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On tame embeddings of solenoids into 3-space
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Abstract. Solenoids are inverse limits of the circle, and the classical knot theory
is the theory of tame embeddings of the circle into 3-space. We make a general study,
including certain classification results, of tame embeddings of solenoids into 3-space, seen
as the “inverse limits” of tame embeddings of the circle.

Some applications in topology and in dynamics are discussed. In particular, there
are tamely embedded solenoids Σ ⊂ R3 which are strictly achiral. Since solenoids are
non-planar, this contrasts sharply with the known fact that if there is a strictly achiral
embedding Y ⊂ R3 of a compact polyhedron Y , then Y must be planar.

1. Introduction and motivations. The classical knot theory is the
theory of tame embeddings of the circle into 3-space, which has become
a central topic in mathematics. The classical theory of knots has many
generalizations and variations: from the circle to graphs, from the circle
to higher dimensional spheres, from tame embeddings to wild embeddings,
and so on. In the present note, we try to set up a beginning of another
generalization: tame embeddings of solenoids into 3-space. In such a study
topology and dynamics interact well.

Solenoids were first defined in topology by Vietoris in 1927 for the 2-
adic case [V] and by many others later for the general case, and introduced
into dynamics by Smale in 1967 [S]. Solenoids can be presented either in a
rather geometric way (intersections of nested solid tori, see Definition 2.2)
or in a more algebraic way (inverse limits of self-coverings of the circle, see
Definition 2.1), or in a dynamical way (mapping tori over the Cantor set,
see [Mc]).

The precise definition of tame embedding of solenoids into the 3-space
R3 will be given in §2, but the intuition is quite naive. Recall we iden-
tify S1 with the centerline of the solid torus S1 × D2, and say an embed-
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ding S1 ⊂ R3 is tame if the embedding can be extended to an embedding
S1×D2 ⊂ R3. Similarly we consider a solenoid Σ as the nested intersection
of solid tori (the defining sequence of Σ), and say an embedding Σ ⊂ R3 is
tame if the embedding can be extended to an embedding of those solid tori
into R3.

Solenoids themselves are usually considered to be “wild” sets. What mo-
tivated us originally to study the tame embeddings of solenoids was the
question of finding a non-planar set which admits a strictly achiral embed-
ding into 3-space.

An embedding A ⊂ R3 is called strictly achiral if A stays in the fixed
point set of an orientation reversing homeomorphism r : R3 → R3. Obviously
any planar set has a strictly achiral embedding. Indeed there is a simple
relation between achirality and planarity for compact polyhedra: If there
is a strictly achiral embedding Y ⊂ R3 of a compact polyhedron Y , then
Y must be planar [JW]. It is natural to ask whether this is still true for
continua (i.e. compact, connected metric spaces).

Solenoids are promising candidates for the question, because on the one
hand they are continua realized as inverse limits of planar sets, while on
the other hand they are non-planar themselves (see [Bin], and [JWZ] for a
quick proof). In order to design a strictly achiral embedding Σ ⊂ R3 for a
solenoid Σ, we need careful and deep discussions about tame embeddings of
solenoids.

Another justification is that when a solenoid Σf ⊂ S3 is realized as
a hyperbolic (expanding) attractor of a diffeomorphism f on S3 (called a
Smale solenoid), the embedding Σf ⊂ S3 is automatically tame. Our study
also gives some application in this aspect.

The contents of the paper are as follows.
In §2, we give the precise definitions of tame solenoids and related no-

tions. We present a lemma about convergence of homeomorphisms which will
be repeatedly used in the paper. For comparison we also construct examples
of non-tame embeddings of solenoids.

In §3, we classify the tame solenoids in the 3-sphere. The classification
is based on an important notion, the “maximal” defining sequences of tame
solenoids. We also give applications including (1) the knotting, linking and
invariants of tame solenoids; (2) there are uncountably many unknotted
2-adic tame solenoids; (3) up to conjugacy by homeomorphisms of S3, the
number of Smale solenoids in S3 with winding number w is finite if |w| ≤ 3,
and is infinite otherwise (see [RW] for some discussion in higher dimensions).

In §4, we give criteria of when a tame solenoid in the 3-sphere is achiral
or strictly achiral in terms of its defining sequence, and construct strictly
achiral tame solenoids to fulfil our original motivation. Indeed we give a
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simple criterion for when a solenoid has a strictly achiral embedding into
the 3-sphere.

All undefined terminology is standard. For 3-manifolds, see [Ja]; for knot
theory see [A]; and for braid theory, see [Bir].

2. Tame embeddings of solenoids, preliminaries

2.1. Definitions of solenoids and their tame embeddings. Let
N = D2 × S1 be the solid torus, where D2 is the unit disk and S1 is the
unit circle. Then N admits a standard metric. A meridian disk of N is a D2

slice of N . A framing of N is a circle on ∂N which meets each meridian disk
of N in exactly one point.

Definition 2.1. (1) For a sequence of maps {φn : Xn → Xn−1}n≥1

between continua, the inverse limit is defined to be the subspace

Σ = {(x0, x1, . . . , xn, . . . ) | xn ∈ Xn, xn−1 = φn(xn)}
of the product space

∏∞
n=0Xn.

(2) The inverse limit of a sequence {φn : S1 → S1}n≥1 of covering maps,
where φn is of degree wn 6= 0, is called a solenoid of type $ = (w1, w2, . . . ).

Definition 2.2. (1) Call an embedding e : N → intN , or just its image
e(N), a thick braid of winding number w if e preserves the D2-fibration and
descends to a covering map S1 → S1 given by eit 7→ eiwt, that is, p◦e = cw◦p,
where p : N → S1 denotes the projection, and cw : S1 → S1 is the covering
of degree w. Note that the composition of finitely many thick braids is also
a thick braid.

(2) Let {en : N → N}n≥1 be an infinite sequence of thick braids of
winding numbers wn 6= 0. Let ψn = en ◦ · · · ◦ e1 and Nn = ψn(N). Then we
have an infinite sequence N = N0 ⊃ N1 ⊃ N2 ⊃ · · · of thick braids. If the
diameter of the meridian disk of Nn tends to zero uniformly as n→∞ then
we call Σ =

⋂
n≥0 ψn(N) =

⋂
n>0Nn a solenoid of type $ = (w1, w2, . . . ).

For a prime number p, we use τp($) to denote the sum of the exponents
of p in wn, n > 1 (which could be 0 or ∞).

There is quite a rich theory of solenoids developed in the 1960-1990’s.
We just list some basic facts (see [Bin], [Mc], [R] and references therein):

Theorem 2.3.

(1) The above two definitions of solenoids are equivalent; each solenoid
is determined by its type $.

(2) Two solenoids Σ and Σ′ of types $ and $′ respectively are homeo-
morphic if and only if τp($) = τp($′) for almost all primes p, except
possibly for finitely many p with τp($) 6=∞ 6= τp($′). In particular
Σ is the circle if and only if all except finitely many wn are ±1.
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(3) Each solenoid Σ is connected, compact and has topological dimension
one. Moreover, if Σ is not the circle, then Σ has uncountably many
path components.

We assume below that all winding numbers involved in the definition
of solenoid are greater than 1, unless otherwise specified. In particular, a
solenoid is not the circle.

Definition 2.4. (1) In Definition 2.2, call {Nn}n≥0 a defining sequence
of the solenoid Σ, and call Σ ⊂ N a standard embedding of Σ in the solid
torus N .

(2) Σ ⊂ N is called a tame embedding of Σ in the solid torus N if there
is a homeomorphism f : (N,Σ) → (N,Σ′) for some standard embedding
Σ′ ⊂ N ; then call {f−1(N ′n)}n≥0 a defining sequence of Σ, where {N ′n}n>0

is a defining sequence of Σ′.
(3) An embedding Σ ⊂ S3 of a solenoid is called tame if it can be

factored as Σ ⊂ N ⊂ S3 in which Σ ⊂ N is tame; then each defining
sequence {Nn}n≥0 of Σ ⊂ N is also considered as a defining sequence of
Σ ⊂ S3, and we have S3 ⊃ N = N0 ⊃ N1 ⊃ N2 ⊃ · · · ⊃ Σ.

Remark 2.5. From Definition 2.4, for each defining sequence {Nn}n≥0

of a tame solenoid in S3, we always assume that the D2-slices of all Ni are
coherent.

Definition 2.6. Call two tame solenoids Σ,Σ′ ⊂ S3 equivalent if there
is an orientation preserving homeomorphism f : S3 → S3 such that f(Σ)
= Σ′.

Definition 2.7. Say two defining sequences {Nn}n≥0 and {N ′n}n≥0 of
tame solenoids in S3 are strongly equivalent if there is an orientation pre-
serving homeomorphism f0 : (S3, N0) → (S3, N ′0) and orientation pre-
serving homeomorphisms fn : (Nn−1, Nn) → (N ′n−1, N

′
n) with fn|∂Nn−1 =

fn−1|∂Nn−1 for n ≥ 1. Say {Nn}n≥0 and {N ′n}n≥0 are equivalent if {Nk+n}n≥0

and {N ′k′+n}n≥0 are strongly equivalent for some non-negative integers k
and k′.

Remark 2.8. (1) A defining sequence {Nn}n≥0 of a tame solenoidΣ⊂S3

carries information on the braiding of Nn in Nn−1 and the knotting of Nn

in S3. The winding numbers wn, the simplest invariant of the braiding of
Nn in Nn−1, give rise to the type of the abstract solenoid Σ.

(2) Suppose Σ ⊂ S3 is a tame embedding given by a defining sequence
{Nn}n≥0; then any infinite subsequence of {Nn}n≥0 is a defining sequence
of the same embedding.

(3) Definitions 2.4–2.7 also apply to other 3-manifolds in the obvious
way.
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In this paper we view each braid β as drawn in D2 × [0, 1] with ends
staying in D2 × {0, 1}. The closure β ⊂ D2 × S1 is obtained by identifying
D2 × 0 and D2 × 1 via the identity. Conversely, for each closed braid β ⊂
D2×S1, cutting D2×S1 open along a D2-slice yields a braid β ⊂ D2× [0, 1]
up to conjugacy. Therefore, we have a 1-1 correspondence between the set
of closed braids of winding number n and the set of conjugacy classes of
braids on n strands.

Note that a tubular neighborhood of a closed braid in D2×S1 is a thick
braid, and conversely, a framing of a thick braid in D2×S1 is a closed braid.

2.2. Convergence of homeomorphisms. The following lemma will
be used repeatedly in this paper.

Lemma 2.9. Let X,Y be compact metric spaces and {fn : X → Y }n≥0

be a sequence of homeomorphisms. If there exist subsets {Un}n≥0 of X and
positive numbers {εn}n≥0 such that

(1) Un ⊂ Un−1 and fn|X\Un−1
= fn−1|X\Un−1

,
(2) limn→∞ εn = 0 and d(fm(x), fn(x)) ≤ εn, d(f−1

m (y), f−1
n (y)) ≤ εn

for x ∈ X, y ∈ Y , m ≥ n,
(3) neither

⋂
n≥0 Un nor

⋂
n≥0 fn(Un) has interior points,

then fn uniformly converges to a homeomorphism f : (X,
⋂

n≥0 Un) →
(Y,

⋂
n≥0 fn(Un)). Moreover, if in addition

(4) X = Y and d(fn(x), x) ≤ εn for x ∈ Un,

then
⋂

n≥0 Un lies in the fixed point set of f .

Proof. Since both X and Y are compact, it follows from (2) that fn and
f−1

n uniformly converge to continuous maps f : X → Y and g : Y → X,
respectively. By (1), we have f |X\Un

= fn|X\Un
and g|Y \f(Un) = f−1

n |Y \f(Un),
hence f |X\Tn≥0 Un

is the inverse of g|Y \Tn≥0 fn(Un).
Since X \

⋂
n≥0 Un is dense in X by (3), on which the continuous map

gf : X → X acts as the identity, it follows that gf = idX . Similarly, we
have fg = idY . So the conclusion follows.

The “moreover” part is clear.

2.3. Non-tame embeddings of solenoids. As there are non-tame
embeddings of the circle into 3-space, there are non-tame embeddings of
solenoids. In fact, any tame embedding of a solenoid can be modified in
a simple way to a non-tame embedding, which we illustrate below by a
concrete example.

Let Σ ⊂ R3 be a tame embedding of a 2-adic solenoid with defining
sequence {N0, N1, N2, . . . }, where the core of Ni is unknotted, and Ni+1 is
a 2-cable in Ni, i = 0, 1, 2, . . . . Then there are two disjoint meridian disks
D,D′ of N0 bounding a cylinder U0 ⊂ N0 ⊂ R3 such that Ui = Ni ∩ U0
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consists of 2i cylinders. For each i, pick a component of Ui denoted by U ′i
such that U ′j is disjoint from U ′i for each j > i.

U ′
1

U ′
2

e1(U
′
1)

e2(U
′
2)

p

Fig. 1

On the left of Figure 1, we see the embedding sequence U0 ⊃ U1 ⊃
U2 ⊃ · · · , and U ′i ’s are selected. We define a re-embedding e : Σ ⊂ R3

by assembling the re-embeddings {en : U ′n ⊂ U0}n≥1 relative to {D,D′},
where en replaces an unknotted middle portion of U ′n by a knotted one. The
knotted portion of en(U ′n) should sit in a 3-ball Bn ⊂ Un−1, with the 3-balls
arranged to converge to a single point p. The situation is indicated on the
right of Figure 1. Note that for each small open 3-ball neighborhood B of
p there is an arc component of B ∩Σ which is knotted in B, which implies
that the new embedding is not tame, since tame embeddings do not have
this property.

3. Classification and applications

3.1. Maximal defining sequences. As can be easily seen, a tame
solenoid Σ ⊂ N has a lot of defining sequences and there is no way to
choose a “minimal” one. However, a “maximal” defining sequence of a tame
solenoid can be defined in the sense that any other defining sequence is
equivalent to a subsequence of it (see Proposition 3.2).

Before giving the precise definition we fix some notation. For a properly
embedded surface S (resp. an embedded 3-manifold P ) in a 3-manifold M ,
we use M \S (resp. M \P ) to denote the manifold obtained by splitting M
along S (resp. removing the interior of P ).

Let M be a compact orientable 3-manifold. Call an embedded torus T
in M essential if T is incompressible (see [Ja, p. 23]) and is not parallel to
any component of ∂M .

According to the theory of Johannson and Jaco–Shalen ([Ja], [Joh], see
also [Ha]), for every compact orientable irreducible 3-manifold M , there is a
minimal union Γ ⊂M of disjoint essential tori of M , unique up to isotopy,
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such that each piece of M \Γ is either Seifert fibered (see [Ja, Chapter VI])
or contains no essential torus.

Below we will call the components of Γ the JSJ-decomposition tori of M .

Definition 3.1. Call a defining sequence {Nn}n≥0 of a tame solenoid
Σ ⊂ S3 maximal if Nn \Nn+1 contains no essential torus for each n ≥ 0.

Proposition 3.2. Every tame solenoid Σ ⊂ S3 has a maximal defining
sequence. Moreover, if {Nn}n≥0 is a maximal defining sequence of Σ then
every defining sequence of Σ is equivalent to a subsequence of {Nn}n≥0.
Hence all maximal defining sequences of Σ are equivalent.

The following lemma will be repeatedly used in this paper.

Lemma 3.3. Suppose N ′ is a thick braid in N and Γ is the union of the
JSJ-decomposition tori of N \N ′. Then

(1) each component T of Γ bounds a solid torus N∗ such that N∗ is a
thick braid in N and N ′ is a thick braid in N∗;

(2) no component of (N \N ′) \ Γ contains an essential torus;
(3) for each solid torus N ′′ with N ′ ⊂ N ′′ ⊂ N , ∂N ′′ is isotopic in

N \N ′ to a component of Γ ∪ ∂N ∪ ∂N ′.
Proof. (1) Let w be the winding number of N ′ in N and let D be a merid-

ian disk of N which meets N ′ in w meridian disks of N ′. Then (N \N ′) \D
∼= Pw× [0, 1], where Pw is the w-punctured disk. Isotope T so that T ∩D has
a minimum number of components. Then a standard argument in 3-manifold
topology shows that each component of T \D in Pw × [0, 1] is a vertical an-
nulus which separates a vertical D2× [0, 1] from N \D. Therefore T bounds
a solid torus N∗ which is a thick braid in N and clearly N ′ is a thick braid
in N∗.

(2) Let Q be a component of (N \ N ′) \ Γ . By JSJ theory [Ja], Q is
either simple, hence contains no essential torus by definition, or a Seifert
piece. Suppose Q is a Seifert piece. Then it is also a Seifert piece of a knot
complement with incompressible boundary. According to [Ja, Lemma IX.22],
Q is either a torus knot space, or a Pw × S1 where Pw is the w-punctured
disk with w ≥ 2, or a cable space (see [Ja, p. 188]). Since ∂Q has at least
two components, Q is not a torus knot space. By (1) and the fact that N ′ is
connected, one can verify that there is no embedding of Pw × S1 in N \N ′
with incompressible boundary for w ≥ 2. Therefore Q is a cable space. It is
known that a cable space contains no essential torus.

(3) By (2), it suffices to show that ∂N ′′ is incompressible in N \ N ′.
Suppose ∂N ′′ has a compressing disk D in N \ N ′. Then after surgery on
D we will get a separating 2-sphere S2 in N \N ′ such that each component
of (N \N ′) \ S2 contains a boundary torus, which contradicts N \N ′ being
irreducible.
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Proof of Proposition 3.2. Let {Nn}n≥0 be a defining sequence of Σ ⊂ S3.
Then S3 ⊃ N = N0 ⊃ N1 ⊃ N2 ⊃ · · · ⊃ Σ =

⋂∞
n=1Nn and

N0 \N1 ⊂ N0 \N2 ⊂ · · · ⊂ N0 \Σ =
∞⋃

n=1

N0 \Nn.

Moreover, since the winding number of Nn+1 in Nn is greater than 1 for
every n, ∂Nn is not parallel to ∂Nj for n 6= j.

Now we refine the defining sequence {Nn}n≥0 to a maximal one. Let Γn

be the union of the JSJ-decomposition tori of Nn \ Nn+1. Note that the
set

⋃
0≤n<j Γn ∪

⋃
0<n<j ∂Nn is the union of the JSJ-decomposition tori of

N0 \ Nj . Define Γ (Σ) =
⋃

n≥0(Γn ∪ ∂Nn). By Lemma 3.3(1)&(2) we can
re-index the components of Γ (Σ) as {Tn}n≥0 so that

• each Tn bounds a solid torus N∗n,
• each N∗n+1 is a thick braid in N∗n,
• no N∗n \N∗n+1 contains an essential torus.

Clearly {Nn}n≥0 is a subsequence of {N∗n}n≥0 and by definition {N∗n}n≥0 is
a maximal defining sequence of Σ.

Let {N ′n}n≥0 be another maximal defining sequence of Σ ⊂ S3. We shall
show that {N ′n}n≥0 and {N∗n}n≥0 are equivalent. Since Σ is compact, we
have N∗j ⊂ N ′k ⊂ N∗0 for some large integers j, k. By Lemma 3.3(3) and the
construction of {N∗n}n≥0, ∂N ′k is isotopic in N∗0 \N∗j to some ∂N∗m. Clearly,
the isotopy automatically sends N ′k to N∗m.

Similarly, one argues that N ′k+1 can be further isotoped in N∗m relative
to Σ to some N∗m′ , where m′ must be m + 1 because N ′k \ N ′k+1 contains
no essential torus, and so on. Hence we verify that {N ′k+n}n≥0 is strongly
equivalent to {N∗m+n}n≥0 and the conclusion follows.

3.2. Classification of tame solenoids

Theorem 3.4. Let Σ,Σ′ ⊂ S3 be two tame solenoids. The following
statements are equivalent.

(1) Σ,Σ′ are equivalent.
(2) Some defining sequences of Σ,Σ′ are equivalent.
(3) The maximal defining sequences of Σ,Σ′ are equivalent.

Proof. (2)⇒(1). Without loss of generality, suppose the defining se-
quences {Nn}n≥0, {N ′n}n≥0 of Σ,Σ′ are strongly equivalent. By definition
there is an orientation preserving homeomorphism f0 : (S3, N0)→ (S3, N ′0)
and orientation preserving homeomorphisms fn : (Nn−1, Nn)→ (N ′n−1, N

′
n)

with fn|∂Nn−1 = fn−1|∂Nn−1 for n ≥ 1.
By Remark 2.5, we assume the D2-slices of all Ni (respectively of all N ′i)

are coherent. Then it is easy to see that we can first isotope f0 : (S3, N0)→
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(S3, N ′0) so that f0| : N0 → N ′0 is D2-fibration preserving, then inductively
isotope fn : (Nn−1, Nn)→ (N ′n−1, N

′
n) for each n ≥ 1 so that fn| : Nn → N ′n

is D2-fibration preserving, and still fn|∂Nn−1 = fn−1|∂Nn−1 .
To apply Lemma 2.9, we set Un = Nn and extend fn onto S3 by set-

ting fn|S3\Nn−1
= fn−1|S3\Nn−1

. Clearly conditions (1) and (3) of Lemma
2.9 are satisfied. Since the diameters of the meridian disks of Nn and N ′n
tend to zero uniformly as n → ∞ and since fn is D2-fibration preserv-
ing and fn|∂Nn−1 = fn−1|∂Nn−1 , condition (2) of Lemma 2.9 is also sat-
isfied. Therefore, by Lemma 2.9, fn uniformly converges to a homeomor-
phism f : (S3,

⋂
n≥0Nn) → (S3,

⋂
n≥0N

′
n). That is, Σ =

⋂
n≥0Nn and

Σ′ =
⋂

n≥0N
′
n are equivalent.

(3)⇒(2) is obvious.
(1)⇒(3). Let f : S3 → S3 be an orientation preserving homeomorphism

such that f(Σ) = Σ′. Clearly for each maximal defining sequence {Nn}n≥0

of Σ, {f(Nn)}n≥0 is a maximal defining sequence of Σ′ and is equivalent to
{Nn}n≥0. By Proposition 3.2, {f(Nn)}n≥0, hence {Nn}n≥0, is equivalent to
every maximal defining sequence of Σ′.

3.3. Knotting, linking and invariants. Thanks to the classification
theorem, we can talk about the knotting, linking and invariants of tame
solenoids.

Definition 3.5. A tame embedding of a solenoid Σ ⊂ S3 with defining
sequence {Nn}n≥0 is called knotted if some defining solid torus Nn ⊂ S3 is
knotted; otherwise we call the embedding unknotted.

Note that for a defining sequence {Nn}n≥0 of a tame solenoid, if Nn is
knotted then so is Nn′ for all n′ > n. It follows from Theorem 3.4 that the
notion of knotting is well defined for equivalence classes of tame solenoids.

Definition 3.6. Let Σ,Σ′ ⊂ S3 be disjoint tame solenoids with disjoint
defining sequences {Nn}n≥0 and {N ′j}j≥0 respectively.

• Call Σ,Σ′ algebraically linked if some linking number lk(Nn, N
′
j) (i.e.

the linking number of their centerlines) is non-zero.
• Call Σ,Σ′ linked if some defining solid tori Nn, N

′
j are linked.

Since two disjoint tame solenoids Σ,Σ′ ⊂ S3 always have disjoint defin-
ing sequences and as lk(Nn, N

′
j) 6= 0 implies lk(Nn′ , N

′
j′) 6= 0 for all n′ ≥ n,

j′ ≥ j, by Theorem 3.4 again the notion of algebraic linking is well defined.
Similarly the notion of linking is well defined, too. In particular, Σ and

Σ′ are linked if and only if there are no disjoint 3-balls B and B′ such that
Σ ⊂ B and Σ′ ⊂ B′.

To define invariants of tame solenoids, the proposition below will be of
help.
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Proposition 3.7. Up to strong equivalence, each knotted tame solenoid
Σ ⊂ S3 has a unique maximal defining sequence {Nn}n≥0 such that N0

is knotted and any other defining sequence {N ′n}n≥0 with N ′0 knotted is a
subsequence of {Nn}n≥0.

Proof. The detailed proof is similar to the proof of Proposition 3.2.
Assume N0 is knotted. Then S3 \ N0 is boundary incompressible. Let

Γ be the tori of the JSJ-decomposition of S3 \ N0. Then there is a unique
torus T ∈ Γ such that

(1) T bounds a solid torus N containing N0 as a closed braid,
(2) if another T ′ ∈ Γ has property (1), then the solid torus N ′ bounded

by T ′ is a closed braid in N .

Now we get a new defining sequence {N,N0, N1, . . . .} of Σ. Then refine
this sequence to a maximal one. One can verify that the resulting maximal
defining sequence is what we want.

Any knot invariant I (for example, the genus, the Gromov volume, the
Alexander polynomial or the Jones polynomial) gives rise to an invariant I
of tame solenoids. For a knotted tame solenoid Σ ⊂ S3, let {Nn}n≥0 be the
unique maximal defining sequence from the above proposition. Then the in-
finite sequence I(Σ) = {I(N0), I(N1), . . . } depends only on the equivalence
class of Σ. If a tame solenoid Σ ⊂ S3 is unknotted, then for any defining
sequence {Nn}n≥0 of Σ the sequence I(Σ) = {I(N0), I(N1), . . . } is identi-
cally trivial, say {0, 0, . . . }, if I is either the genus or the Gromov volume, or
{1, 1, . . . }, if I is either the Alexander polynomial or the Jones polynomial.

In general for a given numerical function g and a knot invariant I, one may
organize the sequence I(Σ) into a formal series I(Σ, g) =

∑∞
n=0 g(n)I(Nn)tn.

We wonder if I(Σ, g) would have interesting properties for certain g and I
and for suitable classes of solenoids.

3.4. Unknotted 2-adic tame solenoids. Given an unknotted solid
torus N in S3, there are exactly two kinds of thick braid of winding number
two in N that are unknotted in S3 as shown in Figure 2, where the left
one is denoted by 1, and the right one by −1. Then any maximal defining
sequence of an unknotted 2-adic tame solenoids in S3 can be presented as
an infinite sequence of ±1.

Let Z2 be the set of infinite sequences (a1, a2, . . . ) of ±1’s. Two such
sequences are said to be equivalent if they can be made identical by deleting
finitely many terms. By Theorem 3.4 the equivalence classes of unknotted
2-adic tame solenoids are in 1-1 correspondence with the equivalence classes
in Z2. In particular, there are uncountably many equivalence classes of un-
knotted 2-adic tame solenoids.
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Fig. 2

3.5. Smale solenoids. The solenoids were introduced into dynamics
by Smale [S] as hyperbolic attractors.

Definition 3.8. Let M be a 3-manifold and f : M → M be a hom-
eomorphism. If there is a solid torus N ⊂ M such that f |N (resp. f−1|N )
defines a thick braid as in Definition 2.2(1), we call the hyperbolic (ex-
panding) attractor Σf =

⋂∞
n=1 f

n(N) (resp. the hyperbolic repeller Σ =⋂∞
n=1 f

−n(N)) a Smale solenoid. Define the winding number w of f(N) in
N to be the winding number of the Smale solenoid Σf .

Clearly each Smale solenoid Σf ⊂ S3 is tame. It is known that a Smale
solenoid Σf ⊂ S3 must be unknotted [JNW]. Moreover, it is proved in [JNW]
that if the non-wandering set Ω(f) of a dynamics f consists of finitely many
disjoint Smale solenoids, then Ω(f) consists of two solenoids (indeed they
are algebraically linked).

Definition 3.9. Let w1, . . . , wk be integers greater than 1. Call Σ ⊂ S3

a Smale solenoid of type (w1, . . . , wk) if (1) there is a dynamics f taking Σ
as an attractor, (2) there is a defining sequence {Nn}n≥0 of Σ such that f
sends Nn to Nk+n for all n ≥ 0 and (3) wn is the winding number of Nn in
Nn−1 for 1 ≤ n ≤ k.

Proposition 3.10. Any given type (w1, . . . , wk) is realized by a Smale
solenoid Σ ⊂ S3. Moreover, the number of Smale solenoids Σ ⊂ S3 of type
(w1, . . . , wk) is finite if wn ≤ 3 for all n, and is countably infinite other-
wise.

Proof. Take an unknotted solid torus N0 ⊂ S3. Inductively construct
ei : (S3, Ni−1) → (S3, Ni) so that ei(Ni−1) is the thick wi-braid in Ni−1

representing the “1/wi-twist”. Let f = ek ◦ · · · ◦ e1 : (S3, N0) → (S3, Nk).
Then Σf =

⋂∞
n=1 f

n(N) is a Smale solenoid of type (w1, . . . , wk).
The “moreover” part follows from the fact that each Smale solenoid in

S3 must be unknotted, Theorem 3.4, and the lemma below.

Lemma 3.11. Let Wn be the set of n-strand braids whose closures are
unknotted in S3. Then

(1) Wn has two conjugacy classes as pictured in Figure 2 for n = 2;
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(2) Wn has three conjugacy classes as pictured in Figure 3 for n = 3;
(3) Wn has infinitely many conjugacy classes for n > 3.

Fig. 3

Proof. (1) is well-known. (2) is proved in [MP, Theorem 1]. The closed
braids in (1) and (2) are presented in Figures 2 and 3 respectively.

(3) should be also known. We give a simple construction: Let σi’s be
the standard generators of the braid groups. For each n > 3, let β(n, k) =
(σ2)−kσ1σ2(σ2)kσ3σ4 · · ·σn−1. Then one sees directly that the closure β(n, k)
is a trivial knot in 3-space. On the other hand the trace of the reduced Burau
representation of β(n, k) takes value 1 − k(k + 1) at t = −1. Hence β(n, k)
and β(n, k′) are not conjugate for k 6= k′.

A simplified version of Proposition 3.10 is

Corollary 3.12. Up to conjugacy by homeomorphisms of S3, the num-
ber of Smale solenoids in S3 with winding number w is finite if |w| ≤ 3, and
is infinite otherwise.

4. Chirality of tame solenoids

Definition 4.1. Call a subset A ⊂ S3 achiral if there is an orientation
reversing homeomorphism r : S3 → S3 such that r(A) = A. Call A strictly
achiral if there is an orientation reversing homeomorphism r : S3 → S3 such
that r(x) = x for every x ∈ A.

In Definition 4.1, “achiral” means setwise achiral, and “strictly achiral”
means pointwise achiral. They are two opposite extremes among various
shades of achirality in the real world.

4.1. Criteria. By definition, a tame solenoid in S3 is achiral if and only
if it is equivalent to its mirror image. Therefore, by Theorem 3.4 we have
the following criterion of the chirality of tame solenoids.

Theorem 4.2. A tame solenoid given by the maximal defining sequence
{Nn}n≥0 is achiral if and only if {Nn}n≥0 is equivalent to its mirror image.

Example 4.3. Recall the example in §3.4. The mirror image of a max-
imal defining sequence of an unknotted 2-adic tame solenoid presented by
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(a1, a2, . . . ) is presented by (−a1,−a2, . . . ). By Theorem 4.2, the unknotted
2-adic tame solenoid presented by (+1,−1,+1,−1, . . . ) is achiral but the
solenoids presented by (+1,+1,+1, . . . ) or (−1,−1,−1, . . . ) are not achiral.

Below we focus on the strict achirality of tame solenoids. For a map
f : X → X, we use Fix(f) to denote the fixed point set of f .

Definition 4.4. Suppose A is a subset of the solid torus N , and l is a
given framing of N . Call A strictly achiral with respect to l if there exists an
orientation reversing homeomorphism f : N → N such that A∪ l ⊂ Fix(f).

To prove the main theorem of this subsection, we need the following two
lemmas.

Lemma 4.5. Suppose l′ is a braid in N . If it is strictly achiral with
respect to a framing l of N , then there exists an orientation reversing and
D2-fibration preserving homeomorphism r : N → N such that l∪l′ ⊂ Fix(f).

Proof. Since l′ is strictly achiral with respect to l, there exists an orien-
tation reversing homeomorphism r : N → N such that l ∪ l′ ⊂ Fix(r).

Let w be the winding number of l′ in N . Fix a base point ∗ ∈ S1 and
denote by D∗ the disk D2 × ∗ which intersects l′ in w points. Without loss
of generality, we may assume that ∂D∗ is invariant under r. Furthermore,
we can take a small tubular neighborhood B of l′ such that the D2-foliation
of N restricted to B induces a disk foliation on B. Isotoping r near l′, we
can assume that B is invariant under r, and r restricted to B preserves the
disk foliation. Denote the w-punctured disk D∗ \B by P .

Let p : Ñ → N be the infinite cyclic covering, τ : Ñ → Ñ the deck
translation, and B̃ = p−1(B) ⊂ Ñ the preimage of B. Then Ñ \ B̃ is hom-
eomorphic to P × R.

Fix a component D̃∗ of the preimage of D∗. Then P̃0 = D̃∗ \ B̃ is a
component of the preimage of P . Let r̃ : Ñ → Ñ be the lift of r such that
r̃(∂D̃∗) = ∂D̃∗. By sliding r along l′ we may further assume that, upstairs,
the lift r̃ leaves each component of ∂P̃0 invariant.

We assume that r : N → N , subject to the above conditions, has been
isotoped so that r(P ) intersects intP transversely, and r(P )∩ intP has the
minimal number of circle components. We claim that r(P ) ∩ intP = ∅.

Let P̃k = τk(P̃0). Then p−1(P ) =
⋃∞

k=−∞ P̃k. Clearly r̃(P̃0) intersects
int P̃k transversely for all k. Denote the portion of Ñ \ B̃ between P̃k and
P̃k+1 by Ñk.

Suppose r(P ) ∩ intP 6= ∅. Let k ≥ 0 be the largest integer such that
F̃ = r̃(P̃0) ∩ Ñk is not empty (otherwise consider the smallest negative
integer). Clearly ∂F̃ ⊂ P̃k. Moreover, F̃ must be incompressible in Ñk.
Otherwise, there would be an essential circle c on F̃ which bounds a disk
D ⊂ Ñk with D ∩ F̃ = c. Since r̃(P̃0) is a proper incompressible surface
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in Ñ \ B̃, c must bound a sub-disk D′ of r̃(P̃0). This D′ must intersect P̃k

because it is not in F̃ . Since D ∪D′ is an embedded 2-sphere and Ñ \ B̃ is
irreducible, D ∪D′ bounds a 3-ball D3 whose interior misses r̃(P̃0). Clearly
r can be isotoped so that D replaces D′ and therefore r(P )∩P gets reduced,
contradicting the minimality assumption on r.

So F̃ is incompressible in Ñk, and ∂F̃ ⊂ P̃k. Note that the pair (Ñk, P̃k)
is homeomorphic to (P × [0, 1], P × 0). By a classical fact in 3-manifold
topology ([Wa, Proposition 3.1]), each component F̃i of F̃ is parallel to P̃k.
Hence Fi = p(F̃i) is parallel to P in N \ B, i.e., there is a product region
between Fi and P . So we can push Fi via isotopy to P , then go slightly
further to reduce r(P ) ∩ P , again contradicting the minimality assumption
on r. This finishes the proof of the claim that r(P ) ∩ intP = ∅.

Now r(P ) is an incompressible proper surface in N \ (B ∪ P ) = P ×
[0, 1] with ∂r(P ) staying in, say, P × 0. For the same reason as in the last
paragraph, r(P ) is parallel to P ×0, and we can isotope r so that r(P ) = P .
Finally we can isotope rel P ∪B∪∂N so that r is D2-fibration preserving.

Lemma 4.6. Suppose Σ ⊂ S3 is a tame embedding given by a defining
sequence {Nn}n≥0. If Σ ⊂ Fix(r) for some homeomorphism r : S3 → S3,
then there exists k > 0 such that r(Nn) ⊂ intN0, and moreover r(Nn) and
Nn have the same winding number in N0, for n ≥ k.

Proof. Since S3 is compact, r is uniformly continuous. We proceed as
follows:

(i) Let ε = d(N1, ∂N0)/2.
(ii) Choose 0 < δ < ε such that if d(x, x′) < δ then d(r(x), r(x′)) < ε.

(iii) Choose k > 0 such that maxx∈Nk
d(x,Σ) < δ.

Now fix an integer n ≥ k. For any x ∈ Nn, by (i) we have d(x, ∂N0) ≥ 2ε
and by (iii) we can choose x′ ∈ Σ such that d(x, x′) < δ, hence by (ii),

d(x, r(x)) ≤ d(x, x′)+d(x′, r(x′))+d(r(x′), r(x)) < δ+0+ε < 2ε ≤ d(x, ∂N0).

It follows that the unique geodesic α(x) connecting x and r(x) lies in intN0.
Therefore, {α(x) | x ∈ Nn} gives rise to a homotopy from Nn to r(Nn)
in N0. In particular, r(Nn) ⊂ intN0, and r(Nn) and Nn have the same
winding number in N0.

Theorem 4.7. Let Σ ⊂ S3 be a tame solenoid with defining sequence
{Nn}n≥0 and let ln denote a zero framing of Nn in S3, that is, ln is null-
homologous in S3 \Nn. Then Σ is strictly achiral if and only if there exists
k ≥ 0 such that lk is strictly achiral in S3, and ln+1 is strictly achiral in Nn

with respect to ln for all n ≥ k.

Proof. Sufficiency. Without loss of generality, we assume k = 0. Since
l0 is strictly achiral, there is an orientation reversing homeomorphism f0 :
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(S3, N0) → (S3, N0) such that f0|N0 is D2-fibration preserving and fixes l0
pointwise.

Since l1 is strictly achiral in N0 with respect to l0, by Lemma 4.5 there
is an orientation reversing and D2-fibration preserving homeomorphism f1 :
(N0, N1)→ (N0, N1) such that l1 ∪ l0 stays in Fix(f1). Since both f0|N0 and
f1 are orientation reversing and D2-fibration preserving homeomorphisms
of N0 and both fix l0 pointwise, we may assume f1|∂N0 = f0|∂N0 . So f1 may
be extended onto S3 by setting f1|S3\N0

= f0|S3\N0
.

Then for n > 1, for the same reason we can recursively define a hom-
eomorphism fn : (S3, Nn) → (S3, Nn) such that fn|S3\Nn−1

= fn−1|S3\Nn−1

and fn|Nn−1 is D2-fibration preserving and fixes ln ∪ ln−1 pointwise.
To apply Lemma 2.9, set Un = Nn. Clearly conditions (1) and (3) of

Lemma 2.9 are satisfied. Since fn|Nn is D2-fibration preserving and the
diameters of the meridian disks of Nn tend to zero uniformly as n → ∞,
conditions (2) and (4) of Lemma 2.9 are also satisfied. By Lemma 2.9, fn uni-
formly converges to an orientation reversing homeomorphism f : S3 → S3

with
⋂

n≥0Nn ⊂ Fix(f).
Necessity. Suppose the strict achirality of Σ is witnessed by an orien-

tation reversing homeomorphism r and let k > 0 be given by Lemma 4.6.
Then for any n ≥ k both Nn and r(Nn) are contained in the interior of N0.

Fix n ≥ k and choose a large integer j so that Nj ⊂ Nn ∩ r(Nn).
By Lemma 3.3(3), both ∂Nn and r(∂Nn) are isotopic in N0 \ Nj to some
components of Γ ∪∂N0∪∂Nj where Γ is the union of the JSJ-decomposition
tori of N0 \Nj . Therefore, we can isotope r with support in N0 \Σ so that
either r(Nn) = Nn, or by Lemma 3.3(1), r(Nn) ⊂ Nn or Nn ⊂ r(Nn) is a
thick braid of winding number greater than 1. By Lemma 4.6, r(Nn) and
Nn have the same winding number in N0, so the latter case cannot happen,
and moreover we may assume the zero framing ln of Nn lies in Fix(r).

By the same argument, r can be further isotoped with support in Nn \Σ
so that r(Nn+1) = Nn+1 and ln+1 ⊂ Fix(r). Therefore, ln is strictly achiral
in S3 and ln+1 is strictly achiral in Nn with respect to ln.

4.2. Examples. Thanks to Theorem 4.7, the strict achirality of tame
solenoids breaks up into the problem of strict achirality of knots in S3 and
the problem of strict achirality of closed braids in the solid torus. Below we
fix a point ∗ ∈ ∂D2 and let l∗ denote the framing ∗ × S1 of D2 × S1.

Definition 4.8. Call a braid β achiral if β is conjugate to its mirror
image β∗.

Note that achirality is well defined on conjugacy classes of braids. Also
note that the closure β ⊂ D2 × S1 of a braid β is connected if and only if β
is cyclic, i.e. β permutes its ends cyclically.



72 B. J. Jiang et al.

Lemma 4.9. For every braid β, the closure β ⊂ D2×S1 is strictly achiral
with respect to l∗ if and only if β is achiral.

Proof. Sufficiency follows from the easy fact that, for conjugate braids
β and α−1βα, the closed braids β and α−1βα are always isotopic in D2×S1

relative to the boundary torus ∂(D2 × S1). The lower-right arrow of Figure
4 is a good illustration.

r

fg

Fig. 4

Necessity. If β is strictly achiral with respect to l∗ then β is isotopic to
its mirror image, therefore β is conjugate to its mirror image β∗.

Example 4.10 (Examples of cyclic, achiral braids). Let σi’s be the stan-
dard generators of the braid groups.

(1) β = σ1σ
−1
2 is cyclic and achiral. Setting α = σ2σ

2
1σ
−1
2 , one can

verify the equality β = α−1β∗α by the substitution of the braid relation
σ2σ1σ2 = σ1σ2σ1 as follows:

α−1β∗α = (σ2σ
−1
1 σ−1

1 σ−1
2 )(σ−1

1 σ2)(σ2σ1σ1σ
−1
2 )

= σ2σ
−1
1 σ−1

2 σ−1
1 σ−1

2 σ2σ2σ1σ1σ
−1
2

= σ2σ
−1
2 σ−1

1 σ−1
2 σ−1

2 σ2σ2σ1σ1σ
−1
2 = σ1σ

−1
2 = β.

One can also directly verify the equality β = α−1β∗α by a braid move indi-
cated by g on the lower-left arrow in Figure 4, where r : D2×S1 → D2×S1

is the reflection about the “page” (assume l∗ lies on it). The composition
g ◦ f ◦ r : D2 × S1 → D2 × S1 is an orientation reversing homeomorphism
which preserves each D2-slice and fixes both the closure β and the framing
l∗ pointwise.
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(2) For any braid β, the product ββ∗ is achiral, since

β∗−1(ββ∗)∗β∗ = β∗−1β∗ββ∗ = ββ∗.

Moreover, for any cyclic braid β with an odd number of strands, ββ∗ is also
cyclic. Hence for each cyclic braid β with an odd number of strands, ββ∗ is
cyclic and achiral.

(3) If β is an achiral braid, then so is βk for any integer k. Moreover, if
β is cyclic, then so is βk for every integer k relatively prime to the number
of strands.

Proposition 4.11.

(1) If a connected closed braid β ⊂ D2×S1 is strictly achiral with respect
to l∗, then the writhe of β is zero (for the definition of writhe, see
[A, p. 152]).

(2) If a connected closed braid β ⊂ D2×S1 is strictly achiral with respect
to l∗, then β is neither of even winding number, nor a cable.

Proof. (1) By Lemma 4.9, β strictly achiral implies β = α−1β∗α for
some braid α. Clearly wr(β) = wr(α−1β∗α) = wr(β∗) = −wr(β). It follows
that wr(β) = 0.

(2) Suppose β is connected and has an even winding number. Then
the braid β has an even number of strands and permutes their end points
cyclically. Since a cyclic permutation of an even number of points always
consists of an odd number of swaps, the number of crossings of β is odd.
Hence wr(β) must be odd, which contradicts (1).

Suppose β is a cable. Then all the crossings of β have the same sign, so
wr(β) is non-zero, which contradicts (1).

Now we state the main result of this subsection.

Theorem 4.12. A solenoid of type $ = (w1, w2, . . . ) has a strictly achi-
ral tame embedding into S3 if and only if all except finitely many wn are
odd.

Proof. Necessity is immediate from Theorem 4.7 and Proposition 4.11(2).
Sufficiency. Assume all wn are odd. Let N0 be a tubular neighbor-

hood of a strictly achiral knot in S3 and let Nn be a tubular neighbor-
hood of βnβ∗n in Nn−1 where βn is an arbitrary cyclic braid on wn strands.
By Theorem 4.7, Lemma 4.9 and Example 4.10(2) the defining sequence
{Nn}n≥0 gives rise to a strictly achiral tame embedding of the solenoid of
type $ = (w1, w2, . . . ).

Example 4.13. (1) The 2-adic solenoid has no strictly achiral tame
embedding into S3.
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(2) By Lemma 3.11(2), Example 4.10(1) and Proposition 4.11(2), up to
equivalence the 3-adic solenoid has a unique unknotted strictly achiral tame
embedding into S3, which is obtained by nesting the thick braid pictured in
the middle of Figure 3.

(3) The embedding in Theorem 4.12 can be chosen to be either knotted
or unknotted, by letting N0 in the proof be a either tubular neighborhood
of the figure-8 knot, or a tubular neighborhood of the unknot and βn =
σ1σ2 · · ·σwn−1 (we leave it to the reader to verify that the closure βnβ∗n is
unknotted in S3).

Acknowledgements. The first three authors were partially supported
by NSFC (grants no. 10631060 and no. 11071006). Our paper is enhanced
by the comments of the referee.

References

[A] C. C. Adams, The Knot Book. An Elementary Introduction to the Mathematical
Theory of Knots, W. H. Freeman, New York, 1994.

[Bin] R. H. Bing, A simple closed curve is the only homogeneous bounded plane con-
tinuum that contains an arc, Canad. J. Math. 12 (1960), 209–230.

[Bir] J. S. Birman, Braids, Links, and Mapping Class Groups, Ann. of Math. Stud. 82,
Princeton Univ. Press, Princeton, NJ, 1974.

[Ha] A. Hatcher, Notes on basic 3-manifold topology, http://www.math.cornell.edu/
˜hatcher/.

[Ja] W. H. Jaco, Lectures on Three-Manifold Topology, CBMS Reg. Conf. Ser. Math.
43, Amer. Math. Soc., Providence, RI, 1980.

[JNW] B. J. Jiang, Y. Ni and S. C. Wang, 3-manifolds that admit knotted solenoids as
attractors, Trans. Amer. Math. Soc. 356 (2004), 4371–4382.

[JW] B. J. Jiang and S. C. Wang, Achirality and planarity, Comm. Contemp. Math. 2
(2000), 299–305.

[JWZ] B. J. Jiang, S. C. Wang and H. Zheng, No embedding of solenoids into surfaces,
Proc. Amer. Math. Soc. 136 (2008), 3697–3700.

[Joh] K. Johannson, Homotopy Equivalence of 3-manifolds with Boundary, Lecture
Notes in Math. 761, Springer, Berlin, 1979.

[MP] W. Magnus and A. Peluso, On knot groups, Comm. Pure Appl. Math. 20 (1967),
749–770.

[Mc] M. C. McCord, Inverse limit sequences with covering maps, Trans. Amer. Math.
Soc. 114 (1965), 197–209.

[R] C. Robinson, Dynamical Systems, Stability, Symbolic Dynamics, and Chaos, 2nd
ed., Stud. Adv. Math., CRC Press, Boca Raton, FL, 1999.

[RW] C. Robinson and R. Williams, Classification of expanding attractors: an example,
Topology 15 (1976), 321–323.

[S] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967),
747–817.

[V] L. Vietoris, Über den höheren Zusammenhang kompakter Räume und eine Klasse
von zusammenhangstreuen Abbildungen, Math. Ann. 97 (1927), 454–472.

http://dx.doi.org/10.4153/CJM-1960-018-x
http://www.math.cornell.edu/~hatcher/
http://www.math.cornell.edu/~hatcher/
http://dx.doi.org/10.1090/S0002-9947-04-03503-2
http://dx.doi.org/10.1090/S0002-9939-08-09340-4
http://dx.doi.org/10.1002/cpa.3160200407
http://dx.doi.org/10.1090/S0002-9947-1965-0173237-0
http://dx.doi.org/10.1016/0040-9383(76)90024-0
http://dx.doi.org/10.1090/S0002-9904-1967-11798-1
http://dx.doi.org/10.1007/BF01447877


Tame embeddings of solenoids 75

[Wa] F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of
Math. 87 (1968), 56–88.

Boju Jiang, Shicheng Wang, Hao Zheng
Department of Mathematics
Peking University
Beijing 100871, China
E-mail: bjjiang@math.pku.edu.cn

wangsc@math.pku.edu.cn
hzheng@math.pku.edu.cn

Qing Zhou
Department of Mathematics

East China Normal University
Shanghai 200030, China

E-mail: qzhou@math.ecnu.edu.cn

Received 3 October 2010;
in revised form 17 June 2011

http://dx.doi.org/10.2307/1970594



	Introduction and motivations
	Tame embeddings of solenoids, preliminaries
	Definitions of solenoids and their tame embeddings
	Convergence of homeomorphisms
	Non-tame embeddings of solenoids

	Classification and applications
	Maximal defining sequences
	Classification of tame solenoids
	Knotting, linking and invariants
	Unknotted 2-adic tame solenoids
	Smale solenoids

	Chirality of tame solenoids
	Criteria
	Examples


