FUNDAMENTA
MATHEMATICAE
184 (2004)

The virtual and universal braids
by

Valerij G. Bardakov (Novosibirsk)

Abstract. We study the structure of the virtual braid group. It is shown that the
virtual braid group is a semi-direct product of the virtual pure braid group and the
symmetric group. Also, it is shown that the virtual pure braid group is a semi-direct
product of free groups. From these results we obtain a normal form of words in the virtual
braid group. We introduce the concept of a universal braid group. This group contains the
classical braid group and has as quotients the singular braid group, virtual braid group,
welded braid group, and classical braid group.

Recently some generalizations of classical knots and links were defined
and studied: singular links [20, 5], virtual links [15, 12] and welded links [10].

One of the ways to study classical links is to study the braid group.
Singular braids [1, 5], virtual braids [15, 21|, welded braids [10] were defined
similarly to the classical braid group. A theorem of A. A. Markov [4, Ch.
2.2] reduces the problem of classification of links to some algebraic problems
of the theory of braid groups. These problems include the word problem and
the conjugacy problem. There are generalizations of Markov’s theorem to
singular links [11], virtual links, and welded links [14].

There are some different ways to solve the word problem for the singular
braid monoid and singular braid group [8, 7, 22|. The solution of the word
problem for the welded braid group follows from the fact that this group is a
subgroup of the automorphism group of the free group [10]. A normal form
of words in the welded braid group was constructed in [13].

In this paper we study the structure of the virtual braid group V B,,. This
is similar to the classical braid group B,, and welded braid group W B,,. The
group V' B,, contains the normal subgroup V P, which is called the virtual
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2 V. G. Bardakov

pure braid group. The quotient group V B,,/V P, is isomorphic to the sym-
metric group S,. We find generators and defining relations of V' P,. Since
V B, is a semi-direct product of V P, and S,,, we should study the struc-
ture of V P,. It will be proved that V P, is representable as the following
semi-direct product:

VP, = Vo 4 X V1=V 3 (Vg ) (-2 (Vo % VY)) -+ ),

where V* is some (in general infinitely generated for ¢ > 1) free subgroup
of V P,. From this result it follows that there exists a normal form of words
in VB,.

In the last section we define the universal braid group U B,, which contains
the braid group B, and has as quotients the singular braid group SG,, the
virtual braid group V B,,, the welded braid group W B,,, and the braid group
By,. Tt is known [10] that V B, has as its quotient the group W B,,. It will
be proved that the quotient homomorphism maps V' P, into the welded pure
braid group W P,. This homomorphism agrees with the decomposition of
this group into the semi-direct product given by Theorem 2 and by [2, 3].

By Artin’s theorem, the group B,, is embedded into the automorphism
group Aut(F,) of the free group F,. In [10] it was proved that W B, is also
embedded into Aut(F},). It is not known if SG,, and V B,, are embedded
into Aut(F),).

Acknowledgments. 1 am grateful to Joanna Kania-Bartoszyriska, Jozef
Przytycki, Pawet Traczyk, and Bronistaw Wajnryb for the invitation to par-
ticipate in the very interesting and well organized Mini-semester on Knot
Theory (Poland, July, 2003). I would also like to thank Vladimir Vershinin
and Andrei Vesnin for their interest in this work. Special thanks go to the
participants of the seminar “Evariste Galois” at the Novosibirsk State Uni-
versity for their kind interest in my work.

1. Different classes of braids and their properties. In this sec-
tion we recall some known facts about braid groups, singular braid monoids,
virtual braid groups and welded braid groups (see references from the intro-
duction).

1.1. The braid group and the group of conjugating automorphisms. The
braid group B, n > 2, on n strings can be defined as the group generated
by o1,...,0,-1 (see Fig. 1) with the defining relations
(1) 0i0i410; = 0i4+1030i+1, 1=1,...,n—2,

(2) 0i0j = 0504, |Z—]| 22.
There exists a homomorphism of B, onto the symmetric group S5, on n

letters. This homomorphism maps o; to the transposition (i,i + 1), i =
1,...,n—1. Its kernel is called the pure braid group and denoted by P,. The
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1 1—1 ) i+1 i+2 n 1 i—1 1 i+1 i+2 n

Fig. 1. Geometric braids representing o; and o} '

1 i—1 i j+1 n

1+1 j—1 7

Fig. 2. The geometric braid a;;

group P, is generated by a;j, 1 < i < j < n (see Fig. 2). These generators
can be expressed by the generators of B,, as follows:
Aii+1 = O 3 )
ajj = 0j_10j-2... UHlafa;rll .. .05_1205_11, 1+1<7<n.

The group P, is the semi-direct product of the normal subgroup U,
which is a free group with free generators ain,,asn,...,an—1,, and P,_;.
Similarly, P,_1 is the semi-direct product of the free group U,_1 with free
generators ai,—1,02—1, - - -,an—2n—1 and P,_2, and so on. Therefore, P, is
decomposable (see [17]) into the following semi-direct product:

Pn:Un X (Un,1 A ( X (U3 X UQ))), UiEFifl, ’i:2,...,7’L.
The group B, in the faithful representation in the group Aut(F,) of

automorphisms of the free group F,, = (x1,...,z,). In this case the generator
oi,1=1,...,n — 1, defines the automorphism
Ti — Tj Tit1 x;l,
Oi -\ Ti+1 > Zi,

r—x, LFii+1.
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By a theorem of Artin [4, Theorem 1.9], an automorphism 3 € Aut(F,,)
lies in B,, if and only if § satisfies the following conditions:

(i) B(xi) = a; 'wpyai, 1<i<n, (i) B(z1---an) =21 Tn,

where 7 is a permutation from S, and a; € F,.

An automorphism is called a conjugating automorphism (or a permu-
tation-conjugating automorphism according to the terminology of [10]) if
it satisfies condition (i). The group C,, of conjugating automorphisms is

generated by o; and the automorphisms «;, i =1,..., n — 1, where
Ti b Tit1,
QG 1§ Titl = T,

I — Xy, l#i,i+1.

It is not hard to see that the automorphisms «; generate the symmetric
group S, and, hence, satisfy the following relations:

(3) Q10 = Q1 QQGy1,  E=1,...,n— 2,
(4) Qo = ooy, i —jl > 2,
(5) o? =1, i=1,...,n—1.

The group C,, is defined by relations (1)—(2) of B, relations (3)—(5) of Sy,
and the mixed relations (see [10, 19])

(6) Q0 = 0;Q;, ‘Z—j’ > 2,
(7) Oii410G = Qip1Qi041, 1 =1,...,m—2,
(8) Ti110iQi1 = Q0 110}, i=1,...,n—2.

If we consider the group generated by the automorphisms ¢;;, 1 < i #
j < n, where

T o g, 0 g,

Eij * .

X — Iy, l 75 1,
then we get the group Cb,, of basis-conjugating automorphisms. The elements
of satisfy condition (i) for the identical permutation 7, i.e., map each genera-

tor z; to the conjugating element. J. McCool [18] proved that Cb,, is defined
by the relations (from now on, different letters stand for different indices)

(9) €ij€kl = ERIEij,
(10) €ij€kj = Ekj€ij
(11) (5z‘j5kj)5z’k = 5ik(5ij5kj)-

The group C, is representable as the semi-direct product C,, = Cb, xS,
where S, is generated by the automorphisms ag,...,a,—1. The following
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equalities hold (see [19]):

€ii+l = Oéio'i_17 Eitls = Ji_lai,
Eij = aj_laj_g e ai+15i,i+1ai+1 cee aj_gaj_l, 1< j,
Eji = Q102+ Q1 QGG 41 Qg1+ Q2 —1, 1 < J.
The structure of Cb,, was studied in [2, 3]. It was proved that Cb,, n > 2,
is decomposable into the semi-direct product

Cbn:Dn_lx(Dn_gx ('”N(DQNDl))”')

of subgroups D;,7 = 1,...,n—1, generated by €;41,1, €i+1,2, - - -, €i+1,i» E1,i+15
€241y - -+,Eii+1- The elements €411, €i+1,2, - .., €i+1,; generate a free group
of rank 7. The elements €141, €241, - - -, €ii+1 generate a free abelian group
of rank 1.

The pure braid group P, is contained in Cb, and the generators of P,
can be written in the form

R -
A i+1 _Ei,z‘—l—lgi—i—l,i? 1= 1,...,71— 1,

1
Qij = €j-1,i€j—2,i - - - Eit1,i(Ey;
—1 -1 I B R : :

—1,4€i-2 - ..€i+1’j(£ij o JEit1j---Ej—2j€j-14, 2<i+1<j<n.

—1y.—1 -1 -1
€ji )Ez’—i-l,i €5 9485 1

=& 9

1.2. The singular braid monoid. The Baez—Birman monoid [1, 5] or the
singular braid monoid SB,, is generated (as a monoid) by elements o;, o, L
7iy 4 = 1,...,n — 1. The elements o;, o, ! generate the braid group B,,. The

generators 7; satisfy the defining relations

(12) T =TT, |t —j] > 2,

and the other relations are mixed:

(13) TiOj = 0T, li — 4] > 2,

(14) Ti0j = 0iTi, 1=1,...,n—1,
(15) Oi0i11Ti = Ti410:0i41, t=1,...,mn—2,
(16) Oit10iTi+1 = TiOi+10%, 1=1,...,n—2.

In [9] it was proved that the singular braid monoid SB,, is embedded into
the group SG,, which is called the singular braid group and has the same
defining relations as SB,.

1.3. The virtual braid group and welded braid group. The virtual braid
group V B,, was introduced in [15]. In [21] a shorter system of defining
relations was found (see below). The group VB, is generated by o, o;,
i=1,...,n—1 (see Fig. 3).

The elements o; generate the braid group B,, with defining relations (1)-
(2) and the elements p; generate the symmetric group S,, which is defined
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1 1—1 ) i+1 i+2 n

Fig. 3. The geometric virtual braid g;

by the relations

(17) 0i0i+10i = 0i+10i0i+1, 1=1,...,n—2,
(18) 0i0j = 050, i —jl > 2,

(19) 07 =1, i=1,...,n—1.
The other relations are mixed:

(20) Ti0j = 0ji, i—jl =2,

(21) 0i0i+10; = 0i410i0i+1, t=1,...,n—2.

Note that the last relation is equivalent to
0i+10i0i+1 = 0;0Qi+10i-
In [12] it was proved that the relations
0i0i+10i = 0i410i0i+1;  Qi+10i0i+1 = 0i0i+10%

are not satisfied in V B,,.

The welded braid group W B,, was introduced in [10]. This group is gen-
erated by o;, oy, i = 1,...,n — 1. The elements o; generate the braid group
By,. The elements «; generate the symmetric group S, and the following
mixed relations hold:

(22) ;05 = 0504, |Z - ]| > 27
(23) OiQip10G = Qi1Qi0i41,  t=1,...,n—2,
(24) ;4100441 = Q;04+107, 1= 1,...,7‘&—2.

In [10] it was proved that W B, is isomorphic to the group C,, of conjugating
automorphisms.

Comparing the defining relations of V' B,, with the defining relations of
W B,,, we see that W B,, can be obtained from V B,, by adding a new relation.
Therefore, there exists a homomorphism

oyw : VB, - WB,
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taking o; to o; and p; to «; for all 7. Hence, W B,, is the homomorphic image
of VB,
In [10] it was proved that the relation (symmetric to (23))

Oi+10G 041 = Q4 107,
is true in W B,,. But the following relation does not hold:
Q4107041 = 030i4104-
Linear representations of V B,, and W B,, by matrices from GL,, (Z[t,t™!])
which extend the well known Burau representation were constructed in [21].
A linear representation of C,, ~ W B,, was constructed in [3]. This represen-

tation extends (with some conditions on parameters) the known Lawrence—
Krammer representation.

2. Generators and defining relations of the virtual pure braid
group. In this section we introduce a virtual pure braid group and find its
generators and defining relations.

Define the map v : VB,, — S, by its action on the generators:

vio)) =v(gi) =0, i=1,...,n—1,

where S, is the group generated by p;. Then ker(v) is called the virtual pure
braid group and denoted by V P,. It is clear that V' P, is a normal subgroup
of index n! of V B,,. Moreover, since VP,NS, =eand VB, =VP,-S,, we
have VB, = VP, x 5,.

Define

Nit1 = 0i0; Y, Nit1i = 0iNiit10i =0, oi, i=1,...,n—1,

Aij = 0j-10j-2 "+ Qit1Ni/i+10i+1 " " 0j—205—1,

Nji = 0j-10j-2 "+ Qit1Nif1,iQit1 " 0j—20j-1, 1<i<j—1<n-1
Obviously, all these elements belong to V P,. Their geometric interpretation
is shown in Figs. 4 and 5.

1 i-1 i i+l -1 § g1 n

]
!
.

|
|
J

Fig. 4. The geometric virtual braid A;; (1 <i < j <n)
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1 i—-1 i i+l j-1  §  j+1 n

4

—A
9\@\@\

Fig. 5. The geometric virtual braid \;; (1 <i < j < n)
LEMMA 1. Let 1 < i < j < n. The following conjugation rules are
satisfied in V By:
(i) fork<i—1,i<k<j—1andk > j,
OkNij Ok = Aijy OkNjiOk = Ajis
(i) 0i—1Xijoi—1 = Ni—1j, 0i—1Aji0i—1 = Aji—1;
(iii) fori<yj—1,
0iNii+10i = Aiglis  QiNij0i = Ai1j,
0iNit1,i0i = Aijitls  QiNjiOi = Ajit1;
(iv) fori+1<j,
0j—1Aij0j—1 = ANij—1,  0j—12ji0j—1 = ANj—14;
(V) 0jhijoj = Nije1s  0Aji0j = Ajyie

Proof. We consider only the rules involving \;; for i < j (the remaining
ones can be considered analogously). Recall that

>\z’j = 0j-10j-2" " Qi+1)\i,i+19i+1 cr05-205-1-

If k <i—1or k> jthen g is permutable with ¢;, 0i41,...,0j—1 in view of
relation (18) and with o; in view of relation (20). Hence, g is permutable
with )‘U

Let i <k < j— 1. Then

Qk)\ij Ok = Qk(@jfl‘ ©Ok+20k+10k - - Qi+1)\i,i+19i+1 © 0 OkOk+10k+2 " - QjA)Qk-
Permuting g5 and \; ;11 whenever possible, we get
Qj—1""" Qk+2(Qka+1Qk) T Qi+1>\i,i+19i+1 ce (Qka+1Qk)Qk+2 crr05-1-

Using the relation ox0r+10k = 0k+10k0k+1, We rewrite the last formula as
follows:

0j—1 " Ok+10k(0k+10k—1" " 0it1Ni,i+10i+1 " * Ok—10k+1)
X QkOk+41" "+ 0j—1 = 0j—1 " Ok (Ok-+1Ni kOk+1)0k * - 0j—1-
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In view of the case considered earlier, we have

Ok+1NikOk+1 = ik
and, hence,
0j—1 " 0k (Ok+1 ik Ok41) Ok - - 0j—1 = Nij-
Thus, the first rule of (i) is proven.
(ii) Consider
0i-1Aij0i—1 = 0i~1(0j—10j—2 -~ 0i+1Ni,i+10i+1 " - 0j—20j—1)0i—1-
Using (18), let us permute g;—1 and \; ;11 whenever possible. We get
(25) 0i—1Xij0i—1 = 0j—1 - - - 0i+20i+1(0i—1\ii+10i—1)0i+10i42 - - - 0j—2.
The expression in brackets can be rewritten as
0i—1Aii+10i—1 = Qileio';lQifl = .QileiU;lQileiQi-
Using the relation o; '0;—10; = 0i—10i0; ", (following from (21)) and (18),
(19), we obtain
0i—10i(0; 1 0i—10i)0i = 0i-1(0i0i-10i)0; "} 0i
= (0i-10i-1)0i0i—10;_10i = 0iNi—1,i0i-
Then from (25) we obtain
0i—1Aij0i—1 = Ai—1,j-
Thus, the desired relations are proven.

(iii) The first formula follows from the definitions of A;;+1 and A\jt1.
Consider

0iXij0i = 0i(0j—10j—2 -~ 0i+1Ni,it10i+1 " - 0j—20j—1)0i-
Permuting o; and \; ;11 whenever possible, we obtain

0iNij0i = 0j—1 - 0i+2(0i0it1Mi;i+10i4+10i)0it+2 " - 0j—1-
Rewrite the expression in brackets as follows:

0i0i+1Ni,i+10i410i = 0i0i+10i(0; ' 0i+10i) = 0i0i+1(0i0i+10i) 075
= QiQiHQiHQin’HU;ll = Qi+1ff@-_+11-

Hence,

0iNij0i = 0j—1 - 0i+2(0i+1031) 0i42 - - - 0j—1 = Ni1,j-
Thus, the desired relations are proven.

(iv) follows from the relation Q?_l = e and the definition of \;;.
(v) is an immediate consequence of the definition of \;;. m

COROLLARY 1. The group S, acts by conjugation on the set {\p; | 1 <
k # 1 < n}. This action is transitive.
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In view of Lemma 1, the subgroup (\g; | 1 < k # | < n) of VP, is
normal in V' B,,. Let us prove that this group coincides with V P, and let
us find its generators and defining relations. For this purpose we use the
Reidemeister—Schreier method (see, for example, [16, Ch. 2.2]).

Let my; = 0k_10k—2...0; for I < k and my; = 1 in the other cases. Then

the set
n
k=2

is a Schreier set of coset representatives of V P, in V B,,.

1< i < kY

THEOREM 1. The group V P, admits a presentation with the generators
A, 1 <k #1<n, and the defining relations

(26) Xij Akl = At Nijs
(27) ki (AkgAig) = (NigAkg) Mk
where distinct letters stand for distinct indices.

Proof. Define the map ~ : VB,, — A,, which takes an element w € VB,
to its representative w from A,,. In this case the element ww ' belongs to
V P,. By Theorem 2.7 of [16] the group V P, is generated by

Sha = Aa - (E)_l,

where A runs over the set A, and a runs over the set of generators of V B,,.
It is easy to establish that s) ,, = e for all representatives A and genera-
tors g;. Consider the generators

Sho; = Ao - ()‘—Qi)_l'

For A = e we get scq, = 0,0, = A7l . Note that \o; is equal to \g; in S),.

1,0+1"
Therefore,
8)\701 = )\(gzpi)/\_l.

From Lemma 1 it follows that each generator s),, is equal to some Ay,
1 < k # 1 < n. By Corollary 1, the converse is also true, i.e., each Ay is
equal to some s) ,,. The first part of the theorem is proven.

To find defining relations of V P,, we define a rewriting process 7. It allows
us to rewrite a word which is written in the generators of V' B,, and present
an element in V P, as a word in the generators of V P,. Let us associate to
the reduced word

_ E1 .62 5 _
u=aj'ay’--a;r, e ==1, qg€{o1,...,0n-1,01,---,0n-1},

the word

_ f1 €2 ... eEr
T(u) = Ski,a1 ka0 Sky
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in the generators of V' P, where k; is a representative of the (j — 1)th initial
segment of the word u if ¢; = 1, and a representative of the jth initial
segment of u if £; = —1.

By [16, Theorem 2.9], the group V P, is defined by the relations

rax =TT AT, A€ Ay,

where r,, is the defining relation of V B,,.
Denote by
ry = aiai+1aiai_+llai_lai_+ll
the first relation of V B,,. Then
—1 —1 —1

S. —
—1 -1 -1 87’1 s0i+1
Uioi+loigi+1yoi+l o'ia'i+la'i0—i+1a'i 504

—1 ~1 ~1
= )\i7i+1 (Qi)\i+17i+29i) (Qi@i—}—l)\i,i_i_l Qi+1 Qz‘)

(0i4+10iMi+1,i+20i0i+1)(Qi+1Nii+10i+1) Nit1i+2-

Tle = 7—(7"1) = Se,04504,0i4150i0i41,045

Using the conjugating rules from Lemma 1, we get
Tle = A;i{i_lAZil_FgAi_j17i+2Ai,i+l )\z‘,i+2)\i+1,i+2-
Therefore, the relation
i1 (Nijit2Ait1i42) = (Nig1i42N,i42) Nijit1
holds in V' P,. The remaining relations r; y, A € A,, can be obtained from
this relation using conjugation by A~!. By the formulas of Lemma 1, we
obtain (27).
Let us consider the next relation of V B,,:

ro = JZ'UjO'i_lUj_l, li —j| > 2.

We have
T2.e = 7’(7“2) = 860.8;0.8_17 811 = /\»_<1 )\-_1 )\z' i+1)\' i+1-
) 04 204,0 JinJi_l,Uz‘ 72,0 4,0+17"7,7+17' 757
Hence, the relation
Aiit1 A1 = Njgridiitn, i —j] =2,

holds in V P,,. Conjugating this relation by all representatives from A,, we
obtain (26).

Let us prove that only trivial relations follow from all other relations of
V B,,. This is evident for relations (17)—(19) defining the group S,, because
5),0;, = € for all A € A, and p;.

Consider the mixed relation (21) (relation (20) can be considered simi-
larly):

-1
T3 = 0i+10i0i+10; Qi+10i-
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Using the rewriting process, we get

-1

—1
r3e =T(r3) = Se,0i415 = )‘i+1,i+2(Qi9i+1/\i,i+19i+1Qi)

Ui+19i@i+10;170'i
= A = e
Thus, V P, is defined by relations (26)—(27). »

3. The structure of the virtual braid group. From the definition of
V P, and Lemma 1 it follows that V' B,, = V P, xS, i.e., V B,, is the splittable
extension of the group V P, by S,. Consequently, we have to study the
structure of the virtual pure braid group V FP,. Let us define the subgroups
Vi= (ALit1s A2t 15+ Ayt 15 N 1,1, Ak 1,25 - -5 Aip 1)y, t=1,...,m—1,
of VP,. Each V; is a subgroup of V P, 1. Let V;* be the normal closure of V;
in V P;j;1. The following theorem is the main result of this section.
THEOREM 2. The group VP,, n > 2, is representable as the semi-direct
product
where V" is a free group of rank 2 and V;*, i = 2,...,n—1, are free infinitely
generated subgroups.
Let us prove the theorem by induction on n. For n = 2, we have
VP, =V, =V
and, by Theorem 1, the group V; is free generated by A2 and As;.
To make the general case clearer consider the case n = 3.
3.1. The structure of V Ps. By Theorem 1, the group V P3 is generated
by the subgroups Vi, V2 and defined by the relations
A12(A13d23) = (A23A13) A2, Aa1(A2sAi3) = (A13Aes) e,
A3(A12A32) = (As2A12) 13, Az1(As2A12) = (M12A32) As1,
A23(A21A31) = (As1A21)Ae3,  As2(Az1da1) = (A21A31)Ase.

From these relations we obtain the next lemma.

LEMMA 2. In V Ps the following equalities hold:

A2 _ yA12 -1 A2 _ —A12 A2 —1y—A12
>‘13 = )‘32 >‘13>‘32 ) )‘311 = )‘32)‘311)‘32 ) )‘231 = )‘13)‘213)‘32)‘13 >‘32 )
>‘1_21 _y—1 /\1_21 Az _ y A2 Als _ y A2 y—1
)‘13 = )‘32 >‘13>‘32 ) )‘31 = )‘32 A31A32, )‘23 = )‘32 )‘13 A32A23A13,
A21 _ yA21 -1 Aol —A21 Aol —1y—A21
A3t = A3 A2sAgy s A3 = AztAs2Agy, ATS = Aoz AizAziAgg Agy

)‘2_11 -1 2_11 )‘2_11 _>‘2_11 )‘2_11 _>‘2_11 -1
)\2 = )\31 )\23/\31 ) )\32 = )\31 )\32)\317 )\13 = )\31 )\23 )\31)\13/\237
3

(i)

(i)

where a® stands for b~'ab.
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Proof. The first and second relations of (i) immediately follow from the
third and fourth relations of V P (see the relations before the lemma). Sim-
ilarly, the first and second relations of (ii) immediately follow from the fifth
and sixth relations of V Ps.

Further, from the first and second relations of V P3 we obtain

A1,2 Y A Y
Ay3” = A13Aa3A15 2, ATE = AagAigAgg .

Using the already proved formulas for )\1\§2 and )\é\gl, we get the third for-

mulas of (i) and (ii) respectively.
The formulas for conjugation by )\1_21 and )\2_11 can be obtained analo-
gously. =

Note that there exists an epimorphism 3 : V P3 — V P, which takes the
generators of Vo = (A3, A23, A31, A32) to the unit and fixes the generators of
Vi = (A12, A21). The kernel of this epimorphism is the normal closure of V5
in VP, ie., ker(ps) = V5.

Let u be the empty word or a reduced word beginning with a non-zero
power of A\j2 and representing an element from Vi. Let Az2(u) = A§y =
u~ ' A\30u. We call this element the reduced power of the generator \3p with
power u. Analogously, if v is the empty word or a reduced word beginning
with a non-zero power of \o; and representing an element of Vi, then we put
A31(v) = A5 and call it the reduced power of the generator A3; with power v.

LEMMA 3. The group V5 is a free group with generators \i3, \23 and all
reduced powers of A\31 and A3a.

Proof. To prove the lemma we can use the Reidemeister—Schreier method,
but it is easier to use the definitions of normal closure and semi-direct prod-
uct. Clearly, the group V5" is generated by the elements

w w w w
135 A23, A31, Agg,  w € V.

In view of Lemma 2, it is sufficient to take from these elements only A3, Aog
and all reduced powers of the generators A3; and Ass.

The freedom of V5 follows from the representation of V' P3 as a semi-
direct product. Indeed, since Vi NV = e, V1V = V P3, it follows that
V P3; = V5 x Vi. In this case the defining relations of V P are equivalent to
the conjugating rules of Lemma 2. Therefore, all relations define the action
of the group Vi on the group V. Since there are no other relations, this
means that V; and V5" are free groups. =

As a consequence of this lemma, we obtain the normal form of words in
V Ps. Any element w from V P can be written in the form w = wjws, where
wy is a reduced word over the alphabet {)\icgl, )\écll} and wy is a reduced word
over the alphabet {\f3', \53, A1 (u)*!, Asa(v)F1}, where A31(u), As2(v) are
reduced powers of the generators A3; and A3y respectively.
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3.2. The proof of Theorem 2. Let A7; denote either A;; or Aj; from V F,.

LEMMA 4. For every n > 2 there exists a homomorphism o, : VP, —
V P,—1 which takes the generators Aj;, i =1,...,n—1, to the unit and fizes
the other generators.

Proof. 1t is sufficient to prove that all defining relations go to the defining
relations under . For the defining relations of V' P,,_; this is evident. If the
commutativity relation (see (26)) contains some generator of V,,_; then ¢,
turns it into the trivial relation. Consider the left hand side of (27). We see
that it contains every index two times. Hence, if this part includes some
generator of V,,_; (i.e., one of the indices is n) then some other generator
involves the index n. Therefore, there are two generators of V,,_1 on the left
hand side of the relation. Since the right hand side contains all generators
from the left hand side, ¢, turns this relation into the trivial relation. =

LEMMA 5. The following formulas are satisfied in the group V P,,:

(1) )‘/\l = Mg, max{i,j} <1max{k I}, e = =£1,

(i) A A AL N = Akjlxzkxkj yi<j<korj<i<k
— )\_ A
(iii) )\klj = Ak AkiAy Aij s A = A Mk, 0 < J <k orj<i<k;
_ A
(iv) N = Adjsdg A A7, A = A AilejkAijij, i<j<k

07" j <t <k,
where, as usual, different letters stand for different indices.

Proof. (i) immediately follows from the first relation of Theorem 1.
Consider relation (27) from Theorem 1:
Aki(AkjAig) = (AijAkj) Ak
Note that the indices of the generators are connected by one of the inequal-
ities:
(a) k<j<i, (b)ji<k<i, (c)i<j<ek,
(d) j<i<k, (e) k<i<y, (f)i<k<j.
In cases (a) and (b), from (27) we obtain
Akj Akj
Ao = A Aid i
which is the first formula of (ii).
In cases (c) and (d) we obtain
Aij —Xij
Meiw = MejAkidgg s
which is the first formula of (iii).
In cases (e) and (f),
Aki ki
A= Mg A A
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Using (ii), we obtain
Aki 1y A
Nt = Mg Mg Njigg Ay

which is the first formula of (iv).
The formulas for conjugations by )\i_jl can be established similarly. =

Assume that the theorem is proven for the group V F,,_;. Hence, any
element w € V P,_1 can be written in the form

*
W= wWiwy ...Wp—2, U}Z'EV;,

where each w; is a reduced word over the alphabet consisting of the gen-
erators )\El, 1 < k < i—1, and reduced powers of the generators A,
1 <k <i—1, and their inverses. Let us define reduced powers of generators
in the group V,* ;. We say that the element \,;(w) = A, is the reduced
power of the generator A, if w is the empty word or a word written in the
normal form and beginning with a reduced power of some generator A\ or
its inverse.

The statement about decomposition as the semi-direct product VP, =
V. x VP,_1 is quite evident. It remains to find generators of V,; and prove
its freedom.

LEMMA 6. The group V,'_; is free. It is generated by Aipn, A2n, ..., An—1n
and all reduced powers of the generators A1, An2,. .., Ann—1.

Proof. The proof is similar to that of Lemma 3. From Lemma 5 it follows
that the indicated elements generate V,* ;. Further, since the set of defining
relations of V P, is equivalent to the set of conjugating formulas defining the
action of V P,_1 on V*_;, only trivial relations are satisfied in V) ;. =

Theorem 2 follows from these results.
As a consequence, we obtain the normal form of words in V B,,.

COROLLARY 2. FEwery element of VB, can be uniquely written in the
form
W= W...WpotA, AE A, wiEVi*,

where w; s a reduced word in the generators, reduced powers of the generators
and their inverses.

The homomorphism defined above of the virtual braid group onto the
welded braid group agrees with the decomposition from Theorem 2 and with
the decomposition of C,, ~ W B,, described in the first section.

COROLLARY 3. The homomorphism oyvw : VB, — WB, agrees with
the decompositions of these groups, i.e., it maps V P, onto Cb, ~ W P,, and
the factors V;* onto the factors D;, i =1,...,n — 1.
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4. The universal braid group. Let us define the universal braid group
UB,, as the group with generators o1,...,0,_1, C1,...,Cnh_1, defining rela-
tions (1)—(2), the relations

cicj = cjci, i —j| > 2,
and the mixed relations
cioj =04, i —j| > 2.
Recall (see [6]) that Artin’s group of the type I is the group A; with
generators a;, i € I, and defining relations
a;a;a;...= aja;aj..., 4,75 ¢€1,

where the words on the left and right hand sides consist of m;; alternating
letters a; and a;.

ProposITION 1. (i) UB,, has the braid group B, as a subgroup.
(ii) There exist surjective homomorphisms
vus :UB, — SG,, wyv:UB,—VB,, «wuyp:UB,— Bj.

(iii) UB, is Artin’s group.

Proof. (i) Evidently, there exists a homomorphism B,, — UB,. On the
other hand, setting ¥ (o;) = o4, ¥(c;) = e, i = 1,...,n — 1, we obtain
a retraction ¢ of UB,, onto B,. Therefore, the subgroup (oi,...,0,-1) of
U B,, is isomorphic to the braid group B,,.

(ii) Define the map ¢ygs as follows:

vus(oi) =04,  @us(c)=m, i=1,....,n—1.
Comparing the defining relations of UB,, and SG,,, we see that this map is
a homomorphism. Analogously, we can show that the map
0 = 0iy, G = 05,
extends to a homomorphism ¢y, and the map
g; — 0y, C; — €,

extends to a homomorphism ¢yp.
(iii) immediately follows from the defining relations of U B,, and the def-
inition of Artin’s group. =

It should be noted that none of the groups SG,, VB,, WB, (in the
natural presentations) is Artin’s group.

The following questions naturally arise in the context of the results ob-
tained above.
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PROBLEMS. (i) Solve the word and conjugacy problems in U B,,, n > 2.
(i) Is it possible to give some geometric interpretation for elements of

U B,, similar to the geometric interpretation for elements of the braid
groups By, SGy, VB,, UB,?
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