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Conjugacy for positive permutation braids

by

Hugh R. Morton and Richard J. Hadji (Liverpool)

Abstract. Positive permutation braids on n strings, which are defined to be positive
n-braids where each pair of strings crosses at most once, form the elementary but non-
trivial building blocks in many studies of conjugacy in the braid groups. We consider
conjugacy among these elementary braids which close to knots, and show that those
which close to the trivial knot or to the trefoil are all conjugate. All such n-braids with
the maximum possible crossing number are also shown to be conjugate.

We note that conjugacy of these braids for n ≤ 5 depends only on the crossing
number. In contrast, we exhibit two such braids on 6 strings with 9 crossings which are
not conjugate but whose closures are each isotopic to the (2, 5) torus knot.

Introduction. Braids have been used for many years now as a means
of studying knots and links. A geometric n-braid joins n standard reference
points in R

2 at the top and bottom of R
2×I by disjointly embedded strings

which are monotonic in the I parameter. Concatenation of these braids leads
to Artin’s well established group structure on isotopy classes of geometric
n-braids, forming the braid group Bn (see [1]).

The closure of a braid is constructed by joining the top and bottom
points in a standard way, to form a knot or link. An old result of Alexander
shows that every link can be presented as the closure of some braid, while a
theorem of Markov shows that any two braids presenting the same link are
related by a sequence of moves of two types (see for example [2]).

One of these two moves is conjugacy of braids. Indeed it is not difficult
to show that conjugate braids close to equivalent links, so the “conjugacy
problem” in the braid group Bn is of immediate interest in studying closed
braids.

Algorithms for the conjugacy problem, to decide whether two given ele-
ments of Bn are conjugate, have been developed, starting with the work of

2000 Mathematics Subject Classification: Primary 57M25.
Key words and phrases: positive permutation braids, conjugacy, cycles.
The second author was supported by EPSRC grant 99801479.

[155]



156 H. R. Morton and R. J. Hadji

Garside [8, 5, 7]. In many cases they depend on writing the braid in terms
of a minimal number of “positive permutation braids”.

In this paper we examine the position of braids which are just single
positive permutation braids, and address the resulting problem of deciding
when two positive permutation braids on n strings are conjugate.

A necessary condition is that the corresponding permutations be con-
jugate, in other words the permutations have the same cycle type. In this
investigation we restrict ourselves to the case where the closure of the braid
is a knot, and equivalently to those permutations in Sn which are n-cycles.

While any two such permutations are conjugate, the corresponding per-
mutation braids need not be. A sufficient condition is that the closures of
the braids be isotopic as closed braids, in other words the closed braids must
be isotopic in the solid torus which is the complement of the braid axis [11].

We examine how far this condition follows from weaker necessary condi-
tions on the braids, proving the following theorems:

Theorem 2. Positive permutation braids on n strings which close to the

unknot are all conjugate.

Theorem 3. Positive permutation braids on n strings which close to the

trefoil are all conjugate.

Theorem 4. Positive permutation braids on n strings which close to the

same knot are all conjugate, when n ≤ 5.

We also prove a general result in Theorem 5 about conjugacy of such
braids which have the largest possible number of crossings. On the other
hand in Theorem 6 we exhibit two 6-string positive permutation braids
which close to the (2, 5) torus knot but are not conjugate. These are con-
structed along the lines of Murasugi and Thomas’ original example of non-
conjugate positive braids with isotopic closure [13].

Further simple non-conjugacy results in Theorem 7 give a range of non-
conjugate positive braids closing to the trefoil, in contrast to Theorem 3.

Some of our results were first noted in [9] by the second author. There
has also been a recent exploration by Elrifai and Benkhalifa [4] for small
values of n without restrictions on the cycle type of the permutation.

The techniques used in this paper to prove non-conjugacy are very direct;
more subtle techniques, such as Fiedler’s Gauss sum invariants [6] or the
algorithm of Franco and González-Meneses [7], may be used in more difficult
cases. Hall has examples coming from the realms of dynamical systems of
positive permutation braids on 12 or more strings which are believed not to
be conjugate to their reverse [10]. In such cases none of the techniques used
here can be applied to establish non-conjugacy.
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1. Permutation braids. We shall use Artin’s classical description of
the group Bn of braids on n strings in terms of elementary generators σi for
i = 1, . . . , n − 1 with the relations:

1. σiσj = σjσi for |i − j| ≥ 2,
2. σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n − 2.

There are two simple homomorphisms from the group Bn which give
initial constraints on conjugacy:

• The homomorphism ϕ : Bn → Sn defined on the generators by
ϕ(σi) = (i i + 1) determines a permutation π = ϕ(β) in which π(j)
gives the endpoint of the string of β which begins at j.

• The homomorphism wr : Bn → Z defined by wr(σi) = 1 counts the
writhe or “algebraic crossing number” of a braid.

Two conjugate braids in Bn must then have the same writhe, since Z is
abelian, and also have permutations of the same cycle type.

Definition. A positive braid is an element of Bn which can be written
as a word in positive powers of the generators {σi}, without use of the inverse
elements σ−1

i .

For positive braids, the writhe is simply the number of crossings in the
braid.

Definition. A braid β is called a positive permutation braid if it is a
positive braid such that no pair of strings cross more than once.

Notation. We denote the set of positive braids and positive permuta-
tion braids in Bn by B+

n and S+
n respectively.

This definition of positive permutation braids was first used by Elrifai
in [3, 5], where they were shown to correspond exactly to permutations.
Explicitly, the homomorphism ϕ restricts to a bijection from the set S+

n of
positive permutation braids to Sn. They were also identified by Elrifai with
the set of initial segments of Garside’s fundamental braid ∆n.

It should be noted that the explicit braid word for a positive permu-
tation braid is generally not unique. For example, the permutation (1423)
can be represented in S+

4
by braid words σ1σ2σ3σ1σ2 and σ2σ1σ3σ2σ3. Con-

sequently, some authors choose to label permutation braids simply by the
corresponding permutation in Sn.

The number of components of the closure β̂ of a braid β, constructed by
identifying the initial points with the end points, is the number of cycles in
the cycle type of the permutation ϕ(β). In this paper we restrict attention
to braids which close to knots, and hence we shall only look at the (n − 1)!
permutation braids whose permutation is a single n-cycle.
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2. Conjugacy results. Suppose that two braids β and γ are conjugate
in Bn. Then their closures are isotopic as links in the complement of the
braid axis, and so they are certainly isotopic in S3.

Where β and γ are positive they must have the same number of crossings,
because they have the same writhe. Even if they are not conjugate, two
positive braids in Bn which close to isotopic knots must have the same
number of crossings.

Lemma 1. If β, γ ∈ B+
n and β̂, γ̂ are isotopic knots then wr(β) = wr(γ).

Proof. Suppose that the knot β̂ has genus g. The closure of a non-split
positive braid β ∈ Bn is always a fibred link or knot. The surface found
from β̂ by Seifert’s algorithm is a fibre surface, and has minimal genus g. Its
Euler characteristic χ = 1− 2g satisfies 1−χ = c− (n− 1) where c = wr(β)
is the number of crossings in β. Hence wr(β) = (n − 1) + 2g = wr(γ), since

γ̂ is isotopic to β̂ and so also has genus g.

Consequently, if a positive n-braid closes to the unknot then it must have
exactly n − 1 crossings. If it closes to the trefoil knot, which has genus 1,
then it must have n + 1 crossings. We now show that positive permutation
n-braids which close to either of these knots are determined up to conju-
gacy.

Explicitly we have the following results.

Theorem 2. Any positive permutation n-braid β which closes to the

unknot is conjugate to σ1σ2 . . . σn−1.

Theorem 3. Any positive permutation n-braid β which closes to the

trefoil is conjugate to σ3
1σ2 . . . σn−1.

Proof of Theorem 2. Each generator σi must appear at least once in β,
otherwise its closure is disconnected. Since its closure has genus 0 the braid
β has n − 1 crossings, and so each generator appears exactly once.

It is enough to manipulate the braid cyclically, as such manipulations can
be realised as conjugacies. We can represent β up to conjugacy by writing
the generators σ1, . . . , σn−1 in the appropriate order around a circle. Each
generator appears exactly once. To prove the theorem we use the braid
commutation relations to rearrange the generators in ascending order round
the circle.

Assume by induction on j that the generators σ1, . . . , σj occur consec-
utively in order. Then any generator σk lying on the circle between σj and
σj+1 has k > j +1. These generators then commute with each of σ1, . . . , σj ,
and can be moved past them to leave σj+1 immediately after σj . The process
finishes when all generators are in consecutive order.
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Proof of Theorem 3. Again represent generators on a circle. Each gener-
ator σ1, . . . , σn−1 must occur at least once, otherwise the closed braid splits.
Since the trefoil has genus 1 the braid has n + 1 crossings. So either two
generators σi and σj each occur twice, or one, σi say, occurs three times,
and the other generators occur once only.

Either σi−1 or σi+1 must occur between two occurrences of σi in β,
otherwise it can be rewritten with two consecutive occurrences of σi. This is
not possible for a permutation braid, since pairs of strings cross at most once.
If σi occurs three times then σi−1 lies between one pair of occurrences of σi

and σi+1 between the other pair. We can then move all generators except
σi+1 past these last two occurrences of σi to write β with a consecutive
sequence σiσi+1σi. Change this to σi+1σiσi+1 by the braid relation to write
β with σi and σi+1 each appearing twice.

We may thus assume that two generators σi and σj each occur twice
in β, with j > i. If j > i + 1 then σi+1 occurs only once. We can then
collect all generators σk with k > i + 1 at the two ends of the braid word,
and combine them at the end of the word by cycling so as to write a con-
jugate braid in the form AB where B is a product of generators σk with
k > i + 1, and includes σj twice, while A is a product with k ≤ i + 1, and
includes σi twice. The closure of the braid then has three components and
not one.

Hence β must contain σi and σi+1 twice each. Furthermore their occur-
rences must be interleaved, otherwise we can cycle the braid and commute
elements to separate it as a product of generators σk with k ≤ i and those
with k > i, and its closure will again have three components.

We shall prove, by induction on i, that any positive braid with two
interleaved occurrences of σi and σi+1, and single occurrences of all other
generators, is conjugate to σ3

1σ2 . . . σn−1.

We can assume, by cycling, that the single occurrence of σi−1 does not
lie between the two occurrences of σi. We can move all further generators
except σi+1 past σi so as to write σiσi+1σi consecutively. The remaining
occurrence of σi+1 can be moved round the circle past any other generator
except the single σi+2. It can then be moved one way or other round the
circle to reach this block of three generators, giving either σiσi+1σiσi+1 or
σi+1σiσi+1σi. The braid relation then gives a consecutive block of either
σiσiσi+1σi or σiσi+1σiσi. The single σi−1 now lies between two occurrences
of σi on the circle. Any intervening generators commute with σi and can
be moved out to leave σiσi−1σi, which can be converted to σi−1σiσi−1. The
cyclic braid now has two interleaving occurrences of σi−1 and σi.

The result follows by induction on i, once we establish it for i = 1. In this
case the argument above provides a block of either σ1σ1σ2σ1 or σ1σ2σ1σ1
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on the circle. Since σ1 commutes with all generators except σ2 we can move
the right-hand occurrences of σ1 round the circle to give a block σ1σ1σ1σ2.
The remaining generators can then be put in ascending order as in the proof
of Theorem 2.

A quick check on the possible values of the writhe for the (n−1)! positive
permutation braids with n ≤ 4 which close to a knot shows that in this range
conjugacy is determined simply by writhe, in view of Theorems 2 and 3.
Positive permutation braids with n + 3 crossings arise first when n = 5.
A direct check on the corresponding braids shows that in this case too the
writhe is sufficient.

Theorem 4. Positive permutation braids on n strings which close to a

knot are conjugate if and only if they have the same number of crossings,
when n ≤ 5.

Tables of these braids for n = 3, 4, 5, and the corresponding permuta-
tions, are included below.

When n = 3 there are just two braids which both close to the unknot.

Permutation Braid word Number of

crossings

(123) σ2σ1 2

(132) σ1σ2 2

When n = 4 there are two conjugacy classes. The braids with writhe 3
close to the unknot, and those with writhe 5 to the trefoil.

Permutation Braid word Number of

crossings

(1234) σ3σ2σ1 3

(1243) σ2σ1σ3 3

(1342) σ1σ3σ2 3

(1432) σ1σ2σ3 3

(1324) σ2σ1σ3σ2σ1 5

(1423) σ1σ2σ1σ3σ2 5

When n = 5 there are three conjugacy classes. The braids with writhe
4 = n − 1 close to the unknot and those with writhe 6 close to the trefoil.
Those with writhe 8 = n + 3 all close to the (2, 5) torus knot.
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Permutation Braid word Number of

crossings

(12345) σ4σ3σ2σ1 4

(12354) σ3σ2σ1σ4 4

(12453) σ2σ1σ4σ3 4

(12543) σ2σ1σ3σ4 4

(13452) σ1σ4σ3σ2 4

(13542) σ1σ3σ2σ4 4

(14532) σ1σ2σ4σ3 4

(15432) σ1σ2σ3σ4 4

(12435) σ3σ2σ4σ3σ2σ1 6

(12534) σ2σ3σ2σ1σ4σ3 6

(13245) σ2σ1σ4σ3σ2σ1 6

(13254) σ2σ1σ3σ2σ1σ4 6

(13524) σ3σ2σ1σ4σ3σ2 6

(14253) σ2σ1σ3σ2σ4σ3 6

(14352) σ1σ3σ2σ4σ3σ2 6

(14523) σ1σ2σ1σ4σ3σ2 6

(15342) σ1σ2σ3σ2σ4σ3 6

(15423) σ1σ2σ1σ3σ2σ4 6

(13425) σ2σ3σ2σ1σ4σ3σ2σ1 8

(14235) σ1σ3σ2σ1σ4σ3σ2σ1 8

(14325) σ2σ1σ3σ2σ4σ3σ2σ1 8

(15234) σ1σ2σ3σ2σ1σ4σ3σ2 8

(15243) σ1σ2σ1σ3σ2σ4σ3σ2 8

(15324) σ1σ2σ1σ3σ2σ1σ4σ3 8

Having looked among the closures of positive permutation braids at knots
with the smallest number of crossings, in Theorems 2 and 3, we now turn
briefly to those with the largest possible number.

The largest number of crossings in any positive permutation braid in Bn

is 1

2
n(n − 1), which occurs for the fundamental half-twist braid ∆n. If the

closure is to be a knot the largest number of crossings is 1

2
n(n−1)−

[
1

2
(n−1)

]
.

Theorem 5. Every positive permutation braid with 1

2
n(n−1)−

[
1

2
(n−1)

]

crossings which closes to a knot is conjugate to ∆nσ−1
1

σ−1
2

. . . σ−1

k where

k =
[

1

2
(n − 1)

]
.

Proof. Take n = 2k + 1 or n = 2k + 2, so that k =
[

1

2
(n − 1)

]
, and

let β be a positive permutation braid with 1

2
n(n − 1) − k crossings which

closes to a knot. Then β has a complementary positive permutation braid
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γ in ∆n, with βγ = ∆n. The braid γ has k crossings. Since β = ∆nγ−1

closes to a knot the k crossings in γ−1 must be used to connect up the k +1
components in ∆̂n. Hence the k generators in γ−1 must all be different.
When n = 2k + 2 the generator σk+1 cannot occur, since this connects two

strings which are already in the same component of ∆̂n, and more generally
σj and σn−j cannot both occur, for any j, as they both connect the same
two components. In particular the generators σk and σk+1 cannot both occur
when n = 2k + 1.

The generators in γ then belong to two mutually commuting sets, those
from σ1 up to σk and those from σk+1 up to σn−1. Write β on a circle, with
one block of generators together as ∆n and then the k generators of γ−1.
Move all generators σj with j > k to the extreme right in γ−1 and then
round the circle to the left of ∆n. Now move them past ∆n, when each σj is
converted to σn−j. Since σj and σn−j did not both occur in γ we get a braid
∆nα−1 conjugate to β in which σ1, . . . , σk each occurs exactly once in α.

Following the method of Theorem 2 we can arrange the k generators in
α in any order up to conjugacy, once we know how to move any generator σj

from the left to the right of α−1 by conjugacy. This can be done by taking
it twice round the circle as follows. First move σj to the left of ∆n, when
it becomes σn−j. Then move it round the circle to the end of the word. It
can then be moved left past all the remaining generators of α−1, and past
∆n once more, to become σj . Finally, move this round the circle to the
right-hand end of α−1.

Consequently, β is conjugate to ∆nσ−1
1

σ−1
2

. . . σ−1

k .

3. Non-conjugacy results. When n = 6 it is possible to have two posi-
tive permutation braids with the same number of crossings which close to dif-
ferent knots. The permutations (124536), with braid σ3σ4σ3σ2σ5σ4σ3σ2σ1,
and (132546), with braid σ2σ1σ4σ3σ5σ4σ3σ2σ1, close to the (2, 5) torus knot
and the sum of two trefoils respectively, so writhe no longer determines
conjugacy.

In [9], Hadji gave examples of two non-conjugate positive permutation
braids with n = 16, each closing to the same connected sum of three knots.

In fact, non-conjugate positive permutation braids which close to the
same knot show up first when n = 6.

Theorem 6. The positive permutation braids in S+
6

with permutations

(165324) and (152643) have the same closure but are not conjugate.

Proof. The braids, shown below, can be written β = σ1σ3σ5σ2σ4σ1σ3σ2σ1

and γ = σ2σ4σ3σ5σ2σ4σ1σ3σ2 respectively. Both of these can be reduced by
Markov moves to the 4-braid σ1σ3σ2σ1σ3σ2σ1, so both close to the (2, 5)
torus knot.
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β = γ =

The squares of the two braids are shown here with the strings which form
one component of the closure emphasised.

β2d = γ2 =

If β and γ are conjugate then so are β2 and γ2. Now the closure of β2 is a
link with two components, each of which turns out to be the trefoil knot,
while the two components of the closure of γ2 are trivial knots. Hence β2

and γ2 are not conjugate.

An alternative check can be made by calculating the 2-variable Alexander
polynomial of the link consisting of the closure of β and its axis. If β is
conjugate to γ this link is isotopic to the closure of γ and its axis. Its
polynomial is in general the characteristic polynomial of the reduced Burau
matrix of the braid [11]. For β above, the polynomial is

t9x5 + t7x4 + t5x3 + t4x2 + t2x + 1,

which differs, up to multiples of ±tixj , from the polynomial

t9x5 + t7x4 + (2t5 − t4)x3 + (2t4 − x5)x2 + t2x + 1

for γ.

Other tests for conjugacy, which also rely in effect on invariants of a
closed braid in a solid torus, can be used to give a contrasting result to
Theorem 3 about positive braids which close to the trefoil, when we do not
restrict to positive permutation braids.

Theorem 7. If β ∈ B+
n closes to the trefoil knot then β is conjugate to

β(i) = σ1σ2 . . . σi−1σ
3
i σi+1 . . . σn−1 for some i. Two such braids β(i), β(k)

are conjugate if and only if k = i or k = n − i.
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Remark. When n = 4 the braids are examples of the construction of
Murasugi and Thomas, [13]. They show that the braids σ

p
1
σ

q
2
σr

3 and σ
p
1
σr

2σ
q
3
,

with p, q, r odd, which close to isotopic knots, are not conjugate when q 6= r.
Their proof uses the exceptional homomorphism from B4 to B3 defined by
σ1, σ3 7→ σ1, σ2 7→ σ2, observing that the braids map to σ

p+r
1

σ
q
2

and σ
p+q
1

σr
2,

which close to links with different linking numbers.

Proof of Theorem 7.

1. Conjugacy. The only difference from the argument of Theorem 3 is
that one generator σi may occur three times, with σi−1 and σi+1 both lying
on the circle between the same pair of occurrences of σi. Then all three
occurrences of σi can be moved together and remain as a block on the circle,
while the other generators are put in consecutive order, as in Theorem 2.
This shows that every such braid is conjugate to some β(i). To see that the
braids β(i) and β(n − i) are conjugate, first conjugate β(i) by ∆n, taking
σ3

i to σ3
n−i, and then rearrange as above.

2. Non-conjugacy. Any closed braid represents an element in the framed
Homfly skein of closed braids in the annulus [12]. The closure of σ1σ2 . . . σk−1

represents an element Ak. The skein itself admits a commutative product,
represented by the closures of split braids. The subspace spanned by the
closure of braids in Bn has a basis consisting of monomials Ai1 . . . Aik with
i1+· · ·+ik = n. Coefficients in the skein can be taken as integer polynomials
in a variable z. In the Homfly skein of braids before closure, we have σ3

i =
c(z)σi + d(z), for some fixed non-zero polynomials c(z), d(z), so that β(i) =
c(z)σ1 . . . σn−1 + d(z)σ1 . . . σi−1σi+1 . . . σn−1 in this skein. Its closure then
represents c(z)An + d(z)AiAn−i in the skein of the annulus.

If β(i) and β(k) are conjugate then they have the same closure in the
annulus. Then

c(z)An + d(z)AiAn−i = c(z)An + d(z)AkAn−k,

and hence AiAn−i = AkAn−k. The monomials form a basis in the skein of
the annulus, so k = i or k = n − i.

Remark. This same calculation can be used to show that the Conway
polynomial of the closure of β(i) and its axis differs from that of β(k) and
its axis except when k = i or n − i.

4. Conjugacy classes for 6 and more strings. We have a short
Maple procedure to list the positive permutation braids on n strings which
close to knots, according to their number of crossings.

The case n = 6. When n = 6 this list contains 16 positive permutation
braids with 5 crossings, 32 with 7 crossings, 44 with 9 crossings, 22 with 11
crossings and 6 with 13 crossings.
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By Theorems 2, 3 and 5 those with 5, 7 or 13 crossings form complete
conjugacy classes, and represent the trivial knot, the trefoil and the (3, 5)
torus knot respectively. An inductive count shows that there are in general
2n−2 braids in S+

n which represent the trivial knot.

Among the braids with 9 crossings there is one conjugacy class con-
sisting of 4 braids which close to the sum of two trefoils, and two classes
of braids which close to the (2, 5) torus knot. There are just 2 braids,
γ = σ2σ4σ3σ5σ2σ4σ1σ3σ2 and its conjugate by the half-twist, in the con-
jugacy class of the braid γ discussed in Theorem 6, while the remaining 38
braids are conjugate to β = σ1σ3σ5σ2σ4σ1σ3σ2σ1.

The braids with 11 crossings fall into two conjugacy classes, one contain-
ing 6 braids which close to the (3, 4) torus knot, and the other containing
16 braids which close to the (2, 7) torus knot.

The case n = 7. When n = 7 there are 32 positive permutation braids
with 6 crossings, 88 with 8 crossings, 176 with 10 crossings, 202 with 12
crossings, 134 with 14 crossings, 70 with 16 crossings and 18 with 18 cross-
ings.

Again those with 6, 8 or 18 crossings represent complete conjugacy
classes; we have not attempted to analyse the other classes any further,
or to consider in detail any cases where n > 7.
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