1-1 correspondence with γ, where t1 and t2 are the children of u
in B1 and B2 respectively.

Now Στ will be the coloured linear order that is encoded by τ , but to fulfil
the definition, we also have to say how to form E, an associated expanded
coding tree. We take it to consist of the set of restrictions of members of Στ

to linearly ordered subsets of τ of the form (t, r] = {s ∈ τ : t ≺ s}. More
precisely,

E = {(t, σ|(t, r]) : σ ∈ Στ , t ∈ B, B = domσ}.
The labelling on E is given by the first co-ordinate, L′((t, σ|(t, r])) = L(t),
except that we shall state precisely below how the relevant bijections in
L′((t, σ|(t, r])) are obtained from those in L(t), and E is partially ordered by
extension, that is, if t � s in τ lie in a branch B = domσ, then (t, σ|(t, r]) �
(s, σ|(s, r]).

Under this definition it is clear that E is a labelled tree, its root is
(r, ∅), and any (t, σ|(t, r]) lies above a leaf (l, σ|(l, r]), where l is the leaf in
B = domσ. To see that E has countably many leaves, note that τ has only
countably many leaves, hence only countably many branches B. For each
B, there are only countably many finite sets of points labelled Qn or Z,
and for each such, there are only countably many coding functions taking
non-default values at precisely the elements of this set, and hence Στ is
countable. Therefore E has only countably many leaves.

Each branch of E is isomorphic to a branch of τ , so is Dedekind complete,
and the proof that all ramification points of E have been included is essen-
tially the same argument as above, when we showed how Στ was linearly or-
dered by first difference, from which it follows that E is Dedekind–MacNeille
complete. Note that ramification points of τ may be labelled Qn, γ, or in
the general case, selectn; ramification points of E may be labelled Qn, γ,
or Z. The fact that all cones at ramification points have greatest elements
follows from the corresponding property of τ .

Suppose (t, σ|(t, r]) ≺ (u, σ|(u, r]) ≺ (v, σ|(v, r]) in E. Then t ≺ u ≺ v
in τ , so there is s with t � s ≺ v having a sibling in τ . Let w be the parent
of s. Then w is labelled Qn or γ, as required.

Next consider the labels. If F(t) = Qn then t has children t0, t1, . . . , tn−1
under the specified 1-1 correspondence, and the possible extensions of any
σ|(t, r] to σ|(ti, r] = σ|[t, r] just depend on the value given to σ(t), and
these are given by Qn with the correct colours, by the first clause of the
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definition of “decoding function”, so this tells us which bijection to take
between Qn and the children of (t, σ|(t, r]) in L′((t, σ|(t, r])). If F(t) = γ,
then σ is not defined on t, so σ|(s, r] = σ|[t, r] = σ|(t, r] for each child s of t.
Thus the children (s, σ|(s, r]) of (t, σ|(t, r]) in E are just determined by the
first co-ordinate s, and these form a copy of γ, so this describes the bijection
in this case. If F(t) = Z, we argue as for Qn. This time there is just one
child in τ , but Z children in E.

Finally, if F(t) = lim, we show that there is only one cone at (t, σ|(t, r]).
Let (t1, σ1|(t1, r]), (t2, σ2|(t2, r]) ≺ (t, σ|(t, r]), with the object of showing
that they lie in the same cone below (t, σ|(t, r]). Since there is only one
cone in τ below t, we may suppose that t1 = t2, and the definition of Στ
ensures that above some point below t, σ1 and σ2 take the same default
value, so (t1, σ1|(t1, r]) and (t2, σ2|(t2, r]) have some common upper bound
below (t, σ|(t, r]). Clearly (t, σ|(t, r]) is not a parent, since t is not, so t fulfils
the requirements to be labelled lim.

The required properties of the second labels S, in particular the last
point (continuity on infima) follow from those of τ .

It remains to remark that E is associated with τ , and this follows by
considering the mapping ϕ given by ϕ((t, σ|(t, r])) = t, which clearly pre-
serves root, leaves, and labels (except the corresponding bijections), and
(t1, σ1|(t1, r]) ≺ (t2, σ2|(t2, r])⇒ t1 ≺ t2.

Now let us move on to the general case in which τ may have points
labelled by selectn. We consider a related coding tree τ ′ obtained from τ by
replacing each selectn label at a vertex t by a concatenation; that is, with γ
equal to n (finite or ω), and an arbitrary bijection from n to the children of
the t. This τ ′ is a tree not containing any selectn labels, where all possible
choices for the selections are represented (in an arbitrary and ultimately
unimportant order), and our task is to show how an appropriate subset of
the Στ ′ defined above will be the encoding of τ . We let E ′ be the expanded
coding tree (“canonically”) determined as above from τ ′.

From Definition 3.2 we see that we have to identify the points of E ′ corre-
sponding to a particular t ∈ τ labelled selectn with Qn. Once we have done
this, the selections that are made are then given as in Definition 3.2(iv).
Now the fact that the points corresponding to t are densely linearly or-
dered without endpoints follows easily since t is the infimum of a sequence
of vertices labelled by some Qm or Z. But we recall that Q and Qn are
the same set—the only difference between them is that Qn has a colouring,
and in fact we can use an arbitrary indexing of the points corresponding
to t by Qn. The reason for this is that any non-empty open interval of
Qn is isomorphic to Qn, so it “cannot” make any difference which partic-
ular indexing we choose. (This is handled formally in the next two theo-
rems.)
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Now that this “colouring” has been carried out for all points of E ′ cor-
responding to selectn vertices of τ , we can describe which subset E of E ′

we take to correspond to τ . It just consists of all decoding functions σ on
branches B such that for every selectn vertex in B, the child of t in B is ti,
where σ|(t, r] is coloured i.

Since E is a subset of E′, it is a tree, and by changing the labels of points
which correspond to vertices of τ labelled selectn from concatenation back to
selectn, it becomes an expanded coding tree once again. The verification of
the properties of “expanded coding tree” and of the fact that it is associated
with τ are straightforward. Hence τ encodes the set Στ of leaves of E.

Now we move on to establishing uniqueness of the order encoded (pro-
vided it is countable).

Theorem 3.4. Let (τ, ≺,L) be a coding tree. Then any two countable
coloured linear orders encoded by τ are isomorphic.

Proof. Suppose that X1 and X2 are both encoded by τ , and are count-
able. Let X1 and X2 be the sets of leaves of expanded coding trees E1 and E2

respectively, and let ϕ1 : E1 → τ , ϕ2 : E2 → τ be corresponding functions.
The proof will be by back-and-forth, so we need to describe a suitable family
of approximations to the desired isomorphism. We shall actually show that
E1 and E2 are isomorphic, and the isomorphism between X1 and X2 will be
the restriction.

Let P be the family of isomorphisms p from a finite subset of E1 into E2
such that

(i) the root of E1 lies in dom p, and the root of E2 lies in range p,
(ii) dom p and range p contain all their ramification points (that is, they

are closed under formation of least upper bounds),
(iii) for t ∈ dom p, ϕ1(t) = ϕ2(p(t)),
(iv) points of dom p and range p are either not labelled lim, or are chil-

dren of points labelled selectn,
(v) if t ∈ dom p is a ramification point, then there is an isomorphism

of the set of children of t in E1 to the set of children of p(t) in E2,
such that if u ≺ t, u ∈ dom p, then the isomorphism takes the child
of t above u to the child of p(t) above p(u),

(vi) if t is labelled selectn (so that it only has one child), then its child
is also in dom p.

We shall show that if p ∈ P and t ∈ E1 is not labelled lim, or is the
child of a point labelled selectn, then there is an extension q of p in P such
that t ∈ dom q (“forth” step), and with a similar extension property for the
range (“back” step). By back-and-forth it then follows from countability of
the set of vertices of E1, E2 not labelled lim (or having a selectn vertex as
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parent) that there is an isomorphism f from the set of such points in E1 to
those in E2, and this extends to an isomorphism E1 → E2 by continuity.

The main thing is therefore to establish extension to the domain (exten-
sion to the range being precisely similar), so let p and t be given. If t ∈ dom p
then we let q = p. Otherwise t 6∈ dom p. Since r ∈ dom p, there is a least
vertex v of dom p above t.

Case 1: There is also a vertex of dom p below t; let u be the greatest
such. This is well-defined since dom p is finite and contains all its ramification
points. Thus p(u) and p(v) exist, and there is a unique point t′ of E2 such
that p(u) ≤ t′ ≤ p(v) and ϕ2(t′) = ϕ1(t), so we let q = p ∪ {(t, t′)}. This
exists since ϕ2 maps [l, r] onto [ϕ2(l), ϕ2(r)] for every leaf l � t; it is unique
since if t′′ is another then we cannot have either t′ ≺ t′′ or t′′ ≺ t′ as this
would give ϕ2(t′) ≺ ϕ2(t′′), ϕ2(t′′) ≺ ϕ2(t′) respectively. The argument has
to be slightly modified if t is labelled lim or selectn. In the former case, t
must have a parent labelled selectn, and in the latter, t has a unique child
which has to be adjoined to the domain (if not already present as u). So we
just have to consider the possibility that the parent t+ of t is labelled selectn
(in the second case the original t is renamed t+) and extend to include both
t and t+ in dom q.

If t is a ramification point, we further choose, by 1-transitivity, an iso-
morphism from the set of children of t to those of t′ which takes the child
of t above u to the child of p(t) above p(u).

Case 2: v is minimal in dom p. We have ϕ1(v) = ϕ2(p(v)) and ϕ1(t) <
ϕ1(v). By condition (vi), v is not labelled selectn, and hence ϕ2 maps {u :
u � p(v)} onto {u : u � ϕ2(p(v))}. Therefore there is u � p(v) such that
ϕ2(u) = ϕ1(t), and we let q = p ∪ {(t, u)}. If t is labelled selectn or lim
we again modify the above by including a new pair of points in dom q. In
addition, if t is a ramification point, we choose an isomorphism from the set
of children of t to those of t′.

Case 3: There is no vertex of dom p below t, v is not minimal in dom p,
u ∈ dom p, u ≺ v say, and the least upper bound of u and t is equal to v.
Now we may suppose that t is a child of v. For v, being a ramification point,
has a unique child greater than or equal to t, and if we extend p to p′ with
this child in its domain, then this child is now minimal in dom p′ and (if still
t 6∈ dom p′) we can appeal to Case 2. The fact that this extension is possible
so as to fulfil the conditions follows from clause (v); in fact that tells us
exactly which child of p(v) the vertex t should be mapped to under q (and
we note that t will not be labelled selectn or lim).

Case 4: There is no vertex of dom p below t, v is not minimal in dom p,
u ∈ dom p, u ≺ v say, but the least upper bound w of u and t is not equal
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to v. We can extend p to p′ in P so that w ∈ dom p using Case 1, and this
then reduces to Case 3, since now the least upper bound of u and t lies in
dom p′.

We remark that without the restriction to countability of the encoded
order, we do not in general get uniqueness, in contrast to [1]. For in addition
to the “canonical” linear ordering Στ as described above, comprising all
those decoding functions which take the default value at all but finitely
many points, we can also consider the family of all decoding functions which
are allowed to take a non-default value on any (downwards) well-ordered set
of points. This will give rise to an expanded coding tree, and it will still
be linearly ordered by first difference from the top. However, in cases in
which there is a strictly descending sequence of vertices labelled Qn or Z
(such as those in Figures 1–4), the set of leaves is uncountable, so cannot be
isomorphic to Στ . Several variations on the same idea are possible, which
we omit.

Next we establish 1-transitivity of the encoded order. Because of the
presence of selectn vertices, it was easier to begin by demonstrating unique-
ness.

Theorem 3.5. If (τ,≺,L) is a coding tree, the coloured linear order Στ

it encodes described above is countable and 1-transitive.

Proof. Let E be associated with τ as given above, so that Στ is the set
of leaves of E. We saw above that Στ is countable.

To prove that (Στ , <τ , Fτ ) is 1-transitive, suppose that σ0 and σ1 in
Στ have the same colour. Then they have the same domain, the branch
B = [l, r], say. We adapt the proof of Theorem 3.4, using E1 = E2 = E,
the expanded coding tree canonically associated with τ (of which Στ is the
set of leaves). Start with the map p fixing r and taking σ0 to σ1 (and if r
is a ramification point of E, an automorphism of its set of children taking
the child in σ0 to the child in σ1). Then p ∈ P , so by the proof of Theorem
3.4 there is an automorphism of E extending p, and this restricts to an
automorphism of Στ taking σ0 to σ1. This establishes 1-transitivity.

4. Finding a coding tree for a linear order. In the previous section
we found a unique linear order encoded by a given coding tree, which was
countable and 1-transitive. Now we turn to the converse, and show that any
countable 1-transitive coloured linear order (X,<,F ) is encoded by some
coding tree (which however need not be unique). Following the ideas of [1],
where an inductive method of building the tree was used which involved
“bunching” suitable colours together, we introduce the idea of a “clump”,
which is a subset of C colouring some convex subset of X. The coding tree
is formed from a maximal tree of clumps on addition of a few additional
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vertices (the ones to be labelled as lexicographic products or selections) and
adjoining labels. A straightforward induction is impossible here, since the
tree will be infinite and not necessarily well-founded. Instead it has to be
defined explicitly, and its Dedekind–MacNeille completeness used in place of
induction. At the same time we shall build an associated expanded coding
tree, and this will demonstrate that the coding tree formed does encode the
original linear order.

Definition 4.1. Let (X,<,F ) be a linear order with colour set C.
A clump is a non-empty subset C0 of C such that C0 = {F (z) : z ∈ I}
for some convex subset I of X.

Lemma 4.2. Let (X,<,F ) be a 1-transitive coloured linear order. Then
for any clump C0 and non-empty convex subset I of X such that F (I) ⊆ C0
there is a unique maximal convex subset of X containing I coloured only by
members of C0, and this is 1-transitive.

Proof. Let P = {J ⊆ X : I ⊆ J , J is convex, and F (J) ⊆ C0}. Then⋃
P is convex, since all the members of P contain I. Hence

⋃
P is the

desired maximal convex set coloured by C0. To see that F (
⋃
P ) = C0 (rather

than just F (
⋃
P ) ⊆ C0), note that as C0 is a clump, F (J) = C0 for some

convex J . By 1-transitivity, we may suppose that J∩I 6= ∅. Hence J∪I ∈ P ,
so F (

⋃
P ) = C0.

For 1-transitivity of
⋃
P , let x, y ∈ ⋃P . As X is 1-transitive, there is an

automorphism g taking x to y. Since F (g(
⋃
P )) ⊆ C0 and

⋃
P∩g(

⋃
P ) 6= ∅,

it follows that g(
⋃
P ) ∈ P , so g(

⋃
P ) ⊆ ⋃P . Similarly g−1(

⋃
P ) ⊆ ⋃P ,

so g(
⋃
P ) =

⋃
P .

Lemma 4.3. If (X,<,F ) is a countable 1-transitive coloured linear or-
der , then the union of two clumps that intersect is a clump, and the union
of any chain of clumps is a clump.

Proof. Let C1 and C2 be clumps having non-trivial intersection, and
choose convex sets I1 and I2 whose points are coloured by C1, C2 respec-
tively. By 1-transitivity, we may suppose that I1 ∩ I2 6= ∅. Then I1 ∪ I2 is
convex, and is coloured by C1 ∪ C2, so C1 ∪ C2 is a clump.

Now let C be a chain of clumps. As C is countable, so is
⋃ C, so we may let⋃ C = {cn : n ∈ ω}. (If

⋃ C is finite, the result is immediate.) Choose Cn ∈ C
by induction. Let C0 ∈ C be arbitrary. If Cn has been chosen, let Cn+1 ⊇ Cn
be a member of C containing cn. This gives a chain C0 ⊆ C1 ⊆ C2 ⊆ · · ·
in C with union equal to

⋃ C. Choose inductively a convex set In such that
Cn = {F (z) : z ∈ In}. Let I0 be convex so that C0 = {F (z) : z ∈ I0}.
Given In coloured by Cn, by Lemma 4.2 there is a convex set In+1 ⊇ In
such that Cn+1 = {F (z) : z ∈ In+1}. Let I =

⋃
n∈ω In. It is easy to check

that
⋃ C =

⋃
n∈ω Cn = {F (x) : x ∈ I}, so it follows that

⋃ C is a clump.



Countable coloured linear orderings 203

We remark in passing that the intersection of two clumps C1 and C2 of
X, even when it is non-empty, is not always a clump. For instance if (X,<)
is Z, coloured periodically by the four colours c0, c1, c2, c3, then {c0, c1, c2}
and {c0, c2, c3} are clumps, but their intersection {c0, c2} is not. We shall
also see below that the intersection of a chain of clumps need not be a
clump.

Definition 4.4. Let (X,<,F ) be a coloured linear order with colour
set C. A tree of clumps for X is a set of clumps τ of X which is a tree when
ordered by proper inclusion and which contains C and each singleton.

Lemma 4.5. Any countable 1-transitive coloured linear order has a max-
imal tree of clumps.

Proof. This is immediate by Zorn’s Lemma, since being a tree is pre-
served under taking unions of chains.

Lemma 4.6. Any maximal tree of clumps (τ,⊂) for a countable 1-transi-
tive coloured linear order is closed under unions of chains.

Proof. Let C be a chain of clumps in τ . Then by Lemma 4.3,
⋃ C is a

clump. We see that τ∪{⋃ C} is a tree of clumps, from which, by maximality,⋃ C ∈ τ will follow. Let C ′ ∈ τ , and let C ′ ⊆ D1,D2 ∈ τ ∪ {⋃ C}. If
D1,D2 6=

⋃ C, then as τ is a tree, D1 ⊆ D2 or D2 ⊆ D1. Suppose therefore
that D1 =

⋃ C and D2 6=
⋃ C. Since C ′ ⊆ D1,D2, there is c ∈ D1 ∩D2. By

definition of “tree of clumps”, {c} ∈ τ , so {c} ⊆ D1,D2. Since D1 =
⋃ C,

c ∈ C ′′ for some C ′′ ∈ C, and hence c ∈ C ′′′ for all C ′′′ ⊇ C ′′ in C. As
{c} ⊆ C ′′′,D2, both of which lie in τ , and as τ is a tree, D2 ⊆ C ′′′ or
C ′′′ ⊆ D2. If the former holds for some C ′′′ then D2 ⊆

⋃ C = D1. Otherwise
the latter holds for all C ′′′ ⊇ C ′′ in C, so D1 =

⋃ C ⊆ D2. Thus τ ∪ {⋃ C} is
a tree, as required.

What we would really like is for the maximal tree of clumps to be
Dedekind–MacNeille complete. Unfortunately, because of the possible pres-
ence of “selections”, this need not be true. If however we form the Dedekind–
MacNeille completion of τ , then at least, by the general theory of these com-
pletions (or directly) and by Lemma 4.6, one sees that this is obtained from
τ just by adjoining ramification points, which we write as τ+. Thus its de-
scription in terms of τ is fairly explicit. In fact we may take the points of τ+

to be subsets of C, since any point of τ+− τ is the infimum of a descending
chain of members of τ , and we just represent it by the intersection of this
chain. The fact that τ+−τ may be non-empty explains why the intersection
of a chain of clumps is not necessarily a clump, since the intersection of the
family of clumps greater than t ∈ τ+ − τ is equal to t itself.
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Lemma 4.7. Let (τ,⊂) be a tree of clumps for a coloured linear order
(X,<,F ). Then for all x ∈ τ+ such that x is not a leaf , x =

⋃{y ∈ τ+ :
y ⊂ x}.

Proof. Clearly
⋃{y ∈ τ+ : y ⊂ x} ⊆ x. Now, let c ∈ x. By definition,

{c} ∈ τ . As x is not a leaf, {c} ⊂ x, so c ∈ ⋃{y ∈ τ+ : y ⊂ x}, and
x ⊆ ⋃{y ∈ τ+ : y ⊂ x}.

Lemma 4.8. Let (τ,⊂) be a maximal tree of clumps for a coloured linear
order (X,<,F ). If x is a vertex in τ+ having no parent and x 6= r, then
x =

⋂{y ∈ τ+ : x ⊂ y}.
Proof. That x ⊆ ⋂{y ∈ τ+ : x ⊂ y} is immediate. Now, let c ∈ ⋂{y ∈

τ+ : x ⊂ y}. If c 6∈ x, then {c} 6⊂ x. On the other hand, {c} ⊂ y for all
y ⊃ x. Since τ+ is Dedekind–MacNeille complete, sup{{c}, x} ∈ τ+. Clearly
x ⊂ sup{{c}, x}. As x has no parent, x ⊂ y ⊂ sup{{c}, x} for some y. But
then x ⊂ y and {c} ⊂ y, and so sup{{c}, x} ⊆ y, contradiction. Hence⋂{y ∈ τ+ : x ⊂ y} ⊆ x.

Lemma 4.9. Let (τ,⊂) be a maximal tree of clumps for a coloured linear
order (X,<,F ). Then for all x ∈ τ+ such that x is not a leaf , the union of
any maximal antichain A of the subtree {z ∈ τ+ : z ⊂ x} is equal to x.

Proof. Clearly
⋃
A ⊆ x. Now, let c ∈ x. Then, since τ is a tree of clumps,

and x is not a leaf, {c} ⊂ x. As A is a maximal antichain of {z ∈ τ+ : z ⊂ x},
there must be y ∈ A comparable with {c}. Since {c} is minimal, c ∈ y, and
so c ∈ ⋃A.

Lemma 4.10. Let (τ,⊂) be a maximal tree of clumps for a 1-transitive
coloured linear order (X,<,F ), and let t ∈ τ+ − τ . Then for some n, t has
children t0, t1, . . . , tn−1, 1 < n ≤ ℵ0, which all lie in τ , and every element
below t lies below some ti. Furthermore, for any u � t in τ , and any maximal
convex u-coloured subset Y of X, the family of maximal ti-coloured subsets
of Y for i < n is order-isomorphic to Qn.

Proof. By Lemma 4.3, the union of each cone of elements of τ below t
is a clump, and so this establishes the first part. Since t 6∈ τ , n ≥ 2.

Now let Z be the family of maximal convex ti-coloured subsets of Y
as i varies, with the corresponding colours. Let i, j < n be two colours.
Then t is the least upper bound in τ+ of ti and tj . First let us see that it
cannot be the case that all members of Z coloured i precede all members
of Z coloured j. Suppose otherwise for a contradiction, and let Zi, Zj be
members of Z coloured i, j respectively. Thus Zi < Zj . Let Z be the convex
hull of Zi ∪Zj and let v = F (Z). Then v is a clump. We show that it is the
least upper bound of ti and tj in τ , which will contradict the fact that this
least upper bound is actually t, which does not lie in τ .
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First note that τ∪{v} is a tree. For suppose u ⊆ v, v′ where u, v′ ∈ τ . We
have to show that v ⊆ v′ or v′ ⊆ v. Suppose that v′ 6⊆ v. Then a maximal
v′-coloured convex set W that intersects Z must extend to the left of Zi
or to the right of Zj , or both. Suppose the former. As W ∩ Z 6= ∅, also
W ∩ Zi 6= ∅, so ti ∩ v′ 6= ∅. As ti, v′ ∈ τ , and τ is a tree containing all
singletons, v′ ⊆ ti or ti ⊂ v′. The former contradicts v′ 6⊆ v, so ti ⊂ v′. Since
ti is a maximal clump in τ disjoint from tj, v′ ∩ tj 6= ∅, and repeating the
argument, tj ⊂ v′. We can now show that v ⊆ v′. Let c ∈ v. If c ∈ ti ∪ tj
then by what we have just shown we know that c ∈ v′. Otherwise c = F (x)
for some x with Zi < x < Zj . Now as W is maximal convex v′-coloured, and
ti, tj ⊆ v′, W has maximal convex ti, tj-coloured subsets Z ′i, Z

′
j respectively.

By Lemma 4.2, Y is 1-transitive, and this enables us to assume that Z ′i = Zi.
If x < Z ′j then it follows that x ∈ W so c = F (x) ∈ v′ as required. If not,
then we must have Z ′j < x < Zj . By 1-transitivity of Y again, there is an
automorphism f taking Zj to Z ′j . This must fix Y , and since all members
of Z coloured i precede all members of Z coloured j, Zi < f(Z ′j). Therefore
Zi < f(Z ′j) < f(x) < Z ′j , and it follows that f(x) ∈W , so c = F (f(x)) ∈ v′.

This concludes the proof that τ ∪ {v} is a tree. As τ is a maximal tree
of clumps, v ∈ τ . To see that v is the supremum of ti and tj in τ , since
ti, tj ⊆ v is already known, we just need to suppose that ti, tj ⊆ v′ ∈ τ and
show that v ⊆ v′. However, the argument of the previous paragraph applies
again, giving the result.

We are now able to deduce that for each i < n, Z has no least member
coloured i, and it will follow in particular that it has no left endpoint (and by
a similar argument that it has no right endpoint). Suppose on the contrary
that Zi is such. Since n ≥ 2, there is another colour j. Since not every
member of Z coloured i precedes every member of Z coloured j, there is
a member Zj of Z coloured j with Zj < Zi. Similarly there are Z ′i < Z ′j
coloured i, j respectively the other way round. By 1-transitivity we may
assume that Zj = Z ′j , so that Z ′i < Zi, contrary to Zi being the least
member of Z coloured i.

Now we have to demonstrate density. Let Zi < Zj in Z be coloured i and
j (which may now be equal), and let k < n be a given colour. First suppose
that k 6= i. There must be some point between Zi and Zj , as otherwise i 6= j
by maximality of Zi convex ti-coloured, and so ti ∪ tj would be a clump,
and therefore equal the least upper bound of ti and tj in τ , contradiction.
Now consider i and k. Note that Zi is in fact a maximal convex subset of Y
which is coloured by a set disjoint from tk, as otherwise there would be an
element of the cone at t containing ti strictly greater than ti. Since by the
first part of the proof we know that there are points both to the left and
the right of Zi coloured k, this tells us that there are such points arbitrarily
close to Zi on left and right, and in particular, to the right of Zi and the left
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of Zj . This gives density if k 6= i. Now suppose that k = i, and let l < n be
different from i. Then there is Zl between Zi and Zj , and, repeating, another
Z ′l coloured l between Zi and Zl; hence applying density to Z ′l < Zl, there
is Z ′i coloured i between these, and this also lies between Zi and Zj .

We shall work with some maximal tree of clumps (τ,⊂) for a countable
1-transitive coloured linear order (X,<,F ), and extend τ+ to a coding tree
for X by adding some extra vertices to form τ ∗ (the ones representing lex-
icographic products, that is, vertices having only one child), and assigning
labels. For any clump t, we write Xt for a maximal convex subset of X
coloured by t, as given by Lemma 4.2. Since (X,<,F ) is 1-transitive, by
that lemma, Xt is 1-transitive. To avoid confusion between vertices of the
tree and sets of colours, we write Ct for the set of colours that the clump
t ∈ τ represents (even though Ct = t). We recall that in [1], the notation π′

for a partition π of the colour set was used, and it stood for the least refine-
ment of π into clumps, using the present terminology. One or two results
from [1] will also be needed in what follows.

We define (τ ∗,≺,L) from (τ+,⊂) as follows. Let v ∈ τ+.
If v is a leaf, then it represents a singleton clump {c}, so Xv is a

(monochromatic) countable 1-transitive linear order Z. If Z 6= 1, put a par-
ent v∗ above v (parent to no other vertex) in τ ∗, and let L(v∗) = (Z, {c}),
and L(v) = (1, {c}). If Z = 1, we just let L(v) = (1, {c}).

If v has only one cone, then it lies in τ , and has no child (because if it
had any, then it could only be one, and this child would have to be a proper
subset of v, but, by Lemma 4.9, the union of any maximal antichain below
v equals v). So we may choose a chain v0 ⊂ v1 ⊂ · · · ⊂ vn ⊂ · · · of clumps
whose supremum is v. Choose a maximal convex subset Xvn of X coloured
by vn by induction. Let Xv0 ⊂ Xv be arbitrary (since v0 ⊂ v, there is some
Xv0 contained in Xv). Given Xvn, by Lemma 4.2 there is a unique maximal
convex subset Xvn+1 of X coloured by vn+1 containing Xvn. By Lemma 4.2
again,

⋃
n∈ωXvn ⊆ Xv.

If Xv 6=
⋃
n∈ωXvn , let x ∈ Xv −

⋃
n∈ωXvn. Then there is x′ ∈ ⋃n∈ωXvn

such that F (x′) = F (x). As Xv is 1-transitive, there is an automorphism g
of Xv taking x′ to x. Then the image g

⋃
n∈ωXvn of

⋃
n∈ωXvn under g is

isomorphic to
⋃
n∈ωXvn . If

⋃
n∈ωXvn∩g

⋃
n∈ωXvn 6= ∅, then Xvm∩gXvm 6=

∅ for some m ∈ ω such that x′ ∈ Xvm . Since Xvm is a maximal convex subset
coloured by Cvm , Xvm = gXvm, contradicting x 6∈ ⋃n∈ωXvn. Hence, if Xv 6=⋃
n∈ωXvn , then Xv is the union of pairwise disjoint copies of

⋃
n∈ωXvn . As

Xv is 1-transitive, Xv
∼= Z ·⋃n∈ωXvn for some countable 1-transitive linear

order Z (which is 1 if Xv =
⋃
n∈ωXvn). If Z is non-trivial, put a parent

v∗ above v (parent to no other vertex) in τ ∗, and let L(v∗) = (Z,Cv) and
L(v) = (lim, Cv). If Xv =

⋃
n∈ωXvn , we just let L(v) = (lim, Cv).
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If v ∈ τ+−τ then we label v by selectn, where n is its ramification order.
Otherwise, suppose that v ∈ τ is a ramification point with n cones (where
1 < n ≤ ℵ0). We show that these cones have greatest elements. Let A and B
be distinct cones at v. Since τ is a tree, every element of A is disjoint from
every element of B. By Lemma 4.6,

⋃
A,
⋃
B ∈ τ , and as they are disjoint,

they are both proper subsets of v. Hence
⋃
A lies in A, so A has a greatest

element, and similarly for all other cones at v. Let v0, v1, . . . , vn−1 be the
greatest elements of the cones at v. Then these lie in τ , since any member
of τ+− τ is the infimum of an infinite descending sequence. By Lemma 4.2,
Xv is 1-transitive. If πv = {Cv0 , Cv1 , . . . , Cvn−1}, then, by Lemma 4.9, πv is
a partition of Cv. Since each Cvi is a clump, Xvi is defined for each i. By
1-transitivity of X, there is X ′vi

∼= Xvi with X ′vi ⊂ Xv. Clearly X ′vi is convex
and coloured exactly by Cvi . Hence, πv = π′v, in the notation of [1]. We look
at Xv /∼π′v , which, by [1, Lemma 1.3], is 1-transitive and coloured by π′v.

If n = 2 (that is, v has only two cones), then Xv /∼π′v is a 2-coloured
1-transitive linear order. Hence, by [1, Theorem 2.1], Xv /∼π′v is isomorphic
to Q2 or to Z · 2, where Z is a countable 1-transitive linear order.

If Xv /∼π′v∼= Q2, let L(v) = (Q2, Cv), and choose an arbitrary bijection
from 2 to the children of v.

If Xv /∼π′v∼= Z · 2, let the bijection take 0 to the left child of v, and 1 to
its right child.

If Z 6= 1, then Z is a non-trivial countable 1-transitive linear order. Put a
parent v∗ above v (parent to no other vertex) in τ ∗, and let L(v∗) = (Z,Cv),
and L(v) = (2, Cv).

If Z = 1, we just let L(v) = (2, Cv).
If n > 2 (that is, v has more than two cones), we prove that Xv /∼π′v∼= Qn, where the n colours are the Cvi .
First to see that Xv /∼π′v is dense, suppose not for a contradiction. Then

there are consecutive x < y ∈ Xv /∼π′v . Now, x and y cannot be coloured by
the same Cvi , because if they were, then x ∼π′v y, and so they would have
been identified in the quotient. Let Cvi be the colour of x, and Cvj (6= Cvi)
be the colour of y. Let Ix be the convex set (the ∼π′v -class) in Xv represented
by x, and let Iy be the corresponding convex set for y. Since x and y are
adjacent, Ix ∪ Iy is convex and is coloured exactly by Cvi ∪ Cvj . Hence,
τ ′ = τ ∪{vi∪ vj} is a tree of clumps for X, contrary to the maximality of τ .
Thus, Xv /∼π′v is dense.

Secondly, let Cvj be a colour of Xv /∼π′v , and let x < y ∈ Xv /∼π′v .
Let u,w ∈ Xv /∼π′v with x < u < w < y, and suppose that for each
z ∈ [u,w] ⊂ Xv /∼π′v , z is not coloured by Cvj . Let C[u,w] be the subset of
π′v colouring the members of [u,w]. Now, there are Cvl , Cvm ∈ C[u,w] such
that Cvl 6= Cvm (as otherwise u ∼π′v w in Xv, and u and w would have been
identified in the quotient), and also Cvl 6= Cvj 6= Cvm . But by definition
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C[u,w] is a clump in Xv /∼π′v . Hence {⋃Cvi : Cvi ∈ C[u,w]} is a clump in Xv,
and so τ ′ = τ ∪ {⋃Cvi : Cvi ∈ C[u,w]} is a tree of clumps, contrary to the
maximality of τ . It follows that there is z ∈ [u,w] coloured by Cvj .

Since Xv/∼π′v is dense and 1-transitive, it has no endpoints, so Xv /∼π′v∼= Qn, and we let L(v) = (Qn, Cv), with an arbitrary bijection from n to
{v0, . . . , vn−1}.

This completes the definition of (τ ∗,≺,L). It remains to show that it is
a coding tree, and that it encodes the original coloured linear order X. We
remark that in τ ∗, at most two elements are concatenated at a time, since
we took a maximal tree of clumps in which all possible concatenations (of
colours which could be grouped together as clumps) had been performed.
This means that the coding tree may not be as economical as it could be.
It would be possible to coalesce consecutive concatenations, but this would
add technical details which we prefer to avoid.

Lemma 4.11. Let (X,<,F ) be a countable 1-transitive linear order col-
oured by C. Then (τ ∗,≺,L) (as defined above) is a coding tree.

Proof. We go through the clauses in Definition 2.1.

(i) There is a root r in τ , namely C, which is also the root of τ+. This is
also the root of τ ∗, unless we added a vertex above the root of τ+ in forming
τ∗, in which case this added vertex is the root.

(ii) There are at most ℵ0 leaves in τ , since X, and hence C, is countable,
and any leaf of τ ∗ is also a leaf of τ .

(iii) Every vertex v in τ is a non-empty subset of C, so there is c ∈ C
with {c} ⊆ v. Since in τ ∗ the vertices that may have been added are all
above vertices in τ , every vertex in τ ∗ is above a leaf.

(iv) We know that τ+ is Dedekind–MacNeille complete. Note that the
extra vertices which may have been added to form τ ∗ are all immediately
above vertices in τ+. Hence, all the ramification points of τ ∗ are in τ+.
Also, there are no new points which could form an upper bounded sequence
with no supremum. This is because if new points occur unboundedly in this
sequence, their supremum will equal the supremum of their set of children.
Hence τ ∗ is Dedekind–MacNeille complete.

(v) We remarked in the above proof that in each of the cases v ∈ τ+− τ ,
v ∈ τ , any cone at a ramification point v has a greatest element.

(vi) Take t, u, v ∈ τ ∗ such that t ≺ u ≺ v. We show that there is w ∈ τ ∗
with t � w ≺ v such that w has a sibling.

Let t− be the unique child of t, if it exists, and t− = t otherwise; similarly
for u−, v−. First we show that there are t′, v′ such that t′ ∈ τ , v′ ∈ τ+, and
t− � t′ ≺ v′ � v. If t ∈ τ ∗ − τ+ we let t′ = t−. If t ∈ τ+ − τ then t is the
infimum of a descending sequence of vertices in τ , so we may let t′ be one of
these which is strictly below u−. And if t ∈ τ , we let t′ = t. If u ∈ τ+ we let
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v′ = u. Otherwise u− ≺ u. If t′ ≺ u− we let v′ = u−. If not, then t = t′ = u−

and u ≺ v−, so we may let v′ = v−.
Now with t′, v′ chosen, t′ ⊂ v′ (as sets of colours). Pick c ∈ v′ − t′, and

let w be a maximal clump contained in v′ and containing t′ but not c (which
exists by Lemma 4.6), and let w′ be a maximal clump contained in v′ and
containing c but disjoint from w (using Lemma 4.6 again). Then w,w′ ⊂ v′,
w ∩ w′ = ∅, and sup(w,w′) is a ramification point above t and below v.
Furthermore, each of w, w′ is the supremum of a cone below sup(w,w′), so
w has w′ as a sibling.

Finally, observe that if w = t−, then as w has a sibling, we cannot have
t− ≺ t, which would mean that w was t’s only child. Hence t � w.

(vii) Suppose for a contradiction that there are uncountably many ver-
tices in τ ∗ with only one child. These vertices represent uncountably many
subsets of X isomorphic to a lexicographic product of a 1-transitive count-
able linear order with a coloured linear order. We shall show that we can
choose distinct elements of uncountably many of these, contrary to count-
ability of X.

Now any vertex of τ ∗ lies above a leaf, and there are only countably
many leaves. Hence, there is a leaf l = {c} say, such that uncountably many
points with only one child are above l. Since τ ∗ has only countably many
ramification points, there is an uncountable set U of vertices above l with
just one child labelled lim. Choose a point x coloured c. Then by Lemma 4.2,
for each t ∈ τ above l not in U or labelled lim there is a unique maximal
convex t-coloured set Xt with x ∈ Xt. We may extend this choice to points t
labelled lim by letting Xt =

⋃{Xu : u ≺ t, Xu defined}, and to points
t ∈ τ+ by letting Xt =

⋂{Xu : t ≺ u, u ∈ τ}. Clearly t1 ≺ t2 ⇔ Xt1 ⊂ Xt2 .
Each point of U is the parent t+ of a unique t for which Xt has been chosen,
and by choice of the labels, the unique maximal convex t-coloured set Xt+

with x ∈ Xt is a lexicographic product of the form Z · Xt, where Z is a
non-trivial 1-transitive linear order (equal to F(t+)). Choose an element
xt of Xt+ − Xt. Then all these choices are distinct, so {xt : t ∈ U} is an
uncountable subset of X, contradiction.

(viii) We have defined a labelling function L which assigns to every vertex
v ∈ τ∗ a label (F(v),S(v)), and bijections in the relevant cases. We first
check that τ ∗ obeys the conditions for F(t).

If t ramifies into n cones, then t ∈ τ+. If t ∈ τ+ − τ then t is labelled
selectn, and t is the infimum of a descending sequence of members of τ . We
need to see that we can take the members of this sequence to be labelled just
by Qm or Z. If not, there is u � t such that no member of (t, u] is so labelled.
Choose a maximal u-coloured set Y . By Lemma 4.10 there are maximal t0-,
t1-coloured subsets X0 < X1 of Y , where t0 and t1 are distinct children of t.
Let X be the convex hull of X0∪X1. By Dedekind–MacNeille completeness
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of τ+, there is a minimal member v of τ+ containing F (X). If v is labelled
selectm then some child of v contains F (X), contrary to minimality. Hence
v is labelled lim or γ.

If v is labelled lim, let V ⊇ X be maximal convex v-coloured (⊆ Y ).
Suppose that v0 ⊂ v1 ⊂ v2 ⊂ · · · in τ with v =

⋃
i∈ω vi, and choose maximal

convex vi-coloured V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ V . Since v is labelled lim, V =⋃
i∈ω Vi. Hence for some i, Vi∩X0 6= ∅, and hence also vi∩t0 6= ∅. Since τ is a

tree, vi ⊆ t0 or t0 ⊆ vi. If vi ⊆ t0 for every i then v ⊆ t0, contradiction. Hence
t0 ⊆ vi. As Vi ∩X0 6= ∅, X0 ⊆ Vi. Similarly X1 ⊆ Vj for some j. As Vmax(i,j)
is convex, X ⊆ Vmax(i,j). By minimality of v, v ⊆ vmax(i,j)—contradiction.

The remaining possibility is that v is labelled γ, which must actually
be 2 by the above proof. Suppose that V = V0 ∪ V1, where V0, V1 are non-
empty, disjoint, and V0 < V1. By minimality of v, F (V0), F (V1) 6⊇ F (X), so
V0, V1 6⊇ X. Therefore supV0 < supX1. By Lemma 4.10 there are intervals
contained in Y coloured t0 and t1 to the right of X1, and hence contained
in V1. Similarly there are such intervals contained in V0. This gives F (V0)∩
F (V1) 6= ∅, contrary to V being the concatenation of V0 and V1 (which
requires the concatenated orders to be disjointly coloured).

Otherwise, t ∈ τ . If n = 2, then, by the construction of τ , F(v) is Q2 or
2 (and 2 is clearly the order type of the children of t), and if n > 2, then
F(t) = Qn. Also, if t has a parent and no sibling, then this parent is in τ ∗,
but not in τ , and so F(t) has to be 2.

If there is only one cone at t, and t is not a leaf, then

• if t has a child (it can only have one), then t ∈ τ ∗ − τ , and all such
were labelled by a 1-transitive countable linear order,
• if t does not have a child, then, by construction of τ ∗, F(t) = lim.

If t is a leaf, then, by construction of τ ∗, F(t) = 1.
Finally, we see that τ ∗ obeys the conditions for S(t). If t ∈ τ+ and t is

not a leaf, then, by Lemma 4.7, t =
⋃{u ∈ τ : u ⊂ t}. Now, in τ ∗, if x ∈ τ ,

S(x) is the clump x stands for, and if x 6∈ τ , S(x) is the clump its child
stands for. Hence, if t is not a leaf, S(t) is the union of the second labels of
vertices under t. Also, leaves in τ ∗ are the same as leaves in τ , and so all
leaves in τ ∗ have distinct singleton colours as their second labels.

Thus, (τ ∗,≺,L) is a coding tree.

Now we need to prove that this coding tree actually encodes the linear
order we started with.

Theorem 4.12. Let (X,<,F ) be a 1-transitive countable coloured linear
order. Then the coding tree (τ ∗,≺,L) as defined above encodes (X,<,F ).

Proof. We form an expanded coding tree E∗ associated with τ ∗. To begin
with we take as vertices all subsets of X which are maximal convex subject
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to being coloured by some fixed member of τ . To see that this family E is
a tree, note that certainly X ∈ E is its root. Otherwise, if Y1 ⊆ Y2, Y3 in E
are maximal convex sets for t1, t2, t3 respectively, then t1 ⊆ t2, t3, and since
τ is a tree, t2 ⊆ t3 or t3 ⊆ t2, from which Y2 ⊆ Y3 or Y3 ⊆ Y2 follows by
Lemma 4.2.

Next we extend to E+ by adding in points corresponding to elements in
τ+ − τ . Each of these will actually equal one of its children as far as the
corresponding subset ofX is concerned, but it will be distinguished by means
of its labels. To be more precise, for each point t of τ+ − τ with children
t0, t1, . . . , tn−1 and subset Yi corresponding to some ti, we add another vertex
to E above Yi.

Finally, we extend to E∗ and assign labels as follows.
If t ∈ τ+− τ has ramification order n, we label each corresponding point

Y in E+ − E by selectn, and let S(Y ) = S(t).
If Y is a singleton, then we label it by (1, {c}), where {c} = F (Y ). If Y is

monochromatic but not a singleton, it is a non-trivial countable 1-transitive
linear order, and we replace it by an upper vertex labelled (Y, {c}), and for
each y ∈ Y a lower point y, labelled (1, {c}).

If Y has just one cone and corresponds to a member of τ , then we choose
an increasing chain Y0 ⊂ Y1 ⊂ Y2 ⊂ · · · in E such that F (Y ) =

⋃
n∈ω F (Yn).

Then either Y =
⋃
n∈ω Yn, in which case we label Y by (lim, F (Y )), or

Y ∼= Z ·⋃n∈ω Yn for some non-trivial countable 1-transitive linear order Z,
and we replace Y by an upper point Y , labelled (Z,F (Y )), and for each
z ∈ Z a lower point being the corresponding copy of

⋃
n∈ω Yn, labelled

(lim, F (Y )).
If Y has ramification order greater than 1, then as before, Y is either a

lexicographic product of the form Z · (Y0
∧Y1) (n = 2), where Z is countable

and 1-transitive, or is a Qn-combination of its children. In the former case
we label Y by (2, F (Y )) if Z = 1, and replace Y by an upper vertex, being
Y labelled (Z,F (Y )), and for each z ∈ Z a lower vertex which is the cor-
responding copy of Y0

∧Y1 labelled (2, F (Y )) if Z 6= 1. In the latter case we
label Y by (Qn, F (Y )).

Thus in all cases the elements of E∗ chosen are subsets of X, and the
partial ordering is compatible with inclusion in the sense that Y0 � Y1
⇔ Y0 ⊆ Y1. Furthermore, except for the case of vertices labelled selectn,
Y0 ≺ Y1 ⇔ Y0 ⊂ Y1.

To conclude the verification that E∗ is an expanded coding tree, we just
have to show that clauses (iv) and (vi) hold (since (v) is an immediate conse-
quence of the corresponding property of τ). We first see that E is Dedekind–
MacNeille complete, from which Dedekind–MacNeille completeness of E∗ is
immediate. Let C be a maximal chain in E. Then {F (Y ) : Y ∈ C} is a
maximal chain in τ , so this is Dedekind complete, and isomorphic to C, so C
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is also Dedekind complete. Next consider X0,X1 ∈ E. Let X be the convex
hull of X0 ∪ X1, and as above find a minimal member v of τ+ containing
F (X). Minimality implies that v is not labelled selectn, so v ∈ τ . Let Y ⊇ X
be maximal convex v-coloured. We see that Y is the least upper bound of
X0 and X1 in E. Suppose that Z ⊇ X0,X1, and let t = F (Z). Since Z is
convex, Z ⊇ X. As E is a tree, Y ⊆ Z or Z ⊂ Y . The latter would give
t ⊂ v, contrary to minimality of v. Hence Y ⊆ Z as required. This shows
that E and hence also E∗ is Dedekind–MacNeille complete.

For (v), suppose that X ≺ Y ≺ Z in E∗. If Y or Z is labelled selectn,
we may take W to equal one of them so labelled. Otherwise, X ⊂ Y ⊂ Z. If
either Y or Z is labelled lim, then we may replace them by smaller sets in E
not labelled lim. The result now follows, since we cannot have consecutive
lexicographic products.

Now that E∗ has been defined, we just need to show that it is associated
with τ ∗, and that the set of leaves of E∗ is isomorphic to X. The latter
is immediate, since all members of X feature as singletons of E∗, and the
ordering and colours are correct.

To associate τ ∗ with E∗ we give the map ϕ. Since E∗ was defined directly
from τ∗, it is clear how this should be defined. In the most straightforward
case, t ∈ τ gives rise to just one vertex in t∗ (that is, where the set corre-
sponding to the clump is not a non-trivial lexicographic product), in which
case every maximal t-coloured subset of X in E is mapped to t by ϕ. For
elements t of τ+ − τ we introduced points of E∗ corresponding to exactly
the same subset of X as the child, but with a different label, and each such
is mapped to t. Finally, points t+ of τ∗ − τ+ correspond to lexicographic
products. In τ ∗ points come in pairs, t and t+ such that t is the only child
of t+, and the corresponding members of E∗ also come in pairs such that
the upper one is the lexicographic product by some Z of the lower one. We
map each such upper point to t+, and the corresponding lower point to t.

It remains to verify the clauses of Definition 3.2 for this ϕ. The first
(order-preserving) is immediate, as is (iii) (preservation of labels).

For (ii), consider a vertex t of E not labelled selectn, and let u ≺ ϕ(t)
in τ∗. We treat various cases.

First suppose that u, ϕ(t) are clumps replaced by a single point in τ ∗.
Then t is maximal ϕ(t)-coloured. Picking c ∈ u, there is x ∈ t coloured c, so
by Lemma 4.2 there is a maximal u-coloured set containing x, and this is
contained in t and maps to u under ϕ. This argument is easily modified if
u and/or ϕ(t) are in a pair of points of τ ∗ corresponding to a single clump.
By assumption ϕ(t) 6∈ τ+ − τ . If u ∈ τ+ − τ then a preimage of u under ϕ
was specifically included in E∗ below t.

Now let l be a leaf of E, and let ϕ(l) � u. Thus u is a convex subset of X,
and if t = F (u), then t lies in τ with l ⊆ t. If u is modified (by addition of
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a parent or child) in passing to τ ∗, then we can similarly modify t so that
ϕ(t) = u, and it follows that ϕ maps [l, r] onto [ϕ(l), ϕ(r)].

Finally, property (iv) follows by Lemma 4.10.
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