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Incomparable, non-isomorphic and minimal Banach spaces

by

Christian Rosendal (Pasadena, CA)

Abstract. A Banach space contains either a minimal subspace or a continuum of
incomparable subspaces. General structure results for analytic equivalence relations are
applied in the context of Banach spaces to show that if E0 does not reduce to isomor-
phism of the subspaces of a space, in particular, if the subspaces of the space admit a
classification up to isomorphism by real numbers, then any subspace with an uncondi-
tional basis is isomorphic to its square and hyperplanes, and the unconditional basis has
an isomorphically homogeneous subsequence.

1. Introduction. This paper contains results in the intersection of the
geometry of Banach spaces and descriptive set theory. The general problem
of our study is a generalisation of the homogeneous space problem. Namely,
what can be said about a Banach space with “few” non-isomorphic sub-
spaces? In particular, will such a space necessarily satisfy more regularity
properties than a general space? Will it necessarily have subspaces of a given
type?

The paper is divided into two parts, of which the first contains a proof
of the following:

Theorem 1. Let X be an infinite-dimensional Banach space. Then X
contains either a minimal subspace or a continuum of pairwise incomparable
subspaces.

Recall that two spaces are said to be incomparable if neither of them
embed into the other, and a space is minimal if it embeds into all of its
infinite-dimensional subspaces and is itself infinite-dimensional. Therefore, if
a space is saturated with pairs of incomparable subspaces, it has a continuum
of incomparable subspaces.

The homogeneous space problem, which was solved in the positive by the
combined efforts of Gowers [10] and Komorowski and Tomczak-Jaegermann
[18], is the problem of whether any infinite-dimensional space, isomorphic to
all its infinite-dimensional subspaces, must necessarily be isomorphic to `2.

2000 Mathematics Subject Classification: Primary 46B03; Secondary 03E15.

[253]



254 C. Rosendal

As a continuation of this one can ask how many isomorphism classes of
subspaces a non-Hilbertian space has to contain. Infinitely many? A contin-
uum? Even for some of the classical spaces this question is still open, though
recently progress has been made by Ferenczi and Galego [7].

Our theorem and proof turn out to have something to say about the
following two problems of Gowers ([10, Problems 7.9 and 7.10]):

• Determine which partial orders can be realised as the set of sub-
spaces of an infinite-dimensional Banach space under the relation of
embeddability. Or at least find strong conditions such a partial order
must necessarily satisfy.
• Find further applications of the main determinacy result in [10]. In

particular, are there any applications that need its full strength, i.e.,
that need it to hold for analytic and not just open sets?

Our Theorem 1 says that any such partial order must have either a
minimal element or an antichain of continuum size. And, as will be evident,
the proof does in fact very much need the full strength of the determinacy
result.

We mention that our proof relies heavily on methods of logic and we
have therefore included a short review of the most basic notions of set theory
indispensable to understand the proof. Also for the benefit of the non-analyst
we recall some standard notions from Banach space theory.

Before presenting the results of the second part, we will first need this
brief review.

1.1. Descriptive set theory. Our general reference for descriptive set the-
ory will be the book [17] by Kechris, whose notation will be adopted here.

A Polish space is a separable completely metrisable space. A measur-
able space whose algebra of measurable sets are the Borel sets of some
Polish topology is said to be standard Borel . These spaces turn out to be
completely classified up to Borel isomorphism by their cardinality, which
can be either countable or equal to that of the continuum. A subset of a
standard Borel space is analytic if it is the image by a Borel function of
some standard Borel space, and coanalytic if its complement is analytic.
It is C-measurable if it belongs to the smallest σ-algebra containing the
Borel sets and closed under the Suslin operation. In particular, analytic
sets are C-measurable as they can be obtained by the Suslin operation ap-
plied to a sequence of Borel sets. C-measurable sets in Polish spaces satisfy
most of the classical regularity properties, such as universal measurabil-
ity and the Baire property. We denote by Σ1

1, Π1
1 and Σ1

2 the classes of
analytic, coanalytic and Borel images of coanalytic sets respectively. A clas-
sical result of Sierpiński states that any Σ1

2 set is the union of ℵ1 Borel
sets.
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Let X be a Polish space and F(X) denote the set of closed subsets of X.
We endow F(X) with the following σ-algebra that renders it a standard
Borel space. The generators are the following sets, where U varies over the
open subsets of X:

{F ∈ F(X) | F ∩ U 6= ∅}.
The resulting measurable space is called the Effros–Borel space of X.

Fix some basis {Un} for the space C(2N) and define the Borel set B by

B = {F ∈ F(C(2N)) | ∀n (0 ∈ Un → F ∩ Un 6= ∅) ∧ ∀n,m, l ∀r, t ∈ Q
(rUn + tUm ⊆ Ul ∧ F ∩ Un 6= ∅ ∧ F ∩ Um 6= ∅ → F ∩ Ul 6= ∅)}.

This evidently consists of all the closed linear subspaces of C(2N) and, as
C(2N) is isometrically universal for separable Banach spaces, any separable
Banach space has an isometric copy in B. We can therefore view B as
the standard Borel space of all separable Banach spaces. When one wants
to restrict attention to the subspaces of some particular space X one only
needs to consider the Borel subset {Y ∈ B | Y ⊆ X}. Moreover, it is not
hard to see that most reasonably definable properties and relations are at
most Σ1

2 in B or Bn; for example, the relations of isometry and isomorphism
are both analytic in B2, exactly as expected. For a systematic study of the
descriptive complexity of different relations between Banach spaces, one
should mention the article [3] by B. Bossard.

A theme of descriptive set theory that has been extensively developed
the last fifteen years or so, is the Borel reducibility ordering of analytic
equivalence relations on standard Borel spaces. This ordering is defined as
follows: Suppose E ⊆ X2 and F ⊆ Y 2 are analytic equivalence relations on
standard Borel spaces X and Y . We say that E is Borel reducible to F , in
symbols E ≤B F , if there is a Borel measurable function f : X → Y such
that for all x, y ∈ X,

xEy ⇔ f(x)F f(y).

Moreover, when X and Y are Polish and f can be taken to be continuous,
we write E ≤c F .

Heuristically, X represents a class of mathematical objects (e.g., sep-
arable Banach spaces) that we wish to classify up to E-equivalence (e.g.,
isomorphism) by complete invariants belonging to some other category of
mathematical objects. A reduction f : X → Y of E to F then corresponds
to a classification of X-objects up to E-equivalence by Y -objects up to
F -equivalence.

Another way of viewing the Borel reducibility ordering is as a refinement
of the concept of cardinality. It provides a concept of relative cardinality for
quotient spaces in the absence of the axiom of choice, since a reduction of E
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to F is essentially an injection of X/E into Y/F admitting a Borel lifting
from X to Y .

A few words on the power of the continuum: We say that an analytic
equivalence relation E on a standard Borel space X has a continuum of
classes if there is an uncountable Borel set B ⊆ X consisting of pairwise E-
inequivalent points. This is known to be stronger than just demanding that
there should be some bijection between the set of classes and R. There are
for example analytic equivalence relations having exactly ℵ1 classes, but not
having a continuum of classes (in the above sense) in any model of set theory.
But an uncountable Borel set is always Borel isomorphic to R, independently
of the size of the continuum. For an example of an analytic equivalence
relation with uncountably many but not continuum many classes, define E
on P(Q) by

AEB ⇔ [(A,<Q) and (B,<Q) are not wellordered or (A,<Q) ∼= (B,<Q)].

If A is some infinite subset of N, we denote by [A]N the space of all
infinite subsets of A equipped with the topology induced by the product
topology on 2A. Furthermore, for two sets A and B we write A ⊆∗ B iff
A \ B is finite. Then A (∗ B iff A ⊆∗ B but B 6⊆∗ A. Also, when A ⊆ N
and k ∈ N we let A/k = {n ∈ A | n > k}. We will occasionally also consider
natural numbers as ordinals, so that n = {0, 1, . . . , n− 1}.

We will repeatedly use the following result of Ellentuck and Louveau
extending results of Galvin–Prikry for Borel sets and of Silver for analytic
sets: if A ⊆ [N]N is a C-measurable set, then there is some A ∈ [N]N with
either [A]N ⊆ A or [A]N ∩ A = ∅.

This has the consequence that if f : [N]N → X is some C-measurable
function with values in some Polish space X, then there is some A ∈ [N]N

such that the restriction of f to [A]N is continuous.
Among the simpler analytic equivalence relations are those that admit

a classification by real numbers, i.e., those that are Borel reducible to the
identity relation on R. These are said to be smooth. It turns out that among
Borel equivalence relations there is a minimum, with respect to ≤B, non-
smooth one, which we denote by E0 (see [13]). It is defined on [N]N as the
relation of eventual agreement, i.e.,

AE0B ⇔ ∃n A/n = B/n.

To see that E0 is non-smooth, suppose towards a contradiction that f :
[N]N → R is a Borel function such that AE0B ⇔ f(A) = f(B). Then there
is some infinite C ⊆ N such that the restriction of f to [C]N is continuous.
But, as the equivalence class of C is dense in [C]N, this means that f is
constant on [C]N, contradicting the fact that [C]N intersects more than one
equivalence class.
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On the other hand, any uncountable Borel set B ⊆ [N]N of pairwise
almost disjoint sets will witness that E0 has a continuum of classes.

From this it follows that any analytic equivalence relation to which E0

reduces has a continuum of classes, but does not admit a classification by
real numbers.

After these preliminary remarks we can state our second result.

Theorem 2. Let X be a Banach space with an unconditional basis (en).
If E0 does not Borel reduce to isomorphism between subspaces generated by
subsequences of the basis (and in particular if these admit a classification by
real numbers), then any space spanned by a subsequence is isomorphic to its
square and hyperplanes. Furthermore, in this case there is a subsequence of
the basis such that all of its subsequences span isomorphic spaces.

For example, as the usual basis of Tsirelson’s space does not have a
subsequence all of whose subsequences span isomorphic spaces, this shows
that there is no isomorphic classification of the subspaces of Tsirelson’s space
by real numbers.

This result can be coupled with Gowers’s dichotomy [10] proving:

Theorem 3. Let X be a separable Banach space. Either E0 Borel re-
duces to isomorphism between its subspaces, or X contains a reflexive sub-
space with an unconditional basis all of whose subsequences span isomorphic
spaces.

For the above we will need some Ramsey type results for product spaces
and some constructions for reducing E0. These results seem to have an
independent interest apart from their applications to Banach space theory in
that they classify minimal counterexamples to Ramsey properties in product
spaces. For E an equivalence relation on [N]N and A ∈ [N]N, we say that A
is E-homogeneous if AEB for all B ∈ [A]N. Now we can state another of
our results:

Theorem 4. Let E be an analytic equivalence relation on [N]N invari-
ant under finite changes. Either E0 Borel reduces to E, or E admits a
homogeneous set.

1.2. Schauder bases. Let X be some separable Banach space and (ei) a
non-zero sequence in X. We say that (ei) is a basis for X if any vector x
in X can be uniquely written as a norm convergent series x =

∑
aiei. In

that case, the biorthogonal functionals e∗k(
∑
aiei) := ak and the projections

Pn(
∑
aiei) :=

∑n
i=0 aiei are in fact continuous and moreover their norms

are uniformly bounded.
If (ei) is some non-zero sequence that is a basis for its closed linear span,

written [ei], we say that it is a basic sequence in X. The property of (ei)
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being a basic sequence can also be equivalently stated as the existence of a
constant K ≥ 1 such that for any n ≤ m and a0, a1, . . . , am ∈ R,

∥∥∥
n∑

i=0

aiei

∥∥∥ ≤ K
∥∥∥

m∑

i=0

aiei

∥∥∥.

Suppose furthermore that for any x =
∑
aiei the series actually con-

verges unconditionally, i.e., for any permutation σ of N the series
∑
aσ(i)eσ(i)

converges to x. Then the basic sequence is said to be unconditional .
Again, being an unconditional basis for some closed subspace (which will

be denoted by “unconditional basic sequence”) is equivalent to there being
a constant K ≥ 1 such that for all n, A ⊆ {0, . . . , n} and a0, . . . , an ∈ R,

∥∥∥
∑

i∈A
aiei

∥∥∥ ≤ K
∥∥∥

n∑

i=0

aiei

∥∥∥.

We will in general only work with normalised basic sequences, i.e., ‖ei‖ ≡ 1,
which can always be obtained by taking e′i := ei/‖ei‖.

Given some vector x ∈ span(ei) let its support , supp(x), be the set of
indices i with e∗i (x) 6= 0. For k ∈ N and x, y ∈ span(ei) we write k < x if
k < min supp(x), and x < y if max supp(x) < min supp(y). A block basis,
(xi), over a basis (ei) is a finite or infinite sequence of vectors in span(ei)
with x0 < x1 < x2 < · · · . This sequence will also be basic and in fact
unconditional in case (ei) is so.

Two basic sequences (ei) and (ti) are called equivalent , in symbols
(ei) ≈ (ti), provided a series

∑
aiei converges if and only if

∑
aiti converges.

This can also be stated as saying that T : ei 7→ ti extends to an invertible
linear operator between [ei] and [ti]. The quantity ‖T‖ · ‖T−1‖ is then the
constant of equivalence between the two bases.

An unconditional basis that is equivalent to all of its subsequences is said
to be subsymmetric. A simple diagonalisation argument then shows that it
must be uniformly equivalent to all of its subsequences.

Two basic sequences (ei) and (ti) are said to be permutatively equivalent
if there is some permutation σ of N such that (ei) and (tσ(i)) are equivalent.

2. Incomparable and minimal subspaces. Two Banach spaces X
and Y are called incomparable in case neither of them embed isomorphically
into the other. X is said to be minimal if it embeds into all of its infinite-
dimensional subspaces and X itself is infinite-dimensional.

Our proof of the first theorem will proceed by a reduction to an analysis
of Borel partial orders due to L. Harrington, D. Marker and S. Shelah [14].
Instrumental in our reduction will be the determinacy result of Gowers [10]
on certain games in Banach spaces, which will guarantee that some choices



Incomparable Banach spaces 259

can be done uniformly, a fact that is needed for definability purposes. More-
over, we will use some ideas of J. López-Abad [19] on coding reals with
inevitable subsets of the unit sphere of a Banach space, which in turn relies
on the results of Odell and Schlumprecht [20].

A nice presentation of the progress made in the geometric theory of
Banach spaces in the nineties can be found in the article [11] by W. T.
Gowers.

We mention that it was shown by a simpler argument in [9] by V. Ferenczi
and the author that any Banach space either contains a minimal subspace
or a continuum of non-isomorphic subspaces.

To simplify notation, we write X v Y if X embeds isomorphically into
Y , and we always suppose the spaces we are working with to be separable
infinite-dimensional. Then v restricted to the standard Borel space of sub-
spaces of some separable Banach space becomes an analytic quasi-order, i.e.,
transitive and reflexive. So Theorem 1 amounts to saying that v has either
a minimal element or a perfect antichain.

Suppose (ei) is a normalised basic sequence with norm denoted by ‖ · ‖.
We call a normalised block vector x with finite support rational if it is a
scalar multiple of a finite linear combination of (ei) with rational coordinates.
Notice that there are only countably many rational (finite) block vectors,
which we can gather in a set Q and give it the discrete topology. Let bbQ(ei)
be the set of block bases of (ei) consisting of rational normalised block
vectors. This is easily seen to be a closed subspace of QN, which is itself
a Polish space. Moreover, the canonical function sending X ∈ bbQ(ei) to
its closed span in B is Borel, so the relations of isomorphism, etc., become
analytic on bbQ(ei).

We recall the following classical facts: Any infinite-dimensional Banach
space contains an infinite normalised basic sequence (ei). Moreover, if Y is
any subspace of [ei], then it contains an isomorphic perturbation of a block
basic sequence of (ei). Again, any block basic sequence is equivalent to some
member of bbQ(ei). So this explains why we can concentrate on bbQ(ei) if
we are only looking for minimal subspaces.

For X,Y ∈ bbQ(ei), let X ≤ Y if X is a blocking of Y , i.e., if any
element of X is a linear combination over Y . Note that this does not imply
that they are rational block vectors over Y , but only over (ei). Moreover, if
Y = (yi),X = (xi) ∈ bbQ(ei), set Y ≤∗ X if (yi)i≥k ≤ X for some k. Also,
for ∆ = (δi) an infinite sequence of strictly positive reals write d(X,Y ) < ∆
if ‖xi − yi‖ < δi for all i.

Write X ≈ Y if the bases are equivalent and X ∼= Y if they span iso-
morphic spaces. Then a classical perturbation argument shows that there
is some ∆, depending only on the constant of the basis, such that for any
X,Y ∈ bbQ(ei) if d(X,Y ) < ∆, then X ≈ Y and in particular X ∼= Y . Write



260 C. Rosendal

also X = (xi) w Y = (yi) if ∃k ∀i ≥ k xi = yi. Then, evidently, X w Y
implies X ≈ Y .

For a subset A ⊆ bbQ(ei) let

A∗ = {Y ∈ bbQ(ei) | ∃X ∈ A X w Y },

A∆ = {Y ∈ bbQ(ei) | ∃X ∈ A d(X,Y ) < ∆}.
Notice that if A is analytic then so are both A∗ and A∆. Again [Y ] = {X ∈
bbQ(ei) | X ≤ Y }. Such an A is said to be large in [Y ] if for any X ∈ [Y ]
we have [X] ∩ A 6= ∅.

For (ei) a given normalised basis, A ⊆ bbQ(ei) and X ∈ bbQ(ei), the
Gowers game aAX is defined as follows: in the kth move of the game, player I
plays a rational normalised block vector yk of (ei) such that yk−1 < yk and
yk is a block on X. Player II responds by either doing nothing or playing
a rational normalised block vector x such that x ∈ [yl+1, . . . , yk] where l
was the last move where II played a vector. So player II wins the game if
in the end she has produced an infinite rational block basis X = (xi) ∈ A.
This is an equivalent formulation due to J. Bagaria and J. López-Abad [1]
of Gowers’s original game.

Gowers [10] proved that if A ⊆ bbQ(ei) is analytic, large in [Y ], and ∆

is given, then for some X ∈ [Y ], II has a winning strategy in the game aA∆X .
We also mention a result of Odell and Schlumprecht [20, 21] obtained

from their solution to the distortion problem: If E is an infinite-dimensional
Banach space not containing c0, there are an infinite-dimensional subspace
F and A,B ⊆ SF of positive distance such that any infinite-dimensional
subspace of F intersects both A and B.

The following was shown in [9]:

Lemma 5. (MA) Let A ⊆ bbQ(ei) be linearly ordered under ≤∗ of car-
dinality strictly less than the continuum. Then there is some X ∈ bbQ(ei)
such that X ≤∗ Y for all Y ∈ A.

From this lemma one gets the following:

Lemma 6. (MA + ¬CH) Suppose W ⊆ bbQ(ei) is a Σ1
2 set large in

some [Y ], and ∆ > 0. Then II has a winning strategy in aW
∗
∆

X for some
X ∈ [Y ].

Proof. Let W =
⋃
ω1
Vξ be a decomposition of W as an increasing union

of ℵ1 Borel sets. We claim that some V∗ξ is large in [Z] for some Z ∈ [Y ],
which by Gowers’s theorem will be enough to prove the lemma. So suppose
not and find Y0 ∈ [Y ] such that [Y0] ∩ V∗0 = ∅. Repeating the same process
and diagonalising at limits, we find Yξ ∈ [Y ] for ξ < ω1 such that [Yξ]∩V∗ξ = ∅
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and Yξ ≤∗ Yη for η < ξ. By the above lemma there is some Y∞ = (yi) ∈ [Y ]
with Y∞ ≤∗ Yξ for all ξ < ω1.

We claim that [(y2i)] ∩W = ∅. Otherwise, for Z = (zi) ∈ [(y2i)] ∩W
find ξ < ω1 such that Z ∈ Vξ. Now as (yi) ≤∗ Yξ there is some k with
(yi)i≥k ≤ Yξ, whence

(y2i) w (yk, yk+1, yk+2, . . . , y2k−1, y2k, y2(k+1), y2(k+2), . . .) ≤ Yξ.
One now easily sees that there is some (xi) with

(zi) w (xi) ≤ (yk, yk+1, yk+2, . . . , y2k−1, y2k, y2(k+1), y2(k+2), . . .),

whereby (xi) ∈ V∗ξ , contradicting V∗ξ ∩ [Yξ] = ∅.
Therefore [(y2i)] ∩W = ∅, again contradicting the largeness of W.

Lemma 7. (MA +¬CH) Suppose that (ei) is a basic sequence such that
[ei] does not contain a minimal subspace. Then for any W ∈ bbQ(ei) there
are a Y ∈ [W ] and a Borel function g : [Y ]→ [Y ] such that for all Z ∈ [Y ],

g(Z) ≤ Z & Z 6v g(Z).

Proof. As c0 is minimal, [ei] does not contain c0. Therefore, by the solu-
tion to the distortion problem by Odell and Schlumprecht [20], we can, by
replacing (ei) by a block, suppose that we have two positively separated sets
F0, F1 of the unit sphere such that for any X ∈ bbQ(ei) there are rational
normalised blocks x, y on X with x ∈ F0 and y ∈ F1. We call such sets
inevitable.

Let now

D = {X = (xi) ∈ bbQ(ei) | ∀i xi ∈ F0 ∪ F1}
and for X ∈ D let α(X) ∈ 2N be defined by

α(X)(i) = 0 ⇔ xi ∈ F0.

Then D is easily seen to be a closed subset of bbQ(ei) and α : D→ 2N to be
continuous. Furthermore, by the inevitability of F0 and F1, we see that D is
large in every [Y ].

Let Q<N∗ be the set of finite non-identically zero sequences of rational
numbers, endowed with the discrete topology. Then (Q<N∗ )N is Polish. For
any Y ∈ bbQ(ei) and (λi) ∈ (Q<N∗ )N define the block basis (λi) · Y of Y in
the obvious way, by taking the successive linear combinations given by (λi).

Fix also some perfect set P of almost disjoint subsets of N seen as a
subset of 2N and let β : P ↔ (Q<N∗ )N be a Borel isomorphism. Again

E = {X ∈ D | α(X) ∈ P}
is closed and large in bbQ(ei). Moreover, the set

W = {X = (xi) ∈ bbQ(ei) | (x2i) ∈ E ∧ (x2i+1) 6v β ◦ α((x2i)) · (x2i+1)}
is coanalytic. We claim that it is large in bbQ(ei).
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To see this, let Y ∈ bbQ(ei) be given and take, by inevitability of F0

and F1, some (zi) ∈ [Y ] with z3i ∈ F0 and z3i+1 ∈ F1. As [z3i+2] is not
minimal, there is some X ≤ (z3i+2) such that (z3i+2) 6v X. Take some
(λi) ∈ (Q<N∗ )N such that

(λi) · (z3i+2) ≈ X,
whence

(z3i+2) 6v (λi) · (z3i+2).

We can now define some (vi) by letting

v2i+1 = z3i+2

and either v2i = z3i or v2i = z3i+1 in such a way that

β ◦ α((v2i)) = (λi).

This ensures that (vi) ∈ W. So as (vi) ≤ (zi), it is in [Y ] and W is indeed
large.

Take now some ∆ = (δi) depending on the basis constant such that
d(Y, Y ′) < ∆ implies Y ≈ Y ′, and moreover δi <

1
2d(F0, F1). By Lemma 6

we can find a Y ∈ bbQ(ei) such that II has a winning strategy σ in the

game aW
∗
∆

Y .
Suppose that X = (xi) has been played by II according to the strategy

σ as a response to Z played by I. As σ is winning for II, X ∈ W∗∆. Define

γ(X) ∈ 2N by γ(X)(i) = 0 if d(x2i, F0) < δ2i and γ(X)(i) = 1 otherwise.
Then γ is Borel from W∗∆ to 2N, and furthermore, since P was chosen to
consist of almost disjoint subsets of N, there is a unique γ∗(X) ∈ P such
that

∃k ∀i ≥ k γ(X)(i) = γ∗(X)(i).

Again X 7→ γ∗(X) is Borel.
Take some U = (ui) ∈W such that ∃m ∀n ≥ m ‖un − xn‖ < δn. Then

α((u2i)) = γ∗(X), (u2i+1) ≈ (x2i+1), (u2i+1) 6v β ◦ α((u2i)) · (u2i+1).

So since the basis is invariant up to equivalence by ∆-perturbations we have

(x2i+1) 6v β ◦ γ∗(X) · (x2i+1).

Let V ∈ [X] be the normalisation of β◦γ∗(X) ·(x2i+1). The function g : Z 7→
V is Borel and obviously

V ≈ β ◦ γ∗(X) · (x2i+1) ≤ (x2i+1) ≤ Z,
and as

(x2i+1) 6v β ◦ γ∗(X) · (x2i+1),

also Z 6v V .

A Banach space is called quasi-minimal if any two subspaces have further
isomorphic subspaces. The following is a standard observation.
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Lemma 8. Suppose [ei] is quasi-minimal. Then v is downwards σ-di-
rected on bbQ(ei), i.e., any countable family has a common minorant.

Proof. Suppose that Yi ∈ bbQ(ei) are given, and define inductively Zi ∈
[Y0] such that Zi v Yi and Zi+1 ≤ Zi. Take some Z = (zi) ≤∗ Zn for all n
and notice as in the proof of Lemma 6 that (z2i) v Zn for all n.

Lemma 9. If R is a downwards σ-directed Borel quasi-order on a stan-
dard Borel space X, then R has either a perfect antichain or a minimal
element.

Proof. This is a simple consequence of the results of L. Harrington,
D. Marker and S. Shelah [14], as we will see. Suppose that R did not have
a perfect antichain. Then by their results there is a countable partition
X =

⋃
Xn into Borel sets so that R is total on each piece, i.e., R can be

written as a countable union of R-chains.
By another of their results this implies that for some countable ordinal

α there are Borel functions fn : Xn → 2α such that for any x, y ∈ Xn,

yRx ⇔ x ≤lex y,

where ≤lex is the usual lexicographical ordering. In their terminology, R is
linearisable on each Xn.

One can easily check that any subset of 2α has a countable subset cofinal
with respect to ≤lex, so pulling it back by fn it becomes coinitial in R�Xn .
Putting all these sets together one gets a countable subset of X coinitial with
respect to R. So by downwards σ-directedness there is therefore a minimal
element in X.

In this connection, we should also mention an unpublished result of
Khalid Kada (from his doctoral thesis at the University of Paris 6), which
is the Borel version of Dilworth’s theorem: If in a Borel ordering R all
antichains are of size at most n (for some finite n), then there is a decom-
position of the underlying space into n Borel R-chains.

After this series of lemmas we can now prove the theorem:

Theorem 10. Let X be an infinite-dimensional Banach space. Then X
contains either a minimal subspace or a continuum of pairwise incomparable
subspaces.

Proof. By Gowers’s quadrichotomy, X contains either a quasi-minimal
subspace or a subspace with a basis such that any two disjointly supported
subspaces are totally incomparable (see Gowers [10, Theorem 7.2] and the
fact that H.I. spaces are quasi-minimal). In the latter case, any perfect set
of almost disjoint subsets of N will give rise to subsequences of the basis
spanning totally incomparable spaces, which would prove the theorem. So
we can suppose that X = [ei] is quasi-minimal for some basis (ei). If X
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does not contain a minimal subspace, we can choose Z ∈ bbQ(ei) and a
Borel function g as in Lemma 7 (under MA +¬CH of course). So define the
following property on subsets A,B of [Z]2:

Φ(A,B) ⇔
∀Y, V,W ∈ [Z] [YAV & VAW → ¬YBW ] & ∀Y ∈ [Z] (¬YAg(Y )).

We now wish to apply the second reflection theorem (see Kechris [17, Theo-
rem (35.16) and the comments that follow]). For this we need to verify that
Φ is

(i) hereditary , i.e., if Φ(A,B) andA′⊆A,B′ ⊆B, then also Φ(A′,B′);
(ii) upward continuous in the second variable, i.e., if Φ(A,Bn) & Bn

⊆ Bn+1 then also Φ(A,
⋃
Bn);

(iii) Π1
1 on Σ1

1, i.e., if A,B ⊆ NN × [Z]2 are Σ1
1, then the set

AΦ = {(x, y) ∈ NN × NN | Φ(Ax,By)}
is Π1

1.

Conditions (i) and (ii) should be clear. Condition (iii) is also easily seen, by
noting that

(x, y) ∈ AΦ ⇔
∀Y, V,W ∈ [Z] [(x, Y, V ) 6∈ A ∨ (x, V,W ) 6∈ A ∨ (y, Y,W ) 6∈ B]

& ∀Y ∈ [Z] (x, Y, g(Y )) 6∈ A.
Now, since Φ(v, 6v), there is by reflection some Borel set R containingv such
that Φ(R, {R). But then R is a Borel quasi-order, downwards σ-directed, as
it contains v, and without a minimal element, as witnessed by g. So R has
a perfect antichain by the previous lemma, which then is an antichain for v
as well.

The statement is therefore proved under the additional hypothesis of
Martin’s axiom and the negation of the continuum hypothesis. We will see
that this is in fact sufficient to prove the theorem. By standard metamath-
ematical facts and Shoenfield’s absoluteness theorem it is enough to show
that the statement we wish to prove is Σ1

2.
It was proved by Ferenczi and the author in [9] that the property of

having a block minimal subspace is Σ1
2. To prove this, one uses Gowers’s

determinacy result and codings as above in order to continuously find an
isomorphism between the space and a certain subspace, hence witnessing the
minimality. This proof can be trivially modified to show that the property
of having a minimal (i.e., not necessarily block minimal) subspace is also Σ1

2.
For now we only have to choose not a code for a subspace and an isomor-
phism, but a code for a subspace and an embedding. For the convenience of
the reader, we have included the proof of this in an appendix.
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On the other hand, the property of having a perfect antichain is obviously
Σ1

2 by just counting quantifiers. So these remarks finish the proof.

V. Ferenczi has proved in a recent preprint [6] that for any infinite-dimen-
sional Banach space, either the space contains a minimal subspace, or E0

Borel reduces to the relation of isomorphism between its subspaces. This,
along with Theorem 1, reinforces our belief in the following conjecture:

Conjecture 11. E0 Borel reduces to the relation of isomorphism be-
tween the subspaces of any non-Hilbertian space.

A proof of this would certainly be a substantial improvement to the
solution of the homogeneous space problem.

3. Ramsey type results. We will show two Ramsey type results and
afterwards some applications to Banach space theory.

It is well known that there are no nice Ramsey properties for the product
space [N]N×[N]N as opposed to the simple Ramsey space [N]N. That is, there
are even quite simple relations not admitting a square [A]N × [B]N that is
either included in or disjoint from the relation.

We are interested in the case when the relation on the product is in fact
a definable equivalence relation. Here the right question seems to be when
there is a cube [A]N contained in one equivalence class. Now, if one lets two
subsets of N be equivalent if and only if they have the same minimal element,
then the relation has exactly ℵ0 classes and does not admit a homogeneous
set.

On the other hand, if the relation is invariant under finite changes, such
as E0, then there are bigger chances that it should have a homogeneous set.
We will show that in the case of analytic equivalence relations, E0 is in fact
the minimal counterexample to the Ramsey property, in the sense that, if
an analytic equivalence relation is invariant under finite changes and does
not admit a homogeneous set, then E0 Borel reduces to it. In the same vein,
it is shown that if an analytic equivalence relation does not admit a cube
on which it has only countably many classes, then it has at least a per-
fect set of classes. We notice that both of these results are relatively direct
consequences of the Silver and Glimm–Effros dichotomies in the case of the
equivalence relation being Borel. But our results are motivated by appli-
cations to isomorphism of separable Banach spaces, which is true analytic,
and the dichotomies are known not to hold in this generality.

The following result grew out of a discussion with S. Todorcevic, who
also independently found a proof [22].

Theorem 12. Let E be an analytic equivalence relation on [N]N. Then
either E has a continuum of classes or there is some A ∈ [N]N such that E
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only has a countable number of classes on [A]N. Moreover , the E0 class of
A will intersect every E-class of [A]N.

Proof. We will first prove the theorem under MA + ¬CH. Assume that
E does not have a continuum of classes. By Burgess’s theorem (Exercise
(35.21) in [17]) we can suppose that E has at most ℵ1 classes, (Cξ)ω1 . Define
Pξ(A) ↔ [A]E0 ∩ Cξ 6= ∅ and notice that this is an analytic E0-invariant
property. We can by simple diagonalisation find (Aξ)ω1 with Aξ ⊆∗ Aη for

η < ξ < ω1 such that for all ξ < ω1 either [Aξ]
N ⊆ Pξ or [Aξ]

N ⊆ {Pξ. And
by MA + ¬CH there is an A ⊆∗ Aξ for all ξ < ω1.

Notice that by E0-invariance of Pξ, ifB ⊆∗A and [A]N⊆Pξ or [A]N⊆ {Pξ,
then also [B]N ⊆ Pξ, respectively [B]N ⊆ {Pξ. Therefore for all ξ < ω1 either

[A]N ⊆ Pξ or [A]N ⊆ {Pξ.
Suppose now that B ∈ [A]N, B ∈Cξ. Then Pξ(B) and therefore [A]N⊆Pξ

and Pξ(A), i.e., ∃A′ (A′E0A& A′EB). This shows that [A]E0 will intersect

every E-class of [A]N. Moreover, as the properties Pξ are stabilised on [A]N,

for any B ∈ [A]N we have [[A]E0]E = [[B]E0 ]E. Since [A]E0 is countable, this
also implies that there are only countably many E-classes of [A]N.

Let us now check that the statement of the theorem is absolute. Saying
that E has a continuum of classes is equivalent to saying that there is a
compact perfect set K ⊆ [N]N consisting of pairwise E-inequivalent points:

∃K ⊆ [N]N compact, perfect ∀C,D ∈ K (C = D ∨ ¬CED).

This is obviously a Σ1
2 statement.

For the other case, we wish to express the existence of some A such that
[A]E0 intersects every E-class of [A]N. However, on the face of it this is only
a Σ1

3 statement, so we need to work a bit to reduce the complexity.
Choose first some Borel set B ⊆ [N]N×[N]N×NN such that for C,D ∈ [N]N

we have CED ⇔ ∃α ∈ NN B(C,D,α). Notice that as [A]E0 intersects every
E-class of [A]N, by the Jankov–von Neumann selection theorem there is a
C-measurable selector f : [A]N → NN such that for any D ∈ [A]N there is an
A′E0A with B

(
D,A′, f(D)). That is, we can choose a witness to D being

E-equivalent to some A′E0A in a C-measurable way. But any C-measurable
function can, by the theorem of Ellentuck and Louveau, be rendered con-
tinuous on a cube, i.e., there is some B ∈ [A]N such that the restriction of f
to [B]N is continuous. Moreover, by the above, [[A]E0 ]E = [[B]E0]E, whence
the other possibility can be written as

∃A,B ∈ [N]N ∃f : [B]N → NN continuous

(B ⊆ A& [[A]E0 ]E = [[B]E0]E & ∀D ∈ [B]N ∃A′ ∈ [A]E0 B(D,A′, f(D))).

Since E0-classes are countable and can be effectively enumerated given any
element of the class, the statement is Σ1

2. Therefore, by Shoenfield’s abso-
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luteness theorem and standard metamathematical facts it is enough to prove
the result under MA + ¬CH.

Our next results render explicit the connection with the Borel reducibil-
ity ordering.

Definition 13. For A,B ⊆ N set

AE′0B ⇔ ∃n |A ∩ n| = |B ∩ n| ∧ A \ n = B \ n.
It is easy to see that the E′0-class of any infinite-coinfinite subset of N is

dense in [N]N and in fact E′0 is generically ergodic. Moreover, E ′0 is just a
refinement of E0.

Lemma 14. E′0 is generically ergodic (i.e., any invariant set with the
Baire property is either meagre or comeagre) and all classes [A]E′0 , for A
infinite-coinfinite, are dense.

Proof. Since [N]N is cocountable in 2N we can restrict our attention to
it. Suppose that some invariant set A is non-meagre; then there is some
a ⊆ [0, n] such that A is comeagre in Da,n = {A ∈ [N]N | A ∩ [0, n] = a}.
So for any Db,m there are c, d ⊆ [0, k], max(n,m) < k, such that a ⊆ c,

b ⊆ d, |c| = |d|. Now for any A ∈ [{k + 1, k + 2, . . .}]N we have φ(c ∪ A) :=
(d∪A)E′0(c∪A) and φ is a homeomorphism of Dc,k ⊆ Da,n with Dd,k. But
that means that the image of A is comeagre in Dd,k ⊆ Db,m and is included
in the saturation of A, which is A. So A is comeagre in the space.

If A is infinite-coinfinite, then for any Da,n there are b, c ⊆ [0, k] such
that b ⊇ a, n < k, A ∩ [0, k] = c, b ∩ [0, n] = a and |b| = |c|. So A =
(c ∪A/k)E′0(b ∪ A/k) ∈ Db,k ⊆ Da,n. And its class is dense.

Proposition 15. Let E be a meagre equivalence relation on 2N con-
taining E′0. Then E0 ≤B E.

Proof. Let (Dn) be a decreasing sequence of dense open sets, such that
E ∩⋂nDn = ∅.

We will inductively construct sequences bn0 , b
n
1 ∈ 2<N for n ∈ N such

that for all n, |bn0 | = |bn1 |, bn0 = bn1 := #{k | bn1 (k) = 1}. And if as :=

b0s(0)
a · · ·a b|s|−1

s(|s|−1) for all s ∈ 2<N, then for any s, t ∈ 2n, Na
sa0
× Na

ta1

⊆ Dn+1.
Suppose that this can be done. Then define α 7→ ⋃

n aα�n = aα. This is
clearly continuous. If now ¬αE0β , then for infinitely many n, α(n) 6= β(n).
So for these n, (aα, aβ) ∈ Naα�n+1 × Naβ�n+1

⊆ Dn+1, which implies that

(aα, aβ) ∈ ⋂kDk ⊆ {E.
Conversely, if αE0β, then for some N we have ∀n ≥ N α(n) = β(n). But

then easily aα = aα�NabNα(N)
abN+1

α(N+1) · · · and aβ = aβ�NabNα(N)
abN+1

α(N+1) · · · ,
so by the construction, aαE

′
0β.
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Now for the construction: Suppose that bn0 , b
n
1 have been chosen for all

m < n, enumerate 2n× 2n by (s0, t0), . . . , (sk, tk) and take c0
0, c

0
1 ∈ 2<N such

that Nas0
ac00
×Nat0

ac01
⊆ Dn. This can be done as Dn is dense and open in

the product.
Extend c0

0, c
0
1 to c1

0, c
1
1 respectively in such a way that Nas1

ac10
×Nat1

ac11
⊆ Dn.

Again, extend c1
0, c

1
1 to c2

0, c
2
1 respectively in such a way that Nas2

ac20
×

Nat2
ac21
⊆ Dn, etc.

Finally, extend ck0, c
k
1 to bn0 , b

n
1 respectively, so that |bn0 | = |bn1 |, bn0 = bn1 .

This finishes the construction.

For the following, we recall that ∀∗x R(x) means that the set {x | R(x)}
is comeagre, where x varies over some Polish space.

Theorem 16. Let E be an analytic equivalence relation on [N]N such
that E′0 ⊆ E, i.e., E is E′0-invariant. Then either E0 ≤c E or there is some

A ∈ [N]N such that E only has one class on [A]N.

Proof. By Corollary 3.5 of [15], if E0 6≤c E, then E will be a decreasing
intersection of ℵ1 smooth equivalence relations:

E =
⋂

ω1

Eξ, Eξ ⊆ Eη, η < ξ < ω1.

Let fξ : [N]N → R be a Borel reduction of Eξ to identity on R. Then for

any A ∈ [N]N, there is a B ∈ [A]N such that fξ�[B]N is continuous. But since
there is a dense Eξ-class the function has to be constant, that is, there is
only one class.

We construct inductively a ⊆∗-decreasing sequence (Aξ)ω1 of infinite sub-
sets of N, with each Aξ being homogeneous for Eξ. Under MA + ¬CH such
a sequence can be diagonalised to produce an infinite A∞ (∗ Aξ for all
ξ < ω1. Now as A∞ (∗ Aξ it is easily seen that A∞ is E′0-equivalent with
some subset of Aξ and therefore also Eξ-equivalent with Aξ itself. Further-
more, the same holds for any infinite subset of A∞, so A∞ is homogeneous
for all of the Eξ and therefore for E as well.

As before, one sees that the property of having a homogeneous set is Σ1
2,

so we need only check that continuously reducing E0 is Σ1
2. For this it is

easier to work with Ẽ0 as defined on 2N by αẼ0β ⇔ ∃n ∀m ≥ n αm = βm.
This is easily seen to be continuously bireducible with E0, and moreover,
it has the advantage that its restriction to any dense Gδ subset of 2N is
again continuously bireducible with E0. So the property of reducing E0 (or

equivalently Ẽ0) can be written as:

∃f : 2N → [N]N continuous

[∀∗α ∈ 2N ∀β ∈ [α]
Ẽ0

(f(α)Ef(β)) & ∀α, β ∈ 2N (αẼ0β ∨ ¬f(α)Ef(β))].
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So as the quantifier ∀β ∈ [α]
Ẽ0

is over a countable set and the category quan-

tifier ∀∗ preserves analyticity (see Theorem (29.22) in [17]), the statement
is Σ1

2.

4. Applications to Banach space theory. To avoid trivialities, let
us suppose that all Banach spaces considered in this section are separable
and infinite-dimensional.

In the course of the solution of the homogeneous space problem W. T.
Gowers showed the following amazing result about the structure of sub-
spaces of a Banach space: If X is a Banach space, then it contains either an
unconditional basic sequence or an H.I. subspace [10].

Here an H.I. (hereditarily indecomposable) space Y is one in which no
two infinite-dimensional subspaces form a direct sum. This property, which
passes to subspaces, ensures that Y cannot be isomorphic to any of its
subspaces and cannot contain any unconditional basic sequence. Therefore,
in the classification of the subspaces of a Banach space one can always
suppose to be dealing with an H.I. space or a space with an unconditional
basis.

Proposition 17. Let (ei) be a basic sequence in a Banach space. Then
either E0 Borel reduces to isomorphism of spaces spanned by subsequences
of the basis or there is some infinite A ⊆ N such that [ei]A ∼= [ei]B for any
infinite B ⊆ A.

Proof. Define the following equivalence relation on [N]N:

A ∼= B ⇔ [ei]A ∼= [ei]B.

Then ∼= is analytic and extends E ′0. For suppose that AE′0B. Then [ei]A and
[ei]B are spaces of the same finite codimension in [ei]A∪B and are therefore
isomorphic. So the result follows from Theorem 16.

Example 18 (Hereditarily indecomposable spaces). Suppose that a
hereditarily indecomposable space X is given. Then, as any Banach space
contains a (conditional) basic sequence, we can suppose that X has a ba-
sis (ei). By Proposition 17, if E0 does not reduce, there is a subsequence
spanning a space isomorphic to some proper subspace, which contradicts
the properties of H.I. spaces. So E0 reduces to isomorphism of its subspaces.
On the other hand, Theorem 1 shows that it has a continuum of incom-
parable subspaces, since it obviously cannot contain a minimal subspace.
We can also mention a simple way to see that any H.I. space contains a
continuum of non-isomorphic spaces: it is rather easy to see that there is a
family (Ar)r∈R of infinite subsets of N such that if r < s then Ar ( As. So
the spaces [ei]i∈Ar are all isomorphic.
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Theorem 19. Let X be a Banach space such that the isomorphism rela-
tion between its subspaces does not reduce E0. Then X contains a reflexive
subspace with an unconditional basis all of whose subsequences span isomor-
phic spaces.

Proof. Suppose that E0 does not reduce to isomorphism between sub-
spaces of X. Then using Gowers’s dichotomy we can find a subspace Y with
an unconditional basis. Now, a recent result due to Ferenczi and Galego [7]
says that E0 Borel reduces to the isomorphism relation between subspaces
of c0 and `1. So by James’s characterisation of reflexivity, this basis must
span a reflexive space, and by applying Proposition 17, we have our result.

Let us notice that if a basis (ei) has the property that no two disjointly
supported block basic sequences are equivalent, then one can show that it
satisfies

(ei)A ≈ (ei)B ⇔ [ei]A ∼= [ei]B ⇔ AE′0B.

See the work of Gowers and Maurey [12] for unconditional examples of such
bases. An important precursor of their spaces can also be found in the ar-
ticle [2] by S. F. Bellenot. Therefore, as E ′0 and E0 are Borel bireducible,
there are bases on which both equivalence and isomorphism between subse-
quences are exactly of complexity E0.

We will now see an extension of some results by Ferenczi and the au-
thor [8], and Kalton [16].

Theorem 20. Let (ei) be an unconditional basic sequence. Then either
E0 Borel reduces to isomorphism of spaces spanned by subsequences of the
basis, or any space spanned by a subsequence is isomorphic to its square and
its hyperplanes. And there is some infinite A ⊆ N such that for any infinite
B ⊆ A, [ei]A ∼= [ei]B.

Proof. Define the relation ∼= on [N]N as in the proof of Proposition 17.
By Proposition 15, one sees that if E0 6≤B

∼=, then ∼= must be non-meagre
and therefore by Kuratowski–Ulam have a non-meagre class, which again
by Lemma 14 is comeagre. So we can suppose we have some comeagre class
A ⊆ [N]N. Seeing [N]N as a comeagre subspace of 2N, A is also comeagre
in 2N. There is therefore a partition A0, A1 of N and subsets B0 ⊆ A0, B1 ⊆
A1 such that for any C ⊆ N, if C ∩ A0 = B0 or C ∩ A1 = B1, then C ∈ A.
In particular, B0, B1, B0 ∪B1 ∈ A. Moreover, as the complement operation
is a homeomorphism of 2N with itself, there is some C such that C, {C ∈ A.
So identifying subsets of N with the Banach spaces they generate and using
the fact that the basis is unconditional, and therefore that disjoint subsets
form direct sums, we can calculate:

N = C ∪ {C ∼= C ⊕ {C ∼= B0 ⊕B0
∼= B0 ⊕B1

∼= B0 ∪B1
∼= B0.
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So N ∈ A and A consists of spaces isomorphic to their squares. Now for any
D ⊆ N,

N⊕D ∼= B0 ⊕B1 ⊕D ∼= [B0 ∪ (D ∩A1)]⊕ [B1 ∪ (D ∩ A0)] ∼= N⊕ N ∼= N.
This in particular shows that [ei]N is isomorphic to its hyperplanes.

We now notice that the argument is quite general, in the sense that we
could have begun from any [ei]A instead of [ei]N, and therefore the results
hold for any space spanned by a subsequence. The last statement of the
theorem follows from Proposition 17.

Kalton [16] showed that if an unconditional basis only has a countable
number of isomorphism classes on the subsequences of the basis, then the
space spanned is isomorphic to its square and hyperplanes. The above result
is along the same lines and we should mention that one can get uniformity
results with a bit of extra care in the proof; see the article [8] by Ferenczi
and the author for this.

Notice that permutative equivalence between subsequences of a basis (ei)
induces an analytic equivalence relation on [N]N as follows:

A ∼p B ⇔ (ei)i∈A is permutatively equivalent to (ei)i∈B.

P. Casazza drew my attention to the following theorem from [4] (Propo-
sition 6.2).

Theorem 21 (Bourgain, Casazza, Lindenstrauss, Tzafriri). If (ei)N is
an unconditional basic sequence permutatively equivalent to all of its subse-
quences, then there is a permutation π of N such that (eπ(i))N is subsym-
metric.

Their statement of the theorem is slightly more general, but the general
case is easily seen to follow from the infinite-dimensional Ramsey theorem
of Galvin and Prikry (Theorem (19.11) in [17]).

Proposition 22. Let (ei)N be an unconditional basic sequence. Then ei-
ther E0 reduces to the relation of permutative equivalence of the subsequences
of the basis, or there is some B ∈ [N]N such that (ei)i∈B is subsymmetric.

Proof. Notice first that if AE ′0B, then also A ∼p B. In other words, the
relation ∼p on [N]N is E′0-invariant. So if E0 does not Borel reduce to ∼p,
then by Theorem 16 there is some A ∈ [N]N such that A ∼p B for all

B ∈ [A]N. List A increasingly as a0 < a1 < a2 < · · · . Then

ea0 , ea1 , ea2 , . . .

is permutatively equivalent to all of its subsequences, whence by Theorem 21
there is some permutation π of A such that

eπ(a0), eπ(a1), eπ(a2), . . .

is subsymmetric.
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Choose now some strictly increasing sequence n0 < n1 < n2 < · · · of
elements of A such that also

π(n0) < π(n1) < π(n2) < · · · .
Then

eπ(n0), eπ(n1), eπ(n2), . . .

is a subsequence of eπ(a0), eπ(a1), eπ(a2), . . . , and hence subsymmetric. More-
over, the set B = {π(n0), π(n1), π(n2), . . .} is increasingly enumerated, so
(ei)i∈B is subsymmetric.

In connection with the above results, the reviewer drew my attention to
the following result of Bourgain, Rosenthal and Schechtman and the question
it naturally poses:

Theorem 23 ([5]). For 1 < p < ∞, p 6= 2, there are at least ℵ1 non-
isomorphic complemented subspaces of Lp.

Obviously, this result is not satisfactory, as one should expect a contin-
uum of such subspaces. Can the methods used in this paper say something
about this problem?
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Appendix. For the convenience of the reader, we include the proof
that having a minimal subspace is Σ1

2. This is a slightly amended version
of the proof in [9] showing that having a block-minimal subspace is a Σ1

2

property.
So suppose that X has a minimal subspace and that it does not con-

tain c0. Then it has a minimal subspace with a basis (ei) and positively
separated inevitable sets F0, F1 in the unit sphere of [ei]. (Again this follows
from the results of Odell and Schlumprecht [20, 21].)

We let D = {Y = (yi) ∈ bbQ(ei) | ∀i yi ∈ F0 ∪ F1} and as in Lemma 7
let α(Y ) ∈ 2N be defined by α(Y )(i) = 0 ↔ yi ∈ F0. Again D is large in

[Z] for any Z ∈ bbQ(ei). Furthermore, let β : 2N ↔ (Q<N∗ )N be some fixed
recursive isomorphism.

Given a Y = (yi) ∈ bbQ(ei), any element (λi) ∈ (Q<N∗ )N codes a unique
infinite sequence of block vectors (not necessarily consecutive) of Y , which
we denote by (λi) × Y . So due to the minimality of [ei] there is for any
Y = (yi) ∈ bbQ(ei) some (λi) ∈ (Q<N∗ )N such that (ei) ≈ (λi)×Y (a standard
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perturbation argument shows that the basic sequence (ei) always embeds as
a sequence of finite rational blocks, though not necessarily consecutive).

Set W = {Y = (yi) ∈ bbQ(ei) | (y2i) ∈ D ∧ (ei) ≈ β ◦ α(y2i) × (y2i+1)}.
This is a Borel subset of bbQ(ei).

We claim that W is large in bbQ(ei). For suppose that Z ∈ bbQ(ei) is
given. Take some V = (vi) ∈ D ∩ [Z] and a (λi) ∈ (Q<N∗ )N such that (ei) ≈
(λi) × (v3i+2). Choose y2i = v3i or y2i = v3i+1 such that β ◦ α(y2i) = (λi)
and put y2i+1 = v3i+2. Then obviously Y ≤ V ≤ Z and Y ∈ D.

So by Gowers’s theorem [10], for any ∆ > 0 there is a winning strategy
τ for II for producing blocks in W∆ in some Y = (yi) ≤ (ei). If ∆ = (δn) is
chosen small enough such that δn <

1
2d(F0, F1) for all n, then we can modify

τ a bit in such a way that the vectors of even index played by II are outright
in F0 ∪ F1. So if ∆ is chosen small enough, a perturbation argument shows
that τ is in fact a strategy for playing blocks in W.

This shows that if X has a minimal subspace, but does not contain
an isomorphic copy of c0, then there are a basic sequence (ei), an element
Y ∈ bbQ(ei) and a continuous function Θ : [Y ]→ span(ei)

N, defined by

Θ(Z) = β ◦ α((τ(Z))2i)× ((τ(Z))2i+1),

such that for all Z ∈ [Y ], we have span(Θ(Z)) ⊆ span(Z) and (ei) ≈ Θ(Z).
On the other hand, containing a copy of c0 is evidently a Σ1

1 property, so
the disjunction of the two becomes Σ1

2.
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