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Multiplicative maps from HZ to a ring spectrum R
—a naive version

by

Stanisław Betley (Warszawa)

Abstract. The paper is devoted to the study of the space of multiplicative maps
from the Eilenberg–MacLane spectrum HZ to an arbitrary ring spectrum R. We try to
generalize the approach of Schwede [Geom. Topol. 8 (2004)], where the case of a very
special R was studied. In particular we propose a definition of a formal group law in any
ring spectrum, which might be of independent interest.

0. Introduction. For a commutative ring B Stefan Schwede described
in [S1] a surprising connection between stable homotopy theory of com-
mutative B-algebras and formal group laws over B. The stable homotopy
operations of commutative simplicial B-algebras are described by the alge-
bra π∗DB, where DB is a certain “classical” spectrum studied by Bousfield,
Dwyer and others (see for example [D]). Schwede was able to describe the
weak homotopy type of the space of multiplicative maps from the Eilenberg–
MacLane spectrum HZ to DB in terms of formal group laws over B and
their isomorphisms. But his methods seem to be much more general and
should work in other situations as well. On the other hand the formal group
laws over B are present in the description of DB, so in order to generalize his
results one should start from defining something like a “formal group law”
even without formal power series.

In the present note we offer a definition of a formal group law in a ring
spectrum R. With it we recover a weak version of the π0-result of Schwede
with any ring spectrum R in place of DB. The obvious generalization of the
full Schwede result is clearly visible but we do not have any evidence to call
it even a “conjecture”. At present we do not see methods of attacking this
problem in full generality.
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Every multiplicative map HZ → R gives R the structure of a ring over
HZ. We hope that observations presented in this note can be fruitful for a
better understanding of the category of such objects.

We use here the language of Lydakis [L], which we summarize in Sec-
tion 1. A ring spectrum means a Γ -ring in the sense of [L], that is, a functor
from the category of finite sets to simplicial sets with an extra structure.
Maps between such objects are given in terms of natural transformations of
functors. The word “naive” in our title refers to the fact that we work mostly
with combinatorial structures only, so we do not have to use (except on the
last two pages) models for our spectra which give the correct homotopy type
of the mapping space (fibrant-cofibrant replacement).

1. Preliminaries on Γ -spaces and Γ -rings. For a nonnegative inte-
ger n, let [n] denote the pointed set {0, 1, . . . , n} with 0 as the basepoint.

Three types of pointed set maps will play a crucial role in the future. Two
of them map [n]→ [n−1] and the third one goes the other way around. The
map pn

i : [n]→ [n−1] defined by pn
i (j) = j for j < i, pn

i (i) = 0, pn
i (j) = j−1

for j > i will be called the ith restriction. For any i < j ≤ n we have the
“summing” map sn

i,j,k : [n] → [n − 1] defined by sn
i,j,k(i) = sn

i,j,k(j) = k, and
mapping the other elements a ∈ [n] bijectively onto [n− 1] \ {k}, preserving
ordering. The third map dn

j : [n − 1] → [n] is injective, misses j ∈ [n] and
preserves the order.

The category Γ op is a full subcategory of the category of pointed sets,
with objects all [n]. The category of Γ -spaces is the full subcategory of
the category of functors from Γ op to pointed simplicial sets with objects
satisfying F [0] = [0] and maps given by natural transformations of functors.
The notation Γ op comes from the fact that this category is dual to Segal’s
category Γ from [Se]. Every Γ -space can be prolonged by direct limits to a
functor defined on the category of pointed sets. In our notation we will not
distinguish between a Γ -space and the extension described above. We will
use capital letters K, L . . . , to denote pointed sets. In the future, if we need
an ordering of the pointed set [n] ∧ [m] which identifies it with [nm] we will
always use the inverse lexicographical order.

Convention. If it causes no misunderstanding, for pointed sets K and
L and a pointed map f : K → L we write f instead of F (f) for the induced
map F (K)→ F (L).

For a Γ -space F let RF denote the Γ × Γ -space defined as RF (K,L) =
F (K ∧L). Having two Γ -spaces F and F ′ we can form their exterior smash
product Γ×Γ -space F ∧̃F ′ which is defined by F ∧̃F ′(K,L) = F (K)∧F ′(L).
Then the smash product of F and F ′ is a universal Γ -space F ′′ with a map
of Γ ×Γ -spaces F ∧̃F ′ → RF ′′ (see [L, Remark 2.4]). Moreover, if we denote
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by GS the category of Γ -spaces and by GSS the category of Γ × Γ -spaces
then for given Γ -spaces F1, F2 and F3 we have (following [L, Theorem 2.2])

GS(F1 ∧ F2, F3) = GSS(F1 ∧̃ F2, RF3).

Remark 1.1. The symmetric group Σn acts on {0, 1, . . . , n} by permut-
ing {1, . . . , n} and hence acts on F [n] for any Γ -space F . We will use this
action restricted to various subgroups of Σn.

Let S denote the Γ -space defined by the identity functor. We say that
a Γ -space F is a Γ -ring if there are maps η : S → F called the unit and
µ : F ∧ F → F called multiplication satisfying the usual associativity and
unit conditions (see [L, 2.13]).

Remark 1.2. By our previous observations µ is determined by a map
µ̃ : F ∧̃ F → RF , which is fully determined by a collection of maps µ̃ :
F [n]∧F [m]→ F ([n]∧ [m]) natural in [n] and [m] and satisfying the obvious
associativity conditions.

Let us introduce one more notion. We will say that a Γ -ring R is discrete
if for any pointed set K, R(K) is just a set considered as a simplicial set in
the trivial way. Assume that R is a discrete Γ -ring. Then R[1] is a unital
monoid with zero. Moreover η takes 1 ∈ S[1] to the unit of R[1].

Remark 1.3. Assume that R is a discrete Γ -ring. Then the map µ̃ :
R(K) ∧ R(L) → R(K ∧ L) of 1.2 is a map of sets which is associative with
respect to the smash product of pointed sets. This means that if p ∈ R(K)
and q ∈ R(L) then it makes sense to say that the product of p and q belongs
to R(K ∧ L), which, of course, means that µ̃(p, q) ∈ R(K ∧ L). We will
usually write this product as pq ∈ R(K ∧ L).

2. Multiplicative maps from HN to a discrete Γ -ring R. We want
to study multiplicative maps from the Eilenberg–MacLane spectrum HZ to
a Γ -ring R. This is a bit technical and postponed until Section 3. In the
present section we will consider maps from the spectrum stably equivalent
to HZ which is easier to study. Let us start by recalling a Γ -ring model of
HZ. As a functor, HZ takes K to a reduced free abelian group generated
by K. The map

η : S→ HZ
is given by the embedding of generators. The multiplication map

µ : Z̃(K) ∧ Z̃(L)→ Z̃(K ∧ L)

is defined by the formula(∑
k∈K

akk
)
∧
(∑

l∈L

bll
)
7→

∑
k∧l∈K∧L

akbl(k ∧ l).
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The Γ -ring HN is defined by the same formulas but with the additive
monoid of natural numbers (with 0) instead of the integers. The embedding
HN → HZ induces a stable equivalence of spectra because for any k > 0
the map HN(Sk) → HZ(Sk) is a homotopy equivalence by a theorem of
Spanier [Sp, Theorem 4.4]. This map is obviously multiplicative but there is
no nontrivial multiplicative map going the other way.

It is easy to see that Schwede’s map HZ → DB associated to a formal
group F is uniquely determined by saying that the image of (1, 1) ∈ HZ[2]
is F . We comment on this more later but now we should define the possible
images of (1, 1) ∈ HN[2] in the case of an arbitrary Γ -ring R. Below we give
the first definition of a formal group law in a Γ -ring R.

Definition 2.1. A formal sum law in a Γ -ring R is an element w ∈ R[2]
with the following properties:

1. p2
1(w) = 1, p2

2(w) = 1,
2. any power wk ∈ R[2k] is fixed under the action of the symmetric group
Σ2k .

Theorem 2.2. Let R be a discrete Γ -ring. Then every formal sum law
in R determines a multiplicative map φ : HN→ R.

Proof. Let w be a formal sum law in R. Let 1n = (1, . . . , 1) ∈ HN[n].
We will show that 12n 7→ wn defines the desired map φ.

Observe first that any (n1, . . . , nk) ∈ N[k] can be presented as the image
of 1n for a certain n. So our map is uniquely determined on the elements 1n:
if for a pointed map f : [n]→ [k] we have f(1n) = (n1, . . . , nk) then we must
have

φ(n1, . . . , nk) = f(wn).

Hence we only have to show that φ is well defined by the formula above.
First of all, for a given k-tuple (n1, . . . , nk) ∈ N[k] there is a minimal

n such that 12n maps to (n1, . . . , nk) . Obviously n is the minimal natural
number such that 2n ≥

∑k
i=1 ni. Of course there are many ways of mapping

12n to (n1, . . . , nk) but all of them give the same definition of φ(n1, . . . , nk)
because of condition 2 of Definition 2.1.

Assume now that g(12m) = (n1, . . . , nk) for a certain map g with n < m.
Then it is easy to see that g factors through 12n . Hence our proof that φ is
well defined will be finished if we show:

Lemma 2.2.1. For any k, w2k maps to w2k−1 under any map f which
satisfies f(12k) = 12k−1.

Proof of 2.2.1. Assume first that f takes the last 2k−1 coordinates to
zero. In other words, using the fact that

[2k] = [2k−1] ∧ [2]
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we can write
f = Id[2k−1] ∧ p2

2.

Then

f(w2k
) = f(w2k−1 · w) = (Id[2k−1] ∧ p2

2)(w
2k−1 · w) = w2k−1 · 1 = w2k−1

.

Now observe that, by condition 2, it is enough to consider maps like f
above. Any other f ′ which takes 12k to 12k−1 differs from f by the action of
an element from Σ2k .

We will finish the proof of the theorem if we show that the map φ ob-
tained above is multiplicative. To check this observe first that if f(12n) =
(n1, . . . , nk) and g(12m) = (m1, . . . ,ml) then (f ∧ g)(12n · 12m) =
(f ∧ g)(12n+m) = (n1, . . . , nk)(m1, . . . ,ml) as elements of HN[kl]. Further,

φ((n1, . . . , nk) · (m1, . . . ,ml)) = φ(f ∧ g(12n+m)) = f ∧ gφ(12n+m)
= f ∧ g(wn · wm) = f(wn) · g(wm)
= φ(f(12n)) · φ(g(12m))
= φ(n1, . . . , nk) · φ(m1, . . . ,ml),

and the proof is finished.
We will come to the issue when two formal sum laws give homotopic

maps later in a more general setting. From the proof of Theorem 2.2 it is
easy to derive the following observation:

Remark 2.3. Our assumption that R is discrete is not important. We
could define a formal sum law in R as a 0-simplex of R[2] and the rest would
go through by the same arguments.

3. Multiplicative maps from HZ to a discrete Γ -ring R. Now we
turn to multiplicative maps HZ→ R. We would like to define formal group
laws in this situation in such a way that we get the same statement as in 2.2.
But first of all let us identify the complications which occur when we allow
negative coordinates in our Γ -ring. The problem is that for an arbitrary
Γ -ring R there is no natural way of defining maps coming from multiplying
one “variable” by −1. That was not a problem in the case of DB. More
generally this is not a problem in the case of any Γ -ring coming from the
composition of functors

T ◦ L : Γ op → Sets∗

where L is the linearization functor from sets to the category Bfree of free
modules over some ring B, and T : Bfree → Sets∗. We plan to study such
situations in another paper; now we would like to define the formal group
law in full generality overcoming the difficulty described above.
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Before the definition we have to describe a particular type of action of
Σ2k−1 × Σ2k−1 on F [2k] for any Γ -space F . This action will be called spe-
cial later on. For any k, let ±1k := (1,−1)k ∈ HZ[2k]. Our convention on
ordering smash products of pointed sets yields a splitting [2k] = A+ ∨ A−
according to the rule that (1,−1)k has 1 at the coordinates from A+ and
−1 at A−. In a more formal way we can say that an element i ∈ {1, . . . , 2k}
belongs to A+ if and only if the binary expansion of i−1 has an even number
of digits “1”. There is also a “coordinate-free” way of describing the splitting.
If we identify the set [2k] with the set of subsets of {1, . . . , k} then A+ (resp.
A−) consists of sets of even (resp. odd) order.

The special action of Σ2k−1 × Σ2k−1 on F [2k] is defined as follows: if
a × b ∈ Σ2k−1 × Σ2k−1 then a permutes the coordinates from A+ and b
permutes the remaining coordinates. Let σ be the nontrivial element of Σ2.

Definition 3.1. A formal difference law in a Γ -ring R is an element
r ∈ R[2] with the following properties:

1. p2
2(r) = 1, s21,2,1(r) = 0,

2. p2
1(r)r = rp2

1(r) = σ(r) in R[2],
3. any power rk ∈ R[2k] is fixed under the special action of Σ2k−1×Σ2k−1 ,
4. for any k , i < j and l such that i ∈ A+ and j ∈ A− or j ∈ A+ and
i ∈ A− we have

s2
k

i,j,l(r
k) = d2k−1

l p2k−1
i p2k

j (rk).

Observe first that p2
1(r) plays the role of −1 in R[1] because

(p2
1(r))

2 = (p2
1 ∧ p2

1)(r
2) = (p2

1 ∧ p2
1) ◦ τ)(r2) = (p2

2 ∧ p2
2)(r

2) = (p2
2(r))

2 = 1

where τ is the special permutation in Σ2 × Σ2 given by the transposition
(1, 4). We can now compare our new definition with the results and defi-
nitions from Section 2. We check that if r is a formal difference law in a
Γ -ring R then w = p3

2 ◦ p4
2(r

2) ∈ R[2] is a formal sum law in the sense of
Definition 2.1. Indeed,

p2
2(w) = p2

2 ∧ p2
2(r

2) = (p2
2(r))

2 = 1

and similarly
p2
1(w) = p2

1 ∧ p2
1(r

2) = (p2
1(r))

2 = 1.

Moreover
σ(w) = p3

2 ◦ p4
2(τ(r

2)) = p3
2 ◦ p4

2(r
2)

and hence w is fixed under the action of Σ2. Let p denote p3
2 ◦ p4

2. By natu-
rality of the smash product and multiplication maps we have the following
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commutative diagram:

R[4] ∧R[4] //

��

R[16]

��
R[2] ∧R[2] // R[4]

where the left vertical arrow is given by p ∧ p and the horizontal arrows are
multiplication maps. Then the right vertical map is defined by the set map
which takes four elements of A+ bijectively to nonzero elements of [4] and the
remaining elements of [16] to 0. Hence the action of any permutation from
Σ4 on w∧w lifts to the special permutation acting on R[16]. This argument
generalizes easily to higher degrees because p∧k maps bijectively 2k elements
of A+ ⊂ [4k] to nonzero elements of [2k] and has value 0 elsewhere.

Thinking about our definition as if it were the definition of a formal
group law in the ordinary sense we can give an interpretation of most of
the structure described in 3.1. The element p2

1(r) plays the role of −1 in
the “commutative group structure” defined by r. Hence it commutes “with
other elements”. Condition 1 is always included in the general definition of a
formal group law. The same can be said about condition 3—in the classical
case of formal power series this kind of invariance property is indirectly in
the definition of a formal group law.

Condition 4 is new and makes the situation technically more complicated.
It is hard to attach an abstract meaning to it. This condition is strongly re-
lated to the fact that 1 + (−1) = 0 in Z, which is a very additive condition,
having no meaning in the structure of an arbitrary Γ -ring. The simplest
explanation which one can imagine for the need of condition 4 is the follow-
ing: this condition is an extension of the second formula from condition 1
to higher degrees, which is needed when we face the lack of additivity. The
good news is that condition 4 is often satisfied in interesting cases, namely
in Γ -rings coming from algebraic theories. This is the case of the Γ -ring DB.
We are not going to define here what an algebraic theory is and what is the
definition of a Γ -ring associated to it. Instead we refer the interested reader
to [S3, Section 2].

Remark 3.2. Let T s be a Γ -ring associated to the algebraic theory T .
Then condition 4 of 3.1 is satisfied for T s as a consequence of condition 1.

Proof (sketch). We will follow [S2, Section 2] without further explana-
tions. Observe first that condition 4 for k = 1 is equivalent to the sec-
ond equality of condition 1 and hence is satisfied. By definition T s[n] =
homT ([n], [1]) and the multiplication

T s[n] ∧ T s[m]→ T s[nm]
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is obtained from composition. This means that we can write it as

α ∧ β 7→ β ◦ (α, . . . , α)

with our convention of identifying [n] ∧ [m] with [nm]. So in the notation
above rk = rk−1 ◦ (r, . . . , r) and the value of the map s2

k

i,j,l on rk is the
same as if we apply s21,2,1 to one of the r’s in the bracket, by naturality and
condition 3. So

s2
k

i,j,l(r
k) = rk−1 ◦ (r, . . . , r, 0, r, . . . , r) = d2k−1

l p2k−1
i p2k

j (rk).

Definition 3.3. A homomorphism a : r1 → r2 of formal difference laws
in R is an element a ∈ R[1] satisfying ar1 = r2a. An invertible homomor-
phism is called an isomorphism. An isomorphism is called strict if it maps
to the unit component of R under the map R[1]→ π0R.

Perhaps for completeness it is worth recalling here the definition of the
map R[1] → π0R. According to [S3, Lemma 1.2], π0R can be presented as
the cokernel of the map

Z̃p2
2 + Z̃p2

1 − Z̃s21,2,1 : Z̃[R[2]]→ Z̃[R[1]].

Then our map can be described as an embedding of generators composed
with the quotient map described above.

Theorem 3.4. Let R be a discrete Γ -ring. Then every formal difference
law in R determines a multiplicative map φ : HZ→ R.

Proof. Let r be a formal difference law in R. We show that ±1n 7→ rn

defines the desired map.
Observe first that any (n1, . . . , nk) ∈ Z[k] can be presented as the image

of ±1n for a certain n. Hence our map is uniquely determined on elements
±1n and we only have to show that φ is well defined.

We would like to follow the proof of 2.2 but the situation is different
now. The proof of 2.2 was based on the fact that (n1, . . . , nk) ∈ N[k] was
the image of 1n in a unique way up to a permutation which acted trivially
on the corresponding power of r. This is not the case now: 1 and −1 from
different coordinates in Z[k] can cancel either by mapping coordinates to the
basepoint or by the summing map. In the case of the proof of 2.2 we had
only to consider the first possibility.

First of all, as previously, for a given k-tuple (n1, . . . , nk) ∈ Z[k] there is
a minimal n such that ±1n maps to (n1, . . . , nk) by a map f ′. We can assume
that no ni is zero. There is a special permutation σ such that f = f ′◦σ takes
the first |n1| coordinates in σ((±1)k) with the same sign as n1 to n1, the
next |n2| coordinates with correct signs to n2 and so on. Let Nk =

∑k
i=1 |ni|.

Then all ones and minus ones on the other n−Nk coordinates have to cancel
to zero. Assume that a < b and we have 1 on the ath coordinate and −1 on
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the bth and they add to 0. Then obviously f = f ◦ d2n

b ◦ s2
n

a,b,a as maps of
pointed sets and we can iterate this process composing with more pairs of
maps d2n

∗ ◦ s2
n

∗,∗,∗. But by condition 4 we have

f(rn) = f ◦ d2n

b ◦ s2
n

a,b,a(r
n) = f ◦ d2n

b ◦ d2n−1
a ◦ p2n−1

a ◦ p2n

b (rn).

Hence the value of f on rn is the same as the value of a map which takes a
and b to the basepoint. Iterating this process we obtain

Lemma 3.4.1. Let g : [2n] → [k] be a map which agrees with f on the
Nk elements chosen as described above and takes the rest to the base point.
Then

f(rn) = g(rn).

Hence our map φ is well defined. Whichever map f taking ±1n to
(n1, . . . , nk) we use, it will have the same value on rn as the map g from
3.4.1. Checking that if f(±1n) = (n1, . . . , nk) = h(±1l) then the two defini-
tions of φ(n1, . . . , nk) agree goes essentially as in the proof of 2.2 and is left
to the reader. Similarly one can show the multiplicativity of φ.

Remark 3.5. Any multiplicative map φ : HZ→ R determines a formal
difference law in R, given by r = φ(±12). Hence the set of formal difference
laws in R is in natural bijection with the set of multiplicative maps HZ→ R.

We now show how our definition works in known cases, for example in the
case of the spectrum DB. In Section 2 we mentioned that every formal sum
law in DB determines a formal group law in the ordinary sense. Observe now
that a formal difference law r ∈ R[2] in the sense of Definition 3.1 determines
its sum version w ∈ R[2] by the formula

w = p3
2 ◦ p4

2(r
2).

Moreover the map HN→ R defined by w factors through the map HZ→ R
defined by r.

As another example we consider the case of the endomorphism Γ -ring.
This notion is probably less known so we sketch the definition following [S1,
13.3].

Example. Let C be a category with a 0-object and finite coproducts.
The natural enrichment of C over Γ op is given by

X ∧ [k] = X t · · · tX (k-fold coproduct).

For every object X in C the endomorphism Γ -ring denoted by EndC(X) is
defined by

EndC(X)([k]) = HomC(X,X ∧ [k]).

The unit map S→ EndC(X) comes from the identity map in EndC(X)([1]).
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Multiplication is induced by the composition product

EndC([k])(X) ∧ EndC(X)([l])→ EndC(X)([k] ∧ [l]),
f ∧ g 7→ (f ∧ [l]) ◦ g.

As Schwede points out, every abelian cogroup object structure on X deter-
mines a map HZ→ EndC(X) defined as follows. The map

HZ([k]) = Z̃[k]→ HomC(X,X ∧ [k])

is an additive extension of the map which sends i ∈ [k] to the ith coproduct
inclusion X → X t · · · tX.

Observe now that every formal difference law r ∈ EndC(X)[2] =
HomC(X,XtX) defines an abelian cogroup structure on X. The co-addition
is given by a sum version of r,

p3
2 ◦ p4

2(r
2) ∈ HomC(X,X tX).

It is abelian because of the invariance of formal sum laws under permu-
tations. For the same reason the associativity condition is fulfilled. The
co-inverse is given by p2

1(r) ∈ EndC(X)([1]) = HomC(X,X). The co-unit
equals s21,2,1(r) ∈ EndC(X)([1]) = HomC(X,X). The map HZ → EndC(X)
described by Schwede (and recalled above) agrees with the one obtained by
Theorem 3.4 from r.

We suggest that the reader works out by himself how our theory works
in the case of matrix Γ -rings (see [S1, 13.5]). Below we come back to the
question when two formal difference laws define homotopic maps HZ→ R.

Theorem 3.6. Two strictly isomorphic formal difference laws determine
homotopic maps in the space of maps HZ→ R.

Recall that if a ∈ R[1] then multiplication by a on the left or on the right
determines the map ma : R→ R. Because left and right multiplications are
formally the same we will assume that ma comes from multiplication on the
left. Theorem 3.6 follows easily from the following lemma.

Lemma 3.7. Assume that a, b ∈ R[1] determine the same element in
π0(R) under the obvious map R[1] → R. Then the multiplication maps ma

and mb are homotopic.

Proof. The conclusion follows directly from the definitions if one carefully
examines what it means that a ∈ R[1] determines an element in π0(R).
Observe that choosing a ∈ R[1] we uniquely choose a map fa : S→ R: it is
fully described on the set [1] where we put S[1] 3 1 7→ a ∈ R[1]. In higher
degrees our map is determined by this data because every i ∈ S[n] can be
viewed as the image of the map [1]→ [n] taking 1 to i.

Moreover observe that on the set [1] our map can be described as the
unit map η multiplied on the left by a. By naturality of the multiplication
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map, fa is equal to η composed with the left multiplication by a. Observe
now that we can decompose ma as

R→ S ∧R→ R ∧R→ R

where the first map is an isomorphism, the second is fa ∧ id and the third is
given by the multiplicative structure µ of the Γ -ring R.

Now we can come back to the proof of 3.7. By assumption, fa and fb

determine homotopic maps of spectra. Therefore fa ∧ id is homotopic to
fb ∧ id and hence ma and mb give homotopic maps of spectra.

Let us come back to the proof of 3.6. We know that r1 and r2 are strictly
isomorphic, and the isomorphism is given by an invertible element a ∈ R[1].
Let φ1, φ2 denote the maps HZ→ R determined by r1, r2 respectively. Then

φ2 = ma−1 ◦ φ1 ◦ma.

By assumption, ma and ma−1 are homotopic to m1, hence to the identity
map. This finishes the proof of 3.6.

The referee suggested the following interesting generalization of the con-
siderations above to the case when R is not discrete. For every natural n,
the nth simplicial degree of R[K] assemble to a discrete Γ -ring Rn. Hence,
in the case of R not discrete, we can talk about the simplicial set FDL(R)
of formal difference laws in R which in degree n has the set of formal dif-
ference laws in Rn. Similarly we can consider the simplicial set Γ (HZ, R)
of multiplicative maps from HZ to R which in degree n has the set of such
maps to Rn. Then Theorem 3.6 can be stated as

Theorem 3.8. The simplicial sets FDL(R)∗ and Γ (HZ, R)∗ are natu-
rally isomorphic.

Moreover one can take into account the action of the invertible elements
of R[1]. Let Gn be the group of invertible elements in Rn[1]. They assemble
to a simplicial group G∗ and this simplicial group acts on both simplicial
sets from 3.8 by conjugation. With this structure in mind we can generalize
3.6 to.

Theorem 3.9. The homotopy orbit sets FDL(R)hG∗ and Γ (HZ, R)hG∗

are isomorphic.

Now we would like to comment a little on the homotopical meaning of
our constructions. As one can see, the proof of 3.6 was derived directly from
the definitions. But of course we would like to know whether two strictly
isomorphic formal difference laws define homotopic maps in the space of
multiplicative maps from HZ→ R or, equivalently, the same element in the
0th homotopy group of the space of multiplicative maps HZ→ R as in [S1].
The answer here is not easy to achieve or even to conjecture. Our construc-
tions depended heavily on the small model of HZ which is not cofibrant.
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Schwede’s homotopical calculations were possible also because of the defini-
tion of DB-spectrum and its closed relations to symmetric algebra. With the
lack of these structures we can only propose the following weak homotopical
statement:

Proposition 3.10. Let r1 and r2 be two strictly isomorphic formal
difference laws in a Γ -ring R. There exists a weak equivalence of Γ -rings
h : R → R3 such that the maps defined by r1 and r2 composed with h are
homotopic in the space of multiplicative maps HZ→ R3.

Proof. We will be sketchy here because the proof is taken directly from
[S1]. For any Γ -ring R, the invertible elements in R[1] which map to the unit
component of R form a group G which acts by conjugation on R[2] and in
general on R. Two formal group laws r1, r2 ∈ R[2] are strictly isomorphic
if they are in the same orbit of this action. Our problem would be solved
if we could extend this conjugation action to the action of the whole unit
component of R.

Following [S1, Section 3] we first choose Rf to be a stably fibrant re-
placement of R in a correct model category structure. Then we define the
homotopy units R∗ as the union of the invertible components of the simpli-
cial monoid Rf [1]. We have π0R

∗ = units(π0R) and πiR
∗ = πiR for i ≥ 1.

The stable equivalence R → Rf gives a homomorphism φ : G → Rf [1] of
simplicial monoids with image in R∗. We want to extend the conjugation
action of G to R∗. The problem is that the conjugation action uses strict
inverses while R∗ is only a group-like simplicial monoid. Getting around this
difficulty goes in several steps (see [S1, Section 4] for the details).

Step 1. We factor the map G→ R∗ into G→ cR∗ → R∗ in the correct
model category structure of simplicial monoids where the first map is a
cofibration and the second an acyclic fibration. Let UR∗ denote the group
completion of cR∗. Then UR∗ is a simplicial group and Lemma 4.3 of [S1]
tells us that cR∗ → UR∗ is a weak equivalence.

Step 2. Let S[cR∗] be the monoid Γ -ring with coefficients in the sphere
spectrum. We take the obvious map S[cR∗]→ Rf and factor it in the model
category of Γ -rings as a cofibration followed by an acyclic fibration

S[cR∗]→ R1 → Rf .

Then we define another Γ -ring R2 as a pushout, in the category of Γ -rings,
of

S[cR∗] //

��

R1

��
S[UR∗] // R2
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Lemma 4.4 of [S1] tells us that the map R1 → R2 is a stable equiva-
lence.

Step 3. Now we define R3 to be a stably fibrant replacement of R2.
The induced map S[UR∗] → R3 induces a weak equivalence between UR∗

and the invertible components of R3[1]. The simplicial group UR∗ acts by
conjugation on R3 via homomorphisms of Γ -rings and this action extends
the action of G.

Final remark. Of course it is tempting to speculate that the weak ho-
motopy type of the full space of multiplicative maps HZ → R should be
described via the classifying space of the groupoid of formal difference laws
and strict isomorphism, as is proved in [S1] in the case of the spectrum DB.
So far we do not see how to attack this problem in full generality.
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