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Homological computations in the universal
Steenrod algebra
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A. Ciampella and L. A. Lomonaco (Napoli)

Abstract. We study the (bigraded) homology of the universal Steenrod algebra Q
over the prime field F2, and we compute the groups Hs,s(Q), s ≥ 0, using some ideas
and techniques of Koszul algebras developed by S. Priddy in [5], although we presently do
not know whether or not Q is a Koszul algebra. We also provide an explicit formula for
the coalgebra structure of the diagonal homology D∗(Q) =

⊕
s≥0Hs,s(Q) and show that

D∗(Q) is isomorphic to the coalgebra of invariants Γ introduced by W. Singer in [6].

Introduction. It is a basic problem of homological algebra to compute
the (co)homology of various augmented algebras. The purpose of this paper
is to compute the diagonal homology D∗(Q) =

⊕
s≥0Hs,s(Q) of the univer-

sal Steenrod algebra Q and provide a description of D∗(Q) as a coalgebra in
terms of invariant theory. Q is a graded algebra arising from algebraic topol-
ogy, for it is the algebra of cohomology operations in the category C(2,∞)
of H∞-ring spectra. It is an interesting object as it contains Λ, the lambda
algebra introduced in [1], as a subalgebra, and the Steenrod algebra arises
as a quotient of Q. Hence it would be nice to understand the cohomology
algebra H∗(Q) = ExtQ(F2,F2) and the homology H∗(Q) = TorQ(F2,F2),
but these computational problems are presently unsolved. What makes such
computation hard is the fact that Q is by no means locally finite and most
of the methods developed by Priddy ([5]) do not apply. The second author
succeeded in computing the diagonal cohomology of Q in [4].

In Section 1 of the present paper a description of the homology groups
Hs,s(Q), i.e. the groups TorQs,s(F2,F2), s ∈ N, is provided, with an explicit
formula for the coalgebra structure map of D∗(Q). In [5] S. Priddy works
under the hypothesis of local finiteness for the algebras involved, but the
idea we borrow from his work in the proof of Theorem 1 does not depend
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on this assumption. On the contrary, this hypothesis is crucial in Theorem
5.3 of [5], hence we cannot apply that result to our case and deduce that
Hs,s+h(Q) = 0 for s, h ∈ N, although Q is a Poincaré–Birkhoff–Witt algebra.

In Section 2 we use the machinery of invariant theory (see e.g. [6]) to
show that D∗(Q) is isomorphic, as a coalgebra, to a certain coalgebra of
invariants Γ introduced by W. Singer in [6].

1. The diagonal homology of Q. The universal Steenrod algebra Q
at p = 2 can be presented as follows:

Q =
〈
xk

∣∣∣∣ x2k−1−nxk =
∑

j

(
n− 1− j

j

)
x2k−1−jxk−n+j

〉
,

where k ∈ Z and n ∈ N0. The defining relations of the algebra Q are known
as generalized Adem relations, since they are a generalization of the Adem
relations for the mod 2 Steenrod algebra. A typical monomial xi1 · · ·xim
of Q is said to have length m and total degree i1 + · · · + im (we put xk in
degree k). Such generalized Adem relations are homogeneous with respect
to both total degree and length; hence Q is a bigraded algebra. For example
xk has bidegree (1, k). A linear basis is given by the set B of all admissible
monomials, i.e. monomials of the following type:

xi1xi2 · · ·xim : ij ≥ 2ij+1 ∀j = 1, . . . ,m− 1.

Q is neither connected, nor of finite type: for example, the monomials xkx−k,
k ∈ N0, are all admissible of length 2 and total degree zero. If xi1 · · ·xil ∈ B,
the string I = (i1, . . . , il) will be called the label of xi1 · · ·xil and we write
xI instead of xi1 . . . xil . Q is also an augmented algebra, the augmentation
ε : Q→ F2 is obtained by setting ε(α) = 0 for each monomial α of positive
length and the identity over F2. Let J = ker(ε) denote the augmentation
ideal.

The homology of Q is defined as TorQ∗ (F2,F2), where Tor is computed
in the category of graded Q-modules.

Let B(Q) = T (J) =
⊕

s∈N0
J ⊗ · · · ⊗ J︸ ︷︷ ︸

s

. Thus B(Q) is generated by

elements of the form xI1 ⊗ · · · ⊗ xIs , where xIj ∈ J . Such elements are
written simply as

[xI1 | · · · |xIs ] = [xi1 · · ·xit1 |xit1+1 · · ·xit2 | · · · |xts−1+1 · · ·xts ]
and are trigraded: s is the homological degree, t = ts is the length and
u =

∑ts
k=1 ik is the total degree, which we usually disregard. Let Bs(Q)t

denote the submodule generated by elements of bidegree (s, t). We define a
map

∂s : Bs(Q)→ Bs−1(Q)

by setting
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∂s([xI1 | · · · |xIs ]) =
s−1∑

j=1

[xI1 | · · · |xIjxIj+1 | · · ·xIs ],

which is a differential for B(Q). The chain complex (B(Q), ∂) is known as
the reduced bar construction, and from homological algebra we know that it
computes the homology of Q, i.e. H(Q) = TorQ(F2,F2) is the homology of
(B(Q), ∂). We set Dk(Q) = Hk,k(Q). The direct sum D∗(Q) =

⊕
k≥0Dk(Q)

is the diagonal homology of Q. In order to compute D∗(Q), we notice that

Dk(Q) = Hk,k(Q)

=
ker[∂k : Bk(Q)k → Bk−1(Q)k]

im[∂k+1 : Bk+1(Q)k → Bk(Q)k]

= ker[∂k : Bk(Q)k → Bk−1(Q)k]

since there exist no non-zero (k+ 1)-chains of length k (a (k+ 1)-chain has
length at least k+1). Hence, each element of Dk(Q) is uniquely represented
by a cycle of Bk(Q)k of the form

∑
I fI [xi1 | · · · |xik ], where I = (i1, . . . , ik)

and xij ∈ J . Observe thatD0(Q) = F2 andD1(Q) is the F2-vector space with
{[xk] | k ∈ Z} as a basis, because B0(Q) = F2 and ∂ : B1(Q) = J → B0(Q)
is the zero homomorphism. In the following statement we describe the groups
Dm(Q) = ker ∂m in terms of cycles.

Theorem 1. Let x =
∑

I∈C fI [xi1 | · · · |xim ] ∈ Bm(Q)m, where C is a
suitable set of labels. Then x is a cycle if and only if for each j (1 ≤ j
≤ m − 1) and each (k1, . . . , kj−1) ∈ Zj−1, (kj+2, . . . , km) ∈ Zm−j−1, the
following condition holds:

∑

I

fIxijxij+1 = 0,

where the summation runs over all I ∈ C such that (i1, . . . , ij−1) = (k1, . . .
. . . , kj−1) and (ij+2, . . . , im) = (kj+2, . . . , km).

Proof. Let us compute ∂x:

∂x =
∑

I

m−1∑

j=1

fI [xi1 | · · · |xijxij+1 | · · · |xim ],

where [xi1 | · · · |xijxij+1 | · · · |xim ] ∈ Bm−1(Q)m. Hence ∂x = 0 if and only if
for each j (1 ≤ j ≤ m− 1) and each (k1, . . . , kj−1) ∈ Zj−1, we have

∑

I

fI [xi1 | · · · |xijxij+1 | · · · |xim ] = 0,

where the summation is taken over all I such that (i1, . . . , ij−1) = (k1, . . .
. . . , kj−1) and (ij+2, . . . , im) = (kj+2, . . . , km). But this is equivalent to∑

I fIxijxij+1 = 0, summed over the same values of I.
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Corollary 2. Suppose that x =
∑

I∈C fI [xi1 | · · · |xim ] is a cycle of
Bm(Q)m. For each K = (k1, . . . , kq) ∈ Zq and K ′ = (kq+1, . . . , km) ∈ Zm−q,
let

xK =
∑

I

fI [xiq+1 | · · · |xim ],

where the summation runs over the labels I ∈ C such that i1 = k1, . . . ,
iq = kq, and

xK′ =
∑

I

fI [xi1 | · · · |xiq ],

where the summation runs over the labels I ∈ C such that iq+1 = kq+1, . . . ,
im = km. Then xK is a cycle of Bm−q(Q)m−q and xK′ is a cycle of Bq(Q)q.

Proof. We have

∂xK′ =
q−1∑

j=1

∑

(iq+1,...,im)=K′
fI [xi1 | · · · |xijxij+1 | · · · |xiq ]

=
q−1∑

j=1

∑
[xl1 | · · · |xlj−1 |

∑

I

fIxijxij+1 |xlj+2 | · · · |xlq ],

where the second summation is over all (l1, . . . , lj−1) ∈ Zj−1, (lj+1, . . . , lq)
∈ Zq−j and the innermost summation is over all I such that

(i1, . . . , ij−1) = (l1, . . . , lj−1),

(ij+2, . . . , iq, iq+1, . . . , im) = (lj+2, . . . , lq, kq+1, . . . , km).

Since ∂x = 0, Theorem 1 implies that each of the summations over I is zero.
Hence ∂xK′ = 0. A similar argument shows ∂xK = 0. This completes the
proof.

Example 1. Set

Rk,n = x2k−1−nxk +
∑

j

(
n− 1− j

j

)
x2k−1−jxk−n+j;

then {Rk,n}k∈Z,n∈N0 is a (linear) F2-basis of D2(Q).

Example 2. The chain z = [x3|x3|x2] + [x5|x1|x2] + [x5|x3|x0] is a cycle
of B3(Q)3 since x3x2 = 0, x1x2 = x3x0, x3x3 = x5x1, x5x3 = 0. More
generally, for each h ∈ Z,

z(h) = [x4h−5|x2h−1|xh] + [x4h−3|x2h−3|xh] + [x4h−3|x2h−1|xh−2]

is a cycle of B3(Q)3, as x2k−1xk = 0, x2k−2xk = x2k−1xk−1, x2k−3xk =
x2k−1xk−2. Another example is z′ = [x4h−3|x2h−1|xh], since 4h − 3 =
2(2h− 1)− 1. More generally, for a fixed k ∈ N0 and for each m ∈ Z,

z′(m) = [x2k(m−1)+1|x2k−1(m−1)+1| · · · |x2(m−1)+1|xm]

is a cycle of Bk+1(Q)k+1.
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Example 3. Using the relations x7x5 = x9x3 and x6x6 = x11x1 +
x10x2 + x9x3, we can exhibit the following cycle in B4(Q)4:

z′′ = [x7|x5|x3|x2] + [x9|x3|x3|x2] + [x9|x5|x1|x2] + [x9|x5|x3|x0].

Corollary 2 allows us to endow the diagonal homology of Q with a coal-
gebra structure described in the following statement.

Theorem 3. For each non-negative integer m, let ψm be the map

ψm : Dm(Q)→
⊕

p+q=m

(Dp(Q)⊗Dq(Q)),

x =
∑

I

fI [xi1 |xi2 | · · · |xim ] 7→ x⊗ 1 + 1⊗ x+
∑

x′ ⊗ x′′,

where the cycles x′ and x′′ are obtained by splitting all the summands of
x and suitably grouping the common terms. Then the sequence {ψm}m∈N0

defines a coproduct in D∗(Q).

In other words, the coalgebra structure of D∗(Q) is the obvious one.

Example 4. If x is the cycle in B4(Q)4 of Example 3, then

ψ(x) = [x7]⊗ [x5|x3|x2] + [x9]⊗ ([x3|x3|x2] + [x5|x1|x2] + [x5|x3|x0])

+ ([x7|x5|x3] + [x9|x3|x3] + [x9|x5|x1])⊗ [x2]

+ [x9|x5|x3]⊗ [x0] + ([x7|x5] + [x9|x3])⊗ [x3|x2]

+ [x9|x5]⊗ ([x1|x2] + [x3|x0]).

It is quite obvious that the groups of the form Hs,t(Q), with s > t, all
vanish, while it is still unclear what happens when s < t. But at least we
know that H1,2(Q) = 0, since each cycle of the form

∑

(i1,i2)∈D
f(i1,i2)[xi1xi2 ] ∈ B1(Q)2

(where D is a suitable set of indices) is the boundary of the chain
∑

(i1,i2)∈D
f(i1,i2)[xi1 |xi2 ] ∈ B2(Q)2.

2. Invariant theory. For each n ≥ 1, let Pn = F2[t1, . . . , tn] be the
polynomial ring in n indeterminates, which are assigned degree 1, and let
Qn,0 be its Euler class, that is, the product of all the elements of degree 1
in Pn. There is a standard action of the general linear group GLn(F2) and
its upper triangular subgroup Tn on Pn, and we consider the following rings
of invariants:

P Tnn = F2[V1, . . . , Vn], PGLn
n = F2[Qn,0, Qn,1, . . . , Qn,n−1]
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and their localizations ∆n and Γn obtained by formally inverting the Euler
class,

∆n = P Tnn [Q−1
n,0] = F2[V ±1

1 , . . . , V ±1
n ],

Γn = PGLn
n [Q−1

n,0] = F2[Q±1
n,0, Qn,1, . . . , Qn,n−1].

Here we follow the notation of [6] and, as in [6], we set

∆ =
⊕

n≥0

∆n, Γ =
⊕

n≥0

Γn,

where ∆0 = Γ0 = F2. As shown in [6], ∆ is a coalgebra with comultiplication
ψ : ∆→ ∆⊗∆ induced by the maps

ψp,q : ∆p+q → ∆p ⊗∆q (p, q ∈ N0)

defined by setting

ψp,q(v
i1
1 · · · v

ip+q
p+q ) = vi11 · · · v

ip
p ⊗ vip+1

1 · · · vip+qq

and Γ is a subcoalgebra of ∆. As an example, if we set n = p+ q, we have

ψp,q(Qn,s) =
∑

j≥0

Q2q−2j
p,0 Q2j

p,s−j ⊗Qq,j.

We now borrow some ideas from N. H. V. Hung ([2]) and apply them
to Q. Let us consider the F2-linear maps

πm,q : ∆m → Bm−1(Q)m (m ≥ 2, q = 1, . . . ,m− 1)

defined by setting

πm,q(v
i1
1 · · · vimm ) = [xi1+1| · · · |xiq−1+1|xiq+1xiq+1+1| · · · |xim+1].

We remark that, in particular, kerπ2,1 = Γ2. In fact, as shown in [3] (though
in a slightly different context), the elements of Γ2 correspond to the gener-
alized Adem relations under the map π2,1. For example

π2,1(Qn2,0) = π2,1(v2n
1 vn2 ) = x2n+1xn+1 = 0,

π2,1(Q2,1) = π2,1(v2
1 + v1v2) = x3x1 + x2x2 = 0.

Lemma 4. For any m ≥ 2 and q = 1, . . . ,m− 1, we have

kerπm,q = ∆q−1 ⊗ Γ2 ⊗∆m−q−1.

Proof. We consider the map

f = (ψq−1,2 ⊗ 1) ◦ ψq+1,m−q−1 : ∆m → ∆q−1 ⊗∆2 ⊗∆m−q−1

and define, for each t ∈ N,

αt : ∆t → Bt(Q)t, vi11 · · · vitt 7→ [xi1+1| · · · |xit+1].

Clearly
πm,q = (αq−1 ⊗ π2,1 ⊗ αm−q−1) ◦ f,
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and the maps f , αt are both linear F2-isomorphisms. The result now fol-
lows.

Proposition 5. For each m ≥ 2, we have
m−1⋂

q=1

kerπm,q = Γm.

Proof. We simply use the fact that GLm(F2) is generated by all the
matrices of the form

B =



Iq−1 O O
O A O
O O Im−q−1


 ,

where A ∈ GL2(F2). Thus

Γm =
m−1⋂

q=1

∆q−1 ⊗ Γ2 ⊗∆m−q−1 =
m−1⋂

q=1

kerπm,q

as claimed.

We now look at the commutative diagram

Bm(Q)m

∆m Bm−1(Q)m

βm

yy�
�

�
�

�
�

�
�

∂m,q
��

πm,q
//

where βm and ∂m,q are defined by setting

βm[xj1 | · · · |xjm ] = vj1−1
1 · · · vjm−1

m

and
∂m,q[xj1 | · · · |xjm ] = [xj1 | · · · |xjqxjq+1 | · · · |xjm ].

We remark that the βm’s induce a map of coalgebras

β :
⊕

m

Bm(Q)m → ∆.

Clearly each βm is a linear isomorphism. We are now ready to state and
prove the following result.

Theorem 6. The diagonal homology D∗(Q) of the algebra Q and the
subcoalgebra Γ of ∆ are isomorphic as coalgebras.

Proof. We have already pointed out that a chain x ∈ Bm(Q)m is a
cycle (i.e. the unique representative of an element in Dm(Q)) if and only if
∂m,q(x) = 0 for each q, i.e. if and only if πm,qβm(x) = 0 for each q, i.e. if and
only if βm(x) ∈ Γm. Therefore βm induces, by restriction, an isomorphism



252 A. Ciampella and L. A. Lomonaco

βm : Dm(Q) = Hm,m(Q) = ker ∂m → Γm

of coalgebras.

Example 5. Another basis for D2(Q) is given by the set

B = {cs,k | k ∈ Z, s ∈ N0},
where

cs,k =
s∑

i=0

(
s

i

)
[x2k−1−i|xk−s+i].

These cycles correspond to the elements Qk−s−1
2,0 Qs2,1, which form a basis

of Γ2. The cycles z(h) ∈ D3(Q) and z′(m) ∈ Dk+1(Q) of Example 2 cor-
respond to the invariants Qh−3

3,0 Q2
3,1 and Qm−1

k+1,0 respectively. Finally, the
invariant Q−1

4,0Q
2
4,1 corresponds to the cycle z′′ of Example 3.
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