Internally club and approachable for larger structures

by

John Krueger (Berkeley, CA)

Abstract. We generalize the notion of a fat subset of a regular cardinal κ to a fat subset of $P_{\kappa}(X)$, where $\kappa \subseteq X$. Suppose $\mu < \kappa$, $\mu^{<\mu} = \mu$, and κ is supercompact. Then there is a generic extension in which $\kappa = \mu^{++}$, and for all regular $\lambda \ge \mu^{++}$, there are stationarily many N in $[H(\lambda)]^{\mu^{+}}$ which are internally club but not internally approachable.

Suppose μ is an infinite cardinal. A set N is internally approachable with length μ^+ if N is the union of an increasing and continuous sequence $\langle N_i : i < \mu^+ \rangle$ of sets with size μ such that for all $\alpha < \mu^+$, $\langle N_i : i < \alpha \rangle$ is in N. A related idea is that of an internally club set. A set N with size μ^+ is internally club if $N \cap [N]^{\mu}$ contains a club subset of $[N]^{\mu}$. In other words, N is the union of an increasing and continuous sequence $\langle N_i : i < \mu^+ \rangle$ of sets with size μ such that each N_i is in N.

Foreman and Todorčević [3] asked whether the properties of being internally approachable and internally club are equivalent. In [5] we proved that under PFA, for all regular $\lambda \geq \omega_2$ there are stationarily many structures $N \prec H(\lambda)$ with size \aleph_1 such that N is internally club but not internally approachable. In this paper we generalize this result to larger structures.

Theorem 1. Suppose $\mu < \kappa$, $\mu^{<\mu} = \mu$, and κ is supercompact. Then there is a μ -closed, μ^+ -proper forcing poset which collapses κ to become μ^{++} , and forces that for all regular $\lambda \geq \mu^{++}$, there are stationarily many N in $[H(\lambda)]^{\mu^+}$ which are internally club but not internally approachable.

In the model we construct to prove Theorem 1, we have $2^{\mu} = \mu^{++}$. In fact, if $2^{\mu} = \mu^{+}$, then any elementary substructure $N \prec H(\lambda)$ with size μ^{+} and which contains μ^{+} is internally club iff it is internally approachable; this is shown at the end of the paper.

In Section 1 we review notation and some background material. Section 2 generalizes the idea of a fat subset of a regular cardinal κ to a fat subset of

²⁰⁰⁰ Mathematics Subject Classification: 03E05, 03E35.

Key words and phrases: fat, internally club, internally approachable.

 $P_{\kappa}(X)$, where $\kappa \subseteq X$. Section 3 presents the basic forcing poset we use in our consistency result, and in Section 4 we describe how to iterate this poset with a mixed support forcing iteration. In Section 5 we prove Theorem 1.

1. Preliminaries. If κ is regular and $\kappa \subseteq X$, we say $C \subseteq P_{\kappa}(X)$ is *club* if it is closed under unions of increasing sequences of length less than κ , and is cofinal. A set $S \subseteq P_{\kappa}(X)$ is *stationary* if it has non-empty intersection with every club. We will use the fact that if $C \subseteq P_{\kappa}(X)$ is club, and $A \subseteq C$ is a directed set with size less than κ , then $\bigcup A \in C$ (see Lemma 8.25 of [4] for a proof). By *directed* we mean that if a and b are in A, then there is c in A such that $a \cup b \subseteq c$.

If N is a set, \mathbb{P} is a forcing poset, and G is a filter on \mathbb{P} , then N[G] denotes the set $\{\dot{a}^G:\dot{a}\in N\cap V^{\mathbb{P}}\}$. A filter G on \mathbb{P} is N-generic if for every dense set $D\subseteq \mathbb{P}$ in $N,N\cap D\cap G$ is non-empty. A condition q in \mathbb{P} is N-generic if q forces \dot{G} is N-generic, where \dot{G} is a name for the generic filter. Suppose λ is regular with $\mathbb{P}\in H(\lambda)$, and $N\prec \langle H(\lambda),\in,\mathbb{P}\rangle$. Then for any condition q in \mathbb{P} , the following are equivalent: (1) q is N-generic, (2) for every dense set $D\subseteq \mathbb{P}$ in $N,N\cap D$ is predense below q, (3) q forces $N[\dot{G}]\cap On=N\cap On$, and (4) q forces $N[\dot{G}]\cap V=N$. Note that if q is N-generic, then for any set X,q forces $N[\dot{G}]\cap \check{X}=N\cap \check{X}$.

Suppose \mathbb{P} is a forcing poset and λ is regular with $\mathbb{P} \in H(\lambda)$. If G is generic for \mathbb{P} over V, then $H(\lambda)^{V[G]} = H(\lambda)^V[G]$. Suppose $N \prec \langle H(\theta), \in, \mathbb{P} \rangle$ in V. If G is generic for \mathbb{P} over V, then $N[G] \prec H(\theta)^{V[G]}$.

Let $\mathbb P$ be a forcing poset and μ a regular cardinal with $\mu^{<\mu}=\mu$. Then $\mathbb P$ is μ^+ -proper if for any regular cardinal $\theta>2^{|\mathbb P|}$ with $\mathbb P$ in $H(\theta)$, if N is an elementary substructure of $\langle H(\theta),\in,\mathbb P\rangle$, N has size μ , and $N^{<\mu}\subseteq N$, then for all p in $N\cap\mathbb P$, there is $q\leq p$ which is N-generic. Any μ^+ -proper forcing poset preserves μ^+ . Note that if $\mathbb P$ is μ^+ -c.c. then any condition in $\mathbb P$ is N-generic, since every maximal antichain of $\mathbb P$ in N is actually a subset of N.

If μ is a regular cardinal and \mathbb{P} is a forcing poset, we say \mathbb{P} is μ -distributive if for any collection \mathcal{D} of not more than μ dense open subsets of \mathbb{P} , $\bigcap \mathcal{D}$ is dense open. This property is equivalent to \mathbb{P} not adding any new sequences of ordinals with order type less than or equal to μ . If κ is a cardinal we say \mathbb{P} is $<\kappa$ -distributive if \mathbb{P} is μ -distributive for all regular $\mu < \kappa$.

Let \mathbb{P} be a forcing poset and μ a regular cardinal. We say \mathbb{P} is μ -closed if whenever $\langle p_i : i < \xi \rangle$ is a descending sequence of conditions in \mathbb{P} with $\xi < \mu$, there is q in \mathbb{P} such that $q \leq p_i$ for all $i < \xi$. If $A \subseteq \mathbb{P}$, a greatest lower bound of A, or glb of A, is a condition q such that $q \leq p$ for all p in A, and whenever $r \leq p$ for all p in A, then $r \leq q$. We say \mathbb{P} is μ -glb closed if whenever $\langle p_i : i < \xi \rangle$ is a descending sequence of conditions in \mathbb{P} with $\xi < \mu$, there exists a greatest lower bound for the set $\{p_i : i < \xi\}$.

2. Generalized fat sets. Let κ be a regular uncountable cardinal. Recall that a set $A \subseteq \kappa$ is fat if for any club set $C \subseteq \kappa$ and $\xi < \kappa$, $A \cap C$ contains a closed subset with order type at least ξ .

FACT 2.1 (Abraham and Shelah [1]). Suppose κ is strongly inaccessible or $\kappa = \mu^+$ where $\mu^{<\mu} = \mu$. Then the following are equivalent for a set $A \subseteq \kappa$:

- (1) A is fat.
- (2) There is $a < \kappa$ -distributive forcing poset \mathbb{P} which forces that A contains a club set.

Suppose κ is a regular uncountable cardinal and $\kappa \subseteq X$. We generalize the idea of fatness to subsets of $P_{\kappa}(X)$ with the following definition.

DEFINITION 2.2. Suppose κ is a regular uncountable cardinal and $\kappa \subseteq X$. A set $A \subseteq P_{\kappa}(X)$ is fat if for all regular $\theta \ge \kappa$ with $X \subseteq H(\theta)$, for any club $C \subseteq P_{\kappa}(H(\theta))$ and $\xi < \kappa$, there is an increasing and continuous sequence $\langle N_i : i < \xi \rangle$ such that for all $i < \xi$, $N_i \in C$, $N_i \cap X \in A$, and $N_i \in N_{i+1}$ when $i+1 < \xi$.

LEMMA 2.3. Suppose $\kappa = \mu^+$. Then $A \subseteq P_{\kappa}(X)$ is fat iff for all regular $\theta \geq \kappa$ with $X \subseteq H(\theta)$, for any club $C \subseteq P_{\kappa}(H(\theta))$, and for any regular cardinal $\lambda \leq \mu$, there is an increasing and continuous sequence $\langle N_i : i \leq \lambda \rangle$ such that for $i \leq \lambda$, $N_i \in C$, $N_i \cap X \in A$, and $N_i \in N_{i+1}$ when $i < \lambda$.

Proof. Suppose A satisfies the second condition. Then clearly A is stationary in $P_{\kappa}(X)$. Fix $\theta \geq \kappa$ regular with $X \subseteq H(\theta)$. We prove by induction on $\xi < \mu^+$ that for any club set $C \subseteq P_{\kappa}(H(\theta))$, there is an increasing and continuous sequence $\langle N_i : i < \xi \rangle$ such that for all $i < \xi$, $N_i \in C$, $N_i \cap X \in A$, and $N_i \in N_{i+1}$ when $i+1 < \xi$. The successor step of the induction follows from the fact that A is stationary.

Suppose $\delta < \mu^+$ is a limit ordinal and the claim holds for all $\delta' < \delta$. Let $\langle \delta_i : i < \operatorname{cf}(\delta) \rangle$ be increasing and cofinal in δ . Note that $\operatorname{cf}(\delta) \leq \mu$. Let

$$\mathcal{A} = \langle H(\theta), \in, <, X, A, \delta, \langle \delta_i : i < \operatorname{cf}(\delta) \rangle \rangle,$$

where \langle is a well-ordering of $H(\theta)$. Fix an increasing and continuous sequence $\langle N_i : i \leq \operatorname{cf}(\delta) \rangle$ of sets such that for $i \leq \operatorname{cf}(\delta)$, $N_i \in C$, $N_i \prec A$, $\mu \subseteq N_i$, $N_i \cap X \in A$, and $N_i \in N_{i+1}$ when $i < \operatorname{cf}(\delta)$.

Fix $i < \operatorname{cf}(\delta)$. By the induction hypothesis, let $\langle M_j^i : j \leq \delta_i \rangle$ be the <-least increasing and continuous sequence with length $\delta_i + 1$ such that $\mu \cup \{N_i\} \subseteq M_0^i$, and for $j \leq \delta_i$, $M_j^i \in C$, $N_i \prec M_j^i$, $M_j^i \cap X \in A$, and $M_j^i \in M_{j+1}^i$ when $j < \delta_i$. By elementarity, this sequence is in N_{i+1} . Then the set

$$\{N_i : i \leq \operatorname{cf}(\delta)\} \cup \{M_i^i : i < \operatorname{cf}(\delta), j \leq \delta_i\},$$

well-ordered by \in , is increasing and continuous with order type at least δ , and for all N in this set, $N \in C$ and $N \cap X \in A$.

We will now show that our definition of fatness generalizes the classical notion. Indeed, let A be a fat subset of a regular cardinal κ . We show A is a fat subset of $P_{\kappa}(X)$, where $X = \kappa$, according to Definition 2.2. So let $\theta \geq \kappa$ be regular, and let $C \subseteq P_{\kappa}(H(\theta))$ be club. Fix $\xi < \kappa$. Define by induction an increasing and continuous sequence $\langle M_i : i < \kappa \rangle$ such that for $i < \kappa$, $M_i \cap \kappa \in \kappa$, $M_i \in C$, and $M_i \in M_{i+1}$. Then $\langle M_i \cap \kappa : i < \kappa \rangle$ is a club subset of κ . Since A is fat, there is a closed set $a \subseteq \kappa$ with order type at least ξ such that $\{M_i \cap \kappa : i \in a\} \subseteq A$. Then $\langle M_i : i \in a \rangle$ is as required.

Suppose on the other hand that $A \subseteq \kappa$ is fat as a subset of $P_{\kappa}(\kappa)$ by Definition 2.2; we show A is fat as a subset of κ . Let $C \subseteq \kappa$ be club and fix $\xi < \kappa$. Let $\langle N_i : i \leq \xi \rangle$ be an increasing and continuous sequence of sets in $P_{\kappa}(H(\kappa))$ such that for $i \leq \xi$, $N_i \prec \langle H(\kappa), \in, C \rangle$, $N_i \cap \kappa \in \kappa$, $N_i \cap \kappa \in A$, and $N_i \in N_{i+1}$ when $i < \xi$. Then $\{N_i \cap \kappa : i \leq \xi\}$ is a closed set contained in $A \cap C$.

The next theorem generalizes Fact 2.1.

THEOREM 2.4. Suppose κ is strongly inaccessible or $\kappa = \mu^+$ where $\mu^{<\mu} = \mu$. Let X be a set containing κ . Then the following are equivalent for a set $A \subseteq P_{\kappa}(X)$:

- (1) A is fat.
- (2) There is a $<\kappa$ -distributive forcing poset which forces there is an increasing and continuous sequence $\langle a_i : i < \kappa \rangle$ which is cofinal in $P_{\kappa}(X)$ such that $a_i \in A$ for $i < \kappa$.

Proof. Suppose $A \subseteq P_{\kappa}(X)$ and \mathbb{P} is a $<\kappa$ -distributive forcing poset which forces that $\langle \dot{a}_i : i < \kappa \rangle$ is increasing, continuous, and cofinal in $P_{\kappa}(X)$ such that $\dot{a}_i \in A$ for $i < \kappa$. We prove that A is fat. So let $\theta \geq \kappa$ be regular with $X \subseteq H(\theta)$. Suppose $C \subseteq P_{\kappa}(H(\theta))$ is club. Let G be generic for \mathbb{P} over V, and let $a_i = \dot{a}_i^G$ for $i < \kappa$. Since \mathbb{P} is $<\kappa$ -distributive, in V[G] the set C is still a club subset of $P_{\kappa}(H(\theta)^V)$.

We work in V[G]. Since $X = \bigcup \{a_i : i < \kappa\}$ and $|a_i| < \kappa$ for all $i < \kappa$, X has size κ in the extension. So let $\langle x_i : i < \kappa \rangle$ enumerate X. We define by induction an increasing and continuous sequence $\langle N_i : i < \kappa \rangle$ such that for all $i < \kappa$, $N_i \in N_{i+1}$ and $N_i \in C$. Choose N_0 in C arbitrarily. At limits take unions. Suppose N_i is defined. Then N_i is in $H(\theta)^V$, so choose N_{i+1} in C such that $N_i \cup \{N_i\} \cup \{x_i\} \subseteq N_{i+1}$. This completes the definition. Now $\langle a_i : i < \kappa \rangle$ and $\langle N_i \cap X : i < \kappa \rangle$ are both club in $P_{\kappa}(X)$. So there is a club $D \subseteq \kappa$ such that for all $i \in D$, $a_i = N_i \cap X$. Then $\langle N_i : i \in D \rangle$ is an increasing and continuous sequence such that for all $i \in D$, $N_i \in C$, $N_i \in N_{i+1}$, and $N_i \cap X \in A$. But every initial segment of this sequence is in V since \mathbb{P} is $<\kappa$ -distributive. So A is fat.

In the other direction, suppose $A \subseteq P_{\kappa}(X)$ is fat. Define a forcing poset $\mathbb{P}(A)$ as follows. A condition in $\mathbb{P}(A)$ is an increasing and continuous se-

quence $\langle a_i : i \leq \gamma \rangle$, where $\gamma < \kappa$, such that $a_i \in A$ for all $i \leq \gamma$. The ordering is by extension of sequences. We claim that $\mathbb{P}(A)$ is $<\kappa$ -distributive and $\mathbb{P}(A)$ forces that the union of the generic filter is an increasing and continuous sequence cofinal in $P_{\kappa}(X)$ with order type κ whose elements are in A.

Suppose $\langle D_i : i < \xi \rangle$ is a sequence of dense open subsets of $\mathbb{P}(A)$, where $\xi < \kappa$ is a cardinal. Let p be in $\mathbb{P}(A)$; then we find $q \leq p$ which is in $\bigcap \{D_i : i < \xi\}$. Fix a regular cardinal $\theta \gg \kappa$ with $X \in H(\theta)$, and let

$$\mathcal{A} = \langle H(\theta), \in, X, A, \mathbb{P}(A), p, \langle D_i : i < \xi \rangle \rangle.$$

Since A is fat we can find an increasing and continuous sequence $\langle N_i : i \leq \xi \rangle$ such that for all $i \leq \xi$, $N_i \prec A$, $N_i \cap \kappa \in \kappa$, $\xi \subseteq N_i$, $N_i \cap X \in A$, and when $i < \xi$, $N_i \in N_{i+1}$.

We define by induction a descending sequence of conditions $\langle p_i : i \leq \xi \rangle$ in $\mathbb{P}(A)$. Our induction hypothesis is that p_i is in N_{i+1} and the maximum element of p_i is $N_i \cap X$. Let $p_0 = p^{\widehat{}}(N_0 \cap X)$. Then p_0 is a condition, because $p \in N_0$ and thus all the elements of p are subsets of $N_0 \cap X$. Suppose $i < \xi$, and for all $j \leq i$, p_j is defined, p_j is a member of N_{j+1} , and the maximum element of p_j is $N_j \cap X$. Since $\xi \subseteq N_{i+1}$, D_i is in N_{i+1} . Fix $p_i^* \leq p_i$ in $D_i \cap N_{i+1}$. Since p_i^* has size less than κ and $N_{i+1} \cap \kappa \in \kappa$, we have $p_i^* \subseteq N_{i+1}$, and so every element of p_i^* is a subset of N_{i+1} as well. Therefore if we let $p_{i+1} = p_i^* \cap (N_{i+1} \cap X)$, then p_{i+1} is a condition in $N_{i+2} \cap D_i$ below p_i .

Suppose $\delta \leq \xi$ is a limit ordinal and $p_i \in N_{i+1}$ is defined for all $i < \delta$. Let

$$p_{\delta} = \bigcup \{p_i : i < \delta\} \hat{\ } (N_{\delta} \cap X),$$

which is a condition since $N_{\delta} \cap X \in A$ and $N_{\delta} = \bigcup \{N_i : i < \delta\}$. We need to show that p_{δ} is in $N_{\delta+1}$ when $\delta < \xi$. The sequence $\langle p_i : i < \delta \rangle$ is in $N_{\delta}^{<\xi}$. Since κ is either strongly inaccessible or equal to μ^+ where $\mu^{<\mu} = \mu$, $N_{\delta}^{<\xi}$ has size less than κ . But $N_{\delta}^{<\xi} \in N_{\delta+1}$. Since $N_{\delta+1} \cap \kappa \in \kappa$, $N_{\delta}^{<\xi} \subseteq N_{\delta+1}$. So the sequence $\langle p_i : i < \delta \rangle$ is in $N_{\delta+1}$. Clearly then p_{δ} is in $N_{\delta+1}$ as well.

This completes the construction of $\langle p_i : i \leq \xi \rangle$. The condition p_{ξ} is below p and is in $\bigcap \{D_i : i < \xi\}$. So $\mathbb{P}(A)$ is $<\kappa$ -distributive.

For each $\alpha < \kappa$ let D_{α} be the set of conditions in $\mathbb{P}(A)$ with length at least α . Clearly D_0 is dense open, and if D_i is dense open, D_{i+1} is dense open as well. Assume $\delta < \kappa$ is a limit ordinal and D_i is dense open for all $i < \delta$. Since $\mathbb{P}(A)$ is $< \kappa$ -distributive, $\bigcap \{D_i : i < \delta\}$ is dense open. But if p is in this intersection, p has length at least δ . So $\mathbb{P}(A)$ forces the union of the generic filter has length κ . By an easy density argument, $\mathbb{P}(A)$ forces the union of the generic filter is cofinal in $P_{\kappa}(X)$.

Since we will use the forcing poset from the last theorem in our consistency proof, we describe it explicitly in the following definition.

DEFINITION 2.5. Suppose κ is regular, $\kappa \subseteq X$, and $A \subseteq P_{\kappa}(X)$ is fat. Let $\mathbb{P}(A)$ be the forcing poset consisting of increasing and continuous sequences $\langle a_i : i \leq \gamma \rangle$, where $\gamma < \kappa$ and $a_i \in A$ for $i \leq \gamma$, ordered by extension of sequences.

The forcing poset $\mathbb{P}(A)$ is $<\kappa$ -distributive and adds an increasing, continuous, and cofinal sequence $\langle a_i : i < \kappa \rangle$ through $P_{\kappa}(X)$ such that $a_i \in A$ for $i < \kappa$. In particular, $\mathbb{P}(A)$ collapses the size of X to be κ .

If $\kappa = \omega_1$ and $\omega_1 \subseteq X$, one can show using Lemma 2.3 that any stationary set $A \subseteq P_{\omega_1}(X)$ is fat. Thus $\mathbb{P}(A)$ is ω -distributive for any stationary set $A \subseteq P_{\omega_1}(X)$.

3. The basic forcing poset. We now describe the forcing poset which we will use in our consistency proof.

Suppose $\mu^{<\mu} = \mu$ and $\mu^+ \subseteq X$. The basic forcing poset we will use is $Add(\mu) * \mathbb{P}(\dot{S})$, where $Add(\mu)$ adds a Cohen subset to μ , $Add(\mu)$ forces $\dot{S} = [X]^{\mu} \cap V$, and $\mathbb{P}(\dot{S})$ is the forcing poset from Definition 2.5. Thus we need to know that $Add(\mu)$ forces \dot{S} is fat. If $\mu^{<\mu} = \mu$ then $Add(\mu)$ is μ^+ -c.c., so this follows from the next proposition.

PROPOSITION 3.1. Suppose κ is regular and $\kappa \subseteq X$. Let \mathbb{P} be a κ -c.c. forcing poset. Then \mathbb{P} forces $P_{\kappa}(X) \cap V$ is fat.

Proof. Let G be generic for \mathbb{P} over V. Working in V[G], fix $\theta \geq \kappa$ regular with $X \subseteq H(\theta)$, and let $C \subseteq P_{\kappa}(H(\theta))$ be club. Fix $\chi \gg \theta$ regular such that $H(\chi)$ contains C and \mathbb{P} as members. Recall that $H(\chi)^{V[G]} = H(\chi)^{V}[G]$. Let \dot{C} be a name for C in $H(\chi)^{V}$.

Now back in V, define by induction an increasing and continuous sequence $\langle N_i : i < \kappa \rangle$ of elementary substructures of $\langle H(\chi), \in, X, \dot{C}, \mathbb{P} \rangle$ such that for all $i < \kappa$, $|N_i| < \kappa$, $N_i \cap \kappa \in \kappa$, and $N_i \in N_{i+1}$. Then in V[G], for all $i < \kappa$, $N_i[G] \prec \langle H(\chi)^{V[G]}, \in, C \rangle$. By elementarity, $N_i[G] \cap C$ is a directed subset of C with size less than κ whose union is equal to $N_i[G] \cap H(\theta)$. So $N_i[G] \cap H(\theta)$ is in C. Since $N_i \in N_{i+1}$, $N_i[G] \in N_{i+1}[G]$, and therefore $N_i[G] \cap H(\theta) \in N_{i+1}[G] \cap H(\theta)$. But \mathbb{P} is κ -c.c., so $N_i[G] \cap V = N \cap V$. For if $x \in N_i[G] \cap V$, there is a name \dot{x} for x in N_i . The maximal antichain of conditions deciding \dot{x} is in N_i , and has size less than κ , so is a subset of N_i . But then x is in N_i . In particular, $N_i[G] \cap X = N_i \cap X$, which is in $P_{\kappa}(X) \cap V$.

The forcing poset $Add(\mu)$ is μ -glb closed. Indeed, if $\langle p_i : i < \xi \rangle$ is decreasing in $Add(\mu)$ where $\xi < \mu$, then $\bigcup \{p_i : i < \xi\}$ is the greatest lower bound. Note that any two-step forcing iteration of μ -glb closed forcing posets is μ -glb closed.

LEMMA 3.2. Suppose $\mu^{<\mu} = \mu$, $\mu^+ \subseteq X$, and \dot{S} is an $ADD(\mu)$ -name for $[X]^{\mu} \cap V$. Then $ADD(\mu)$ forces that $\mathbb{P}(\dot{S})$ is μ -glb closed. Hence $ADD(\mu) * \mathbb{P}(\dot{S})$ is μ -glb closed.

Proof. Let G be generic for $Add(\mu)$. In V[G], suppose $\langle p_i : i < \xi \rangle$ is a descending sequence of conditions in $\mathbb{P}(S)$ where $\xi < \mu$ is a limit ordinal. For each i write $p_i = \langle a_j : j \leq \gamma_i \rangle$. Let $\gamma = \sup(\{\gamma_i : i < \xi\})$ and $a = \bigcup \{a_i : i < \gamma\}$. Let

 $q = \bigcup \{p_i : i < \xi\} \cup \{\langle \gamma, a \rangle\}.$

Then q is a condition in $\mathbb{P}(S)$ iff a is in V. But since $Add(\mu)$ is μ -closed, the sequence $\langle a_{\gamma_i} : i < \xi \rangle$ is in V, and hence its union a is in V. Clearly any condition which extends each p_i must extend q, so q is the greatest lower bound of the sequence.

4. Iterating the basic forcing poset. We now describe a mixed support iteration of the forcing poset introduced in the last section.

Fix a cardinal μ such that $\mu^{<\mu} = \mu$. We consider a forcing iteration

$$\langle \mathbb{P}_i, \dot{\mathbb{Q}}_j : i \leq \alpha, j < \alpha \rangle,$$

satisfying the following recursive definition:

- (1) If $i < \alpha$ is even, \mathbb{P}_i forces $\dot{\mathbb{Q}}_i = \text{Add}(\mu)$, and \mathbb{P}_i forces \dot{X}_i is a set containing μ^+ .
- (2) If $i = j + 1 < \alpha$ is odd, \mathbb{P}_i forces $\dot{S}_i = [\dot{X}_j]^{\mu} \cap V[\dot{G}_j]$, where \dot{G}_j is a name for the generic filter for \mathbb{P}_j , and $\dot{\mathbb{Q}}_i = \mathbb{P}(\dot{S}_i)$ is the poset from Definition 2.5.
- (3) If $i \leq \alpha$ is a limit ordinal, \mathbb{P}_i is the poset consisting of partial functions $p: i \to V$ such that $p \mid j \in \mathbb{P}_j$ for j < i, $|\text{dom}(p) \cap \{j < i: j \text{ even}\}| < \mu$, and $|\text{dom}(p) \cap \{j < i: j \text{ odd}\}| \leq \mu$.

We assume the following recursion hypotheses for all $\beta < \alpha$, which guarantee that the definition above makes sense.

- (4) \mathbb{P}_{β} is μ -glb closed and μ^+ -proper, and so preserves cardinals and cofinalities less than or equal to μ^+ .
- (5) Let \mathbb{P}_{β}^* be the set of p in \mathbb{P}_{β} such that for all even j in dom(p), there is x in $Add(\mu)$ such that $p(j) = \check{x}$. Then \mathbb{P}_{β}^* is dense in \mathbb{P}_{β} .
- (6) If $\langle p_i : i < \xi \rangle$ is a descending sequence of conditions in \mathbb{P}_{β}^* with $\xi < \mu$, then the greatest lower bound of this sequence is in \mathbb{P}_{β}^* .

We prove that properties (4)–(6) above also hold for \mathbb{P}_{α} .

CASE 1: $\alpha = \beta + 1$ is a successor ordinal. We show that \mathbb{P}_{α} is μ -glb closed. This will follow from the fact that a two-step iteration of μ -glb closed forcing posets is μ -glb closed. If β is even, then $\mathbb{P}_{\alpha} = \mathbb{P}_{\beta} * \text{Add}(\mu)$. Since \mathbb{P}_{β} is μ -glb closed by recursion, clearly \mathbb{P}_{α} is μ -glb closed as well. Suppose

 $\beta = \gamma + 1$ is odd. Then $\mathbb{P}_{\alpha} = \mathbb{P}_{\gamma} * \text{Add}(\mu) * \mathbb{P}(\dot{S}_{\beta})$. By recursion, \mathbb{P}_{γ} is μ -glb closed, and by Lemma 3.2, \mathbb{P}_{γ} forces that $\text{Add}(\mu) * \mathbb{P}(\dot{S}_{\beta})$ is μ -glb closed. So \mathbb{P}_{α} is μ -glb closed. We prove in Proposition 4.2 below that \mathbb{P}_{α} is μ ⁺-proper.

Now we prove that \mathbb{P}_{α}^* is dense in \mathbb{P}_{α} . Consider a condition p in \mathbb{P}_{α} . If β is not in the domain of p or if β is odd, fix $q \leq p \upharpoonright \beta$ in \mathbb{P}_{β}^* . Then $q \leq p$ is in \mathbb{P}_{α}^* if β is not in dom(p), and $q \upharpoonright p(\beta) \leq p$ is in \mathbb{P}_{α}^* otherwise. Assume β is in dom(p) and β is even. Since \mathbb{P}_{β} is μ -closed, it forces that $p(\beta)$ is an element of ADD (μ) in the ground model. So choose $r \leq p \upharpoonright \beta$ in \mathbb{P}_{β}^* and x in ADD (μ) such that r forces $p(\beta) = \check{x}$. Then $r \upharpoonright \check{x}$ is as required.

Suppose $\langle p_i : i < \xi \rangle$ is a descending sequence of conditions in \mathbb{P}_{α}^* with $\xi < \mu$. We show that the greatest lower bound of this sequence is in \mathbb{P}_{α}^* . Now $\langle p_i | \beta : i < \xi \rangle$ is a descending sequence in \mathbb{P}_{β}^* . By induction the greatest lower bound q of this sequence is in \mathbb{P}_{β}^* . If β is not in $\text{dom}(p_i)$ for all $i < \xi$, then q is the greatest lower bound of $\langle p_i : i < \xi \rangle$ in \mathbb{P}_{α}^* . Otherwise let $\gamma < \xi$ be the least ordinal such that β is in $\text{dom}(p_{\gamma})$. If β is odd, let \dot{u} be a \mathbb{P}_{β} -name for the greatest lower bound of $\{p_i(\beta) : \gamma \leq i < \xi\}$. Then $q \hat{u}$ is as required. If β is even, then fix for each $\gamma \leq i < \xi$ a condition x_i in $\text{Add}(\mu)$ such that $p_i(\beta) = \check{x}_i$. Let $x = \bigcup \{x_i : \gamma \leq i < \xi\}$. Then $q \hat{u}$ is as required.

CASE 2: α is a limit ordinal. We show that \mathbb{P}_{α} is μ -glb closed. Suppose $\langle p_i : i < \xi \rangle$ is a descending sequence of conditions in \mathbb{P}_{α} , with $\xi < \mu$. For each $i < \alpha$, \mathbb{P}_i forces $\dot{\mathbb{Q}}_i$ is μ -glb closed. Define q with support equal to $\bigcup \{ \operatorname{dom}(p_i) : i < \xi \}$, so that for each β in this support, $q \upharpoonright \beta$ forces $q(\beta)$ is the greatest lower bound of $\langle p_i(\beta) : \gamma_\beta \leq i < \xi \rangle$, where γ_β is the least $i < \xi$ with β in $\operatorname{dom}(p_i)$. Clearly then q is the greatest lower bound of $\{p_i : i < \xi\}$ in \mathbb{P}_{α} . Suppose moreover that $p_i \in \mathbb{P}_{\alpha}^*$ for all $i < \xi$. Then q can be chosen to be in \mathbb{P}_{α}^* as well. Namely, for each even β in $\operatorname{dom}(q)$, and for $\gamma_\beta \leq i < \xi$, choose x_i^β in $\operatorname{Add}(\mu)$ such that $p_i(\beta) = \check{x}_i^\beta$. Then let $q(\beta)$ be a name for $\bigcup \{x_i^\beta : \gamma_\beta \leq i < \xi\}$.

Now we show \mathbb{P}_{α}^* is dense in \mathbb{P}_{α} . First assume $\mathrm{cf}(\alpha) \geq \mu$, and let p be in \mathbb{P}_{α} . Then there is $\xi < \alpha$ such that $\mathrm{dom}(p) \cap \{i < \alpha : i \text{ even}\} \subseteq \xi$. By induction we can choose $q \leq p \upharpoonright \xi$ in \mathbb{P}_{ξ}^* . Then $q \upharpoonright p \upharpoonright [\xi, \alpha)$ is in \mathbb{P}_{α}^* and is below p.

Suppose $cf(\alpha) < \mu$ and let p be in \mathbb{P}_{α} . Fix an increasing and continuous sequence $\langle \xi_i : i < cf(\alpha) \rangle$ cofinal in α with $\xi_0 = 0$, and let $\xi_{cf(\alpha)} = \alpha$. We define by induction a descending sequence $\langle p_i : i \leq cf(\alpha) \rangle$ so that $p_i | \xi_i$ is in $\mathbb{P}_{\xi_i}^*$. Let $p_0 = p$. Given p_i , apply the recursion hypotheses to choose $q \leq p_i | \xi_{i+1}$ in $\mathbb{P}_{\xi_{i+1}}^*$, and let $p_{i+1} = q p | \xi_{i+1}$. Suppose $\delta \leq cf(\alpha)$ is a limit ordinal and p_i is defined for all $i < \delta$. Let q be the greatest lower bound of the sequence $\langle p_i | \xi_i : i < \delta \rangle$. Since each $p_i | \xi_i$ is in $\mathbb{P}_{\xi_i}^* \subseteq \mathbb{P}_{\xi_{\delta}}^*$, q is in $\mathbb{P}_{\xi_{\delta}}^*$. Now define $p_{\delta} = q p | \xi_{\delta}$, p_{δ} . This completes the definition. The condition $p_{cf(\alpha)}$ is below p and is in \mathbb{P}_{α}^* .

Now we prove that \mathbb{P}_{α} is μ^+ -proper. The proof is the same whether α is a successor or a limit ordinal.

We will use the following basic observation.

LEMMA 4.1. Suppose p and q are conditions in \mathbb{P}_{α} such that for all γ in $dom(p) \cap dom(q)$, either $p \upharpoonright \gamma$ or $q \upharpoonright \gamma$ forces $p(\gamma)$ and $q(\gamma)$ are compatible in $\dot{\mathbb{Q}}_{\gamma}$. Then p and q are compatible.

PROPOSITION 4.2. The poset \mathbb{P}_{α} is μ^+ -proper.

Proof. Fix a regular cardinal $\theta > 2^{|\mathbb{P}_{\alpha}|}$ such that \mathbb{P}_{α} is in $H(\theta)$. Let $N \prec \langle H(\theta), \in, \mathbb{P}_{\alpha} \rangle$ be a set with size μ with $N^{<\mu} \subseteq N$. We would like to show that for every p in $N \cap \mathbb{P}_{\alpha}$, there is $q \leq p$ which is N-generic. In Proposition 4.5 we need q to satisfy a slightly stronger property, which we describe in the following claim.

CLAIM 4.3. For all p in $N \cap \mathbb{P}_{\alpha}$, there is $q \leq p$ with the property that for all $r \leq q$, and for any dense set $D \subseteq \mathbb{P}_{\alpha}$ in N, there is q' in $D \cap N$ compatible with r such that for all odd γ in dom(q'), $\gamma \in \text{dom}(r)$ and $r \upharpoonright \gamma$ forces $r(\gamma) \leq q'(\gamma)$.

Let $\langle \langle D_i, f_i \rangle : i < \mu \rangle$ be an enumeration of all pairs $\langle D, f \rangle$ in N such that $D \subseteq \mathbb{P}_{\alpha}$ is dense and $f : \{\beta < \alpha : \beta \text{ even}\} \to \text{Add}(\mu)$ is a partial function with $|\text{dom}(f)| < \mu$.

We define by induction a descending sequence $\langle p_i : i < \mu \rangle$ of conditions in $N \cap \mathbb{P}^*_{\alpha}$ and a sequence $\langle q_i : i < \mu \rangle$ of conditions in $N \cap \mathbb{P}^*_{\alpha}$ such that:

- (1) for $i < \mu$, $dom(p_i) \cap \{\beta < \alpha : \beta \text{ even}\} = dom(p_0) \cap \{\beta < \alpha : \beta \text{ even}\},$
- (2) for $i < \mu$, for all even β in dom (p_i) , $p_i(\beta) = p_0(\beta)$.

Fix $p_0 \leq p$ in $N \cap \mathbb{P}_{\alpha}^*$. If $\delta < \mu$ is a limit ordinal and p_i is defined for all $i < \delta$, let p_{δ} be the greatest lower bound of $\{p_i : i < \delta\}$. Since $N^{<\mu} \subseteq N$, $\langle p_i : i < \delta \rangle$ is in N, and therefore p_{δ} is in $N \cap \mathbb{P}_{\alpha}^*$.

Suppose p_i is defined for a fixed $i < \mu$. Consider the pair $\langle D_i, f_i \rangle$. If there is q in $N \cap D_i$ below p_i such that $dom(f_i) \subseteq dom(q)$, and for all β in $dom(f_i)$, $q(\beta)$ is a name for $f_i(\beta)$, then choose q_i as such a q. Otherwise just pick $q_i \leq p_i$ in $N \cap D_i$. Now define p_{i+1} with support equal to

$$(dom(p_i) \cap \{\beta < \alpha : \beta \text{ even}\}) \cup (dom(q_i) \cap \{\gamma < \alpha : \gamma \text{ odd}\})$$

so that $p_{i+1}(\beta) = p_i(\beta)$ for even β , and $p_{i+1}(\gamma) = q_i(\gamma)$ for odd γ .

We define a lower bound q for $\langle p_i : i < \mu \rangle$, and prove that q satisfies the requirements of Claim 4.3. Clearly then q is N-generic. The domain of q is $\bigcup \{ \operatorname{dom}(p_i) : i < \mu \}$. In particular, $\operatorname{dom}(q) \cap \{ \beta < \alpha : \beta \text{ even} \} = \operatorname{dom}(p_0) \cap \{ \beta < \alpha : \beta \text{ even} \}$, which has size less than μ . For even β in $\operatorname{dom}(q)$, let $q(\beta) = p_0(\beta)$.

Suppose $\gamma = \beta + 1$ is an odd ordinal in dom(q). Let $i_{\gamma} < \mu$ be the least i such that γ is in $dom(p_i)$. For $i_{\gamma} \leq i < \mu$, fix a name $\dot{\sigma}_i^{\gamma}$ so that \mathbb{P}_{γ} forces

 $p_i(\gamma)$ has domain $\dot{\sigma}_i^{\gamma} + 1$. Let $\dot{\sigma}_{\gamma}$ be a \mathbb{P}_{γ} -name for $\sup(\{\dot{\sigma}_i^{\gamma} + 1 : i_{\gamma} \leq i < \mu\})$. Then \mathbb{P}_{γ} forces that the union of the conditions in $\{p_i(\gamma) : i_{\gamma} \leq i < \mu\}$ is a sequence of length $\dot{\sigma}_{\gamma}$. Let $\langle \dot{a}_i^{\gamma} : i < \dot{\sigma}_{\gamma} \rangle$ be a sequence of names such that

$$\mathbb{P}_{\gamma} \Vdash \bigcup \{p_i(\gamma): i_{\gamma} \leq i < \mu\} = \langle \dot{a}_i^{\gamma}: i < \dot{\sigma}_{\gamma} \rangle.$$

Let $\dot{a}_{\dot{\sigma}_{\gamma}}^{\gamma}$ be a name for $\bigcup \{\dot{a}_{i}^{\gamma}: i < \dot{\sigma}_{\gamma}\}$. Finally, let $q(\gamma)$ be a name for the sequence $\langle \dot{a}_{i}^{\gamma}: i \leq \dot{\sigma}_{\gamma} \rangle$.

We prove by induction that for all $\gamma \leq \alpha$, $q \upharpoonright \gamma$ is a condition in \mathbb{P}_{γ} and is below $p_i \upharpoonright \gamma$ for all $i < \mu$. Limit stages are clear. Suppose $q \upharpoonright \gamma$ satisfies this property. If γ is even or if γ is not in dom(q), then clearly $q \upharpoonright \gamma + 1$ is as required. Suppose $\gamma = \beta + 1$ is odd and is in dom(q). Then $q \upharpoonright \gamma + 1$ is a condition below $p_i \upharpoonright \gamma + 1$ for all $i < \mu$, provided that $q \upharpoonright \gamma$ forces that $\dot{a}_{\sigma_{\gamma}}^{\gamma}$ is in $\dot{S}_{\gamma} = [\dot{X}_{\beta}]^{\mu} \cap V[\dot{G}_{\beta}]$.

Let $G_{\beta} * H$ be generic for $\mathbb{P}_{\gamma} = \mathbb{P}_{\beta} * \mathrm{ADD}(\mu)$. Since γ is in $\mathrm{dom}(q)$, γ is in $\mathrm{dom}(p_i)$ for some $i < \mu$. Since $\mu \subseteq N$, $\mathrm{dom}(p_i) \subseteq N$. Therefore γ , and hence β , is in N. So \mathbb{P}_{β} is in N. But $\mathrm{ADD}(\mu)$ is μ^+ -c.c. in $V[G_{\beta}]$, so $N[G_{\beta} * H] \cap V[G_{\beta}] = N[G_{\beta}]$. In particular, $N[G_{\beta} * H] \cap X_{\beta} = N[G_{\beta}] \cap X_{\beta}$, which is in $[X_{\beta}]^{\mu} \cap V[G_{\beta}]$. So it suffices to show that $a_{\sigma_{\gamma}}^{\gamma} = N[G_{\beta} * H] \cap X_{\beta}$.

If $i_{\gamma} \leq i < \mu$, then the condition $p_i(\gamma) = \langle a_j^{\gamma} : j \leq \sigma_i^{\gamma} \rangle$ is a member, and hence a subset, of $N[G_{\beta} * H]$. Therefore each a_j^{γ} is a subset of $N[G_{\beta} * H]$. Hence $\bigcup \{a_j^{\gamma} : j < \sigma_{\gamma}\} \subseteq N[G_{\beta} * H] \cap X_{\beta}$. On the other hand, fix x in $N[G_{\beta} * H] \cap X_{\beta}$. Fix a \mathbb{P}_{γ} -name \dot{x} for x in N. Then there is a dense subset of \mathbb{P}_{α} in N of conditions s such that \mathbb{P}_{γ} forces \dot{x} is in some element of the sequence $s(\gamma)$. Hence for some $i < \mu$, q_i is in this dense set. Since $q_i(\gamma) = p_{i+1}(\gamma)$, \mathbb{P}_{γ} forces \dot{x} appears in some element of $p_{i+1}(\gamma)$. Therefore x appears in some element of $\langle a_j^{\gamma} : j \leq \sigma_{i+1}^{\gamma} \rangle$. So x is in $a_{\sigma_{\gamma}}^{\gamma}$. Thus $a_{\sigma_{\gamma}}^{\gamma} = \bigcup \{a_i^{\gamma} : i < \sigma_{\gamma}\} = N[G_{\beta} * H] \cap X_{\beta}$.

We now prove that q has the property described in Claim 4.3. Let $r \leq q$ and suppose D is a dense subset of \mathbb{P}_{α} in N. Fix $s \leq r$ in $\mathbb{P}_{\alpha}^* \cap D$. Let $f: \alpha \to \mathrm{Add}(\mu)$ be the partial function with $\mathrm{dom}(f) = N \cap \mathrm{dom}(s) \cap \{\beta < \alpha : \beta \text{ even}\}$ such that for all β in $\mathrm{dom}(f)$, $s(\beta)$ is a name for $f(\beta)$. Since $N^{<\mu} \subseteq N$, f is in N. Fix $i < \mu$ such that $D_i = D$ and $f_i = f$.

Now $H(\theta)$ models that there is $u \leq p_i$ in D_i such that $\operatorname{dom}(f_i) \subseteq \operatorname{dom}(u)$, and for all β in $\operatorname{dom}(f_i)$, $u(\beta)$ is a name for $f_i(\beta)$, as witnessed by u = s. By elementarity, the same is true in N. Hence, by construction, q_i also has this property. If γ is odd and is in $\operatorname{dom}(q_i)$, then γ is in $\operatorname{dom}(p_{i+1})$ and $p_{i+1}(\gamma) = q_i(\gamma)$. Therefore, for all odd γ in $\operatorname{dom}(q_i)$, γ is in $\operatorname{dom}(r)$ and $r \upharpoonright \gamma$ forces $r(\gamma) \leq q_i(\gamma)$.

We show that q_i and r are compatible, which finishes the proof. We apply Lemma 4.1 to show q_i and s are compatible. Suppose γ is in $\text{dom}(q_i) \cap \text{dom}(s)$. Since $\text{dom}(q_i) \subseteq N$, γ is in $N \cap \text{dom}(s)$. So if γ is even, then γ is in

dom (f_i) . Then $q_i(\gamma)$ and $s(\gamma)$ are both names for $f_i(\gamma)$ and thus are equal. If γ is odd, then $q_i(\gamma) = p_{i+1}(\gamma)$, and $s \upharpoonright \gamma$ forces $s(\gamma) \leq p_{i+1}(\gamma)$.

This completes the recursion.

The next proposition describes a special property of \mathbb{P}_{α} which we will use in the consistency proof of the next section. First we need a technical lemma.

LEMMA 4.4. Let p' and q' be conditions in \mathbb{P}_{α}^* . Then there are $p \leq p'$ and $q \leq q'$ in \mathbb{P}_{α}^* such that $\text{dom}(p) \cap \{\gamma < \alpha : \gamma \text{ odd}\} = \text{dom}(q) \cap \{\gamma < \alpha : \gamma \text{ odd}\}$, and for all odd γ in this set, $p(\gamma) = q(\gamma)$.

Proof. First choose $p(0) \leq p'(0)$ and $q(0) \leq q'(0)$ in $\mathrm{Add}(\mu)$ which are incompatible. Suppose $\beta > 0$ is an even ordinal and $p \upharpoonright \beta$ and $q \upharpoonright \beta$ are defined. Let β be in $\mathrm{dom}(p)$ iff β is in $\mathrm{dom}(p')$, in which case $p(\beta) = p'(\beta)$, and similarly with q. Suppose γ is odd and $p \upharpoonright \gamma$ and $q \upharpoonright \gamma$ are defined. If γ is in $\mathrm{dom}(p') \setminus \mathrm{dom}(q')$ then let $p(\gamma) = q(\gamma) = p'(\gamma)$, and similarly if γ is in $\mathrm{dom}(q') \setminus \mathrm{dom}(p')$. Suppose γ is in $\mathrm{dom}(p') \cap \mathrm{dom}(q')$. Let \dot{x}_{γ} be a \mathbb{P}_{γ} -name such that \mathbb{P}_{γ} forces $\dot{x}_{\gamma} = p'(\gamma)$ if $p \upharpoonright \gamma$ is in \dot{G}_{γ} , and $\dot{x}_{\gamma} = q'(\gamma)$ otherwise. Then \dot{x}_{γ} is well-defined because $p \upharpoonright \gamma$ and $q \upharpoonright \gamma$ are incompatible. Let $p(\gamma) = q(\gamma) = \dot{x}_{\gamma}$.

PROPOSITION 4.5. The poset \mathbb{P}_{α} forces that whenever $f: \mu^+ \to V$ is a function in the extension such that for all $i < \mu^+$, $f \mid i$ is in V, then f is in V.

Proof. Suppose for a contradiction that p forces $\dot{f}: \mu^+ \to V$ is a function which is not in V, but for all $i < \mu^+$, $\dot{f} \upharpoonright i$ is in V.

Fix a regular cardinal $\theta \gg \mu^+$ with $\mathbb{P}_{\alpha} \in H(\theta)$. Let N be an elementary substructure of $\langle H(\theta), \in, \mathbb{P}_{\alpha}, p, \dot{f} \rangle$ with size μ and $N^{<\mu} \subseteq N$. By Claim 4.3, fix $q \leq p$ such that for all $r \leq q$ and for any dense set $D \subseteq \mathbb{P}_{\alpha}$ in N, there is q' in $D \cap N$ compatible with r such that for all odd γ in $\text{dom}(q'), \gamma \in \text{dom}(r)$ and $r \upharpoonright \gamma$ forces $r(\gamma) \leq q'(\gamma)$.

Let $r \leq q$ be in \mathbb{P}_{α}^* such that r decides $\dot{f} \upharpoonright N \cap \mu^+$. Let $g : \alpha \to \text{Add}(\mu)$ be the partial function with domain equal to $N \cap \text{dom}(r) \cap \{\beta < \alpha : \beta \text{ even}\}$ such that for all β in dom(g), $r(\beta)$ is a name for $g(\beta)$. Since $N^{<\mu} \subseteq N$, g is in N.

Define D as the set of $s_0 \leq p$ in \mathbb{P}_{α}^* for which there exists s_1 in \mathbb{P}_{α}^* such that:

- (1) $dom(g) \subseteq dom(s_0)$,
- (2) there is $i < \mu^+$ and distinct a_0 and a_1 such that $s_0 \Vdash \dot{f}(i) = a_0$ and $s_1 \Vdash \dot{f}(i) = a_1$,
- (3) $\operatorname{dom}(s_0) \cap \{\gamma < \alpha : \gamma \text{ odd}\} = \operatorname{dom}(s_1) \cap \{\gamma < \alpha : \gamma \text{ odd}\},\$
- (4) for all odd γ in dom (s_0) , $s_0(\gamma) = s_1(\gamma)$,

(5) $dom(g) \subseteq dom(s_1)$, and for all β in dom(g), if $g(\beta)$ is compatible with the condition named by $s_0(\beta)$, then $s_1(\beta)$ is the name for a condition extending $g(\beta)$.

By elementarity, D is in N.

126

We claim that D is dense below p. So let $s \leq p$. Extend s to s' in \mathbb{P}^*_{α} so that $dom(g) \subseteq dom(s')$. Now define $s'' \leq s'$ with the same domain as s' as follows. For $\beta \in dom(s') \setminus dom(g)$, let $s''(\beta) = s'(\beta)$. Suppose β is in dom(g). If $s'(\beta)$ names a condition in $Add(\mu)$ compatible with $g(\beta)$, let $s''(\beta)$ be a name for a condition which extends $g(\beta)$ and $s'(\beta)$. Otherwise let $s''(\beta) = s'(\beta)$.

Since \dot{f} is not in V, there is $i < \mu^+$ such that s'' does not decide $\dot{f}(i)$. Fix $s'_0, s'_1 \leq s''$ in \mathbb{P}^*_{α} and distinct a_0 and a_1 so that $s'_0 \Vdash \dot{f}(i) = a_0$ and $s'_1 \Vdash \dot{f}(i) = a_1$. Now apply Lemma 4.4 to obtain $s_0 \leq s'_0$ and $s_1 \leq s'_1$ in \mathbb{P}^*_{α} satisfying (3) and (4). We check that (5) holds. If β is in dom(g) and $s_0(\beta)$ names a condition compatible with $g(\beta)$, then clearly $s'(\beta)$ names a condition compatible with $g(\beta)$. So $s''(\beta)$ is a name for a condition refining $g(\beta)$. Since $s_1 \leq s''$, $s_1(\beta)$ is a name for a condition refining $g(\beta)$.

By the genericity property of q, we can fix $s_0 \in D \cap N$ which is compatible with r, and such that for all odd γ in $dom(s_0)$, γ is in dom(r) and $r \upharpoonright \gamma$ forces that $r(\gamma) \leq s_0(\gamma)$. Fix s_1 , i, a_0 , and a_1 in N as described in the definition of D. Since r decides $\dot{f}(i)$ and r and s_0 are compatible, r forces $\dot{f}(i) = a_0$. So r and s_1 are incompatible. We will get a contradiction by showing r and s_1 are compatible.

We apply Lemma 4.1. Suppose β is in $\operatorname{dom}(r) \cap \operatorname{dom}(s_1)$ and β is even. Then β is in N, so β must be in $\operatorname{dom}(g)$. Since r and s_0 are compatible, $r(\beta)$ and $s_0(\beta)$ are compatible. By (5), $s_1(\beta)$ is the name for a condition extending $g(\beta)$. Suppose γ is in $\operatorname{dom}(r) \cap \operatorname{dom}(s_1)$ and γ is odd. Then γ is in $\operatorname{dom}(s_0)$. So γ is in $\operatorname{dom}(r)$, and $r \upharpoonright \gamma$ forces $r(\gamma) \leq s_0(\gamma)$. But $s_0(\gamma) = s_1(\gamma)$.

5. The consistency result. Suppose $\mu < \kappa$ are cardinals, $\mu^{<\mu} = \mu$, and κ is supercompact. We define a forcing iteration of the form given in the last section which collapses κ to become μ^{++} , and forces that for all regular $\lambda \geq \mu^{++}$, there are stationarily many N in $[H(\lambda)]^{\mu^{+}}$ such that N is internally club but not internally approachable.

Fix a Laver function $f: \kappa \to V_{\kappa}$. So for all x and λ , there is an elementary embedding $j: V \to M$ with critical point κ such that $M^{\lambda} \subseteq M$ and $j(f)(\kappa) = x$.

We define by recursion a forcing iteration

$$\langle \mathbb{P}_i, \dot{\mathbb{Q}}_j : i \leq \kappa, j < \kappa \rangle.$$

Suppose \mathbb{P}_i is defined for a fixed $i < \kappa$. If i is an even ordinal, let $\dot{\mathbb{Q}}_i$ be a \mathbb{P}_i -name for $Add(\mu)$. Suppose i = j + 1 is odd. If f(j) is a \mathbb{P}_j -name for a set

which contains μ^+ , let $\dot{X}_j = f(j)$, and otherwise let \dot{X}_j be a \mathbb{P}_j -name for μ^+ . Let \dot{S}_i be a \mathbb{P}_i -name for $[\dot{X}_j]^{\mu} \cap V[\dot{G}_j]$, and let $\dot{\mathbb{Q}}_i$ be a \mathbb{P}_i -name for the poset $\mathbb{P}(\dot{S}_i)$ from Definition 2.5. Suppose $\delta \leq \kappa$ is a limit ordinal and \mathbb{P}_i is defined for all $i < \delta$. Then let \mathbb{P}_{δ} be the poset consisting of all partial functions $p: \delta \to V$ such that $p \upharpoonright i \in \mathbb{P}_i$ for all $i < \delta$, $|\text{dom}(p) \cap \{i < \delta : i \text{ even}\}| < \mu$, and $|\text{dom}(p) \cap \{i < \delta : i \text{ odd}\}| \leq \mu$.

Since f is a Laver function, there are stationarily many $\alpha < \kappa$ such that $f(\alpha)$ is a \mathbb{P}_{α} -name and \mathbb{P}_{α} forces $f(\alpha) = (\mu^{++})^{V[\dot{G}_{\alpha}]}$. Indeed, let \dot{x} be a \mathbb{P}_{κ} -name for $(\mu^{++})^{V[\dot{G}_{\kappa}]}$. Choose $j: V \to M$ with critical point κ such that $j(f)(\kappa) = \dot{x}$ and M is sufficiently closed that it models $\mathbb{P}_{\kappa} = j(\mathbb{P}_{\kappa}) \upharpoonright \kappa$ forces $\dot{x} = (\mu^{++})^{M[\dot{G}_{\kappa}]}$. If C is club in κ , then $\kappa \in j(C)$. Hence by elementarity, there is $\alpha < \kappa$ in C such that $f(\alpha)$ is as desired. But then $\mathbb{P}_{\alpha+2}$ forces $|(\mu^{++})^{V[\dot{G}_{\alpha}]}| = \mu^{+}$. So \mathbb{P}_{κ} collapses all cardinals in the interval (μ^{+}, κ) .

Since $|\mathbb{P}_i| < \kappa$ for all $i < \kappa$, there are club many $\delta < \kappa$ such that $|\mathbb{P}_i| < \delta$ for all $i < \delta$. Suppose $\mu^+ < \delta \le \kappa$ is inaccessible and has this property. Then \mathbb{P}_{δ} is the direct limit of $\langle \mathbb{P}_i : i < \delta \rangle$, where each \mathbb{P}_i has size less than δ , and there are stationarily many $\alpha < \delta$ such that \mathbb{P}_{α} is the direct limit of $\langle \mathbb{P}_i : i < \alpha \rangle$. By a standard Δ -system argument, \mathbb{P}_{δ} is δ -c.c. (see Theorem 2.2 of [2]). In particular, \mathbb{P}_{κ} is κ -c.c. and forces that $\kappa = \mu^{++}$.

Let G_{κ} be generic for \mathbb{P}_{κ} . In $V[G_{\kappa}]$ let $\lambda \geq \mu^{++}$ be regular. In V let $\theta = (2^{\lambda})^{+}$. Let $j: V \to M$ be an elementary embedding with critical point κ such that $M^{\theta} \subseteq M$ and $j(f)(\kappa)$ is a \mathbb{P}_{κ} -name for $H(\lambda)^{V[\dot{G}_{\kappa}]}$. Then by choice of j,

$$j(\mathbb{P}_{\kappa}) = \mathbb{P}_{\kappa} * \text{Add}(\mu) * \mathbb{P}(\dot{S}) * \mathbb{P}_{\text{tail}}$$

where

$$\mathbb{P}_{\kappa+1} \Vdash \dot{S} = \dot{S}_{\kappa+1} = [H(\lambda)^{V[\dot{G}_{\kappa}]}]^{\mu} \cap M[\dot{G}_{\kappa}],$$

and \mathbb{P}_{tail} is forced to be an iteration of the form given in the previous section. Let $H * K * G_{\text{tail}}$ be generic over $V[G_{\kappa}]$ for $Add(\mu) * \mathbb{P}(\dot{S}) * \mathbb{P}_{\text{tail}}$. Extend j in $V[G_{\kappa} * H * K * G_{\text{tail}}]$ to

$$j:V[G_{\kappa}]\to M[G_{\kappa}*H*K*G_{\mathrm{tail}}].$$

Then $j(G_{\kappa}) = G_{\kappa} * H * K * G_{\text{tail}}$. Since \mathbb{P}_{κ} is κ -c.c., $M[G_{\kappa}]^{\theta} \cap V[G_{\kappa}] \subseteq M[G_{\kappa}]$. In particular, $H(\lambda)^{V[G_{\kappa}]} = H(\lambda)^{M[G_{\kappa}]}$.

Working in $V[G_{\kappa}]$, let $C \subseteq [H(\lambda)]^{\mu^+}$ be club. We prove there is a set in C which is internally club but not internally approachable. By elementarity, it suffices to prove the same statement about j(C) in $M[j(G_{\kappa})]$. We will prove that in $M[j(G_{\kappa})]$, the set j " $H(\lambda)^{V[G_{\kappa}]}$ is in j(C) and is internally club but not internally approachable.

Let $N^* = j^*H(\lambda)^{V[G_{\kappa}]}$. First we prove that N^* is in $M[j(G_{\kappa})]$. The set $j^*H(\lambda)^V$ is in M by the closure of M. But $H(\lambda)^{V[G_{\kappa}]} = H(\lambda)^V[G_{\kappa}]$. So every

element of N^* is of the form $j(\dot{a}^{G_{\kappa}}) = j(\dot{a})^{j(G_{\kappa})}$, where \dot{a} is in $H(\lambda)^V$. So $N^* = (j^*H(\lambda)^V)[j(G_{\kappa})]$, which is in $M[j(G_{\kappa})]$. Also note that in $M[j(G_{\kappa})]$, $|N^*| = |H(\lambda)^{V[G_{\kappa}]}| = \mu^+$.

We claim that N^* is in j(C). Since j(C) is closed under unions of directed subsets with size less than $j(\mu^{++})$, it suffices to show that $N^* \cap j(C)$ is directed and $\bigcup (N^* \cap j(C)) = N^*$. Suppose j(a) and j(b) are in $N^* \cap j(C)$. By elementarity, a and b are in C. Fix c in C such that $a \cup b \subseteq c$. Then j(a) and j(b) are contained in j(c) and $j(c) \in N^* \cap j(C)$. Hence $N^* \cap j(C)$ is directed.

We show that $\bigcup (N^* \cap j(C)) = N^*$. Let j(x) be in N^* . Then x is in $H(\lambda)^{V[G_{\kappa}]}$, so there is a in C such that $x \in a$. Then $j(x) \in j(a) \in N^* \cap j(C)$. So $N^* \subseteq \bigcup (N^* \cap j(C))$. On the other hand, suppose y is in $\bigcup (N^* \cap j(C))$. Fix $j(a) \in N^* \cap j(C)$ so that $y \in j(a)$. Then a is in C. In $V[G_{\kappa}]$, a has size less than $\mu^{++} = \kappa$, and κ is the critical point of j. So j(a) = j"a, and clearly j" $a \subseteq N^*$. Thus y is in N^* . Therefore $N^* = \bigcup (N^* \cap j(C))$ and N^* is in j(C).

Now we show that N^* is internally club but not internally approachable. Let $N = H(\lambda)^{V[G_{\kappa}]}$. Since N is transitive and isomorphic to N^* by the map $j \upharpoonright N$, N is the transitive collapse of N^* and $j^{-1} \upharpoonright N^* = \pi$ is the transitive collapse map.

Recall that H * K is generic for $ADD(\mu) * \mathbb{P}(\dot{S})$ over $M[G_{\kappa}]$, and $S = \dot{S}^H = [N]^{\mu} \cap M[G_{\kappa}]$. Write $\bigcup K = \langle a_i : i < \mu^+ \rangle$. Then $N = \bigcup \{a_i : i < \mu^+ \}$. For all $i < \mu^+$, a_i is a subset of $N = H(\lambda)^{M[G_{\kappa}]}$ which is in $M[G_{\kappa}]$, and a_i has size μ , which is less than λ . Therefore a_i is in $H(\lambda)^{M[G_{\kappa}]} = N$. Hence N is internally club. But then $\langle j(a_i) : i < \mu^+ \rangle = \langle j``a_i : i < \mu^+ \rangle$ witnesses that N^* is internally club.

Suppose for a contradiction that N^* is internally approachable in $M[j(G_{\kappa})]$, as witnessed by a sequence $\langle N_i^* : i < \mu^+ \rangle$. Note that N is then also internally approachable. Indeed, for all $i < \mu^+$, let $N_i = \pi(N_i^*) = \pi^*(N_i^*)$. Clearly, $\langle N_i : i < \mu^+ \rangle$ is increasing and continuous and its union is equal to N. For each $\alpha < \mu^+$, choose f_{α} in N such that $j(f_{\alpha}) = \langle N_i^* : i < \alpha \rangle$. Then for $i < \alpha$, $j(N_i) = N_i^* = j(f_{\alpha})(i) = j(f_{\alpha})(j(i)) = j(f_{\alpha}(i))$. So $N_i = f_{\alpha}(i)$. Therefore $\langle N_i : i < \alpha \rangle = f_{\alpha}$, which is in N. Hence $\langle N_i : i < \mu^+ \rangle$ witnesses that N is internally approachable.

Let $f = \langle N_i : i < \mu^+ \rangle$. Then for all $i < \mu^+$, $f \upharpoonright i$ is in N. Since $N \subseteq M[G_{\kappa}]$, for all $i < \mu^+$, $f \upharpoonright i$ is in $M[G_{\kappa}]$. By Proposition 4.5, $f = \langle N_i : i < \mu^+ \rangle$ is in $M[G_{\kappa}]$. But this implies N has size μ^+ in $M[G_{\kappa}]$, which is false. This completes the proof of Theorem 1.

We note that if GCH holds in V, then in V[G], $2^{\mu} = \mu^{++}$ and $2^{\alpha} = \alpha^{+}$ for all infinite cardinals α different from μ . This violation of GCH is necessary, by the following argument:

Suppose $2^{\mu} = \mu^{+}$ and $\lambda \geq \mu^{++}$ is regular. Let $N \prec H(\lambda)$ be a model with size μ^{+} such that $\mu^{+} \subseteq N$, and N has the μ^{+} -covering property, that is, every subset of N with size less than μ^{+} is a subset of a member of N with size less than μ^{+} . Then $N^{\mu} \subseteq N$. For if $a \subseteq N$ has size μ , then a is covered by a set b in N with size μ . Since $2^{\mu} = \mu^{+}$, we can enumerate the power set of b by a sequence $\langle x_i : i < \mu^{+} \rangle$ in N. But $\mu^{+} \subseteq N$, so $x_i \in N$ for all $i < \mu^{+}$. In particular, a is in N. Now fix an increasing and continuous sequence $\langle N_i : i < \mu^{+} \rangle$ of sets with size μ whose union is N. Since $N^{\mu} \subseteq N$, each N_i is in N, and thus every initial segment of this sequence is in N. So N is internally approachable. But if N is internally club, then N has the μ^{+} -covering property.

REMARKS. Mixed support iterations similar to that presented in Section 4 appear in Chapter 8 of [8], where an analogue of Proposition 4.2 is proved for iterations of posets of the form $\mathbb{P}*\dot{\mathbb{Q}}$, where \mathbb{P} is ω_1 -closed, \mathbb{P} satisfies a strengthening of ω_2 -c.c., and $\dot{\mathbb{Q}}$ is forced to be ω_2 -closed. The proof of our consistency result is related to Mitchell's construction in [6] of a model with no Aronszajn trees on ω_2 . See [7] for a recent discussion concerning the special property described in Proposition 4.5.

References

- [1] U. Abraham and S. Shelah, Forcing closed unbounded sets, J. Symbolic Logic 48 (1983), 643–657.
- [2] J. Baumgartner, *Iterated forcing*, in: Surveys in Set Theory, Cambridge Univ. Press, 1983, 1–59.
- [3] M. Foreman and S. Todorčević, A new Löwenheim–Skolem theorem, Trans. Amer. Math. Soc. 357 (2005), 1693–1715.
- [4] T. Jech, Set Theory, 3rd ed., Springer, 2003.
- [5] J. Krueger, Internally club and approachable, Adv. Math. 213 (2007), 734–740.
- [6] W. Mitchell, Aronszajn trees and the independence of the transfer property, Ann. Math. Logic 5 (1972), 21–46.
- [7] —, On the Hamkins approximation property, Ann. Pure Appl. Logic 144 (2006), 126–129.
- [8] S. Shelah, Proper and Improper Forcing, Springer, 1998.

Department of Mathematics University of California Berkeley, CA 94720, U.S.A. E-mail: jkrueger@math.berkeley.edu http://www.math.berkeley.edu/~jkrueger

Received 3 December 2006; in revised form 1 July 2008