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Abstract. Rotors were introduced as a generalization of mutation by Anstee, Przy-
tycki and Rolfsen in 1987. In this paper we show that the Tristram—Levine signature
is preserved by orientation-preserving rotations. Moreover, we show that any link in-
variant obtained from the characteristic polynomial of the Goeritz matrix, including the
Murasugi—Trotter signature, is not changed by rotations. In 2001, P. Traczyk showed that
the Conway polynomials of any pair of orientation-preserving rotants coincide. We show
that there is a pair of orientation-reversing rotants with different Conway polynomials.

1. Introduction. Rotors were introduced in graph theory by W. Tutte
[2], [17] and [18]. The concept was adapted to knot theory in [1] as a gen-
eralization of Conway’s mutation. For the orientation of the boundary of an
oriented rotor, we have two basic possibilities:

(a) Inputs and outputs alternate as in Fig. 2.2(a). Such a rotor is said
to be orientation-preserving.

(b) We have the pattern in-in, out-out as in Fig. 2.2(b). Such a rotor is
said to be orientation-reversing (1).

In Section 3 (resp. 4), we show, in particular, that Murasugi’s unoriented
version of the classical signature [4, 10, 11] (Theorem 3.1) (resp. Tristram—
Levine signature) is preserved by any rotations (resp. any orientation-pres-
erving rotations).

It was shown in [1] that rotations of order three and four preserve the
Homflypt polynomial, and in particular, the Conway polynomial of links.
In 2001, P. Traczyk [14] showed that the Conway polynomials of a pair of
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any orientation-preserving rotants coincide, solving the Jin—Rolfsen Conjec-
ture [6] in this case. But it was not known if orientation-reversing rotations
have the same property for n > 6. In the last section, we present an example
of orientation-reversing rotants which do not share the same Conway polyno-
mial. This disproves the Jin—Rolfsen Conjecture in the orientation-reversing
case [6, 12].

In general, it is not true that a rotation preserves the first homology of the
double branched cover, M g), of S3 branched along L. Necessary conditions
for preserving the homology are given in [3, 13|. Figure 1.1 taken from [3]

shows rotants with different Hl(Méi); Z) and Hl(Mﬁ); Zs). For the link L,
in Fig. 1.1(a), Hy(M\");Z) = Z15®Zs and Hy(M{"); Z3) = Zs © Zs, and for
its orientation-preserving rotant Ly in Fig. 1.1(b) we obtain H;(M g);Z) =
Zs ® Z150 and Hy (M g);Z5) = Zs. All the homology groups were calculated
using K. Kodama’s program KNOT [7].

Fig. 1.1

However, if we assume that a given pair of oriented rotants can be put
into a “special” periodic disk-band form then the relevant first homology
groups are isomorphic (Corollary 2.3).

2. Definitions and basic properties of rotors. For an oriented link
L with k components K1, ..., K; we form the linking matriz A;, with entries
a;j = lk(K;, K;), where ¢ # j. We put a;; = 0 unless L is a framed link; in
that case we define a;; to be the framing of the ith component K; of L (a;;
measures the difference with respect to the standard framing). The linking
matrix Ay, up to the order of the components of L, is a link invariant. One
half of the sum , ,ai; of the entries of Ay off the diagonal is the total
linking number of L, denoted by lk(L). The trace of A, for a framed link
L is denoted by tr(L). Note that tr(L) does not depend on the orientation
of L, so it is an invariant of the unoriented framed link L.
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Consider a link L in S3 decomposed into two n-tangles (n > 2) S and
R (Fig. 2.1), where by an n-tangle we mean any 1-dimensional manifold
properly embedded into a three-ball and consisting of n-arcs and, possibly,
closed components. Let ¢ be a rotation of B> = B2 x I through 27 /n about
the z axis. Assume that R, called the rotor part of L, satisfies ¢(R) = R.
The other tangle part, S, of L is called the stator. Equivalently, L admits
a projection decomposed into the projections of the rotor and the stator
(these projections will also be denoted by S and R) such that R lies in
a regular n-gon and intersects its boundary in 2n points, and ¢(R) = R
(Fig. 2.1).

The group of symmetries of the regular n-gon is the dihedral group Ds,,.
This group is generated by the 27 /n rotation about the z axis ¢ and the
dihedral flype dy which corresponds to the rotation through 7 about the y
axis. The group Da,, has a presentation Dy, = (¢,dy | ¢" = d% =1, doodg =
¢ 1). Let dyjo = ¢®*dy. Note that dy /2 is the dihedral flype about the axis

obtained from the y axis by rotating it counterclockwise through the angle
27k
Ink

" A rotant of a link Ly is the link Lo (Figs. 1.1 and 2.1) obtained from
L1 by a dihedral flype of its rotor part. Note that Lo is independent of the
choice of a dihedral flype. We say that Ls is obtained from L; by a rotation.

B e
A== : o~ |
SOE e
B L

L1 L2
Fig. 2.1

If a link is equipped with additional structures such as orientation or a
blackboard framing, we also assume that the rotation preserves these struc-
tures. In the oriented case, we allow a global change of the orientation of the
rotor part. More precisely, for an oriented rotor we have two basic choices of
directions of arcs at its boundary points: either inputs and outputs alternate
as in Fig. 2.2(a), we call such a rotor orientation-preserving, or we have the
pattern in-in, out-out, ..., in-in, out-out for an even n as in Fig. 2.2(b); we
call such a rotor orientation-reversing. For an oriented rotor R of an oriented
link L and a dihedral flype d, the orientations of d(R) and the stator parts do
not always match. If they do not match, then by reversing the orientation of
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d(R), we obtain an oriented link Ly = d(R)U.S that we also call the oriented
rotant of L.

(a) (b)
Fig. 2.2

The following theorem describes the basic properties of rotors.

THEOREM 2.1. (i) Any rotation preserves the number of components of
a link.

(ii) If two oriented links are related by a rotation of an oriented rotor,
then their total linking numbers are the same.

(iii) If two oriented framed links are related by a rotation of an oriented
rotor, and the rotor part has no closed components, then their link-
ing matrices are the same.

(iv) If L is an unoriented framed link, then tr(L) is preserved by any
rotation.

Proof. Let R be an unoriented rotor with boundary points ag, bg, a1, b1,
.e.yp—1,bn—1, as in Figure 2.3(a). Consider the connection of ag, that is,
the boundary point connected to ag by an arc in R. Initially, we have two
cases: ag connects to either a,, or b,, for some m.

Fig. 2.3

If n > 2 then ag cannot be connected to a,,. To prove this, assume,
by contradiction, that ag connects to a,,; then ¢™(ag) = a,, connects to
¢"(am) = azm, which must be the same as ag. Therefore, 2m = n. This
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implies that a; connects to a;,/o and b; to by /5. The arc y(z;) of R
connecting z; t0 /2, where the symbol z may stand for a or b, is setwise
preserved by the rotation ¢™/2. Therefore the arc (z;) has one fixed point,
namely the point of intersection with the z axis. For n > 2 we have at least
two arcs of the type 7(a;). Such arcs meet the z axis at different heights,
say h;. On the other hand, ¢(v(a;)) = v(ait+1), so h; = h;y1, which gives
a contradiction. So if a¢ is connected to a,,, then n = 2, and in this case
Theorem 2.1 follows easily.

Suppose ag is connected to b, for some m. Let 7; = v(a;) denote the arc
connecting a; with b;1,, in R. Consider the dihedral flype d,, /24; exchanging
a; with b;{,. The image d,, /24(7i) connects the same points on the bound-
ary as -; does, that is, a; and b;4,, (Fig. 2.3(b)), so two boundary points of R
are connected in R if and only if they are connected in do(R) = d,y,/24(R).
In particular, the link ; = S U R and its rotant Ly = S U dy(R) have the
same number of components.

By observations similar to the above, we have

CrLamM 2.2. (i) For an unoriented rotor R choose any orientation (direc-
tions) of its arcs (e.g. from a;j to bjim). Let I(v;,7i) denote the sum
of the signs of the crossings of v; and v (possibly j = k). Then

I(vjs ) = L(d(jham)2(V5)s diiartm) 2(0k))-

(ii) For an oriented rotor R and a closed component o of R,
I(vi, ) = I(dpj21i(Vi)s dimyayi(@)).

Notice that 0v; = 9(d(j1k1m)/2(Vk)), 0k = O(d(j4k1m)/2(7;)) and Oy, =
8(dm/2+i(%))-

Proof. (i) The dihedral flype d(;j4m)/2 of R sends a; to by, and aj, to
bj+m, thus it sends the arc v;, connecting a; with bj,,, in R (resp. aj with
bitm) to the arc d(j i m)/2(7k) connecting by, with aj in do(R) (resp.
d(j+k+m)/2(7;) connecting b;im, with ay) (Fig. 2.4). Therefore I(v;,vx) =
I(d(j+k+m)/2 (k) d(j+k+m)/2 (’7]'))7 as required.

djskem .-~ [0
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(ii) Since v; in R and d,/o4;(7i) in do(R) connect the same boundary
points a; and b;4,,, we have the conclusion. =

Theorem 2.1(ii)—(iv) follows from Claim 2.2 and the fact that L; and Lo
have the same stator. m

We use Theorem 2.1 to show that under some technical assumptions
explained below, the double branched covers of S? branched along rotant
links have isomorphic first homology groups. The result of Corollary 2.3 is
not used later in the paper; however, we would like to contrast it with the
example in Fig. 1.1 of rotant links with different first homology groups.

In the proof of Corollary 2.3 we use Montesinos’s method [9] of finding
a surgery description of the double branched covers of S? branched along
links, when a surface (possibly unoriented) bounding the link is given. We
closely follow, in this part of the paper, the notation used in [5].

Let Ty be a trivial n-tangle diagram as in Fig. 2.5(a). Let D, U---U D,
be a disjoint union of disks bounded by 7y and a disjoint union of arcs in
0B3 connecting Tp. Let by, ..., b, be mutually disjoint disks (ribbons) in
B3 such that b; ﬂUj D; = 0b; NI} are two disjoint arcs in 9b; (i =1,...,m)
(see Fig. 2.5(b)). We denote by 2(To; {D1,...,Dn},{b1,...,bn}) the tangle
To U |J,;0b;—int(Th N |Y,00;) together with the the surface |JD; U |Jb; and
its decomposition into disks D; and b;. We call such a structure a disk-band
representation of a tangle [5].

Fig. 2.5

If a rotor part has a rotationally symmetric disk-band representation,
then the following corollary of Theorem 2.1 holds.

COROLLARY 2.3. Let L1 and Lo be a pair of unoriented n-rotants such
that the n-rotor Ry of L1 admits a rotational symmetric disk-band represen-
tation with n ribbon disks. Then Hl(Mg),Z) = Hl(Mg);Z), where Mf)
denotes the double branched cover of S® branched along a link L.
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Proof. Let £2(To;{D1,...,Dpn},{br1,...,bkn}) (k =1,2) be the the disk-
band representations of R; and Ry = dy(R1) respectively, related by the di-
hedral flype dy. Let B? be the 3-ball such that B3N Ly, is the tangle ingredient
of 2(To; {D1,...,Dn}, {br1,---,bkn}) (k=1,2) and B = B3 —int N(D; U
-+-UDy,), where N(D;U---UD,) is a regular neighborhood of D;U---UD,,
in B3. There are compact, connected, possibly nonorientable surfaces FJ,
(k =1,2) in S3 such that F,N B3 = Dy U---UD, Uby U---Ubyg, and the
surface I}, N (S% — B?) is connected. We follow [5] in constructing a surgery
description of the double branched cover using the surface Fi. We work with
Fy and Lq; the construction for F5 and Lo is related by a dihedral flype.

Choose a point v; in D;NOB3 (i = 1,...,n). Let G} be a spine of F}, with
the vertex set {v1,...,v,} such that G, N B3 is a spine of Dy U---U D, U
b1 U - - Ubgy,. Let T, C S% — int B be a spanning tree of G, and G /T}, a
spine obtained from (G by contracting 7}, to a point v. We may assume that
N(Gy/Ty) N Fy consists of a disk Dy containing v and mutually disjoint
disks b}, ..., b}, such that b}, N Dyo = 9b); N ODyp are two disjoint arcs in
b, (i=1,...,m), (DroUbj, U---Ub,, YN B§ = (b1 U---Ubg,) N B, and
(D1oUbl U+ Uby,) — B = (Do Ubh U---Ubh, ) — B3. Let ¢ : S3 — 53

be the double branched cover branched along 0Dyg. Then M 83

from $3 by surgery along the framed link p~'(b}, U--- U}, ). Note that

is obtained

@ (B U+ U b)) NB) = @ H((bga U+ -+ U bgn) N BY)
are two n-rotors and
e (B U+ Ub,,) — BY) =@ H((by U+ Ubh,,) — BY).

Since each ¢~ 1(b},) is a component of ¢~ (b),,U- - -Ub,. ), it is not hard to see
that there is a blackboard framed, oriented link ¢ U- - - Ucg,y, such that each
cyi corresponds to b}, and both components of (cx1 U -+ U cgm) N~ H(B§)
are oriented n-rotors. So cg1 U - -+ U coyy is obtained from ci1 U --- U ¢
by two oriented n-rotations. By Theorem 2.1(iii), the linking matrices of
c11 U---Uciy and co1 U - -+ U cgy, coincide. Since the linking matrix of
ck1 U -+ Ucgp is a relation matrix of the first homology group of M fk), we
have the conclusion. m

Corollary 2.3 and the example in Fig. 1.1 allow us to conclude that not
every n-rotor has a symmetric disk-band representation with n bands.

Let Fy, be a Seifert surface of an oriented link L. Denote by v : Hy(Fp;Z)
x Hy(Fp;Z)—Z the Seifert form associated with Fp, (i.e. ¢ (z,y) = lk(z™,y),
where T denotes the curve x pushed slightly off ', into the positive direc-
tion). Choosing an ordered basis for H;(Fr;Z) allows us to describe the form
1) by the corresponding Seifert matrix. Let A; be the Seifert matrix of the
form 1) with respect to some ordered basis of Hy(Fp;Z).
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Let F1, be a spanning surface, possibly nonorientable, of an unoriented
link L. We use the following generalization of Seifert (?) and Goeritz forms
defined by Gordon and Litherland in [4]. For the spanning surface F7, con-
sider a regular neighborhood, N(Fy), of F} in S — L. Then N(Fy) is an
I-bundle over Fp, and the 0I-bundle ﬁL is a double cover of F, (possibly
disconnected) with the projection map p : ﬁL — Fy. The bilinear form
Gr, : Hi(Fp;Z) x H\(Fp; Z) — Z defined by Gp, (z,y) = lk(p~'z,vy), where
x and y are oriented loops in F7, is called the Goeritz form associated to
the surface Fy,. For an ordered basis of Hi(Fp;Z) the Goeritz form Gp, is
represented by a matrix G, , called the Goeritz matriz of FT,.

The form Gp, defined over Z can be extended to a form QAFL over C.
We view G, r;, as the Hermitian form represented in a basis by the Hermitian

matrix G, (i.e. Gp, = é\%L)
For a spanning surface Fr, of Ly = Kj1 U Kpo U ---U Ky, the framing
of Ly, is uniquely determined by Fy, as follows (3): Let K, F.L’“ be a parallel

copy of Kj; that misses F7, . We define the framing Kj; to be lk(Ky;, K, Fr, ).
We put

e(FL,) = Zlk Kii K%)= — te(Ly,).

We recall the definition of the Tristram-Levine signature of an oriented
link.

DEFINITION 2.4 ([8, 15]). Let L be an oriented link in S® and let w be a
complex number with |w| = 1, w # 1. The Tristram—Levine signature of L,
denoted by o, (L), is the signature of the Hermitian matrix (1 — w)A +
(1 —w)AY, where Ay is the Seifert matrix of L.

DEFINITION 2.5 ([4, 10, 11]). Let L be an unoriented link in S®, and
let L be the link obtained from L by a choice of orientation. The Murasugi
signature o (L) of an unoriented link L is defined to be (L) = o(L) +1k(L).

REMARK 2.6. Murasugi showed in [11] that o(L)+1k(L) does not depend
on the choice of orientation of L. So (L) is an invariant of unoriented links.
We shall use later the fact that G(L) = sign(Gp, ) + 2e(Fyr) (see [4]).

3. Unoriented rotation and Murasugi signature. In this section we
prove that the Murasugi signature of unoriented links is preserved by any
rotation. The result follows from a more general statement (see Theorem

(?) Tt is a generalization of the symmetrization of the Seifert form.

(®) The regular neighborhood of Kj; in F is the frame knot associated to Kp,. Its

framing, when compared to the standard framing, is given by lk(Kx;, K ,ﬂL’“ ).
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3.2) that the rotation preserves the characteristic polynomial of the Goeritz
matrix (with the special choices of surfaces). In particular Theorem 3.2 allows
us to obtain the result mentioned first in [12] that was also proven by Traczyk
that the determinant of an unoriented link is preserved by any rotation.

THEOREM 3.1. Let Ly and Lo be a pair of unoriented n-rotants (with no
restrictions on n). Then o(L1) = 7(L2).

The main result of this section is Theorem 3.2 from which Theorem 3.1
follows.

Let L; and Lo be a pair of unoriented rotant links. Consider projections
of the links L; and Ly onto R? with rotor parts R; and R» contained in disks
Dy and Do, respectively. We can deform the stator parts 57 and S of the
diagrams of L and Lo into the position shown in Figure 3.1.

We color the regions on R? bounded by the diagrams of L;, in a checker-
board manner as in Figure 3.2. Using the black regions we form the spanning
surface Fr, for £ = 1,2. We choose for a basis of H;(Ff,;Z) the anti-
clockwise oriented boundary curves of the bounded white regions, and we
refer to this basis as the standard basis.

7

Fig. 3.1 Fig. 3.2

We may also assume that the framed links Ly and Lo obtained from F}
and F} respectively form a pair of rotants. By Theorem 2.1, tr(L1) = tr(Ls),
so we have e(F,,) = e(FL,). This fact, Remark 2.6 and the following theorem
imply Theorem 3.1.

With the choices for Fj’s and bases of Hi(F);Z)’s, made above, we can
formulate the main result of this section.

THEOREM 3.2. Let GF, (k = 1,2) be the Goeritz matrices with respect
to the standard basis. Then det(Gp,, — AE) = det(Gr,, — AE).

Proof. (*) Let Xs, and Xz, be the subsets of the standard basis of
H,(Fp,;Z) which live entirely in the stator and rotor part respectively, and

(*) We adjust here Traczyk’s method [14] to the case of unoriented rotors and Goeritz
matrices.
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let X rq, be the complement of X5, UXpg, in the standard basis. Then X4,
is composed of the boundaries of the white regions intersecting the boundary
of the rotor. We can have n such regions or just one. We can, however, always
assume, modifying the rotor part of the diagram if necessary, that X 4, has
n different elements. Consider the submodules Sy, Ry, and My, of Hy(Fp,;Z)
generated by Xs,, X%, and X, . We have the following decomposition into
the direct sum of Z-modules:

Hl(FLk;Z) =8, DML DR

Let v denote the generator of M intersecting the y axis of the dihedral flype
d (Fig. 3.3). There is an action of the cyclic group Z,, = (o | ™ = 1) on R1®
M induced by the 27 /n-rotation about the center of D;. Thus the ordered
set X, = {v,a(v),a?(v),...,a" (v)} can be assumed to be a basis of M.
Let X1, be a set of generators of Ry formed by choosing one representative
from each orbit of the Z,-action on the standard generators of R, (i.e. X3, =
XRr,/Zy,). We construct a bijection 1 between the sets of standard generators
of Hi(Fyp,;Z) and Hy(Fr,;Z). First, define 17|X$1 : Xs, — Xs, to be the
identity map since the stator part is unchanged by rotation. The map 7| X, -
X, — X, is given by n(a?(v)) = o?(d(v)) (i.e. o’(v) and n(a’(v)) have
the same stator parts). Finally, 77|X721 : Xr, — X, is given by n(a/(x)) =
d(a(z)) for z € Xg,. The bijection 7 extends to an isomorphism H; (FJ,,; Z)
— Hy(Fp,;Z), which is also denoted by 1. We use the isomorphism 7 to
identify H;(Fp,;Z) with H;(F',;Z). This identification allows us to drop
the indices in S, M}, and R}, and write S, M and R.

A\

a*(Y «w A D,

P

Fig. 3.3
Consider the forms G1 = Gp;, and G = G, on the same space S @
M @ R. They have the following properties:

Ga(z,y) = Gi(z,y) forall z,y € SO M,
Go(z,y) = Gi(z,y) for all generators =,y € R,
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Gi(z,y) = Gi1(a!(x),al(y)) for all generators z,y € M O R,
Go(z,al(v)) = Gi(x, a0 (v)) for every generator = € R,
Go(al(x),v) = Gi(al(x),v) for every generator z € R,
Ga(x,v) = gg( Hx),a~!(v)) for every generator z € R.
Gp(z,y) =0 forallzeS,yeR (k=1,2).

Let S,M and R be the subspaces of (S & M & R) ® C complexifying
S, M and R, respectively. We have the involution : SOSMé&R — S&EMa&R
corresponding to the conjugation in the factor C of the tensor product. The
image of x € S ® M & R under this involution is denoted by Z. Using the
rotational symmetry of the rotor part we conveniently change the basis of
M and the generating set of R in the following way. Let w; be an nth root
of unity, w; = €>™/", We replace the basis {a/(v) | j = 0,1,...,n — 1}
of M by {v; | vj = 3/, ot a( ), 7 =0,1,...,n — 1}. For R we con-
sider two choices of generatmg sets that are related by the involution ~
as follows. We replace the set {ozj(yp) | yp € X%, 7 =0,1,...,n — 1}
by either {y;, | yjp = Zl 0 Wi oz(yp) yp € X5, =0,1,...,n— 1} or
5ip¥ip= lnolw o (yp) ypeXR,] =0,1,... n—l}

Consider the Hermitian forms gl é Fr, and QQ = g Fr,» induced by G;
and Gs, on the same space S & M ¢ R.

These new generating sets for M @ R satisfy the following conditions:

~

Gr(vj, Vi) =0 for j # m, where v, v,, € M and k =1,2,

gl (Xj,pa Vm) = gz(fj’p, Vm) =0 fOI‘ j 7& m,
where x;, € R1, Xj, € Ra, vy, € M,

~ ~

G1(Xjp, Ymq) = G2(Xjp: Yimq)  for j #m,

where Xjps ¥Ym,q € R, i]'7P7yrn,q € Ry,
(X y],P) g2(X’ yj,p) =0 fOI‘ any X € S7 Yj,p € Rlv yj,p € R27
(y 0> Y, q) g2 (yj,payj,q) for any yip, Yiq € Rla yjm’ yjﬂ € R25
(v, ¥ip) = G2(v;, ) for any v; € M, y;, € R1, ¥, € Ry,
(
(

Q) Q)

—_

Vi, Vi) = QAQ(V]-,V]-) for any v; € M,

—

)y Q) Q)

J
1(x,v5) = Ga(x,vj) for any x € S,v; € M.

For a given wj, 0 < j <n —1, let W; be the subspace of M © R defined
by choosing its ordered basis in the following way. Take v; from M first and
yjp from R in any order. To obtain the ordered basis of M @& R we place
the basis of W; before the basis of Wj 1 for j = 0,1,...,n — 1. Finally, we
add the ordered basis of S. We thus obtain an ordered basis of H;(Fp,;C).
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Notice that we can construct an ordered basis of H;(Ff,;C) by replacing
each y;, with y, .

Let @1 and @2 be the matrices of the forms @1 and @2 respectively in
the ordered bases of S ® M @ R. chosen before. Then

Bio 0 tgo
G\l = h _: )
0 Bin-1 'Sh-1
Sy - S, S
B 0 £So
Gy = e
0 B2,n—l tSn—l
So - Spg IS
In these bases, By (respectively Byj), where j = 0,1,...,n—1, is the matrix

of the restriction of the form G; (and G respectively) to the subspace W;
generated by {v;}U{y;p | yp € X5, } ({vi}U{¥;, | yp € X%, } respectively).
Finally, the restrictions of Q\l and Q\g to the stator part are the same for Q\l
and G, and denoted by S. Notice that BY, = By, S; = (s;10---0), and sy
is the first column of 5.

The matrices My, = Gy — A\F (k = 1,2) satisfy the conditions of Propo-
sition 2.9 of Traczyk [14] for any real number A\. Thus det(M;) = det(M2)
for any real A. So the determinants are equal for any complex A as well. m

4. Oriented rotation and Tristram—Levine signature. In this sec-
tion we extend the method developed by Traczyk in [14] in order to show that
orientation-preserving rotations (see Fig. 2.2(a)) preserve the Conway poly-
nomial. We show that the characteristic polynomial of the Hermitian form
associated with the Seifert form of an appropriately chosen Seifert surface is
invariant under orientation-preserving rotations. In particular we prove the
following result.

THEOREM 4.1. Let L1 and Lo be a pair of orientation-preserving n-
rotants. Then o,(L1) = 0,(L2).

The main result of this section is Theorem 4.2 from which Theorem 4.1
follows.

Let S? be the sphere of a projection of a link L, and Fy, the Seifert
surface of L obtained from the diagram of L by the Seifert algorithm. Let H
be a trivalent graph that consists of the Seifert circles and the cores of the
bands. Let Ry, ..., R, be the components of S? — H which are not bounded
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by Seifert circles. Assign the anti-clockwise orientation to each boundary
curve of the regions R; (i = 1,...,m); then these curves are generators
of Hi(Fp;Z). Whenever we refer to generators of Hy(Fp;Z), we mean this
particular set of standard generators for the Seifert surface F7,.

Let L; and Lo be a pair of orientation-preserving n-rotant diagrams.

We deform the diagrams Ly (k = 1,2) on S? into the position for which
our computation is feasible, as in [14]. Let D be a disk in S? such that
D}, = DyNLy is the rotor part of the diagram Lj, (k = 1,2),and D; = DyNL;,
the stator part (D, = S?—int Dy). The rotors and stators constructed above
are all n-tangles. We deform the stator part D] = D3 to the form shown in
Fig. 4.1. By doing so we obtain an outermost Seifert circle C' in D that is
parallel to ODj. Let D¢ be the region which is bounded by C and 0D;, in D.
We extend the rotational symmetries of the rotor parts D}, (k = 1,2) to the
parts embedded in D, U D¢, i.e., we may assume that Dy U D¢ (k = 1,2)
contain n-rotors.

75/_\ /

%

X7

Fig. 4.1

Let Fp, (k = 1,2) be the Seifert surface for Lj (Fig. 4.2), and let A,
be the corresponding Seifert matrix of Ly, kK =1, 2.

Let £ be a complex number and let X7, = {Ar, +EA]  be the Hermitian

matrix that represents the Hermitian form 0(z,y) = &(x,y) + E(y, x),
xz,y € Hi(Fr,;Z).
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With the choices for the Seifert surfaces F}, and the bases of H;(F}) made
above, we can formulate the main result of this section.

THEOREM 4.2. The characteristic polynomials of the Hermitian matrices
X1, and X1, coincide.

Proof. We consider three submodules Sy, Ry and My of Hy(Fp,;Z),
where Sj, R, and M, are generated by the sets Xg,, Xg,, and X, of
the standard generators of H;(Ff,;Z) which live entirely in the stator part
D, rotor part Dy, and partially in D and Dy (k = 1,2), respectively. We
have the following decomposition of the module H;(Fr,;Z) into the direct
sum of its submodules:

Let v denote the generator of M intersecting the y axis of the dihedral
flype d (Fig. 4.3). There is an action of the cyclic group Z, = (a | " = 1)
on Mj + R; induced by the 27 /n-rotation about the center of D;. The
set Xy, = {v,a(v),a?(v),---,a" (v)} is a generating set of M; (not
necessarily a basis). We also identify o/(v) with the generator of My that
coincides with the a’(v) of M in D¢. The submodule R; is generated
by the set {a?(z) | * € Xg,,j = 0,1,...,n — 1}. Since D, is the image
of D; under the dihedral flype d about the y axis which crosses v, Ry is
generated by {d(a’(z)) |z € Xg,, j=0,1,...,n—1} (Fig. 4.3). In order to
compare v with 1o, we identify the generator o’ () of R; with the generator
d(a?(z)) € R2 (j=0,1,...,n—1).

Fig. 4.3

Using these identifications we can consider both forms ¢; and s on the
same submodules S, M and R (indices are no more needed) and derive the
following relationships between them:

¢2($ay):¢1($ay) for all m7:1/65"—’_'/\/17
¢2(‘T’y) :7/11(%55) for all :C,yER,
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¢2($7aj(v)) = w1<a_j(v>7x>v
Po(a? (v),z) = Y1 (z, a7 (v)) forallzeR (j=0,1,...,n—1),
Yi(z,y) =1(y,z) = 0=1(x,y) = 2(y,z) forallz €S,y e R.

Using these relations, we obtain the corresponding relations between 6,
and 0. Let S, M and R be the complexifications of the subspaces S, M
and R of S ® (M + R) ® C respectively. There is a well defined involution
“:Se(M+R) - S® (M + R) corresponding to the conjugation in the
factor C of the tensor product. We denote by T the image of z € S&(M+R)
under this involution. The following identities follow from those given above:

Os(x,y) = 01(x,y) for all z,y € S® M,
O2(x,y) = 01(y,x) = 01(x,y) for all generators z,y € R,
O2(x,y) = 01(Z,7) for all z,y € R,

) = 61(ad(z),ad (y)) for all generator z,y € M + R,

>
A/—\A/gg\/—\/—\/—\
<

O2(z,07(v)) = 01(aI(v),x)  for every generator = of R,
02(c (z),v) = 01 (ad (z),v) for every generator = of R,
O2(z,v) = 02(a’ (z),a 7 (v))  for every generator = € R,
Orp(z,y) =0 forallz €S, ye R, k=1,2.

In order to define the Hermitian matrices H;, representing 0 (k = 1, 2),
we first choose a basis of H;(Fp,;C) that is formed using the generators
of Hi(Fy,;Z) in the following way. Set again w; = €2™/™ (j = 1,...,n).
We replace the generating set {a/(v) | j = 0,1,...,n — 1} of M by

{vj | v, = 30 whal(v), j = 0,1,...,n — 1}. For R we consider two
choices of generating sets related by the involution ~. We replace {a’(y,) |
yp € Xg,j = 0,1,...,n — 1} by either {y;, | y;p = ?:_Olwéal(yp),

. — — -1 —
Yp € XR, J=0,1,...,n— 1} or {yj,p ’ Yip = Z?:O wjlal(yp)a Yp € Xr,
j=0,1,....,n—1}.
We thus obtain a new generating set for My + Ry. The following rela-
tionships hold:
Ok (vj,vim) =0 for j # m, where v;,v,, €M, k=1,2,
01(Xjp, V) = 02(Xjp, V) =0 for j #m,
where x;, € Ry, Xj, € Ra, v, € M,
01 (X]',pv ym,q) = 02(§j,p7ym,q) for j # m,
where XjpsYm,q € R, fjm,ym’q € Ro,
01(x,yjp) = 02(x,¥;,) =0 forany x € S, y;, € R1,¥;, € Ry,
01(Yjps ¥ia) = 92(?“,,?3',(1) for any y;p, ¥4 € R1,¥;,, ¥4 € Ro,
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01(vj,¥ip) = 02(v;,¥;,) forany v; e M, y;, € R1,¥;, € Ra,
01(vj,vj) = 02(vj,v;)

01(x,v;j) = O2(x,v;)

for any v; € M,
for any x € S,v; € M.

Take the subspace W; of M @ R corresponding to w;, and choose its
ordered basis by taking v; from M first (°) and the rest of a basis of W;
from the generating set y;, of R in any order. To obtain the ordered basis of
M@R we place the basis of W before the basis of W; 1 for j =0,1,...,n—1.
Finally, we add the ordered basis of S. Then we have an ordered basis of
H,(Fr;C). We also obtain an ordered basis of H;(F,;C) by replacing each
Yip withy, .

We now obtain the matrices of the forms 67 and 65 in the ordered basis
of S& (M +R):

B 0 tSo
Hy, = - _: :
' 0 Bin-1 'Shq
SO Sn—l S
Bsg 0 tgo
H; = -
’ 0 Byn-1 'Sp1
So Sn_1 S
In those bases, By, (respectively By;), where j = 0,1,...,n—1, is the matrix

of the restriction of the form 6#; (and 6y respectively) to the subspace W;
generated by {v;}U{y,, | yp € X, } ({v;}U{F;, | 4 € X, } respectively).
Finally, the restriction to the stator part, S, is the same for both 6; and 6s.
Notice that B{k = Bok, S; = (810 ---0), and sy is the first column of S;.
The matrices M, = H /Lk — AE (k = 1,2) satisfy the conditions of Propo-
sition 2.9 of [14] for any real number A (°). Thus det(M;) = det(M>) for any
real A. So the determinants are equal for any complex number X\ as well. =

5. Counterexamples. It was proven in [1] that any pair of oriented 3-
or 4-rotant links share the same Homflypt polynomial (in particular, Con-
way polynomial). In [14] Traczyk showed that a pair of orientation-preserving
n-rotant links share the same Conway polynomial. On the other hand, for

(°) If v; = 0, which can happen if the generating set {v, a(v),a?(v), -+ ,a" " *(v)} is
not a basis of M, we skip this element when building a basis of H; (Fr;C).

(°) We can use Proposition 2.9 even if some vectors w; € W, ; may be 0. In such a
case the block W; ; is orthogonal to the other factors (S and W, ;/, j' # 7).
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orientation-reversing n-rotants (n > 6), the invariance was an open question.
We present an example of a pair of 6-rotant knots with different Conway
polynomials and different Jones polynomials. Therefore, the invariance in
[1] of the Conway polynomial and the Jones polynomial for the orientation-
reversing rotant links is the best possible. We should also stress that the
rotants described in Fig. 5.1 have different Jones and Conway polynomi-
als, but they share the same determinant and the same homology of the
corresponding double branched covers.

L1 L2
Fig. 5.1

Let L; and Ls be the knots (6-rotants) illustrated in Fig. 5.1. Using the
program KNOT [7], we find the following.

The Conway polynomials (with the skein relation 7, — v, =2vy,)
are different:

Vi, (2) = 14327 = 372% + 1720 — 32% — 2210 — 59,12
— 342" — 55216 — 48218 — 10220 — 4222 — %,
Vi, (2) =1+432% —252% — 1162% — 57210 — 174212 — 1572

— 119216 — 102218 — 37220 — 8222 — 24,

The Jones polynomials (with the skein relation ¢ 'V;, —tV,_ = (Vt —
1/v/t)Vy,) are different:

Vi, = t% — 16622 + 13162 — 713t%° 4 2881¢1% — 9193¢1® + 24058+17
— 52926¢'% + 99534¢15 — 161854¢M + 229195¢13 — 283357¢12
+ 304679t — 28047610 4+ 211413t — 112418t + 7697t7 + 77824¢5
— 127092t° + 136195¢* — 114114¢3 + 77214¢> — 41391¢ + 16087
— 2934t~ 1 —1501¢ 241760t 3 —954¢ 44343t 0 —84t 0 +13t7 " —¢ 78,
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Vi, = t2 — 1622 + 131¢2 — 713t%° 4 288119 — 9193¢18 + 24057417
— 52919¢'0 4+ 99503t1° — 161752t + 228932¢13 — 282808¢!2
+ 303730t — 27909810 4 209727t — 110701¢° + 6314¢7 4 78540¢°
— 126958° + 135242t* — 1125783 + 75451t? — 39756¢ + 14823
— 2118t 1 —1933t 72 4+1941¢ 73— 1010t +354¢ > — 85t 6 +13¢ 77—t~ 5.

Their homology groups are the same: Hl(M%I;Z) = Hl(M%Q; 7)
7/3®7/397449. Their determinants coincide as well: Ar, (—1) = Az, (—1) =
—1192347 (here AL (t) = V(2) for z = \/t — 1/V/1).
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