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The equation [B, (A− 1)(A,B)] = 0
and virtual knots and links

by

Stephen Budden and Roger Fenn (Brighton)

Abstract. Let A, B be invertible, non-commuting elements of a ring R. Suppose
that A − 1 is also invertible and that the equation [B, (A − 1)(A,B)] = 0 called the
fundamental equation is satisfied. Then this defines a representation of the algebra F =
{A,B | [B, (A − 1)(A,B)] = 0}. An invariant R-module can then be defined for any
diagram of a (virtual) knot or link. This halves the number of previously known relations
and allows us to give a complete solution in the case when R is the quaternions.

1. Introduction. In this paper (Section 2), we show that the conditions
given in [BF] for a 2× 2 matrix to be a linear switch can be reduced to one
equation. This leads to the algebra F with two generators A,B and one
relation given by

A−1B−1AB −BA−1B−1A−B−1AB + A = 0.

An alternative relation is

BA−1B−1AB −B2A−1B−1A = AB −BA.
All possible representations of this algebra in the quaternions are given.
This is a considerable advance on earlier methods of finding quaternionic
representations by computer search.

This paper is organised as follows. In the next section we describe the
algebraic condition and how it can be simplified. In Section 3 the application
to virtual knots and links is briefly reviewed. In Section 4 the quaternion case
is completely described in the sense that exact conditions are given for a pair
of quaternions, A,B, to satisfy the fundamental equation. In Section 5 the
problem of classifying pairs of quaternions A,B which satisfy the fundamen-
tal equation and give rise to the same invariants is considered. A sufficient
condition is given in terms of the geometry of the pair of quaternions. In
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Section 5 a nod is given to future work on virtual strings, also known as flat
virtuals, with an indication as to why the Weyl algebra is needed.

In a further paper by the second named author this work is extended to
generalized quaternions, in particular 2× 2 matrices [F2].

We would like to thank Hugh Morton and Daan Krammer for helpful
conversations.

2. The algebraic construction. We consider a non-commutative, as-
sociative ring R. The two commutators, [X,Y ] and (X,Y ), are defined for
suitable X,Y in R by

[X,Y ] = XY − Y X, (X,Y ) = X−1Y −1XY.

Let A,B be invertible, non-commuting elements of a ring R. Suppose that
A− 1 is also invertible. Assume that the equation

[B, (A− 1)(A,B)] = 0,

called the fundamental equation, is satisfied. This can be rewritten as

Θ = A−1B−1AB −BA−1B−1A−B−1AB + A = 0.

The universal object satisfying these conditions is the algebra F . Define
C,D by

C = A−1B−1A−A−1B−1A2 = A−1B−1A(1− A), D = 1−A−1B−1AB.

Lemma 2.1. With the above conditions and notations the following equa-
tions are satisfied :

1. A = A2 +BAC, 2. [B,A] = BAD,

3. [C,D] = CDA, 4. D = D2 + CDB,

5. [A,C] = DAC, 6. [D,B] = ADB,

7. [C,B] = ADA−DAD.

.

Moreover C, D − 1 are invertible.

Proof. Equations 1 and 2 are just rewritings of the defining equations,
and 5 is an easy consequence. The left hand side minus the right hand side
of equation 4 is A−1B−1AΘB. The same difference for equation 6 is ΘB
and for equation 7 is Θ(A − 1). The fundamental equation can be written
as

1−BA−1B−1A = 1−A−1B−1AB+B−1AB−A = (1−A)(1−A−1B−1AB).

Since A, B, A− 1 are invertible this can be written as

A−1B−1A(1−BA−1B−1A)(1− A)

= A−1B−1A(1− A)(1− A−1B−1AB)(1− A).
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Equation 3 can be written as

DC = CD(1− A),

which is the above. Clearly C,D − 1 are invertible.

Define the 2× 2 matrix S by

S =
(
A B
C D

)

and the 3×3 matrices

S × id =



A B 0
C D 0
0 0 1


, id×S =




1 0 0
0 A B
0 C D


.

Lemma 2.2. The matrix S is invertible and

(S × id)(id×S)(S × id) = (id×S)(S × id)(id×S).

Proof. In order for the matrix S to be invertible it is sufficient that
∆ = C−1D−A−1B is a unit (see [BF]). A calculation shows that (1−A)∆
is A−1B(A−1) which is a unit. The above equation (called the Yang–Baxter
equation in [BF]) follows from the seven equations of Lemma 1.1.

These conditions on S mean that S is a linear switch or just switch for
short, in the sense of [BF].

3. Applications to virtual knots and links. In this section we con-
sider virtual links. For more details see [K, FJK]. A diagram of a classical
knot or link can be described by the Gauss code. However not all Gauss codes
can be realised as classical diagrams of knots or links. Their realization may
be dependent on the introduction of virtual crossings. These are crossing
which are neither above or below in space but just indicate that the journey
of the arc intersects the journey of another arc. Virtual links are represented
by diagrams with ordinary crossings as for classical knots and links together
with these virtual crossings. In addition to their application as a geometric
realization of the combinatorics of a Gauss code, virtual links have physical,
topological and homological applications. In particular, virtual links may
be taken to represent a particle in space and time which dissappears and
reappears. A virtual link may be represented, up to stabilisation, by a link
diagram on a surface. Finally, an element of the second homology of a rack
space can be represented by a labelled virtual link (see [FJK]). Since the
rack spaces form classifying spaces for classical links, the study of virtual
links may give information about classical knots and links.

A diagram for a virtual link is a 4-regular plane graph with extra struc-
ture at its nodes representing the three types of crossings in the link. A
classical crossing of either sign is represented in the diagram in the usual
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way. A virtual crossing is represented by two crossing arcs with a small
circle placed around the crossing point. The graph also lies implicitly on a
two-dimensional sphere S2. Semi-arcs go from one classical crossing of the
graph to another ignoring virtual crossings. This is distinct from a classical
link diagram where the arcs go from one undercrossing to another.

Two such diagrams are equivalent if there is a sequence of moves of the
types indicated in the figures below taking one diagram to the other. They
are the generalised Reidemeister moves and are local in character.

We show the classical Reidemeister moves as part (A) of Figure 1. These
classical moves are part of virtual equivalence where no changes are made to
the virtual crossings. Taken by themselves, the virtual crossings behave as di-
agrammatic permutations. Specifically, we have the flat Reidemeister moves
(B) for virtual crossings as shown in Figure 1. In Figure 1 we also illustrate

A B

C

Fig. 1. Generalized Reidemeister moves for virtual knots

a basic move (C) that interrelates real and virtual crossings. In this move
an arc going through a consecutive sequence of two virtual crossings can
be moved across a single real crossing. In fact, it is a consequence of moves
(B) and (C) for virtual crossings that an arc going through any consecutive
sequence of virtual crossings can be moved anywhere in the diagram keeping
the endpoints fixed and writing the places where the moved arc now crosses
the diagram as new virtual crossings. This is shown schematically in Fig-
ure 2. We call the move in Figure 2 the detour , and note that the detour move
is equivalent to having all the moves of type (B) and (C) of Figure 1. This
extended move set (Reidemeister moves plus the detour move or the equiva-
lent moves (B) and (C)) constitutes the move set for virtual knots and links.
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Fig. 2. The detour move

Given a switch S with entries in R, we define a labelling or colouring, L,
of the semi-arcs of a virtual link diagram, D, by elements of R in such a way
that after a Reidemeister move converting D into D′ there is a uniquely
defined labelling L′ of D′ which is unchanged outside of the disturbance
caused by the Reidemeister move. It follows that if D1 and D2 are diagrams
representing the same virtual link and D1 → · · · → D2 is a sequence of
Reidemeister moves transforming D1 into D2, then any labelling L1 of D1

is transferred via the sequence of Reidemeister moves to a labelling L2 of
D2. In particular the set of labellings of D1 is in bijective correspondence
with the set of labellings of D2, albeit not by a uniquely defined bijection.

Let the edges of a positive real crossing in a diagram be arranged diago-
nally and called geographically NW, SW, NE and SE. Assume that initially
the crossing is oriented and the edges oriented towards the crossing from left
to right, i.e. west to east. The input edges, oriented towards the crossing,
are in the west and the edges oriented away from the crossing, the output
edges, are in the east. Let R be a labelling set and let a and b be labellings
from R of the input edges with a labelling SW and b labelling NW. For a
positive crossing, a will be the label of the undercrossing input and b the
label of the overcrossing input. Suppose now that S(a, b)T = (c, d)T . Then
we label the undercrossing output NE by d and we label the overcrossing
output SE by c.

For a negative crossing the direction of labelling is reversed. So a labels
SE, b labels NE, c labels SW and d labels NW.

Finally, for a virtual crossing the labellings carry across the strings.
Figure 3 shows the labelling for the three kind of crossings.

b

a

d

c

d

c

b

a

b

a

a

b

Fig. 3. Using the switch S to label the semi-arcs

c = Aa+ Bb d = Ca+Db

We shall see that a labelling defines a presentation of an R-module.
Assume that the diagram contains no floating unknotted and unlinked com-
ponents and has n classical crossings. Label the semi-arcs x1, . . . , x2n in



24 S. Budden and R. Fenn

some order. There will be 2n relations of the form xk = Axi + Bxj or
xk = Cxi +Dxj . This defines a presentation of an R-module. The determi-
nant of the presentation matrix when available gives a useful invariant. For
full details see [BF].

For example let

S =
(

1 + i −tj
t−1j 1 + i

)
,

where i, j have their usual meanings as quaternions and t is a central vari-
able. Consider the presentation matrix A defined by the virtual trefoil illus-
trated below.

a b

c

There are 4 generators for this diagram which can be reduced to two by the
usual methods. Then the presentation matrix becomes

A =
(

−t2 + 2i −1 + t(−j + k) + t−1(j + k)
−1 + t(−j − k) + t−1(j − k) −t−1 + 2i

)

and the Study determinant (see [As]) is 1 + 2t2 + t4 up to multiplication by
a unit.

This determinant could be zero for some knots, in which case we can take
the gcd of the codimension 1 determinants. This happens for the Kishino
knot illustrated below.

K3

Then the gcd is 1 + (5/2)t2 + t4.

4. The quaternion case. In this section we look for quaternionic so-
lutions to the fundamental equation. We use the following notation and
convention for a quaternion: if A = α+ xi+ yj + zk then a = xi+ yj + zk
so that

A = α+ a.

Quaternion multiplication is

AB = αβ − a · b + βa + αb + a× b,

where a ·b and a×b have their usual meanings as scalar and vector product
for vectors in R3. Length and quaternionic conjugation are notated by

|A|2 = α2 + |a|2 and A = α− a.
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The inverse is A−1 = |A|−2A. So, conjugation by multiplication is B−1AB =
|B|−2BAB, where

BAB = α(β2 + |b|2) + (β2 − |b|2)a + 2(a · b)b + 2β(a× b).

The two commutators are
[A,B] = AB −BA = 2a× b,

(A,B) = A−1B−1AB = |A|−2|B|−2ABAB,

where
ABAB = α2β2 + β2|a|2 + α2|b|2 − |a|2|b|2 + 2(a · b)2

− 2(β(a ·b) + α|b|2)a + 2(α(a ·b) +β|a|2)b + 2(αβ−a ·b)a×b.

From equation 2 of Lemma 2.1 we have

1− A = BDB−1D−1.

So A lies on the 3-sphere |A − 1| = 1. The invertibility and non-commuta-
tivity condition excludes the poles 0 and 2.

The fundamental equation is

A−1B−1AB −BA−1B−1A = B−1AB − A.
In terms of quaternions this is

ABAB −BABA = |A|2BAB − |A|2|B|2A.
By the formulæ above the left hand side is

−4α|b|2a + 4α(a · b)b− 4(a · b)a× b,

whereas the right hand side is

−2(α2 + |a|2)|b|2a + 2(α2 + |a|2)(a · b)b + 2β(α2 + |a|2)a× b.

Equating coefficients of a, b, a× b gives the three equations

2α = α2 + |a|2,
2α(a · b) = (α2 + |a|2)(a · b),

−2(a · b) = β(α2 + |a|2).

The first equation follows because b 6= 0 and is a consequence of the fact
that A lies on the sphere of centre 1 and radius 1. The second equation
is a consequence of the first. Equations one and three imply that A · B =
αβ + a · b = 0.

We conclude that a ·b = −αβ and α2−2α+ |a|2 = 0. In particular A,B
are perpendicular. Summing up we have

Theorem 4.3. Let A = α+ a and B = β + b be non-real , non-commu-
ting quaternions. Then A,B are solutions of the fundamental equation if
and only if

α2 − 2α+ |a|2 = 0, A ·B = 0,
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and B is not a multiple of A− 2. The solutions can be given generically by
six free real parameters x, y provided x, y are not parallel.

Proof. The first condition follows because A lies on the sphere of centre 1
and radius 1. The second condition follows because B is perpendicular to A.
The only non-real quaternion to commute with A which is perpendicular to
A is a multiple of A− 2.

Inversion in the unit three-sphere turns the 3-sphere |A−1| = 1 into the
three-plane with real part 1/2. Let 1/2+y = A−1 be arbitrary on this plane.
Let B−1 = xi+ x. Then x and y define 6 real parameters with ξ = −2x ·y.
The condition that B is not a multiple of A − 2 reduces to x, y not being
parallel.

5. Quaternions defining the same invariants. Let S denote the set
of quaternion pairs A,B ∈ H satisfying the conditions of the switch algebra.
Recall that A lies on the 3-sphere |A−1| = 1 but is not one of the poles 0, 2
and that B is perpendicular to A and does not commute with A. So A lies
in a space homeomorphic to S2×R. For fixed A, B lies in the 3-dimensional
vector space perpendicular to A but avoiding the 1-dimensional vector space
through A−2. Homotopically S is a circle bundle over the 2-sphere. Elements
of S can also be considered as 2 × 2 switch matrices S as above, since the
second row entries C,D are determined by A,B, and moreover the pair C,D
is in S and determine A,B.

We are interested in elements of S which determine the same knot and
link invariants. Note that if

S =
(
A B
C D

)

is an element of S then so is

S(t) =
(

A tB
t−1C D

)
,

where t is a real variable. The determinantal invariants defined in this way
will all be polynomials (see [BF]). We consider a polynomial p(t) “essen-
tially” the same as p(kt), where k is any non-zero real number. Call two
elements of S equivalent if they give the same polynomials. We now deter-
mine sufficient conditions for two elements of S to be equivalent.

If A, B are in S then so are A, kB for any non-zero real number k. We
say that B is stretched by k. The effect on S(t) is to replace it by S(kt). So
stretching does not change the equivalence class.

Clearly if ψ is any automorphism or antiautomorphism of H then A,B
is equivalent to ψ(A), ψ(B). The obvious example is conjugation X 7→
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A−1XA. This fixes the 2-dimensional linear space, $, spanned by 1 and
A and rotates the 2-dimensional linear space, $⊥, orthogonal to $ through
an angle 2θ, where α = |A| cos θ. Equivalently, R is fixed and the pure
quaternions R3 are rotated about a through 2θ (see [F1, p. 294]).

Given two switches, one can ask if they are obtained from each other
using conjugation and stretching. Since these two operations commute, any
such sequence can be written as just one conjugation and one stretch. Recall
the notation A = α+ a etc.

Theorem 5.4. Two linear switches in S defined by Ai, Bi, i = 1, 2, are
linked by conjugation and stretching precisely when α1 = α2 and |β1|/|b1| =
|β2|/|b2|.

Proof. Conjugation and stretching clearly implies the conditions. Con-
versely, suppose that the conditions are satisfied. Since Ci and Di are func-
tions of Ai and Bi we need only show a stretch and conjugation that takes
A1 to A2 and B1 to B2.

Since |ai|2 = 2αi − α2
i it follows that |a1| = |a2| and |A1| = |A2|. Hence

there is some Q ∈ H such that A2 = Q−1A1Q. Now let B′1 = Q−1B1Q.
Then β′1 = β1 and |b′1| = |b1|. Stretch by |b2|/|b1|. This operation leaves
the A component unchanged and changes B′1 to B′2, where (using a stretch
of −1 if necessary) β′2 = β2 and |b′2| = |b2|. Let A′2 = A2. Then A′2, B

′
2

define a switch S′2.
We have a2 · b′2 = a2 · b2 = −α2β2. That is, b′2 and b2 make the same

angle with a2. So there is a rotation using a2 as an axis, which takes b′2 to
b2. We have shown a sequence of moves which take (A1, B1) to (A2, B2),
and the proof is complete.

The two conditions have a nice geometric interpretation. If S is a switch
let %(S) = α and let θ(S) be the angle between a and b. So cos θ =
−αβ/|a||b|. These are the polar coordinates of S. Note that 0 < % < 2
and θ is only defined in the range 0 ≤ θ ≤ π. The above theorem can now
be restated as

Theorem 5.5. Two linear switches in S are linked by conjugation and
stretching precisely when their polar coordinates are equal. A representative
switch with polar coordinates % and θ is

A = %+
√

2%− %2 i, B =
√

2%− %2 − %i+ % tan θ j.

It follows, using the switch given in the above theorem, that we can
define a polynomial invariant for each virtual knot or link with coefficients
which are functions of % and θ. However we have not calculated examples of
this invariant.
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Take A = (1/2 + x)−1 and B = (−2x · y + y)−1. The first condition
becomes |x1| = |x2|. The second condition states that if φi is the angle
between xi and yi then φ1 = φ2.

6. Duality and Hermitian conjugation. The equations of Lem-
ma 2.1 are invariant under the transformation

S =
(
A B
C D

)
7→ S† =

(
D C
B A

)
.

So if (A,B) ∈ S then so is (A,B)† = (D,C) ∈ S.

Lemma 6.6. The transformation ()† is an involution on S. If the under-
lying ring has no zero divisors then the involution is without fixed points.

Proof. Clearly S†† = S. Suppose D = 1 − A−1B−1AB = A. Then
C = A−1B−1A(1−A) = A−1B−2AB. If C = B then B2 = 1, but in a ring
without zero divisors this implies that B = ±1 and so B lies in the centre.

Another involution defined in the quaternion case is

S =
(
A B
C D

)
7→ S∗ =

(
A C
B D

)
.

7. Virtual strings or flat virtuals. Virtual strings (called flat virtu-
als by Kauffman) have been considered by Kauffman and Turaev. According
to Turaev a virtual string is a chord diagram with oriented chords. Equiv-
alently, a flat virtual knot is represented by a virtual knot diagram in the
usual way but with the over and under points of the classical crossings not
distinguished.

This implies that the operator S satisfies S2 = 1 so on the braid level
we have a representation of the symmetric group. It is not difficult to show
that this implies the relation

B = BA−1 −A−1B.

The Weyl algebra has two generators x, y and one relation xy − yx = 1. So
in this case the switch algebra is a quotient of the Weyl algebra with x = B
and y = B−1A−1. It is in fact equal to the Weyl algebra as we shall see in
the next lemma. This is important as the Weyl algebra has no non-trivial
quotients (see [C, p. 363]).

Lemma 7.7. Suppose A,B are invertible elements of a ring satisfying
the equation

B = BA−1 −A−1B.

Then A,B satisfy the fundamental equation.
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Proof. We have

B−1AB − A−1B−1AB = −1

as can be seen by right multiplying by B−1AB and left multiplying by B−1.
If φ = (A− 1)A−1B−1AB this implies φ = −1. But the requirement of the
fundamental equation is that φ commutes with B.

We shall explore the implications of this in a future paper.
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