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Homological computations in the universal
Steenrod algebra

by

A. Ciampella and L. A. Lomonaco (Napoli)

Abstract. We study the (bigraded) homology of the universal Steenrod algebra @
over the prime field Fa, and we compute the groups Hs s(Q), s > 0, using some ideas
and techniques of Koszul algebras developed by S. Priddy in [5], although we presently do
not know whether or not @ is a Koszul algebra. We also provide an explicit formula for
the coalgebra structure of the diagonal homology D«(Q) = @s>0 H s(Q) and show that

D, (Q) is isomorphic to the coalgebra of invariants I" introduced by W. Singer in [6].

Introduction. It is a basic problem of homological algebra to compute
the (co)homology of various augmented algebras. The purpose of this paper
is to compute the diagonal homology D.(Q) = €,~ Hs,s(Q) of the univer-
sal Steenrod algebra () and provide a description of_D*(Q) as a coalgebra in
terms of invariant theory. @) is a graded algebra arising from algebraic topol-
ogy, for it is the algebra of cohomology operations in the category C(2,c0)
of H.,-ring spectra. It is an interesting object as it contains A, the lambda
algebra introduced in [1], as a subalgebra, and the Steenrod algebra arises
as a quotient of (). Hence it would be nice to understand the cohomology
algebra H*(Q) = Extg(F2,F2) and the homology H.(Q) = Tor?(Fa, Fy),
but these computational problems are presently unsolved. What makes such
computation hard is the fact that () is by no means locally finite and most
of the methods developed by Priddy ([5]) do not apply. The second author
succeeded in computing the diagonal cohomology of @ in [4].

In Section 1 of the present paper a description of the homology groups
H, (@), i.e. the groups Torgs(Fg,Fg), s € N, is provided, with an explicit
formula for the coalgebra structure map of D.(Q). In [5] S. Priddy works
under the hypothesis of local finiteness for the algebras involved, but the
idea we borrow from his work in the proof of Theorem 1 does not depend
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on this assumption. On the contrary, this hypothesis is crucial in Theorem
5.3 of [5], hence we cannot apply that result to our case and deduce that
H s+n(Q) = 0for s, h € N, although @ is a Poincaré-Birkhoff-Witt algebra.

In Section 2 we use the machinery of invariant theory (see e.g. [6]) to
show that D, (Q) is isomorphic, as a coalgebra, to a certain coalgebra of
invariants I" introduced by W. Singer in [6].

1. The diagonal homology of (). The universal Steenrod algebra @
at p = 2 can be presented as follows:

Q= <33k Tok—1-nTh = Z <n ]1 ]>l’2k—1—j$k—n+g‘>,
J

where k € Z and n € Ny. The defining relations of the algebra @} are known
as generalized Adem relations, since they are a generalization of the Adem
relations for the mod 2 Steenrod algebra. A typical monomial z;, ---z;,,
of @ is said to have length m and total degree iy + - -+ + i, (We put xy in
degree k). Such generalized Adem relations are homogeneous with respect
to both total degree and length; hence () is a bigraded algebra. For example
xy, has bidegree (1,k). A linear basis is given by the set B of all admissible
monomials, i.e. monomials of the following type:

P PR ij > 2ij+1 Vj = 1,...,777,— 1.

(Q is neither connected, nor of finite type: for example, the monomials zpx_,
k € Np, are all admissible of length 2 and total degree zero. If z;, - - - z;, € B,
the string I = (i1, ...,4;) will be called the label of z;, - - - z;, and we write
xy instead of x;, ...x;. @ is also an augmented algebra, the augmentation
£ : Q — Fy is obtained by setting £(«) = 0 for each monomial « of positive
length and the identity over Fo. Let J = ker(¢) denote the augmentation
ideal.

The homology of Q is defined as Tor@(Fy, Fy), where Tor is computed
in the category of graded -modules.

Let B(Q) = T(J) = @yen, J ®---®J. Thus B(Q) is generated by

S
elements of the form zj ® --- ® xj,, where zr; € J. Such elements are

written simply as

[en] o] = (@i - Lig, |xit1+1 T xit2| R T NRESREEE TN
and are trigraded: s is the homological degree, t = ts is the length and
U = ij:l i is the total degree, which we usually disregard. Let B4(Q);
denote the submodule generated by elements of bidegree (s,t). We define a
map

s ES(Q) — Bs-1(Q)
by setting
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s—1
Ou[wry |-+ ler]) =D lwn |- lerarn, |- 1),
j=1
which is a differential for B(Q). The chain complex (B(Q),d) is known as
the reduced bar construction, and from homological algebra we know that it
computes the homology of @, i.e. H(Q) = Tor®(Fy, Fy) is the homology of

(B(Q),0). We set Dy(Q) = Hj, 1,(Q). The direct sum D,(Q) = @kzo Di(Q)
is the diagonal homology of Q. In order to compute D, (Q), we notice that

Dk(Q) = Hk,k(Q)
_ ker[0y : Bi(Q)r — Brp—1(Q)i)

im[Ok 11 : Brt1(Q)x — Br(Q)x]

= ker[(?k : Bk(Q)k — Bk—l(Q)k]
since there exist no non-zero (k + 1)-chains of length &k (a (k + 1)-chain has
length at least k+1). Hence, each element of Dy (Q) is uniquely represented
by a cycle of By(Q)y, of the form ), fr[zs, |- |zs,], where I = (i1,..., i)
and z;; € J. Observe that Do(Q) = F2 and D1(@Q) is the Fa-vector space with
{[zx] | k € Z} as a basis, because By(Q) = Fs and 0 : B1(Q) = J — Bo(Q)
is the zero homomorphism. In the following statement we describe the groups
D,,(Q) = ker ), in terms of cycles.

THEOREM 1. Let @ = Y ;¢ f1lzi] - |@i,,] € Bm(Q)m, where C is a
suitable set of labels. Then x is a cycle if and only if for each j (1 < j
< m —1) and each (ki,...,kj—1) € Z37Y, (kjy2,...,km) € Z™ 771 the
following condition holds:

Z f[xij $ij+1 = 0)
I
where the summation runs over all I € C such that (i1,...,4;-1) = (k1,...

ey k’jfl) and (ij+2, ey ’Lm) = (k‘j+2, ey k‘m)

Proof. Let us compute Oz:

m—1
Oz = Z Z f1[$i1| T |xijxij+1| T ‘:Eim]v

I j=1
where [z, ] - |2i, @i, |- |@i,,] € Bm—1(Q)m- Hence dx = 0 if and only if
for each j (1 < j <m —1) and each (ky,...,kj_1) € Z/~!, we have

Z frlwa |- ’xijxij+1’ g, ] =0,
I

where the summation is taken over all I such that (i1,...,7;—1) = (k1,...
.. kj—1) and (ij42,...,%m) = (Kjt2,...,kmn). But this is equivalent to
EI ffxij:cin = 0, summed over the same values of I.
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COROLLARY 2. Suppose that x = Y ;.o f1]xi|---|xi,] is a cycle of
Bn(Q)m. For each K = (ky, ..., ky) € Z¢ and K' = (kgs1, ..., km) € Z™71,

let
TK = Zfl[xiq-H’ T |xim]7
1

where the summation runs over the labels I € C such that i1 = kq,...,

iqg = kg, and
TR = Z frlziy] -+ |w4,],

where the summation runs over the labels I € C such that ig41 = kg1, ...,
im = km. Then vk is a cycle of By—q(Q)m—q and zg is a cycle of By(Q),-

Proof. We have

Ok = Z Z frlil - lwiywig o |- o]

J=1 (ig41,esim) =K'
Z Z xll lj71| Z ffxijxijJrl |xlj+2| T |':qu]7
j=1 I
where the second summation is over all (I1,...,lj_1) € Z77L, (lj41,...,1,)

€ 7977 and the innermost summation is over all I such that
(i1,..,05-1) = (L, ..., Lj—1),
(442, - 50g, bgtts - im) = (Ljg2, -y lgs Kgts oo s km)-
Since 0x = 0, Theorem 1 implies that each of the summations over [ is zero.

Hence 0xgs = 0. A similar argument shows 0xx = 0. This completes the
proof. m

EXAMPLE 1. Set
n—1—7
Rip = Top—1-nTk + Y < p >$2k1j$kn+j;
J
then { Ry }reznen, is a (linear) Fo-basis of Do (Q).

EXAMPLE 2. The chain z = [w3|z3|ze] + [z5]21]72] + [75]73]|20] I8 a cycle
of B3(Q)s3 since xgxy = 0, x1292 = x3T0, T3T3 = X521, Tsry = 0. More
generally, for each h € Z,

2(h) = [xan—s|von—1|mn] + [Tan—3|z2n—s|zn] + [wan—3|T2n—1|TH—2]
is a cycle of B3(Q)s, as wop—12k = 0, Top—2Th = Tok—1Th—1, Toh—3Tf =
Tog_1Tk—o2. Another example is 2/ = [z4p_3|xop_1|zs], since 4h — 3 =
2(2h — 1) — 1. More generally, for a fixed k € Ny and for each m € Z,
Z'(m) = [»’Uzk(m—l)ﬂ’x2k—1(m—1)+1’ T ’xZ(m—l)-i—l’xm]

is a cycle of Bry1(Q)ky1-
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ExaMPLE 3. Using the relations zyxs = ZEg:L’g_and TeTe = T11T1 +
x10T2 + x93, we can exhibit the following cycle in B4(Q)4:

2" = [wr|zs|zs|wa] + [wo|ws|zs|ze] + [wo|@s|m1|ma] + [To]25|23]20].

Corollary 2 allows us to endow the diagonal homology of @) with a coal-

gebra structure described in the following statement.

THEOREM 3. For each non-negative integer m, let 1, be the map
Um : Dm(Q) = €D (Dp(Q) ® Dy(Q)),
ptq=m
=Y fileales] |z, —rel+loe+ Y 2 @,
I

where the cycles ' and x" are obtained by splitting all the summands of
x and suitably grouping the common terms. Then the sequence {tm }men,
defines a coproduct in D, (Q).

In other words, the coalgebra structure of D.(Q) is the obvious one.
EXAMPLE 4. If  is the cycle in B4(Q)4 of Example 3, then

Y(x) = [27] @ [ws|ws|wa] + [wo] ® ([ws]ws|wa] + [w5]w1|w2] + [w5]w3|20])
([wrlws|ws] + [wol|zs|ws] + [xo|ws|z1]) @ [22]

[wolas|2s] @ [wo] + ([w7]w5] + [w9|xs]) ® [ws|ws]

+ [o|ws] ® ([z1|22] + [z3|z0])-

It is quite obvious that the groups of the form H (@), with s > ¢, all
vanish, while it is still unclear what happens when s < t. But at least we
know that H; 2(Q) = 0, since each cycle of the form

> Farinlza i) € B1(Q)2

(il,iQ)ED

- -

(where D is a suitable set of indices) is the boundary of the chain

Z Fan i |[23,] € B2(Q)a.

(il,ig)E'D

2. Invariant theory. For each n > 1, let P, = Falt1,...,t,] be the
polynomial ring in n indeterminates, which are assigned degree 1, and let
Qn,0 be its Euler class, that is, the product of all the elements of degree 1
in P,. There is a standard action of the general linear group GL, (F3) and
its upper triangular subgroup 7;, on P,,, and we consider the following rings
of invariants:

P;{" - }FQ[VD .. '7Vn]7 PSLR = FQ[Qn,O;Qn,l; e 7Qn,n—1]
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and their localizations A, and I}, obtained by formally inverting the Euler
class,
A, = PQ, 5] = Fao[ Vi, .. Vi,

n
Fn = PTE;Ln [Q;})] = FQ[Q%}O? Qn,b ey Qn,n—l]~
Here we follow the notation of [6] and, as in [6], we set
A= =P
n>0 n>0

where Ag = I'y = Fo. As shown in [6], A is a coalgebra with comultiplication
v :A— AR A induced by the maps

Upq : Aprq = Ap @ Ag  (p,q € No)
defined by setting

i1 Iptqy _ 01 ip ip41 iptq
Upg(v1' - 0Yy) = vt oy @ U

and I is a subcoalgebra of A. As an example, if we set n = p + ¢, we have
Vpg(@n,s) = Z 12;70_2] 12;5—]' ® Qq.;j-
Jj=>0
We now borrow some ideas from N. H. V. Hung (]2]) and apply them
to ). Let us consider the Fa-linear maps
Tmg: Am = Bm-1(Q)y (m>2, ¢=1,...,m—1)
defined by setting
Tmg(Vr' o) = [Tiy |- @il 1 zig 1l @i, 1]
We remark that, in particular, ker my 1 = I's. In fact, as shown in [3] (though
in a slightly different context), the elements of Iy correspond to the gener-
alized Adem relations under the map 79 ;. For example
m2,1(Q3 ) = 2,1 (vi"V5) = Tant1Tnt1 = 0,
T9.1(Q2,1) = m2,1(v] + v1v2) = 2371 + L2709 = 0.
LEMMA 4. For anym > 2 and g=1,...,m — 1, we have
ker mp g = Ag—1 @ Io ® Apy—g—1.
Proof. We consider the map
f= (¢q71,2 ® 1) © d)qul,qufl P Ay — Aqfl ® A2 ® Aqufl
and define, for each t € N,
ap: Ay = Bi(@)r, ot - vy = i @i,
Clearly
Tmg = (-1 © T21 @ Am—g-1) © [,
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and the maps f, a; are both linear Fo-isomorphisms. The result now fol-
lows. =
PROPOSITION 5. For each m > 2, we have

m—1

ﬂ kermy, g = I'p,.
q=1

Proof. We simply use the fact that GL,,(IF2) is generated by all the
matrices of the form

.1 O O
B=| o0 a4 o |,
O O Ingo
where A € GLy(F2). Thus
m—1 m—1
Iy = ﬂ Aq—l ® I ® Am—q—l = m kerﬂ'm,q
g=1 q=1

as claimed. =

We now look at the commutative diagram

Bin(Q)m

e

Ap T Em—l (Q)m

where (3, and 0,, 4 are defined by setting

Bl -+ ey, ] = o' ol

and
Omali | 1] = [ |Tjg Tl |25

We remark that the G,,’s induce a map of coalgebras

0 @Em(Q)m — A.

Clearly each (,, is a linear isomorphism. We are now ready to state and
prove the following result.

THEOREM 6. The diagonal homology D.(Q) of the algebra Q and the
subcoalgebra I' of A are isomorphic as coalgebras.

Proof. We have already pointed out that a chain z € Bp,(Q),, is a
cycle (i.e. the unique representative of an element in D,,(Q)) if and only if
Om,q(x) = 0 for each g, i.e. if and only if 7, o3 (x) = 0 for each g, i.e. if and
only if 8,,(z) € I},,. Therefore 3, induces, by restriction, an isomorphism
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Bt Din(Q) = Him(Q) = ker 0, — Iy
of coalgebras. m
EXAMPLE 5. Another basis for Ds(Q) is given by the set
B={csy | keZ,se Ny},

u S
Cop =Y ; Jle—1—ilTh—siil.

1=0

where

These cycles correspond to the elements QS,BSAQ;,D which form a basis
of I'y. The cycles z(h) € D3(Q) and 2'(m) € Di11(Q) of Example 2 cor-
respond to the invariants Ql??,_03Q§,1 and Q;”_ﬁlo respectively. Finally, the

invariant Q;é@il corresponds to the cycle z” of Example 3.

References

[1] A.K. Bousfield, E. B. Curtis, D. M. Kan, D. G. Quillen, D. L. Rector and J. W. Schle-
singer, The mod p lower central series and the Adams spectral sequence, Topology 5
(1966), 331-342.

[2] N. H. V. Hung, Spherical classes and the Lambda algebra, Trans. Amer. Math. Soc.
353 (2001), 4447-4460.

[3] L. A.Lomonaco, Dickson invariants and the universal Steenrod algebra, Suppl. Rend.
Cir. Mat. Palermo (2) 24 (1990), 429-444.

[4] —, The diagonal cohomology of the universal Steenrod algebra, J. Pure Appl. Algebra
121 (1997), 315-323.

[5] S. P. Priddy, Koszul resolutions, Trans. Amer. Math. Soc. 152 (1970), 39-60.

[6] W. Singer, Invariant theory and the Lambda algebra, ibid. 280 (1983), 673-693.

Dipartimento di Matematica e Applicazioni

Universita di Napoli “Federico 11"

Napoli, Italy

E-mail: ciampell@Qunina.it
lomonaco@unina.it

Received 8 December 2003;
in revised form 11 November 2004



