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Perfect set theorems
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Abstract. We study splitting, infinitely often equal (ioe) and refining families from
the descriptive point of view, i.e. we try to characterize closed, Borel or analytic such
families by proving perfect set theorems. We succeed for Gδ hereditary splitting families
and for analytic countably ioe families. We construct several examples of small closed ioe
and refining families.

1. Introduction. In this paper we study three properties of subsets
of the reals that occur in the definition (or, as in the second case, an
equivalent form of it) of three well known cardinal characteristics of the
continuum, namely the splitting number s, the uniformity of the meager
ideal unif (M) and the refining number r. Thus we study splitting fami-
lies (see Definition 2.1), infinitely often equal families (Definition 3.1) and
refining families (Definition 4.1). However, we are interested in these prop-
erties from the descriptive point view, i.e. we try to characterize definable
(i.e. closed, Borel or analytic) such families. Each of these three notions
has its countable version. E.g. a countably splitting family is such that any
countably many reals can be split simultaneously by a member of the fam-
ily. In [10] we characterized analytic countably splitting families by prov-
ing a perfect set theorem for these, i.e. finding a type of closed countably
splitting family that occurs as a subset of each analytic such family. The
proof used a game argument, thus holds more generally, i.e. for all sets
for which the splitting game is determined. Velickovic then noticed that a
theorem of Solecki can be used to show that analytic countably splitting
families always contain a Gδ subset which is also countably splitting. We
shall show that for Gδ families the countably splitting property is the same
thing as the essentially everywhere splitting property (see Definition 2.3).
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But as a curious fact we will show that this equivalence fails at the Fσδ
level.

In [10] we also showed that for analytic splitting families such a neat
characterization is impossible, by proving the existence of a Gδ splitting
family that does not contain a closed splitting family. Here we improve
a bit on this by showing that this example can be made ∆0

2. Both these
examples are not-hereditary. There is a good reason for this, as we shall show
that every hereditary Gδ family A on 2ω contains an inclusion-dense closed
subfamily B. Here inclusion-dense means that every infinite element of A
has an infinite subset in B (we identify subsets of ω with their characteristic
functions in 2ω). This easily implies that every hereditary Gδ splitting family
contains a closed splitting family. Whether this or our general theorem holds
for all hereditary analytic sets is an open problem.

In Section 3 we shall study analytic infinitely often equal families. It
turns out that here analogous results hold with analogous proofs. So analytic
countably infinitely often equal families are characterizable by a perfect set
theorem, whereas analytic infinitely often equal families are not. Actually
not even closed such families are well understood. A prominent related open
problem is whether there exists a closed maximal almost disjoint family in
ωω (see [4, Question 4.3]). (Such a family is infinitely often equal but not
countably so.)

In Section 4 we study refining families (which is the dual notion to that of
a splitting family). Here the situation seems to be even more intricate than
for the previous two properties. No characterization of analytic (or even
closed) refining families (countably so or not) seems to be reachable. A first
candidate for such a characterization that comes to one’s mind are Mathias
trees. That these are no good for our purpose is shown by an example by Di
Prisco and Todorcevic [1]. This is an example of a closed strongly dominating
countably refining family that does not contain a Mathias tree.

We shall construct two more examples that are smaller on the scale given
by the eventual dominance relation on ωω. The first one is a closed domi-
nating, not strongly dominating refining family that is not even 2-refining.
We have a strong conjecture that this one is minimal in the sense that no
closed non-dominating subset is refining. This conjecture is related to the
well-known intractable problem of characterizing 2-colourable hypergraphs.
Our second example is a closed non-dominating refining family.

2. Splitting families

Definition 2.1. We say that x ∈ 2ω splits a ∈ [ω]ω iff ∃∞i ∈ a ∃∞j ∈ a
(x(i) = 0 & x(j) = 1). A family A ⊆ 2ω is called splitting iff every a ∈ [ω]ω

is split by some x ∈ A, and A is countably splitting iff for every countable
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C ⊆ [ω]ω there is a member of A that splits every a ∈ C. A splitting family
A is called everywhere splitting iff ∀x ∈ A ∀n A ∩ [x�n] is splitting. The
everywhere countably splitting property is defined in the obvious way.

A tree p ⊆ 2<ω is called a splitting tree if p 6= ∅ and for every σ ∈ p there
exists K < ω such that for every n ≥ K and i < 2 there exists τ ∈ p with
σ ⊆ τ, |τ | > n and τ(n) = i. Note that if p is a splitting tree then [p] is
countably splitting and actually everywhere so.

In [10, 1.2] the following has been proved:

Theorem 2.2. Let A ⊆ 2ω be analytic. Then A is countably splitting iff
there exists a splitting tree p such that [p] ⊆ A. In particular , A contains a
countably splitting closed subset.

There exists a natural derivation process to determine whether a given
splitting family contains an everywhere splitting subfamily or not. This will
show that every countably splitting family contains an everywhere splitting
subfamily.

Definition 2.3. For any A ⊆ 2ω let A′ = A \
⋃
{[σ] : σ ∈ 2<ω & A ∩

[σ] is not splitting}. Recursively define A(0) = A, A(α+1) = (A(α))′. For a
limit ordinal λ let A(λ) =

⋂
α<λA

(α). Clearly there exists a least γ < ω1

such that A(γ+1) = A(γ). Let us call this γ the split-rank of A, and denote it
by sprk(A). Notice that A(γ) is everywhere splitting if A(γ) 6= ∅. Moreover,
sprk(A) = 0 iff A = ∅ or A is everywhere splitting.

We say that A is essentially everywhere splitting (e.e. splitting, for short)
if A(γ) 6= ∅.

There exists an analogous notion of an everywhere unbounded, or every-
where dominating family of functions in ωω (e.g. in [11]). Whereas it is easy
to see that every unbounded set in ωω contains an everywhere unbounded
subset, and similarly for dominating sets, this is not the case for splitting
families.

Proposition 2.4. For every 0 < α < ω1 there exists an Fσ splitting
family A ⊆ 2ω such that sprk(A) = α and A(α) = ∅. Hence A is not e.e.
splitting.

Proof. By induction on α. For α = 1 choose an infinite, coinfinite set
a ⊆ ω. Let a0 = a and a1 = ω \ a.

For given σ ∈ 2<ω and i < 2 let pa,iσ be the tree defined as follows:

pa,iσ = {τ ∈ 2<ω : τ ⊆ σ ∨ (σ ⊆ τ & ∀j ∈ |τ | ∩ ai \ |σ| τ(j) = 0)}.

Now let A = [pa,0〈0〉] ∪ [pa,1〈1〉]. Clearly A is closed and splitting. The only
σ ∈ 2<ω such that A ∩ [σ] is splitting is σ = ∅. Hence we have A′ = ∅ and
sprk(A) = 1.
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Now suppose that F is a splitting Fσ, sprk(F ) = α for some 1 < α < ω1

and F (α) = ∅. For σ ∈ 2<ω let A(σ, F ) = {σax : x ∈ F}. Fix some infinite,
coinfinite a ⊆ ω. Let Q consist of all minimal (with respect to length)
elements of 2<ω \ pa,0〈0〉 ∪ p

a,1
〈1〉. Define

A = [pa,0〈0〉] ∪ [pa,1〈1〉] ∪
⋃
{A(σ, F ) : σ ∈ Q}.

Clearly for every σ ∈ 2<ω we have sprk(A(σ, F )) = sprk(F ) = α, and
A(σ, F ), and hence A is Fσ. Since every node of pa,0〈0〉 ∪ p

a,1
〈1〉 has an extension

in Q, we conclude A(α) = [pa,0〈0〉] ∪ [pa,1〈1〉] and hence sprk(A) = α + 1 and

A(α+1) = ∅.
Finally, suppose that α < ω1 is a limit ordinal, that 〈αn : n < ω〉 is an

increasing sequence with supn<ω αn = α, and that Fn ⊆ 2ω are splitting Fσ’s
such that sprk(Fn) = αn and F

(αn)
n = ∅. Let σn be the sequence starting

with n 0’s and ending with one 1. Define A =
⋃
n∈ω A(σn, Fn). Clearly A

is Fσ and we have A(αn) =
⋃
m>n A(σm, Fm)(αn) 6= ∅ for every n < ω,

as the αn increase. Since the A(σn, Fn) are pairwise disjoint we conclude
A(α) =

⋂
n<ω A

(αn) = ∅ and hence sprk(A) = α.

Question. Can we replace “Fσ” by “closed” in Proposition 2.4?

We have seen that every countably splitting family is e.e. splitting. The
converse is true for Gδ sets by the next theorem. Though by Theorem 2.7,
it fails for Fσδ sets.

Theorem 2.5. Every Gδ set G ⊆ 2ω that is essentially everywhere split-
ting is countably splitting.

Proof. Let G =
⋂
n<ω Un where each Un is open. Let sprk(G) = γ. Hence

G(γ) is everywhere splitting. Let p = {x�n : n < ω & x ∈ G(γ)}. Now we
have the following observation:

Claim. p is a splitting tree.

Proof of the claim. Let σ ∈ p. As G(γ) ∩ [σ] is splitting we conclude that
the set

M = {k < ω : ∃j < 2 ∀τ ∈ p (σ ⊆ τ & k < |τ |)⇒ τ(k) = j}

is finite.

Now let F ⊆ [ω]ω be countable. It is an easy business to construct
〈τl : l < ω〉 in p with τl ( τl+1 such that for each n, [τl] ⊆ Un for some l,
and for each a ∈ F and i < 2, τl(k) = i for infinitely many l and some
k ∈ a ∩ |τl| \ |τl−1|. If we let y =

⋃
l<ω τl then y ∈ G and y splits every

member of F.
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Corollary 2.6. Every Gδ set that is essentially everywhere splitting
contains a closed countably splitting subset.

Proof. By [10, Theorem 1.2] every analytic countably splitting family
contains a closed subset with the same property.

Surprisingly to me, Theorem 2.5 does not hold for analytic sets. Actually
it already fails at the Fσδ level, as the following example shows. It is the
ideal of nowhere dense subsets of the rationals, that occasionally showed up
in the literature as kind of a marplot (see e.g. [2]). Recall that a subset of
℘(ω) is called hereditary if it is closed under taking subsets.

Theorem 2.7. There exists a hereditary Fσδ everywhere splitting family
which is not countably splitting. Nevertheless this example contains a closed
splitting subset.

Proof. We replace ω by 2<ω and let NWD(2<ω) be the set of all a ⊆ 2<ω

that are nowhere dense in 2<ω. NWD(2<ω) is a well-known σ-ideal that has
been studied by many authors (see [2]).

Let Q be the set of all x ∈ 2ω which are eventually zero. For x ∈ 2ω

let ax = {x�n : n < ω}. Clearly every a ⊆ 2<ω that splits every member
of {ax : x ∈ Q} must be dense in 2<ω. Thus NWD(2<ω) is not countably
splitting. Let R be the comparability relation on 2<ω, thus {σ, τ} ∈ R iff
σ ⊆ τ or τ ⊆ σ. Let C = {a ⊆ 2<ω : a is R-homogeneous}. It is easy to see
that C is closed and C ⊆ NWD(2<ω). By Ramsey’s theorem, every infinite
subset of 2<ω has an infinite subset belonging to C. As C is hereditary, C is
splitting. It remains to check that NWD(2<ω) is everywhere splitting, thus
sprk(NWD(2<ω)) = 0. Let σ be a finite partial function from 2<ω to 2,
and let x ∈ 2(2<ω) be arbitrary with x−1(1) infinite. By Ramsey’s theorem
there exists y : 2<ω \ dom(σ) → 2 such that y−1(1) ⊆ x−1(1) is infinite
and R-homogeneous and x−1(1) \ y−1(1) is infinite. Then clearly we have
σ ∪ y ∈ NWD(2<ω) and σ ∪ y splits x.

In [10, Theorem 1.10] it has been shown that there exists an Fσ split-
ting family that does not contain a closed splitting family. The next result
slightly improves that construction. Recall that for given A ⊆ ℘(ω) we call
a collection B ⊆ ℘(ω) inclusion-dense in A if every infinite set in A has an
infinite subset that belongs to B.

Theorem 2.8. There exists a splitting family A ⊆ 2ω that is both Fσ
and Gδ, such that A does not contain a closed splitting family , nor does A
contain an inclusion-dense closed subset.

Proof. Let 〈an : n < ω〉 be a partition of ω into infinite sets. For any
b ∈ [ω]ω let 〈b(i) : i < ω〉 be the increasing enumeration of b. Define an
increasing x ∈ ωω as follows: x(0), x(1) are the first two elements of a0. In
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general, x(2n), x(2n+ 1) are the first two elements of an \ (x(2n− 1) + 1).
Now let

A0 = {b ∈ [ω]ω : b(0) = x(0) & b(1) > x(1) & ∀m |b ∩ am| ≤ 1},
An+1 = {b ∈ [ω]ω : b ∩ (x(2n+ 1) + 1) = {x(0), . . . , x(2n+ 1)}

& ∀j (x(2n+ 1) < an(2j)⇒ b ∩ {an(2j), an(2j + 1)} 6= ∅)
& b \ (x(2n+ 1) + 1) ⊆ an}.

Clearly each An is closed. Let A =
⋃
n<ω An. Hence A is Fσ. For each n let

jn be minimal such that x(2n+ 1) < an(2jn).
Let σn+1

i ∈ 2an(2jn+i)+1 be the characteristic function of {x(0), . . . ,
x(2n + 1), an(2jn + i)}. Let Un+1 = [σn+1

0 ] ∪ [σn+1
1 ]. Let σ0 ∈ 2x(1)+1 be

the characteristic function of {x(0)}, and let U0 = [σ0]. Note that the Un
are pairwise disjoint open sets and An ⊆ Un. For each n let V n

m ⊆ Un be
open sets such that An =

⋂
m<ω V

n
m. We conclude that

A =
⋃
m<ω

⋂
n<ω

V n
m =

⋂
n<ω

⋃
m<ω

V n
m ,

and hence A is Gδ.
It is easy to see that A is splitting. Indeed, let a ∈ [ω]ω. If a∩an is finite

for all n < ω, then a is split by some b ∈ A0. Otherwise a ∩ an is infinite
for some n. In this case we easily find b ∈ An+1 that splits a. Moreover, if
C ⊆ A is closed there must exist n such that C ∩ Am = ∅ for every m ≥ n,
as otherwise x ∈ C. But x 6∈ A. But certainly no finite union of An’s is
splitting or inclusion-dense in A.

Note that the example of Theorem 2.8 as well as that of [10, Theorem
1.10] is not hereditary. The next result shows that this is necessarily so. It
implies that given a hereditary Gδ splitting family A ⊆ 2ω there exists a
closed F ⊆ A that is inclusion-dense in A. Letting F ′ be the hereditary
closure of F , we see that F ′ ⊆ A is closed and splitting.

Theorem 2.9. Suppose that G ⊆ 2ω is hereditary Gδ. There exists a
closed F ⊆ G that is inclusion-dense in G.

Proof. Let G =
⋂
n∈ω Un where each Un is open. We may assume that

G 6= ∅ and Un ⊇ Un+1 for every n. For each n choose An ⊆ ω<ω such
that Un =

⋃
σ∈An [σ]. Let Sn = 〈σni : i < Nn〉 enumerate all minimal (with

respect to ⊆) elements of An. Thus Nn ∈ ω ∪ {ω}. Clearly we still have
Un =

⋃
i<Nn

[σni ]. We let S−1 = 〈∅〉. Note that the following holds:

(1) ∀n ∀i ∀j (i 6= j ⇒ σni ⊥σnj ) (here ⊥ denotes incomparability with
respect to ⊆).

Without loss of generality we may assume that G ∩ [σni ] 6= ∅ always. Oth-
erwise delete some of the σni . Because we can replace any σni by the two
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sequences σni
a0, σni

a1, and the Un are decreasing, we can therefore assume
without loss of generality the following:

(2) ∀n ∀i < Nn+1 ∃j < Nn σnj ( σn+1
i .

Clearly for every x ∈ 2ω we have x ∈ G iff there exists f ∈
∏
n∈ωNn such

that
x = σ0

f(0) ∪ σ
1
f(1) ∪ σ

2
f(2) ∪ · · · .

By heredity and (1) we must have:

(3) ∀% ∈ Sn−1 ∀σ ∈ Sn (% ⊆ σ ⇒ ∀M ⊆ σ−1(1)\%−1(1) ∃m ≥ n ∃τ ∈ Sm
(% ⊆ τ & τ−1(1) \ %−1(1) = M)).

Inductively we define Tn as follows: Let T0 consist of those σ ∈ S0 with
|σ−1(1)| ≤ 1. If Tn has been defined, let Tn+1 be the set of all σ ∈ Sn+1

such that there exists % ∈ Tn with % ( σ and |σ−1(1) \ %−1(1)| ≤ 1. By (1)
it follows that each Tn consists of pairwise incomparable elements.

Claim 1. Each Tn is finite.

Proof. By induction on n. By (3) there exists σ ∈ S0 such that σ−1(1)
= ∅. Then σ ∈ T0. By incomparability we have τ−1(1) ⊆ |σ| and τ−1(1) ∩
%−1(1) = ∅ for any distinct τ, % ∈ T0. Hence T0 is finite. Now fix σ ∈ Tn.
By (3) and (2) there exists τ ∈ Sn+1 with σ ( τ and τ−1(1) \ σ−1(1) = ∅.
We have τ ∈ Tn+1. Given distinct µ, ν ∈ Tn+1 with σ ⊆ µ and σ ⊆ ν, by
incomparability of Sn+1 we must have

µ−1(1) \ σ−1(1) ⊆ |τ | \ |σ|, (µ−1(1) \ σ−1(1)) ∩ (ν−1(1) \ σ−1(1)) = ∅.
As Tn is finite by induction hypothesis, the same holds for Tn+1.

Let T be the tree generated by
⋃
n∈ω Tn. By the observation after (2)

and Claim 1, and as each element of Tn+1 extends an element of Tn, we
have:

Claim 2. [T ] ⊆ G.
The following claim will finish our proof:

Claim 3. For every x ∈ G with x−1(1) infinite there exists y ∈ [T ] such
that y−1(1) ⊆ x−1(1) and y−1(1) is infinite.

Proof. Let f ∈ ωω be such that x =
⋃
σnf(n). We want to construct

〈τn : n < ω〉 such that τn ∈ Tn, τn ⊆ τn+1 and τ−1
n (1) ⊆ x for all n, and

such that τ−1
n+1(1) \ τ−1

n (1) is non-empty for infinitely many n.
Let k0 < ω be the minimum of x−1(1) and let m0 < ω be minimal

with k0 < |σm0

f(m0)|. Let τn ∈ Tn be the constantly zero sequence for every
n < m0. Note that σnf(n) = τn for every n < m0. By minimality of k0,

by incomparability of Sm0 and by (3) there exists τm0 ∈ Tm0 such that
τm0(k0) = 1 and τm0−1 ⊆ τm0 . Suppose that we have ki,mi and τmi ∈ Tmi .
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Choose ki+1 minimal such that ki+1 ≥ |τmi | and x(ki+1) = 1. Keep choosing
τj ∈ Tj for j ≥ mi + 1 such that τmi ( τj ( τj+1 and τ−1

j (1) \ τ−1
mi (1) = ∅

(by (3)), as long as |τj | ≤ ki+1. If τj is the last one we let mi+1 = j + 1.
Hence if τ ∈ Tmi+1 is such that τmi+1−1 ⊆ τ and τ−1(1) ⊆ (τmi+1−1)−1(1)
we have |τmi+1−1| ≤ ki+1 < |τ |.

Let z ∈ 2ω be such that τmi+1−1 ⊆ z and z(ki+1) = 1 and z(l) = 0
elsewhere. Thus we have z−1(1) ⊆ x−1(1) and hence z ∈ G. Since Tmi+1−1

consists of pairwise incomparable elements, by (2) there must exist τmi+1 ∈
Smi+1 with τmi+1−1 ⊆ τmi+1 and τmi+1 ⊆ z. By the choice of mi+1 we
cannot have τ−1

mi+1
(1)\ (τmi+1−1)−1(1) = ∅. Consequently, |τmi+1 | > ki+1 and

τmi+1(ki+1) = 1. Clearly τmi+1 ∈ Tmi+1 and 〈τn : n ∈ ω〉 is as desired. Now
we let y =

⋃
n<ω τn and the Claim follows.

Problem 2.10. Is Theorem 2.9 true for hereditary analytic sets?

3. Infinitely often equal families

Definition 3.1. Given a ⊆ ω we say that some family A ⊆ ωω is
infinitely often equal (ioe for short) for a if for every x ∈ aω there exists y ∈ A
such that ∃∞n x(n) = y(n). We call A ⊆ ωω countably ioe for a if for every
countable C ⊆ aω there exists y ∈ A such that ∀x ∈ C ∃∞n x(n) = y(n).
Given a ⊆ ω, some tree p ⊆ ω<ω is called an ioe tree for a if p 6= ∅ and for
every σ ∈ p there exists τ ∈ p such that σ ⊆ τ and ∀n ∈ a τan ∈ p.

Finally, we call an ioe for a family A ⊆ ωω everywhere ioe for a iff
∀x ∈ A ∀n A ∩ [x�n] is ioe for a.

The following fact is easy and is left to the reader.

Fact 3.2. Suppose that p ⊆ ω<ω is an ioe tree for a. Then [p] is a
countably ioe family for a.

Theorem 3.3. Suppose that A ⊆ ωω is analytic and countably ioe for
some a ⊆ ω. There exists a tree p ⊆ ω<ω that is ioe for a such that [p] ⊆ A.
In particular , A has a closed countably ioe for a subset.

The proof of this theorem is very much analogous to that of Theorem
2.2 as outlined in Section 2.

Definition 3.4. Given x ∈ ωω and n < ω define F(x,n) = {y ∈ ωω :
∀k ≥ n y(k) 6= x(k)}. Clearly F(x,n) is closed.

Lemma 3.5. A is countably ioe for a iff for no countable C ⊆ aω×ωA ⊆⋃
(x,n)∈C F(x,n).

Proof. “⇒” Suppose C ⊆ aω ×ω is countable with A ⊆
⋃

(x,n)∈C F(x,n).
Let C ′ be the set of all first coordinates of elements of C. Hence C ′ ⊆ aω

and for no y ∈ A do we have ∀x ∈ C ′ ∃∞n x(n) = y(n).
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“⇐” Let C ′ ⊆ aω be countable and let C = C ′ × ω. Find y ∈ A \⋃
(x,n)∈C F(x,n). Then clearly ∀x ∈ C ′ ∃∞n x(n) = y(n).

By Solecki’s theorem [8, 2.1] we obtain:

Corollary 3.6. Suppose that A ⊆ ωω is analytic and countably ioe for
a ⊆ ω. Then there exists a Gδ B ⊆ A that is also countably ioe for a.

Definition 3.7. For any A ⊆ ωω and a ⊆ ω let A′ = A \
⋃
{[σ] : σ ∈

ω<ω & A ∩ [σ] is not ioe for a}. Recursively define A(0) = A, A(α+1) =
(A(α))′, and for a limit ordinal λ let A(λ) =

⋂
α<λA

(α).
There exists a least γ < ω1 such that A(γ+1) = A(γ). We call it the

ioea-rank of A, denoted ioaa-rk(A). Clearly, A(γ) is then everywhere ioe for
a if A(γ) 6= ∅. In this case we say that A is essentially everywhere ioa for a
(e.e. ioe, for short).

Note that every A ⊆ ωω that is countably ioe for a is e.e. ioe for a.
Indeed, if we had A(γ) = ∅ for some γ < ω1, then for every x ∈ A, n < ω,
[x�n] was removed during the derivation process at some stage α < γ, as for
some yx�n ∈ aω, for no z ∈ A ∩ [x�n] does z(i) = yx�n](i) hold for infinitely
many i < ω. Then C = {yx�n : x ∈ A & n < ω} ⊆ aω is countable and no
x ∈ A equals any y ∈ C infinitely often.

Lemma 3.8. Suppose that A ⊆ ωω is Gδ and everywhere ioe for a ⊆ ω.
There exists a tree p ⊆ ω<ω that is ioe for a such that [p] ⊆ A.

Proof. Let q = {x�n : x ∈ A & n < ω}. Note that q is an ioe for a tree.
Let A =

⋂
n<ω Un where each Un is open.

We are going to construct antichains Fn ⊆ q, n < ω, such that the
following hold:

(1) If Fn = {σi : i < ω} then Fn+1 =
⋃
i<ω Fn,i where each element of

Fn,i properly extends σi and there exists j > |σi| such that for each
k ∈ a there is τ ∈ Fn,i with |τ | > j and τ(j) = k.

(2) ∀σ ∈ Fn [σ] ⊆ Un.

The construction is straightforward, given our assumptions. If we let p be
the downward closure of

⋃
n<ω Fn, we are done.

By Corollary 3.6 and Lemma 3.8 we obtain Theorem 3.3.
Analogously to Theorem 2.7 we can show that Lemma 3.8 fails for Fσδ

sets.

Theorem 3.9. There exists an Fσδ everywhere ioe family that is not
countably ioe.

Proof. Let A be the set of all x ∈ (2<ω)ω such that ran(x) is nowhere
dense in 2<ω. Let Q be the set of all eventually zero y ∈ 2ω. For each y ∈ Q
let xy ∈ (2<ω)ω be a one-to-one enumeration of {y�n : n < ω}. Clearly
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{xy : y ∈ Q} ⊆ A, but no x ∈ A equals any xy, y ∈ Q, infinitely often.
Similarly to Theorem 2.7, by applying Ramsey’s theorem one shows that A
is everywhere ioe.

It is similarly easy to modify the example of Theorem 2.8 to obtain the
following:

Theorem 3.10. There exists an ioe family A ⊆ ωω that is both Gδ and
Fσ, such that A does not contain a closed ioe subfamily.

In [10, Problem 1.12] it was asked whether every analytic splitting family
A ⊆ 2ω is countably splitting on some infinite a ⊆ ω. (A positive answer for
closed A was given by [10, Corollary 1.14].) A positive solution follows from
a beautiful result of Repický (see [6, Theorem 2.2]), which implies the fol-
lowing: If A ⊆ 2ω is analytic such that A�a := {x�a : x ∈ A} is uncountable
for every infinite a ⊆ ω (which is certainly the case for splitting A), then
there exists some infinite a ⊆ ω such that A�a = 2a.

In view of the similarity of Sections 2 and 3 this might lead to the conjec-
ture that every analytic ioe family A ⊆ ωω is countably ioe for some infinite
a ⊆ ω. However, the next result shows that there is a closed counterexample.

Definition 3.11. Given some infinite a ⊆ ω, let E[a] = {a(2n) : n < ω}
and O[a] = {a(2n+ 1) : n < ω}. Here 〈a(n) : n < ω〉 denotes the increasing
enumeration of a. If a = ω we omit it, and we write EE, OEO etc. in place
of E[E], O[E[O]]. Let ζn be the sequence of n 0’s and νn the sequence of n
1’s.

Theorem 3.12. There exists a closed ioe family in ωω that is not count-
ably ioe for any infinite set a ⊆ ω.

Proof. We are defining a sequence 〈pn : n < ω〉 of (non-pruned) trees
pn ⊆ ωω as follows:

1) p0 is built as follows: p0 contains all ζn’s and all νn’s. Moreover, for
each n ∈ ω, k ∈ E \ {0} and l ∈ O \ {1} we have ζnak ∈ p0 and
νn
al ∈ p0, and these are terminal nodes in p0.

2) Given pn, we declare pn ⊆ pn+1, and moreover every terminal node
σ ∈ pn is extended as follows: Let a = {k ∈ ω : σ�(|σ| − 1)ak ∈ pn}.
Then pn+1 will also contain all σaζm and σaνm and moreover, for each
m < ω, k ∈ E[a]\{0, 1} and l ∈ O[a]\{0, 1}, we have σaζmak ∈ pn+1

and σaνm
al ∈ pn+1.

3) We let p =
⋃
n∈ω pn. We claim that [p] is the desired closed set.

Let us first check that [p] is ioe. Let x ∈ ωω. Without loss of generality we
may assume that x is neither eventually 0 nor eventually 1, as such reals are
clearly infinitely often equal to some y ∈ [p]. Recursively we shall construct
terminal nodes σn ∈ pn such that σn ( σn+1 and x(|σn| − 1) = σn(|σn| − 1).
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Then y =
⋃
n∈ω σn will be in [p] and equal x infinitely often. If there are

infinitely many i with x(i) ∈ E \ {0} we choose σ0 ∈ p0 such that σ0 is a
terminal node, σ0(0) = 0 and σ0(|σ0| − 1) = x(|σ0| − 1) (hence x(|σ0| − 1) ∈
E \ {0}). Otherwise choose σ0 ∈ p0 as before except that now σ0(0) = 1.
Note that then σ0(|σ0| − 1) = x(|σ0| − 1) ∈ O \ {1}.

Now suppose that σn has been constructed. We define a = {k < ω :
σn�(|σn| − 1)ak ∈ pn}. Inductively we know x(i) ∈ a for infinitely many i.
If x(i) ∈ E[a] for infinitely many i we choose σn+1 ∈ pn+1 such that
σn+1(|σn|) = 0. Otherwise x(i) ∈ O[a] for infinitely many i; then we choose
σn+1 ∈ pn+1 as required such that σn+1(|σn|) = 1. By the definition of pn+1

this is certainly possible. It is clear that p does not contain any subtree that
is ioe for some infinite a ⊆ ω. By Theorem 3.3 we conclude that p is not
countably ioe for any infinite a ⊆ ω.

The work of this section has been motivated by the open problem (see
[4, Question 4.3]) whether there exists a closed (or analytic) maximal almost
disjoint family A ⊆ ωω (x, y ∈ ωω are almost disjoint if ∀∞n x(n) 6= y(n)).
Clearly such A is ioe but not countably ioe. If one were able to prove a
perfect set theorem for closed ioe families (in the style of 3.3), one could
probably solve this problem.

4. Refining families. In this section we identify [ω]ω with the closed
subspace of ωω consisting of strictly increasing functions. Thus we can talk
about unbounded or dominating (with respect to eventual dominance) fam-
ilies in [ω]ω.

Definition 4.1. A family A ⊆ [ω]ω is called refining if for every a ∈ [ω]ω

there exists b ∈ A such that either b ⊆∗ a or b ⊆∗ ω \ a. We call A countably
refining if for every countable F ⊆ [ω]ω, some member of A refines every
member of F .

4.1. The Di Prisco–Todorcevic example. The problem of characterizing
analytic (or only closed) refining or countably refining families seems to be a
hard one. At first glance it seems that Mathias trees might be relevant. For
s ⊆ ω finite and a ∈ [ω]ω with max(s) < min(a) let [s, a] = {b ∈ [ω]ω : b ⊆
s∪a & b\a = s}. (Such pairs (s, a) are the conditions of Mathias forcing. If
(s, a) is viewed as a tree, then [s, a] is the set of its branches.) Clearly sets of
the form [s, a] are closed and always countably refining. The first example
of a closed countably refining family that does not contain (the branches of)
a Mathias tree is due to Di Prisco and Todorcevic (see [1]). Actually they
did not care about refining families, but they tried to characterize those
Borel sets A in [ω]ω such that the shift graph they carry has infinite Borel
chromatic number. Recall that the shift graph on A is defined by putting
an edge between a, b ∈ A iff a = b \ {min(b)} (“a is the shift of b”). Note
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that colouring each element of A by its minimum always defines a Borel
colouring with countably many colours. In [5] it has been shown that the
only possible finite Borel chromatic numbers are 1, 2, 3.

Fact 4.2. If the shift graph on A ⊆ [ω]ω has infinite Borel chromatic
number , then A is refining.

Proof. Suppose that A is not refining, thus we have a0 ∈ [ω]ω so that
each b ∈ A meets both a0 and a1 := ω \a0 infinitely often. Now colour b ∈ A
by (i, k) ∈ 2 × { even, odd} so that min(b) ∈ ai and k is the parity of the
length of the initial segment of b determined by the minimal element of b in
a1−i. Clearly this is a Borel graph colouring.

In [3, Lemma 2.3] it has been shown that for every analytic A ⊆ [ω]ω,
A is strongly dominating iff A contains [p] for some Laver tree p. Here A
is strongly dominating iff ∀x ∈ [ω]ω ∃y ∈ A ∀∞k x(y(k − 1)) < y(k), and
p ⊆ ω<ω is a Laver tree iff every extension of its stem has infinitely many
successor nodes.

The Di Prisco–Todorcevic example. We identify ω with IP ⊆ ω × ω,
the set of all increasing pairs (n,m) with n < m. Let E1 be the set of
all x ∈ IPω such that, letting x(i) = (ni,mi), we have mi = ni+1 for
every i < ω. It is straightforward to check that E1 is closed and strongly
dominating (actually of the form [p] for some Laver tree p) and that E1 does
not contain the set of branches of any Mathias tree. In [1] it is shown that
E1 is infinitely chromatic. Let us give a direct proof that E1 is refining, and
actually countably so. Let r ∈ [IP ]ω be given, thus r is a binary relation
on ω. By Ramsey’s theorem we can find a ∈ [ω]ω that is homogeneous for r,
i.e. [a]2 ⊆ r or [a]2 ∩ r = ∅. Certainly there are x ∈ E1 with x(i) ∈ [a]2 for
every i. These x refine r. If we have to deal with countably many rn ∈ [IP ]ω

we are building a descending chain of sets an ∈ [ω]ω such that an is rn-
homogeneous. Then we let aω ∈ [ω]ω be an almost intersection of all an.
Any x ∈ E1 with x(i) ∈ [aω]2 for all i will refine all rn.

Below we shall construct two even smaller examples of closed refining
families. The first one is dominating but not strongly so, and the second
one is unbounded but not dominating. Strangely, the second one is much
easier to understand. We retain the first one as we have a strong conjecture
that it is minimal in the sense that it does not contain any closed refining
subfamily that is not dominating. This conjecture is linked with the problem
of characterizing 2-colourable hypergraphs.

4.2. A closed non-strongly dominating refining family

Definition 4.3. Let a, b be subsets of ω.
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(a) If the limit

lim
n→∞

|a ∩ b ∩ n|
|b ∩ n|

exists, we call it the density of a in b and denote it by d(a, b).
(b) On the other hand, the limes superior

lim sup
n→∞

|a ∩ b ∩ n|
|b ∩ n|

always exists in [0, 1], and we call it the sup-density of a in b and
denote it by dsup(a, b).

Remark 4.4. It is easy to see that for infinite b existence and value of
d(a, b) or dsup(a, b) do not depend on finite changes of a or b.

Let E[a] = {a(2n) : n < ω} and O[a] = {a(2n+ 1) : n < ω}. Inductively
we define a tree of sets 〈Sσ : σ ∈ 2<ω〉 as follows: S∅ = ω, Sσa0 = E[Sσ],
Sσa1 = O[Sσ]. Note that Sσ ∩ Sτ = ∅ whenever σ and τ are incompatible,
and that Sτ ⊆ Sσ if σ ⊆ τ . Let L = 〈Ln : n < ω〉 be the unique family such
that

(1) Ln ⊆ ω2n is not empty, consisting of increasing sequences;
(2) if µ ∈ Ln, there exists σ = σµ ∈ 2n such that for each i < n, µ(2i)

and µ(2i+ 1) are successive elements of Sσ�i and µ(2i) ∈ E(Sσ�i) iff
σ(i) = 0;

(3) all Ln are maximal such that (1) and (2) hold.

Thus L0 = {∅}, L1 = {〈n, n+1〉 : n ∈ ω}, L2 = {〈2n, 2n+1, 2m, 2m+2〉 :
n < m < ω} ∪ {〈2n+ 1, 2n+ 2, 2m+ 1, 2m+ 3〉 : n < m < ω} etc.

The family L determines a tree p ⊆ ω<ω by letting σ ∈ p iff σ ⊆ τ for
some τ ∈

⋃
n<ω Ln. Clearly p is a uniform tree (see [9]) such that stem(p) = ∅

and for every σ ∈ split(p) the successor splitnodes of σ have length |σ|+ 2.
Hence [p] is dominating, but by [3] it is not strongly dominating. Let E2 =
[p]. Now the following is true:

Theorem 4.5. E2 is refining.

Proof. Let a ∈ [ω]ω be arbitrary. Suppose first that there exists σ ∈ 2<ω

such that for every τ ∈ 2<ω with σ ⊆ τ there are infinitely many n < ω such
that {Sτ (n), Sτ (n+1)}∩a = ∅. It is straightforward to construct x ∈ E2 such
that ran(x)∩ a is finite. Hence we may assume that for every σ ∈ 2<ω there
exists an extension τ of σ such that only finitely many pairs of successive
elements of Sτ belong to ω \ a. Note that this implies that for each σ ∈ 2<ω

there exists k < ω such that every interval of Sσ that is disjoint from a has
length at most k. We conclude that the assumptions of the next lemma are
satisfied by our a and b = Sσ for a dense set of σ ∈ 2<ω. The other lemmas
will be used to recursively construct x ∈ E2 such that ran(x) ⊆∗ a.
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Lemma 4.6. Let a, b ⊆ ω be as follows:

(i) There are only finitely many i such that {b(i), b(i+ 1)} ∩ a = ∅.
(ii) There exists k0 < ω such that every interval of E(b) disjoint from

a has length at most k0.
(iii) There exists k1 < ω such that every interval of O(b) disjoint from

a has length at most k1.

If k = max{k0, k1}, then a contains at least k + 1 elements from every
interval I of b of length 2k + 1 with min(I) large enough and therefore
dsup(a, b) ≥ (k + 1)/(2k + 1).

Proof. Let I = {b(i) : j ≤ i < j + 2k + 1} be an interval of b of length
2k + 1 such that ω \ a does not contain any two successive elements of it.
Let E(I) = {b(j + 2i) : i ≤ k} and O(I) = {b(j + 2i + 1) : i ≤ k}. Thus
E(I) has k + 1 and O(I) has k elements. By (ii) and (iii) we must have
E(I)∩a 6= ∅. If E(I) ⊆ a we are done. But otherwise, as a meets any pair of
successive elements of I, a contains two successive elements of I, and hence
we conclude |I ∩ a| ≥ k + 1.

Lemma 4.7. Suppose that b ⊆ ω and b = c0 ∪ c1 is a partition. Then for
every a ⊆ ω,

dsup(a, b) ≤ dsup(a, c0) · dsup(c0, b) + dsup(a, c1) · dsup(c1, b).

Proof. Observe that for each n we have
|a ∩ c0 ∩ n|
|c0 ∩ n|

· |c0 ∩ b ∩ n|
|b ∩ n|

+
|a ∩ c1 ∩ n|
|c1 ∩ n|

· |c1 ∩ b ∩ n|
|b ∩ n|

=
|a ∩ c0 ∩ n|+ |a ∩ c1 ∩ n|

|b ∩ n|
=
|a ∩ b ∩ n|
|b ∩ n|

.

Let ε > 0 be arbitrary. Let δ > 0 be such that 4δ + 2δ2 < ε/2. There exists
nδ such that for all n > nδ and i < 2 we have

|a ∩ ci ∩ n|
|ci ∩ n|

< dsup(a, ci) + δ and
|ci ∩ b ∩ n|
|b ∩ n|

< dsup(ci, b) + δ.

Note that this implies
|a ∩ c0 ∩ n|
|c0 ∩ n|

· |c0 ∩ b ∩ n|
|b ∩ n|

+
|a ∩ c1 ∩ n|
|c1 ∩ n|

· |c1 ∩ b ∩ n|
|b ∩ n|

< dsup(a, c0) · dsup(c0, b) + dsup(a, c1) · dsup(c1, b) + ε/2.
Moreover, we can find arbitrarily large n > nδ such that

|a ∩ b ∩ n|
|b ∩ n|

> dsup(a, b)− ε/2.

Hence
dsup(a, c0) · dsup(c0, b) + dsup(a, c1) · dsup(c1, b) > dsup(a, b)− ε.

As ε > 0 was arbitrary, we have proved the desired inequality.
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Lemma 4.8. Suppose b, c are infinite such that dsup(b, c) > 1/2. Then
there are l0, l1 such that l0 is even, l1 is odd and

{c(l0), c(l0 + 1)} ⊆ b and {c(l1), c(l1 + 1)} ⊆ b.

Proof. As limk→∞
k+4
2k = 1

2 , by assumption we can choose k so that

(∗) |b ∩ {c(0), . . . , c(k − 1)}|
k

>
k + 4

2k
.

We may assume that b contains {c(l), c(l + 1), c(l + 2)} for no l, since
otherwise we are done.

Let M = {l < k : {c(l), c(l + 1)} ⊆ b}. Certainly M is not empty, as
otherwise

|b ∩ {c(0), . . . , c(k − 1)}|
k

≤ k + 1
2k

<
k + 4

2k
,

contradicting (∗). If M contained only even numbers, then

|b ∩ {c(0), . . . , c(k − 1)}|
k

≤ k/2 + 2
k

=
k + 4

2k
,

which contradicts (∗). If M contained only odd numbers, then even

|b ∩ {c(0), . . . , c(k − 1)}|
k

≤ (k + 1)/2
k

<
k + 4

2k
,

a contradiction. We conclude that M contains both even and odd numbers,
and we are done.

By Remark 4.4 we conclude that in Lemma 4.8 there exist infinitely
many such l0 and l1. Now we choose σ ∈ 2<ω and k < ω such that the
assumptions of Lemma 4.6 hold with our a and b = Sσ. Hence dsup(a, Sσ) ≥
(k + 1)/(2k + 1). If |σ| = n we can find µ ∈ Ln such that σ = σµ (see (2)
of the definition of E2). Note that d(Sτai, Sτ ) = 1/2 for every τ ∈ 2<ω and
i < 2. Therefore, if dsup(a, Sτ ) > 1/2, by Lemma 4.7 we have

1
2
< dsup(a, Sτ ) ≤ dsup(a, Sτa0) + dsup(a, Sτa1)

2
and hence dsup(a, Sτai) > 1/2 for at least one i < 2. Using Lemma 4.8 it is
now straightforward to construct 〈σj : n ≤ j〉 and 〈µj : n ≤ j〉 such that
σn = σ, µn = µ, µj ∈ Lj , σj = σµj , dsup(a, Sσj ) > 1/2 and σi ⊆ σj , µi ⊆ µj
and {µj(2i), µj(2i + 1)} ⊆ a for every n ≤ i < j. Letting x =

⋃
j<ω µj , we

have x ∈ E2 and ran(x) ⊆∗ a.

Remark 4.9. The previous example E2 is not even 2-refining, i.e. there
are a, b ∈ [ω]ω such that no x ∈ E2 refines a and b. To see this, define
ci = {n ∈ ω : n = i mod 3} for i < 3. Note that x *∗ ci for any x ∈ E2 and
i < 3, as x(2k+1)−x(2k) is a power of 2 for all k. Thus we can let a = c0∪c1
and b = c1 ∪ c2.
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Problem 4.10. Is it true that every non-dominating closed subset of E2

is non-refining?

Problem 4.10 is linked to the 2-colourability problem for hypergraphs (see
e.g. [7, p. 599]). Given a non-dominating subtree q ⊆ p (where [p] = E2),
one would like to find a front F ⊆ split(q) (i.e. F is pairwise incomparable
and for every x ∈ [q], x�k ∈ F for some k) such that, letting Fσ be the set of
all successor splitnodes of σ ∈ F in q, the family F =

⋃
σ∈F {τ \ σ : τ ∈ Fσ}

considered as a hypergraph (i.e. a set of finite sets) is 2-colourable, i.e. there
exists c ⊆

⋃
F that has non-empty intersection with every member of F

but does not contain any one.

4.3. A closed refining non-dominating family. Our third example is a
closed refining family E3 ⊆ [ω]ω that is non-dominating, but unbounded
with respect to eventual dominance. It is easy to see that no bounded family
is refining. Curiously E3 is much easier to understand than E2.

For the construction let f ∈ωω be fast enough so that (f(k + 1)−f(k))/2
> k + 1 for each k. Let

Ik = [f(k), f(k + 1)) and Hk =
{
a ⊆ Ik : |a| =

⌊
f(k + 1)− f(k)

2

⌋}
.

Now let E3 be the set of all b ∈ [ω]ω of the form b =
⋃
i∈N ak(i), where

〈k(i) : i < ω〉 ∈ ωω is strictly increasing and ak(i) ∈ Hk(i) for all i < ω.
Let us see that E3 is non-dominating, actually ∀b ∈ E3 ∃∞k b(k) < f(k).

Let b =
⋃
i<ω ak(i) as above. Note that b(k(i)) ∈

⋃
j≤i ak(j) by definition of

Hk(i), and hence b(k(i)) < f(k(i)). Moreover, E3 is refining. Indeed, given
a ∈ [ω]ω, we see that for some i < 2, |ai ∩ Ik| ≥ b(f(k + 1)− f(k))/2c for
infinitely many k (again we let a0 = a, a1 = ω \ a). If i = 0 we easily
obtain b ∈ E3 with b ⊆ a, otherwise we find b ∈ E3 disjoint from a. Finally,
closedness of E3 is easy to check.

Remark 4.11. (1) Note that each Hk is a hypergraph that is not 2-
colourable. Actually, to make E3 refining it suffices to take as Hk any such
hypergraph on Ik. In order to make E3 non-dominating we must ask that
the elements of Hk are large enough with respect to f(k + 1).

(2) We could as well make E3 countably refining. E.g. start with a bit
faster f (say such that (f(k + 1)− f(k))/2k > k + 1) and define

Hk =
{
a ⊆ Ik : |a| =

⌊
f(k + 1)− f(k)

2k

⌋}
.

E3 is now defined as before. Given infinitely many an ∈ [ω]ω, we first find
b0 =

⋃
i∈N a

0
k0(i) refining a0 such that a0

k0(i) ⊆ Ik0(i) has size b|Ik0(i)|/2c. Then
find 〈k1(i) : i < ω〉, a subsequence of 〈k0(i) : i < ω〉, and b1 =

⋃
i∈N a

1
k1(i)

refining a1 such that a1
k1(i) ⊆ a

0
k1(i) has size b|a0

k1(i)|/2c etc. Finally, we have
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the diagonal bω =
⋃
n<ω a

n
kn(n) which refines all an. Possibly bω /∈ E3, as

some ankn(n) are too large (note |ankn(n)| = |Ikn(n)|/2n ). So simply trim each
ankn(n) down to its decent size and we are done.

References

[1] C. A. Di Prisco and S. Todorcevic, Canonical forms of shift-invariant maps on [N]∞,
Discrete Math. 306 (2006), 1862–1870.

[2] I. Farah and S. Solecki, Two Fσδ ideals, Proc. Amer. Math. Soc. 131 (2003), 1971–
1975.
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