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Universal analytic preorders arising from

surjective functions

by

Riccardo Camerlo (Torino)

Abstract. Examples are presented of Σ
1
1-universal preorders arising by requiring the

existence of particular surjective functions. These are: the relation of epimorphism between
countable graphs; the relation of being a continuous image (or a continuous image of some
specific kind) for continua; the relation of being continuous open image for dendrites.

Introduction. Let R, R′ be n-ary relations on standard Borel spaces
X, X ′, respectively. Then R Borel reduces to R′, in symbols R ≤B R′, if and
only if there is a Borel function ϕ : X → X ′ such that

∀x1, . . . , xn ∈ X (R(x1, . . . , xn) ⇔ R′(ϕ(x1), . . . , ϕ(xn))).

For each n, the relation ≤B is a preorder among n-ary relations on standard
Borel spaces and it has been extensively studied for some classes of finitary
relations (for example, for n = 1; n = 2 and R, R′ equivalence relations;
n = 2 and R, R′ preorders). The purpose of this paper is to present examples
of universal analytic preorders of a particular kind. An analytic preorder on
the standard Borel space X is a preorder R on X that is analytic (Σ1

1) as a
subset of X2. It is universal if and only if, for every analytic preorder S on a
standard Borel space, the relation S ≤B R holds. The existence of universal
analytic preorders is proved in [LR05]. If R, S are analytic preorders, R is
universal and R ≤B S, then S is universal as well.

Since analytic sets are closed under projections, a way to generate an
analytic binary relation R is to define xRx′ if and only if there exists some f ,
ranging in a standard Borel space, such that B(f, x, x′) where B is also
analytic (or Borel). If for each x there is an element idx granting B(idx, x, x)
and given fxx′ , fx′x′′ such that B(fxx′ , x, x′), B(fx′x′′ , x′, x′′) it is possible to
compose them in some way to get fxx′′ such that B(fxx′′ , x, x′′), then R is
indeed a preorder.

2000 Mathematics Subject Classification: 03E15, 54F15.

[193]
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The main known examples of universal analytic preorders are in fact no-
tions of embeddability for various classes of algebraic or topological struc-
tures. The universality of embeddability for countable graphs is proved in
[LR05] and various kinds of embeddability relations for coloured countable
total orders are proved universal in [MR04] and [Ca]. Moreover, [LR05]
proves that continuous embeddability for continua (compact connected met-
ric spaces) is an analytic universal preorder. This result is strengthened
in [MR04], where it is proved that universality already holds for continu-
ous embeddability on dendrites (locally connected continua not containing
simple closed curves), and in [Ca], where it is shown that this universality
still holds upon restriction to dendrites of a special minimal kind.

The lack of examples of universal analytic preorders generated by requir-
ing the existence of particular surjective functions was noted by U. B. Darji,
who inquired—in private communications—about the universality of the
relation on continua defined by letting K � K ′ if and only if K is a con-
tinuous image of K ′. This relation may be considered dual to continuous
embeddability. However, there is a strong asymmetry from the start: while
continuous embeddability is universal already on dendrites, no analogous
result can hold for �, since any two locally connected non-degenerate con-
tinua are continuous images of each other, so they form a single degree with
respect to �. Darji’s question triggered the investigation of this paper, which
may be considered as a contribution to the ongoing study of the interactions
between descriptive set theory and continuum theory (for a survey of some
recent results in this field, see [Mar]).

Since graphs are usually a first test for the study of relations on alge-
braic structures, Section 1 studies the relation of epimorphism for countable
graphs and proves its Σ1

1-universality.

Section 2 answers Darji’s question in the affirmative, proving that � is
indeed a Σ1

1-universal preorder.

Though the relation � trivialises on dendrites, one gets more interesting
preorders by restricting the class of continuous surjections allowed (see, for
example, [CCP94]). In Section 3 it is proved that allowing only open contin-
uous surjections one gets an analytic preorder �O that is universal already
when restricted to the class of dendrites.

The study of classes of countable structures or of continua is performed
in suitable spaces. A description of the space XL of structures with universe
N for a given countable language L can be found in [K95]. An account
of the hyperspaces K(X) of all compact subsets of a continuum X and
C(X) of all subcontinua of X is in [N92]. Since the Hilbert cube contains a
homeomorphic copy of all compact metric spaces, K([0, 1]N) and C([0, 1]N)
provide a suitable framework for their theory. Each of XL, K(X), C(X) is a
Polish space.
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The results of this paper share a common basic idea and are proved
using a technique developed in [FS89] to study universality for relations
of isomorphism on classes of countable structures; the technique was also
exploited in [Ca] to prove the universality of some embeddability relations.
Here is a short account of what will be needed.

A graph is an irreflexive, symmetric binary relation. Let L be the lan-
guage of graph theory, consisting of one binary relation symbol, besides
equality. For every n ∈ N, let TYn be the set of quantifier free types for the
first n variables in L and let TY =

⋃

n∈N
TYn (note that an empty 0-type is

also considered here). Fix a bijection e : N → TY enumerating types such
that, if e(i) ∈ TYn and e(j) ∈ TYm, n < m, then i < j. Indeed, for each
n ∈ N there are a finite number of n-types in L. So each i ∈ N codes the
type e(i). For example, 0 codes the empty type. For G a graph on N and
t ∈ N<ω let τG(t) ∈ N be the (code of the) quantifier free type of t in G. Note
that τG(t) determines τG(s) for all sequences s whose values form a subset
of the values taken by t. Also, τG(∅) = 0 and the value τG(m) is the same
for all graphs G on N and all m ∈ N, since each element of the graph equals
itself and it is not adjacent to itself. Here and in what follows, 1-tuples from
a set A are identified with elements of A—which interpretation is meant will
always be clear from the context.

If G, H are graphs on N and g : N → N, then g is an embedding of G into
H if and only if it is injective and ∀a, b ∈ N (aGb ⇔ g(a)Hg(b)). Note then
the following. Let G, H be graphs on N and let g : N → N. Let g′ : N<ω →
N<ω be defined from g componentwise: g′(t0, . . . , tn−1) = (g(t0), . . . , g(tn−1))
for (t0, . . . , tn−1) ∈ Nn. Then g is an embedding of G into H if and only if
τG(t) = τHg′(t) for all t ∈ N<ω.

The universality results in this paper are obtained by comparing, under
Borel reducibility, analytic preorders with the relation of embeddability for
graphs on N and using the following result of [LR05].

Theorem. The relation of embeddability is a Σ1
1-universal preorder on

the Polish space of graphs on N.

Note also that if ̺ is a Σ1
1-universal preorder on some standard Borel space

X, then so is ̺−1. Indeed, by the universality of ̺, there is a Borel reduction
ϕ : X → X of ̺−1 to ̺; then ϕ is also a reduction of (̺−1)−1 = ̺ to ̺−1.

1. Epimorphisms between graphs. Given a relational language L
and L-structures M, M ′, a function g : M → M ′ is a homomorphism if and
only if for any relation symbol R of L, say of arity n,

RM (m1, . . . , mn) ⇒ RM ′

(g(m1), . . . , g(mn)), for all m1, . . . , mn ∈ M.

An epimorphism is a surjective homomorphism. The universality of homo-
morphism between graphs on N is proven in [LR05].
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Theorem 1. There is a continuous function ϕ : G 7→ G∗ from the class

of graphs on N to itself such that G embeds into H if and only if there is an

epimorphism of H∗ onto G∗. Consequently , the relation of being epimorphic

image is a Σ1
1-universal preorder for graphs on N.

Proof. Let {Nt}t∈N<ω be a partition of N into infinite sets. Within each
Nt fix distinct elements at, ct

i for i ∈ N so that Nt \{a
t, ct

i}i∈N is still infinite.
For each t ∈ N<ω and n ∈ N let Ltn be a graph on Nt with the properties:

• there are n + 2 nodes btn
1 , . . . , btn

n+2 /∈ {at, ct
i}i∈N such that Btn =

{at, btn
1 , . . . , btn

n+2} forms a complete subgraph of Ltn of order n + 3;
• besides the other nodes of Btn, btn

n+2 is adjacent to all ct
i and to a

sequence of distinct nodes dtn
i , for all i ∈ N;

• all ct
i, d

tn
i are adjacent to each other (so Ctn = {ct

i, d
tn
i }i∈N forms an

infinite complete subgraph of Ltn);
• no other adjacency relation holds in Ltn;
• Nt = Btn ∪ Ctn and this is a disjoint union.

Note that, as the cardinality of Btn depends on n, also the choice of the
elements of Nt forming the sequence of nodes dtn

i in Ltn depends on n, while
the elements at, ct

i can be fixed independently of n.
Let G be a graph on N. Then G∗ = ϕ(G) is the graph on N defined as

follows:

• the adjacency relation on each Nt is given by LtτG(t);

• for each t ∈ N<ω and i ∈ N the nodes ct
i and ata i are adjacent;

• no other adjacency relation holds in G∗.

So the map ϕ : G 7→ G∗ is continuous. Note that each node u of G∗ is either
in some BtτG(t) or in some CtτG(t) (complete graphs of order τG(t) + 3 and
ℵ0 respectively), these cases being mutually exclusive. Since the adjacency
relation Ltn used on Nt in the graph G∗ is the one for which n = τG(t),
it is possible to simplify notation a little by writing btG

i , dtG
i , BtG, CtG for

b
tτG(t)
i , d

tτG(t)
i , BtτG(t), CtτG(t), respectively.

To show that ϕ is a reduction, fix graphs G, H on N.
Suppose g : N → N is an embedding of G into H. We will define an

epimorphism h of H∗ onto G∗. Let g′ : N<ω → N<ω be defined from g
componentwise, so that τG(t) = τHg′(t) for all t ∈ N<ω. Let Γ be the
subgraph of G∗ obtained by removing all dtG

i for all t ∈ N<ω and i ∈ N. Let
k be the embedding of Γ into H∗ defined on each Nt \ {d

tG
i }i∈N by:

• k(at) = ag′(t);

• k(btG
j ) = b

g′(t)H
j for j ∈ {1, . . . , τG(t) + 2};

• k(ct
i) = c

g′(t)
g(i) for i ∈ N.

Define h on im k (the range of k) as the inverse of k.
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If g is also surjective (and so an isomorphism), then the only nodes of
H∗ not covered by im k are those of the form drH

j and one can extend h to

an isomorphism of H∗ onto G∗ by h(drH
j ) = dtG

j , where g′(t) = r.

Otherwise, if u is a node of H∗ not in im k there are three possibilities:

- u = drH
j for some r = ru ∈ im g′, j ∈ N;

- u = cr
j for some r = ru ∈ im g′, j /∈ im g;

- u ∈ Nrajas for some r = ru ∈ im g′, j /∈ im g, s ∈ N<ω.

Note that this ru ∈ im g′ is uniquely determined by u. So fix r ∈ im g′

and let t be the unique preimage of r under g′. Let ̺ : N → im g be a
bijection (indeed, im g is infinite). Define h(drH

j ) = dtG
̺(j). Finally, for each

j ∈ N\ im g, let h(cr
j) = dtG

j and then extend the definition of h to the subset
⋃

s∈N<ω Nrajas of H∗ by injecting it into the infinite complete graph CtG,

with the only requirement that h(araj) 6= dtG
j .

Conversely, let h be an epimorphism of H∗ onto G∗. Note that if Kα

is a complete subgraph of H∗ of order α ≤ ℵ0, then h|Kα is an embed-
ding of Kα onto a complete subgraph of order α of G∗. This implies that
if u ∈ BrH \ {brH

τH(r)+2}, the degree of h(u) in G∗ is at least τH(r) + 2,

while if u ∈ CrH ∪ {brH
τH(r)+2}, the degree of h(u) is infinite. Moreover,

h(CrH) is a subset of some CtG ∪ {btG
τG(t)+2} and h(BrH) is either a subset

of some CtG ∪ {btG
τG(t)+2} or of some BtG with τG(t) ≥ τH(r) (in particular,

length(t) ≥ length(r); moreover, in this case, h(brH
τH(r)+2) = btG

τG(t)+2). Ob-

serve that h(B∅H) = B∅G as otherwise a∅ /∈ imh. So h(b∅H
τH(∅)+2) = b∅G

τG(∅)+2

and h embeds C∅H into C∅G.

In order for a0 to be in the range of h there must be some j0 ∈ N with
h(Bj0H) ⊆ B0G. Note that such a j0 is unique, since if j′0 were a different

one then h(c∅j0) = h(c∅
j′0

) = c∅0, contrary to the adjacency of c∅j0 , c
∅
j′0

in H∗.

So actually h(Bj0H) = B0G, with h(aj0) = a0 and h(bj0H

τH(j0)+2
) = b0G

τG(0)+2,

implying τG(0) = τH(j0). As a consequence, h embeds Cj0H into C0G. Note
also that if r(0) 6= j0 and t(0) = 0, then no point u ∈ Nr ⊆ H∗ can be
sent by h to some v ∈ Nt ⊆ G∗, since otherwise a0 would be the image of
a point from any path in H∗ from c∅

r(0) to u, so a0 would be the image of a

vertex from some BsH or from some CsH , with s(0) = r(0) and s ⊆ r. This
is impossible since either length(s) = 1 and s(0) 6= j0, or length(s) > 1.

Inductively, suppose h(B(j0,...,jn)H) = B(0,...,n)G (implying τG(0, . . . , n) =
τH(j0, . . . , jn)), with

h(a(j0,...,jn)) = a(0,...,n), h(b
(j0,...,jn)H
τH(j0,...,jn)+2) = b

(0,...,n)G
τG(0,...,n)+2
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(so h embeds C(j0,...,jn)H into C(0,...,n)G); suppose moreover that if (0, . . . , n)
⊆ t and (j0, . . . , jn) * r then no point of Nr is sent by h to a point of Nt.

Then in order for a(0,...,n+1) to be in the range of h there is a unique jn+1 ∈ N
such that h(B(j0,...,jn+1)H) ⊆ B(0,...,n+1)G, with

h(c
(j0,...,jn)
jn+1

) = c
(0,...,n)
n+1 , h(a(j0,...,jn+1)) = a(0,...,n+1),

h(b
(j0,...,jn+1)H
τH(j0,...,jn+1)+2) = b

(0,...,n+1)G
τG(0,...,n+1)+2.

Thus, h embeds C(j0,...,jn+1)H into C(0,...,n+1)G. Since no r 6= (j0, . . . , jn+1)
is such that h(BrH) ⊆ B(0,...,n+1)G, we have h(B(j0,...,jn+1)H) = B(0,...,n+1)G

(entailing τG(0, . . . , n + 1) = τH(j0, . . . , jn+1)). Moreover, let (0, . . . , n + 1)
⊆ t and (j0, . . . , jn+1) * r. If (j0, . . . , jn) * r, then no point of Nr is sent
by h to a point of Nt by inductive hypothesis. If (j0, . . . , jn, j) ⊆ r with
j 6= jn+1, then no point u ∈ Nr can be sent by h to a point of Nt, since
otherwise the vertex a(0,...,n+1) would be image of some point of v ∈ Ns with
(j0, . . . , jn, j) ⊆ s ⊆ r, giving rise to three possible cases:

(i) s = (j0, . . . , jn, j), v ∈ BsH ;
(ii) (j0, . . . , jn, j) ⊂ s, v ∈ BsH ;
(iii) v ∈ CsH .

Cases (ii) and (iii) are impossible since BsH (for case (ii)) or CsH (for case
(iii)) cannot be embedded in B(0,...,n+1)G; case (i) is impossible, since oth-

erwise h(c
(j0,...,jn)
j ) = h(c

(j0,...,jn)
jn+1

) = c
(0,...,n)
n+1 , contrary to the adjacency of

c
(j0,...,jn)
j , c

(j0,...,jn)
jn+1

in H∗.

In this way, a sequence (j0, j1, j2, . . .) is built such that τG(0, 1, . . . , n) =
τH(j0, j1, . . . , jn) for all n ∈ N, showing that N → N, i 7→ ji, is an embedding
of G into H.

2. Continuous surjections between continua. Let � be the pre-
order on C([0, 1]N) defined by letting K � K ′ if and only if there is a
continuous surjection K ′ → K.

Lemma 2. The preorder � is analytic.

Proof. For K, K ′ ∈ C([0, 1]N), the existence of a continuous surjection
from K ′ onto K can be expressed by requiring the existence of f ∈ C([0, 1]N×
[0, 1]N) such that if we let π1, π2 be the two projections from [0, 1]N × [0, 1]N

onto its two factors, the following holds:

(i) ∀x, y, y′ ∈ [0, 1]N ((x, y) ∈ f ∧ (x, y′) ∈ f ⇒ y = y′);
(ii) π1(f) = K ′;
(iii) π2(f) = K.

The listed conditions are Borel in (K, K ′, f).
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This section is devoted to the proof of Σ1
1-universality of �. The result of

[MR04] shows that the Σ1
1-universality of continuous embeddability between

continua holds already when restricted to the class of dendrites (and in
fact, by [Ca], to a quite small subclass of them). Dendrites are fairly simple
continua, in particular they are locally connected. So no analogous result can
hold for the relation �; indeed, any two locally connected non-degenerate
continua are continuous images of each other (however, the situation is very
different when considering restricted subclasses of continuous surjections,
see [CCP94] and the next section). So to establish the Σ1

1-universality of
� a very different class of continua must be employed. A key role in the
construction will be indeed played by a Cook continuum X, as constructed
in [Mać86]. Recall that a continuum is hereditarily non-divisible by points

if and only if, for any subcontinuum Y and y ∈ Y , the point y does not
separate Y . The important features of X that will be used are:

• X is a non-degenerate subcontinuum of R2;
• X is hereditarily non-divisible by points;
• if K is a subcontinuum of X and f : K → X is a continuous function,

then either f is constant or f is identity on K.

Theorem 3. There is a continuous function G 7→ G∗ assigning to each

graph on N a subcontinuum of [0, 1]N in such a way that , given graphs G, H
on N, there is an embedding of G into H if and only if G∗ is a continuous

image of H∗. Consequently , � is a Σ1
1-universal preorder.

Proof. Let {Xj}j∈N be a collection of subcontinua of [0, 1]2 homeomor-
phic to pairwise disjoint non-degenerate subcontinua of X each containing
the points q = q∅ = (0, 0) and p = p∅ = (1, 1). Let {Nt}t∈N<ω be a parti-
tion of N into two-element sets, with N∅ = {0, 1}. For ease of notation, if
N ⊆ N ′ ⊆ N think of RN as naturally embedded in RN ′

, that is, the N ′ \N
coordinates of a point of RN are null. So a subset of RN is also a subset
of RN ′

. When N is finite and x ∈ RN is written as x = (x1, . . . , xcard(N)),
the listed coordinates correspond to indices in N , and it will be clear from
the context which space x is thought to be in.

For any j ∈ N and t ∈ N<ω, let Xj
t ⊆ [0, 1]Nt be the continuum obtained

as a copy of Xj by increasingly renaming the coordinates so that they belong
to Nt. Let qt, pt be the points corresponding to q, p, respectively; these are
the points with both coordinates 0, respectively 1, in the appropriate square.

Let G be a graph on N. We define G∗ =
⋃

n∈N
Gn, the closure of an

increasing union of continua Gn, which, in turn, are defined inductively.

To begin with, let G0 = XG
∅ where XG

∅ = X
τG(∅)
∅ = X0

∅ . Let zG
∅ = p∅,

the point with 1 at the N∅ coordinates and 0 elsewhere. This is the point
where the construction will grow at the next step.
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The next step is to define

G1 = G0 ∪
⋃

i0∈N

XG
i0

, where XG
i0

= {zG
∅ } × X

τG(i0)
i0

.

Note that so far the construction does not really depend on G, as there are
a unique 0-type and a unique 1-type realisable by graphs. The construction
will grow at the points zG

i0
= (zG

∅ , pi0), having 1 at the N∅ ∪Ni0 coordinates
and 0 elsewhere, for all i0 ∈ N.

Next step:

G2 = G1 ∪
⋃

(i0,i1)∈N2

XG
(i0,i1)

, where XG
(i0,i1)

= {zG
i0
} × X

τG(i0,i1)
(i0,i1) .

The construction will resume at points zG
(i0,i1) = (zG

i0
, p(i0,i1)), whose coordi-

nates are 1 in N∅ ∪ Ni0 ∪ N(i0,i1) and 0 elsewhere, for all (i0, i1) ∈ N2.
In general, assuming the construction performed up to level n, let

Gn+1 = Gn ∪
⋃

t∈Nn+1

XG
t , where XG

t = {zG
t|n

} × X
τG(t)
t ;

set also zG
t = (zG

t|n
, pt); these points have exactly 2(n + 2) coordinates equal

to 1 and are the points where the construction will continue.
Note that XG

∅ \ {zG
∅ } is open in G∗; similarly, for each t ∈ N<ω and

i ∈ N, the sets XG
tai

\ {zG
t , zG

ta i
} are open in G∗. The remainder RG =

G∗\
⋃

n∈N
Gn is homeomorphic to the Baire space via ξ 7→ zG

ξ = limn→∞ zG
ξ|n

.

Also, RG = RG ∪ {zG
t }t∈N<ω is homeomorphic to the Cantor space, being

compact, perfect, and zero-dimensional.
Note that the upper indices G in zG

t , zG
ξ are unnecessary, since these

points are fixed in the Hilbert cube and are the same for all G. However, this
notation will help to identify the space G∗ where these points are thought
of as elements.

Let G, H be graphs on N.
Suppose first that g : N → N is an embedding of G into H. We wish to

find a continuous surjection h : H∗ → G∗. Define g′ : N<ω ∪NN → N<ω ∪NN

from g componentwise. Then τG(t) = τHg′(t) for all t ∈ N<ω. The first step
is to define piecewise a continuous injection k : G∗ → H∗. For t ∈ N<ω, let
k|XG

t
map homeomorphically onto XH

g′(t). This homeomorphism is unique

by the properties of X. Note that k(zG
t ) = zH

g′(t), so the function is defined

consistently on each XG
t ∩ XG

ta i
= {zG

t }. Finally, set k(zG
ξ ) = zH

g′(ξ).

Define h on im k as the inverse of k. Note that if y ∈ H∗ \ (im k ∪ RH),
then y ∈ XH

s for some s ∈ N<ω, where s /∈ im g′. Let t′ be the largest initial
segment of s such that t′ ∈ im g′ and suppose t′ = g′(t). Set h(y) = zG

t and
extend the definition to RH \ im k by continuity: h(zH

t′aζ
) = zG

t for ζ ∈ NN.
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This completes the definition of h : H∗ → G∗, which is surjective since its
range includes dom k = G∗.

Moreover, h is continuous. Indeed, let yn be a sequence in H∗ converging
to y. If almost all terms belong to im k, then limn→∞ h(yn) = h(y), as k is
a homeomorphism on its range. So it may be assumed that yn ∈ H∗ \ im k
for all n ∈ N. For each n ∈ N there exist a unique finite sequence sn ∈ im g′

and a natural number in /∈ im g such that

yn ∈
⋃

s⊇s
a

n in

XH
s .

If tn is the unique preimage of sn under g′, then h(yn) = h(zH
sn

) = zG
tn

. If
almost all yn share the same sn = s̄ and the same in = ī, then

y ∈
⋃

s⊇s̄a ī

XH
s ,

so limn→∞ h(yn) = h(y) = h(zH
s̄ ). If this is not the case but there is s̄ such

that s̄ = sn for infinitely many n then y = zH
s̄ , so eventually sn = s̄, proving

limn→∞ h(yn) = h(zH
s̄ ) = h(y). If for each s ∈ im g′ there are only finitely

many n with sn = s, then limn→∞ d(yn, zH
sn

) = 0, so y = limn→∞ zH
sn

and

limn→∞ h(yn) = limn→∞ h(zH
sn

) = h(y) as zH
sn

, y ∈ im k.

Conversely, suppose h : H∗ → G∗ is a continuous surjection. We will
define g : N → N embedding G into H.

Claim. For t′ ∈ N<ω, if h(XH
t′ ) is non-degenerate then it equals XG

t

for some t ∈ N<ω with τG(t) = τH(t′), the restriction of h to XH
t′ being the

unique homeomorphism XH
t′ → XG

t .

Proof of claim. Note that, under the assumption, it is enough to show
that h(XH

t′ ) ⊆ XG
t for some t. Deny this.

Consider first the case t′ = ∅. Since RG is totally disconnected, using the
boundary bumping theorem there must be a non-degenerate subcontinuum
C of h(XH

∅ )∩XG
t for some t 6= ∅. Let s be the restriction of t to length(t)−1.

Let c ∈ C \ {zG
s , zG

t } and c′ ∈ XH
∅ with h(c′) = c; let U be an open neigh-

bourhood of c in G∗ with U ⊆ XG
t (for example U = XG

t \ {zG
s , zG

t })
and set V = (h|XH

∅
)−1(U). If V = XH

∅ then h(XH
∅ ) is a non-degenerate

subcontinuum of XG
t (and actually a contradiction is reached anyway, as

τG(t) 6= τH(∅)). If V is a proper subset of XH
∅ , by the boundary bumping

theorem there is a continuum D ⊆ V such that c′ ∈ D and D meets the
boundary of V in some point c′′. Then h(D) is a non-degenerate subcontin-
uum of XG

t since h(c′) 6= h(c′′), and a contradiction follows.
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Assume now t′ 6= ∅. Suppose

h(XH
t′ ) *

⋃

τG(t)=τH(t′)

XG
t .

Then there are t ∈ N<ω with τG(t) 6= τH(t′) and a non-degenerate subcontin-
uum C of h(XH

t′ )∩XG
t . As above, let c ∈ C \{zG

t|length(t)−1
, zG

t } (c ∈ C \{zG
∅ }

if t = ∅), c′ ∈ XH
t′ ∩ h−1({c}) and U be an open neighbourhood of c in

G∗ with U ⊆ XG
t . If V = (h|XH

t′
)−1(U) then, as above, a contradiction is

reached both from V = XH
t′ and from V ⊂ XH

t′ . Thus it follows that

h(XH
t′ ) ⊆

⋃

τG(t)=τH(t′)

XG
t .

Since h(XH
t′ ) is connected, there must exist s ∈ N<ω and A ⊆ N such that

h(XH
t′ ) ⊆

⋃

n∈A XG
san

, where τG(san) = τH(t′) for all n ∈ A and A is
minimal, namely

A = {n ∈ N | h(XH
t′ ) ∩ XG

san * {zG
s }}.

It remains to show that A is a singleton. Deny. Then Cn = h(XH
t′ )∩XG

san

is a non-degenerate continuum containing zG
s , for all n ∈ A. Let k = h|XH

t′

and set Vn = k−1(Cn \ {zG
s }). All Vn are proper, open, non-empty subsets

of XH
t′ . Moreover they are pairwise disjoint. Let pn ∈ Vn and Kn be a

subcontinuum of V n meeting the boundary of Vn at some point y, with
pn ∈ Kn. Note that k(y) = zG

s . Then k|Kn is a non-constant continuous
function Kn → XG

san
. So y = zH

t′|length(t′)−1
. If n′ ∈ A, n′ 6= n, repeating

the argument within Vn′ produces a non-degenerate subcontinuum Kn′ of
XH

t′ such that Kn ∩ Kn′ = {zH
t′|length(t′)−1

}, contradicting hereditary non-

divisibility by points of XH
t′ .

Claim. zG
∅ ∈ h(XH

∅ ).

Proof of claim. Deny. By the above claim there is a point γ ∈ G∗ \ {zG
∅ }

such that h(XH
∅ ) = {γ}. If γ /∈ {zG

t }t∈N<ω , then by induction on the length

of s it follows that h(XH
s ) = {γ} for all s ∈ N<ω. Indeed, assuming h(XH

s ) =
{γ}, from h(zH

s ) = γ it follows by the previous claim that h(XH
san

) = {γ}

for all n ∈ N. Consequently, h(H∗) = {γ}. If γ = zG
t for some t ∈ N<ω \{∅},

again by induction using the above claim it follows that each h(XH
s ) is

contained in some XG
ts

, where t ⊆ ts, thus h is not surjective, since the
points of XG

∅ are not in the range.

Let ι = (0, 1, 2, . . .) ∈ NN. Using both claims one sees inductively that
h(Hn) ⊆ Gn, so no point of

⋃

n∈N
Hn can be mapped by h to zG

ι . So let

g ∈ NN be such that h(zH
g ) = zG

ι . By the claims, either h(XH
g(0)) = {zG

∅ } or
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h|XH
g(0)

is the unique homeomorphism XH
g(0) → XG

i0
for some i0 ∈ N. If the

first alternative held, the first claim and induction would yield h(XH
g|n

) =

{zG
∅ } for all n ≥ 1, contradicting h(zH

g ) = zG
ι . From the second alternative,

again by induction using the first claim,

∀n ≥ 1 ∃tn ∈ N≥1 (tn(0) = i0 ∧ h(XH
g|n

) ⊆ XG
tn

).

So in order that h(zH
g ) = zG

ι , we must have i0 = 0. Suppose that h(XH
g|n

) =

XG
(0,1,...,n−1) for some n ≥ 1. Then either h(XH

g|n+1
) = {zG

(0,...,n−1)} or there

is in such that h(XH
g|n+1

) = XG
(0,1,...,n−1,in). The only possibility consistent

with h(zH
g ) = zG

ι is h(XH
g|n+1

) = XG
(0,...,n−1,n). So h(XH

g|n
) = XG

(0,1,...,n−1) for

all n ≥ 1, yielding τG(0, 1, . . . , n − 1) = τH(g(0), . . . , g(n − 1)). The map
g : N → N is thus an embedding of G into H.

A continuous function f : X → Y between continua is said to be mono-

tone if the preimage of each point of the range is connected (equivalently, the
preimage of each subcontinuum of the range is a subcontinuum of X); it is
weakly confluent if each subcontinuum of Y is the image of a subcontinuum
of X; and it is an r-mapping if it has a continuous right inverse g : Y → X.
Every motonone surjection between continua is weakly confluent. Under the
hypothesis that G embeds into H, the map h : H∗ → G∗ built in the proof
of Theorem 3 is actually a monotone r-mapping (k is its right inverse). This
remark establishes the following.

Corollary 4. The relation �M on C([0, 1]N) defined by letting K �M

K ′ if and only if there is a monotone surjection K ′ → K is a Σ1
1-universal

preorder. Similarly for the relation �R defined by K �R K ′ if and only if

there is an r-mapping K ′ → K. The same holds for any analytic preorder

θ on C([0, 1]N) with �M ∩ �R ⊆ θ ⊆ �. For example, let K �W K ′ if

and only if there is a weakly confluent surjection K ′ → K. Then �W is a

Σ1
1-universal preorder.

Proof. It remains to show that �M ,�R,�W are analytic.

For �M , add to the conditions of the proof of Lemma 2 the requirement

(ivm) ∀y ∈ [0, 1]N π1(f ∩ ([0, 1]N × {y})) ∈ C([0, 1]N) ∪ {∅}

or equivalently the condition

(iv′m) ∀y ∈ [0, 1]N f ∩ ([0, 1]N × {y}) ∈ C(([0, 1]N)2) ∪ {∅}

and recall that intersection is a Baire class 1 operation in K([0, 1]N) and for
any continuum X, C(X) is closed in K(X).

For �R, the additional requirement is

(ivr) ∃g ∈ C(([0, 1]N)2) (g : K → K ′ ∧ g−1 ⊆ f).
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For �W , note that for a continuous surjection f : K ′ → K to be weakly
confluent it is enough that there exists a countable dense subset {Cn}n∈N

of C(K) such that for all n there is C ′
n ∈ C(K ′) with f(C ′

n) = Cn. Indeed,
fix then C ∈ C(K) and let Cnk

converge to C. Then a subsequence of
C ′

nk
converges to some continuum C ′ ⊆ K ′ with f(C ′) = C. Thus, the

characterisation of �W is obtained by adding the following requirement to
those of Lemma 2:

(ivw) ∃(Cn) ∈ (C([0, 1]N))N ({Cn}n∈N is dense in C(K) ∧ ∀n ∈ N ∃C ′ ∈
C([0, 1]N) (C ′ ⊆ K ′ ∧ f(C ′) = Cn)).

Now observe that {Cn}n∈N dense in C(K) means ∀n ∈ N (Cn ⊆ K) ∧
∀ε ∈ Q+ ∀L ∈ C([0, 1]N) (L ⊆ K ⇒ ∃n ∈ N (dH(Cn, L) < ε)) (dH being
the Hausdorff metric on C([0, 1]N)) while f(C ′) = Cn means π2(f ∩ (C ′ ×
[0, 1]N)) = Cn and both are Borel conditions.

Remarks. 1. Similarly to what is done above, if F is any class of contin-
uous functions between continua containing all identities and closed under
composition, one may define the relation K �F K ′ if and only if there
is f ∈ F mapping K ′ onto K and, in case �F is analytic, ask if it is a
Σ1

1-universal preorder on C([0, 1]N). For the class O of open functions, a
much stronger result will be established in the next section.

2. The construction in the proof of Theorem 3 builds continua in the
Hilbert cube. Indeed, it was notationally convenient to perform each step
in the construction using countably many brand new coordinates. However,
with some care, the same arguments can be developed in the square [0, 1]2.

To begin with, for every t ∈ N<ω fix a 2-cell Wt ⊆ [0, 1]2 and distinct
points ut, wt in the manifold boundary of Wt with the following properties:

• Wt ∩ Wtan = Wtan ∩ Wtam = {wt} = {utan} for n 6= m, while all
other intersections Wt ∩ Ws with t 6= s are empty;

• diam(Wtan) ≤ 2−n−1 diam(Wt);
• let wξ = limn→∞ wξ|n for ξ ∈ NN; then wξ /∈

⋃

t∈N<ω Wt and ξ 6= ξ′ ⇒
wξ 6= wξ′ .

For each t ∈ N<ω and j ∈ N fix a continuum Y j
t ⊆ Wt homeomorphic to

Xj from the proof of Theorem 3 such that ut, wt ∈ Y j
t . Given a graph G

on N, let G′ =
⋃

t∈N<ω Y
τG(t)
t . Then G′ is homeomorphic to G∗ of the proof.

The argument of the proof can then be repeated in the unit square and the
results in this section hold as well for C([0, 1]2).

3. Open continuous surjections between dendrites. Let X be a
continuum. If p ∈ X denote by ord(p, X) the order of p in X, that is,
the smallest cardinal κ such that there is an open neighbourhood basis
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of p in X whose members have boundary of cardinality at most κ. Let
R(X) = {p ∈ X | ord(p, X) ≥ 3} be the set of branching or ramification

points of X and E(X) = {p ∈ X | ord(p, X) = 1} be the set of end points

of X. An arc A ⊆ X with end points a, b is a free arc in X if A \ {a, b} is
open in X. In this case, A \ {a, b} is an open free arc.

Using a definition from [Me67], for i ∈ {3, 4, 5, 6} let Di be the unique
(up to homeomorphism) dendrite satisfying:

• if p ∈ R(Di), then ord(p, Di) = i;
• if A ⊆ Di is an arc, then A ∩ R(Di) 6= ∅.

The set E(Di) is dense in Di, for each i. Fix distinct end points x, y of D6

and continuous open surjections ϕi : Di+1 → Di for i ∈ {3, 4, 5}, whose
existence is granted by [Ch80]. Let

x′ = ϕ5(x), x′′ = ϕ4ϕ5(x), x′′′ = ϕ3ϕ4ϕ5(x),

y′ = ϕ5(y), y′′ = ϕ4ϕ5(y), y′′′ = ϕ3ϕ4ϕ5(y).

Call x (x′, x′′, x′′′, respectively) the first special point of D6 (D5, D4, D3 re-
spectively), and y (y′, y′′, y′′′, respectively) the second special point of D6

(D5, D4, D3, respectively). Since end points are preserved by open continu-
ous functions ([CCP94, Corollary 6.4]), special points are end points.

A string is a planar dendrite of the form X =
⋃

n∈N
(Xn ∪αn)∪α where:

(1s) α is a free arc in X with end points p, q (q being called the final

point and α the final arc of X);
(2s) the Xn are pairwise disjoint dendrites, with

α ∩ Xn = ∅, lim
n→∞

Xn = {p};

(3s) the αn are pairwise disjoint free arcs in X with end points bn, an+1,
and with

α ∩ αn = ∅, lim
n→∞

αn = {p},

Xm ∩ αn =











∅ if n 6= m 6= n + 1,

{bn} if m = n,

{an+1} if m = n + 1;

(4s) Xn is homeomorphic to
{

D6 if n = 0,

D4 if n > 0;

(5s) an, bn are the first and second special points of Xn.

Note that this definition of a string differs from that of [CCP94] by the
presence of a final arc α instead of just a final point.
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A tame line is a planar dendrite of the form

X = α− ∪
⋃

n∈Z

(Xn ∪ αn) ∪ α+,

where:

(1t) α−, α+ are disjoint free arcs in X, with end points q−, p− and p+, q+

respectively (q− will be called the initial point of X, q+ the final

point of X, α−, α+ the initial and final arcs of X, respectively);
(2t) the Xn are pairwise disjoint dendrites, with

α± ∩ Xn = ∅, lim
n→∞

X±n = {p±};

(3t) the αn are pairwise disjoint free arcs in X with end points bn, an+1,
and with

α± ∩ αn = ∅, lim
n→∞

α±n = {p±},

Xm ∩ αn =











∅ if n 6= m 6= n + 1,

{bn} if m = n,

{an+1} if m = n + 1;

(4t) Xn is homeomorphic to
{

D3 if n < 0,

D4 if n ≥ 0;

(5t) an, bn are the first and second special points of Xn.

Let ̺ be a prime number. A ̺-line is defined as a tame line, except that
condition (4t) is replaced by

(4l) Xn is homeomorphic to










D3 if n < 0,

D5 if n ≥ 0 is a multiple of ̺,

D4 otherwise.

In each of these cases, the continuum Xn will be called the nth bead of the
string or line, while αn the nth bridge.

For X, X ′ ∈ C([0, 1]N) let X �O X ′ if and only if there is an open
continuous surjection from X ′ onto X.

Lemma 5. The preorder �O is analytic.

Proof. By [E35], a continuous surjection f between continua X ′, X is
open if and only if the function F : X → K(X ′), y 7→ f−1({y}), is con-
tinuous. So, given X, X ′ ∈ C([0, 1]N), X �O X ′ if and only if there exist
f ∈ C([0, 1]N × [0, 1]N) and F ∈ C([0, 1]N × K([0, 1]N)) such that:
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(i) f, F are graphs of functions;
(ii) π1(f) = X ′, π2(f) = X, π1(F ) = X;
(iii) ∀y ∈ [0, 1]N (π1(f ∩ ([0, 1]N ×{y})) = π2(F ∩ ({y}×K([0, 1]N)))).

Recall that the class D of dendrites is a Borel subset of C([0, 1]N) (namely,
it is Π0

3-complete, see [CDM05]). Let �D
O be the restriction of �O to D.

Theorem 6. There is a continuous function G 7→ G∗ assigning to each

graph G on N a dendrite G∗ in such a way that there is an embedding of G
into H if and only if there is an open continuous surjection from H∗ onto

G∗. Consequently , �D
O is a Σ1

1-universal preorder.

Proof. Let ̺n be the prime number sequence. Let X0 be a string; for
j ≥ 1 let Xj be a ̺j-line, with all Xn ⊆ [0, 1]2, each Xn having final point
in (1, 1) and each Xj , with j ≥ 1, having initial point (0, 0). Let also X∞

be a tame line with initial and final points (0, 0), (1, 1), respectively. Now
let {Nt}t∈Z<ω be a partition of N into two-element sets, with N∅ = {0, 1}.
With the same conventions as in the proof of Theorem 3, if N ⊆ N ′ ⊆ N,
the space RN will be thought of as included in RN ′

.

For any j ∈ N ∪ {∞} and t ∈ Z<ω, let Xj
t ⊆ [0, 1]Nt be the continuum

obtained as a copy of Xj by increasingly renaming the coordinates so that
they belong to Nt. Let qj

t , p
j
t be the initial (if j 6= 0) and final point of Xj

t ,
respectively. These are the points with both coordinates 0, respectively 1,
in the relevant square.

Each t ∈ N<ω will be called a good sequence; if some components of
t ∈ Z<ω are negative, then t will be called bad. Extend the definition of τG

by letting τG(t) = ∞ for t a bad sequence.

To each graph G on N we will associate in a continuous way a dendrite
G∗ =

⋃

n∈N
Gn, the closure of an increasing union of dendrites Gn, which,

in turn, are defined inductively.

To begin with, define G0 = XG
∅ = X

τG(∅)
∅ = X0

∅ . Let zG
∅ be the final

point of the string X0
∅ : its N∅ coordinates are (1, 1), all others are null. This

is the point where the construction will grow at the next step. Call zG
∅ a

good final point.

The next step is to define

G1 = G0 ∪
⋃

i0∈Z

XG
i0

, where XG
i0

= {zG
∅ } × X

τG(i0)
i0

.

For each i0 ∈ Z, let zG
i0

be the final point of XG
i0

(these points have four

coordinates 1 while all others are null). Call zG
i0

good if i0 ≥ 0, and bad

otherwise.
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Next step:

G2 = G1 ∪
⋃

(i0,i1)∈Z2

XG
(i0,i1), where XG

(i0,i1) = {zG
i0
} × X

τG(i0,i1)
(i0,i1)

.

Let zG
(i0,i1) be the final points of the lines XG

(i0,i1)
. Call a point zG

(i0,i1)
good if

(i0, i1) is a good sequence, and bad otherwise.
In general, assuming Gn built, let

Gn+1 = Gn ∪
⋃

t∈Zn+1

XG
t , where XG

t = {zG
t|n

} × X
τG(t)
t .

If zG
t denotes the final point of the line XG

t , call it good or bad according to
the goodness of t.

Finally, let zG
ξ = limn→∞ zG

ξ|n
for ξ ∈ ZN. So G∗ \

⋃

n∈N
Gn = {zG

ξ }ξ∈ZN .

The remark in the proof of Theorem 3 about the unnecessary use of the
upper index G in zG

t , zG
ξ applies here as well.

By [N92, Theorem 10.36] the continuum G∗ is a dendrite, being homeo-
morphic to the inverse limit of the system {Gn, fn}n∈N where each bonding
map fn : Gn+1 → Gn is the identity on Gn and sends all points of each XG

t

to zG
t|n

for every t ∈ Zn+1, so it is monotone.

Note that each XG
t \ {zG

t|length(t)−1
, zG

t }, t 6= ∅, is open in G∗. Similarly,

XG
∅ \ {zG

∅ } is open. Also, each zG
ξ , for ξ an infinite sequence, has an open

neighbourhood basis {UG
t }∅6=t⊂ξ, where

UG
t =

(

⋃

t⊆s

XG
s ∪ {zG

ζ }t⊂ζ

)

\ {zG
t|length(t)−1

}.

Each UG
t will be called the t-cone of G∗.

Let G, H be graphs on N.
Suppose g : N → N is an embedding of G into H. We wish to define a

continuous open surjection h : H∗ → G∗. Extend g to a bijection γ : Z → Z.
If g′ : N<ω ∪ NN → N<ω ∪ NN is the injection induced by g componentwise,
then γ induces componentwise a bijection γ′ : Z<ω ∪ZN → Z<ω ∪ZN which
extends g′. Let s ∈ Z<ω and let t = γ′−1(s). If s is good and s ∈ im g′, then
t is good and τG(t) = τH(s): define h on XH

s as a homeomorphism onto XG
t

matching the final (and also initial, if s 6= ∅) point of XH
s with the final

(respectively, the initial) point of XG
t . If s is bad or s /∈ im g′, then t is bad

and so XG
t is a tame line. Define h on XH

s as an open continuous function
onto XG

t such that:

• the image of the initial (final, respectively) point of XH
s is the initial

(final, respectively) point of XG
t ;

• the initial arc (final arc, nth bridge) of XH
s is mapped homeomorphi-

cally onto the initial arc (final arc, nth bridge) of XG
t ;
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• the nth bead of XH
s is mapped onto the nth bead of XG

t (note indeed
that the nth bead in XH

s is homeomorphic to some Di, while the nth
bead in XG

t is homeomorphic to Di′ with i′ ≤ i).

The definition of h is then extended to {zH
ξ }ξ∈ZN by letting h(zH

ξ ) = zG
γ′−1(ξ).

Claim. h is continuous and onto.

Proof of claim. Since h(Hn) = Gn, let hn : Hn → Gn be the restric-
tion of h. If {Gn, fn}n∈N, {Hn, f ′

n}n∈N are the inverse limits defining G, H
respectively, then hnf ′

n = fnhn+1. Since each hn is continuous and onto, h
is continuous and onto as well by [N92, Exercise 2.22].

Claim. h is open.

Proof of claim. It will be shown that h is interior at each point x ∈ H∗:
for every open set U in H∗ containing x, the point h(x) is interior to h(U).
There are a few cases to be distinguished.

1) x belongs to some string or line XH
s but is not an initial nor a final

point of XH
s . Then for each open neighbourhood U of x there is a smaller

open neighbourhood V of x included in XH
s . So h(V ) is an open subset of

G∗ contained in some XG
t .

2) x = zH
s for some s ∈ Z<ω. Then for each open neighbourhood U of x

there is a smaller open neighbourhood V of x which is the union of:

- {zH
s };

- an open subarc of the final arc of XH
s having zH

s as one of its extrema;
- an open subarc of the initial arc of XH

sa i
, for i ranging over a finite

subset A of Z, having zH
s as one of its extrema;

- a union of cones
⋃

i∈Z\A UH
sa i

.

Let t = γ′−1(s). Then h(V ) is the union of:

- {zG
t };

- an open subarc of the final arc of XG
t having zG

t as one of its extrema;
- an open subarc of the initial arc of XG

ta i
for each i ∈ γ−1(A), having

zG
t as one of its extrema;

-
⋃

i∈Z\γ−1(A) UG
ta i

.

So h(V ) is open in G∗.
3) x = zH

ξ for some ξ ∈ ZN. Then each open neighbourhood U of x
includes an s-cone containing x. The image under h of an s-cone of H∗ is a
t-cone of G∗ for some t.

Conversely, suppose h : H∗ → G∗ is an open continuous surjection.
Recall the following properties of h:

• h maps end points of H∗ to end points of G∗;
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• the image under h of a free arc in H∗ is a free arc in G∗ ([CCP94,
Corollary 6.6]);

• h is light (the preimage of each point is totally disconnected);
• h preserves points of order ℵ0;
• h does not increase orders of points.

For each s ∈ Z<ω, let

• Xsn be the nth bead of XH
s and Ysn be the nth bead of XG

s ;
• αsn be the nth bridge of XH

s and βsn be the nth bridge of XG
s ;

• asn, bsn be the first and second special points of Xsn and csn, dsn be
the first and second special points of Ysn, so that bsn, as,n+1 are the
end points of αsn and dsn, cs,n+1 are the end points of βsn;

• α−
s , α+

s (with end points zH
s|length(s)−1

, p−s and p+
s , zH

s respectively) be

the initial and final arcs of XH
s and β−

s , β+
s (with respective end points

zG
s|length(s)−1

, u−
s and u+

s , zG
s ) be the initial and final arcs of XG

s .

The above notations regarding initial points and arcs apply only for s 6= ∅.
The following is proved by extending an idea from [CCP94].

Claim. ∀s ∈ Z<ω ∃ts ∈ Z<ω (h(XH
s ) = XG

ts
), and the function s 7→ ts

preserves length and inclusion. Moreover, if s is bad then so is ts, while if

s, ts are both good then τG(ts) = τH(s).

Proof of claim. Each bead of H∗ is a connected component of E(H∗) so
it is mapped by h onto a non-degenerate continuum with a dense set of end
points. So ∀(s, n) ∃(t, m) h(Xsn) ⊆ Ytm. This also implies that end points of
bridges of H∗ are mapped to end points of bridges of G∗ and no non-special
point of a bead in H∗ can be mapped to an end point of a bridge in G∗,
since non-special points are interior to beads.

Let

A = (X∅0 ∪ α∅0) \ {a∅1} = (X∅0 \ {b∅0}) ∪ {b∅0} ∪ (α∅0 \ {b∅0, a∅1}).

So the open set h(A) is the union of the open set h(X∅0\{b∅0}), the singleton
{h(b∅0)} and the open free arc h(α∅0 \ {b∅0, a∅1}). It follows that h(X∅0) =
Y∅0 and h(b∅0) = d∅0: if h(X∅0) were a proper subset of some Ytm, take
y 6= h(b∅0) on the boundary of h(X∅0) as a subset of Ytm and x ∈ X∅0 such
that h(x) = y. Then the image of an open subset V of H∗ with x ∈ V ⊆ X∅0

would lead to a contradiction. As h(X∅0 \ {b∅0}) = Ytm \ {h(b∅0)} is open
in G∗, it follows that (t, m) = (∅, 0) and h(b∅0) = d∅0. Since h(X∅1) is a
subset of some bead of G∗, it follows that h(a∅1) ∈ {d∅0, c∅1}. However, if
h(a∅1) = d∅0, then h(α∅0 \ {b∅0, a∅1}) would not be open. So h(a∅1) = c∅1
and f(X∅1) ⊆ Y∅1.
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Now suppose (s, n) 6= (∅, 0) and consider the open set

B = (Xsn ∪ αs,n−1 ∪ αsn) \ {bs,n−1, as,n+1}

= (αs,n−1 \ {bs,n−1, asn}) ∪ {asn} ∪ (Xsn \ {asn, bsn})

∪ {bsn} ∪ (αsn \ {bsn, as,n+1}).

Let (t, m) be such that h(Xsn) ⊆ Ytm. Note that (t, m) 6= (∅, 0), since
all branching points of Y∅0 have order 6. Since h(αs,n−1) and h(αsn) are
free arcs, it follows that {h(asn), h(bsn)} ⊆ {ctm, dtm}. If h(Xsn) ⊂ Ytm let
y /∈ {ctm, dtm} be a point of the boundary of h(Xsn) as subset of Ytm and
let x ∈ Xsn \{asn, bsn} with h(x) = y. If V is open in H∗ with x ∈ V ⊆ Xsn,
then y ∈ h(V ) ⊆ h(Xsn), leading to a contradiction. So h(Xsn) = Ytm and
{h(asn), h(bsn)} = {ctm, dtm}. Since h(Xs,n−1) and h(Xs,n+1) are included in
some beads, it follows that h(bs,n−1) and h(as,n+1) are special points of some
beads in G∗. However, h(bs,n−1) 6= h(asn), otherwise h(αs,n−1\{bs,n−1, asn})
would not be open; similarly h(as,n+1) 6= h(bsn). So h(Xs,n−1) ⊆ Yt,m±1 and
h(Xs,n+1) ⊆ Yt,m∓1.

From this discussion it follows that:

(1) ∀n ∈ N (h(X∅n) = Y∅n);
(2) h(p+

∅ ) = u+
∅ ;

(3) h(zH
∅ ) = zG

∅ (since ord(zH
∅ , H∗) = ℵ0);

(4) ∀s ∈ Z<ω \ {∅} ∃ts ∈ Z<ω \ {∅} ∃k ∈ Z ∀n ∈ Z (h(Xsn) = Yts,k±n).

Actually in (4) the only consistent possibility is

(4′) ∃k ∈ Z ∀n ∈ Z (h(Xsn) = Yts,k+n),

since otherwise beads homeomorphic to D3 would be mapped eventually
onto beads Di with i > 3. This argument also shows that if s is bad then
so is ts, and that if s is good then either ts is bad or τG(ts) = τH(s). Now
it will be argued inductively that s 7→ ts preserves length and inclusion.
Indeed, note that from h(zH

∅ ) = zG
∅ this follows for s of length 1, implying

also h(zH
s ) = zG

ts
. Given h(zH

s ) = zG
ts

the assertion follows for all extensions
sai of s by applying (4′) to sai.

By continuity and surjectivity of h, it follows that h({zH
ξ }ξ∈ZN) =

{zG
ξ }ξ∈ZN . So let g ∈ ZN be such that h(zH

g ) = zG
ι where ι = (0, 1, 2, 3, . . .).

Then h(XH
g|n

) = XG
(0,1,...,n−1) for all n ∈ N. Thus each g|n is a good se-

quence and τH(g|n) = τG(0, 1, . . . , n − 1); so g is an embedding from G
into H.

Remark. With an argument similar to the one used in Remark 2 of
Section 2, the above proof can be modified to produce planar dendrites.
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