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Countable produ
ts of spa
es of �nite setsbyAntonio Avilés (Mur
ia)
Abstra
t. We 
onsider the 
ompa
t spa
es σn(Γ ) of subsets of Γ of 
ardinality atmost n and their 
ountable produ
ts. We give a 
omplete 
lassi�
ation of their Bana
hspa
es of 
ontinuous fun
tions and a partial topologi
al 
lassi�
ation.For an in�nite set Γ and a natural number n, we 
onsider the spa
e

σn(Γ ) = {x ∈ {0, 1}Γ : |supp(x)| ≤ n}.Here supp(x) = {γ ∈ Γ : xγ 6= 0}. This is a 
losed, hen
e 
ompa
t subset of
{0, 1}Γ , whi
h is identi�ed with the family of all subsets of Γ of 
ardinalityat most n. In this work we will study the spa
es whi
h are 
ountable prod-u
ts of spa
es σn(Γ ), mainly their topologi
al 
lassi�
ation as well as the
lassi�
ation of their Bana
h spa
es of 
ontinuous fun
tions.Let T be the set of all sequen
es (τn)∞n=1 with 0 ≤ τn ≤ ω. When τ runsover T , στ (Γ ) =

∏∞
n=1 σn(Γ )τn runs over all �nite and 
ountable produ
tsof spa
es σk(Γ ). For τ ∈ T we will denote by j(τ) the supremum of all nwith τn > 0, and by i(τ) the supremum of all n with τn = ω. If τn < ω forall n ≥ 1, then i(τ) = 0. Always 0 ≤ i(τ) ≤ j(τ) ≤ ω. Theorem 1 belowsummarizes our knowledge about the topologi
al 
lassi�
ation and its proof
onsists of a number of lemmas given in Se
tion 2.Theorem 1. Let τ, τ ′ ∈ T and Γ an un
ountable set.(1) Suppose j(τ) < ω. In this 
ase, στ ′(Γ ) is homeomorphi
 to στ (Γ ) ifand only if i(τ) = i(τ ′) and τn = τ ′n for all n > i(τ).(2) Suppose i(τ) = ω. In this 
ase, if i(τ ′) = ω, then στ (Γ ) is homeo-morphi
 to στ ′(Γ ).2000 Mathemati
s Subje
t Classi�
ation: 46B50, 46B26, 54B10, 54D30, 46B03.Key words and phrases: uniform Eberlein 
ompa
t, regular averaging operator, 
ount-able produ
t.This resear
h was partially supported by the grant BFM2002-01719 of MCyT (Spain)and a FPU grant of MEC (Spain). [147℄



148 A. AvilésThis is not a 
omplete 
lassi�
ation and leaves the following questionopen:Problem 1. Let Γ be an un
ountable set and τ, τ ′ ∈ T su
h that j(τ ′) =
j(τ) = ω, i(τ) < ω and there exists some n ≥ i(τ) with τn 6= τ ′n. Is στ (Γ )homeomorphi
 to στ ′(Γ )?For example, one parti
ular instan
e of the problem is whether ∏∞

i=1σi(Γ )is homeomorphi
 to ∏∞
i=2 σi(Γ ).About the spa
es of 
ontinuous fun
tions, it has re
ently been provedby Mar
iszewski [6℄ that a Bana
h spa
e C(K) (K a 
ompa
t spa
e) isisomorphi
 to c0(Γ ) if and only ifK ⊂ σn(Γ ) for some n < ω. This is the 
aseof any 
ompa
t spa
e of the form K =

∏n
i=1 σki

(Γ ) whi
h 
an be embeddedinto σ∑

ki
(
⋃n

i=1 Γ × {i}) by x 7→
⋃n

i=1 xi × {i}. Hen
e, it is a 
onsequen
eof Mar
iszewski's result that the Bana
h spa
es of 
ontinuous fun
tions over�nite produ
ts of spa
es σk(Γ ) over a �xed Γ are all isomorphi
. In Se
tion 1we prove a similar result for 
ountable produ
ts:Theorem 2. Let Γ be an in�nite set and (kn) be any sequen
e of posi-tive integers. Then the Bana
h spa
es C(
∏

n<ω σkn
(Γ )) and C(σ1(Γ )ω) areisomorphi
.The te
hniques that we will use are based on the use of regular averagingoperators and the so 
alled Peª
zy«ski's de
omposition method, developedin [8℄ and [9℄ in order to prove Milyutin's result that the spa
es of 
ontinuousfun
tions over un
ountable metrizable 
ompa
ta are all isomorphi
.Definition 3. Let φ : L→ K be a 
ontinuous surje
tion between 
om-pa
t spa
es. A regular averaging operator for φ is a bounded positive linearoperator T : C(L) → C(K) with T (1L) = 1K and T (x ◦ φ) = x for all

x ∈ C(K).The 
ountable produ
ts of spa
es of the form σn(Γ ) are uniform Eberlein
ompa
t spa
es (
f. [3℄). This 
lass 
onsists of all weakly 
ompa
t subsets ofHilbert spa
es, or equivalently of all 
ompa
t subsets of the spa
es
B(Γ ) =

{

x ∈ [−1, 1]Γ :
∑

γ∈Γ

|xγ | ≤ 1
}

∼ (Bℓ2(Γ ), w)

for some set Γ . Indeed, σn(Γ ) is homeomorphi
 to B(Γ ) ∩ {0, 1/n}Γ . Weestablish the following result:Theorem 4. Let K be a uniform Eberlein 
ompa
t spa
e of weight κ.Then there is a 
losed subspa
e L of σ1(κ)
N and an onto 
ontinuous map

f : L→ K whi
h admits a regular averaging operator.This improves a result of Argyros and Arvanitakis [1℄ that for everyuniform Eberlein 
ompa
t spa
e K there is a totally dis
onne
ted uniform



Spa
es of �nite sets 149Eberlein 
ompa
t spa
e L of the same weight and a 
ontinuous surje
tion
f : L → K whi
h admits a regular averaging operator, and also a result ofBenyamini, Rudin and Wage [2℄ that every uniform Eberlein 
ompa
t spa
eof weight κ is a 
ontinuous image of a 
losed subset of σ1(κ)

N. We note thatthere are many totally dis
onne
ted uniform Eberlein 
ompa
t spa
es whi
h
annot be embedded into σ1(κ)
N (
f. Lemma 12 below).

Notations. All topologi
al spa
es will be assumed to be 
ompletelyregular. By identifying elements of {0, 1}Γ with subsets of Γ , the spa
e
σn(Γ ) ⊂ {0, 1}Γ 
an be viewed as the family of all subsets of Γ of 
ar-dinality less than or equal to n, endowed with the topology whi
h has a basethe sets of the form

ΦG
F = {y ∈ σn(Γ ) : F ⊂ y ⊂ Γ \G}for F and G �nite subsets of Γ . We will denote by p : σ1(Γ )k → σk(Γ ) the
ontinuous surje
tion given by
p(x1, . . . , xk) = x1 ∪ · · · ∪ xk.Note that from the existen
e of su
h a fun
tion it follows that any 
ountableprodu
t ∏

i<ω σki
(Γ ) is a 
ontinuous image of σ1(Γ )ω. We will also write

B+(Γ ) = B(Γ ) ∩ [0, 1]Γ .1. Bana
h spa
e 
lassi�
ation. The following Theorem 5 is the keyresult of this se
tion. A somewhat similar fa
t 
an be found in [10℄, namelythat the natural surje
tion K2 → exp2(K) = {{x, y} : x, y ∈ K} given by
(x, y) 7→ {x, y} has a regular averaging operator.Theorem 5. The map p : σ1(Γ )k → σk(Γ ) admits a regular averagingoperator.Proof. For every y ∈ σk(Γ ) denote by L(y) the subset of p−1(y) 
onsist-ing of all (x1, . . . , xk) ∈ p−1(y) su
h that xi ∩ xj = ∅ for i 6= j (that is, L(y)
onsists of those tuples of p−1(y) in whi
h no singleton appears twi
e).The regular averaging operator T : C(σ1(Γ )k) → C(σk(Γ )) is de�ned asfollows:

T (f)(y) =
1

|L(y)|

∑

x∈L(y)

f(x).

The only di�
ult point is to prove that T (f) is a 
ontinuous fun
tion when-ever f is 
ontinuous. So �x f ∈ C(σ1(Γ )k) and a point y ∈ σk(Γ ) and ε > 0.For ea
h x = (x1, . . . , xk) ∈ L(y), sin
e f is 
ontinuous at x, there is aneighborhood Ux of x in σ1(Γ )k for whi
h supx′∈Ux
|f(x) − f(x′)| < ε. Theset Ux must 
ontain a basi
 neighborhood of x of the form

Φ
Gx

1
x1 × · · · × Φ

Gx
k

xk
⊂ Ux



150 A. Aviléswhere Gx
i is a �nite subset of Γ disjoint from xi. We de�ne a neighborhoodof y as

V = Φ

⋃

x∈L(y)

⋃k
i=1 Gx

i \y
yand we shall see that |T (f)(y) − T (f)(y′)| < ε for every y′ ∈ V . So we �x

y′ ∈ V (in parti
ular y ⊂ y′). First, we de�ne an onto map r : L(y′) → L(y)in the following way: if (x1, . . . , xk) ∈ L(y′) then r(x) = (r(x)1, . . . , r(x)k)where r(x)i = xi ∩ y. It is straightforward to 
he
k that all the �bers of rhave the same 
ardinality, say n = |r−1(x)|, so that |L(y′)| = n|L(y)|.The key fa
t (used in the �nal inequality below) is that if x ∈ L(y) and
x′ ∈ r−1(x), then x′ ∈ Ux. To see this, take x = (x1, . . . , xk) ∈ L(y) and
x′ = (x′1, . . . , x

′
k) ∈ r−1(x). We 
he
k that x′i ∈ Φ

Gx
i

xi . If x′i ⊂ y then x′i = xi.If x′i = {γ} ⊂ y′ \ y then xi = ∅ and sin
e y′ ∈ V , we have γ 6∈ Gx
i and again

x′i ∈ Φ
Gx

i
xi . Finally,

|T (f)(y′) − T (f)(y)| =

∣

∣

∣

∣

1

|L(y′)|

∑

x′∈L(y′)

f(x′) −
1

|L(y)|

∑

x∈L(y)

f(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

1

|L(y′)|

∑

x∈L(y)

∑

x′∈r−1(x)

f(x′) −
1

|L(y)|

∑

x∈L(y)

f(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

1

n|L(y)|

∑

x∈L(y)

∑

x′∈r−1(x)

f(x′) −
1

|L(y)|

∑

x∈L(y)

f(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

1

|L(y)|

∑

x∈L(y)

((

1

n

∑

x′∈r−1(x)

f(x′)

)

− f(x)

)∣

∣

∣

∣

=

∣

∣

∣

∣

1

|L(y)|

∑

x∈L(y)

(

1

n

∑

x′∈r−1(x)

(f(x′) − f(x))

)∣

∣

∣

∣

≤
1

|L(y)|

∑

x∈L(y)

(

1

n

∑

x′∈r−1(x)

|f(x′) − f(x)|

)

<
1

|L(y)|

∑

x∈L(y)

(

1

n

∑

x′∈r−1(x)

ε

)

= ε.

Lemma 6. (a) Let g : L→ K be a 
ontinuous surje
tion between 
ompa
tspa
es whi
h admits a regular averaging operator and let M be a
losed subset of K. Then the restri
tion g : g−1(M) →M also admitsa regular averaging operator [1, Proposition 18℄.(b) Let {gi : Li → Ki} be a family of 
ontinuous surje
tions between
ompa
t spa
es whi
h admit regular averaging operators. Then theprodu
t map ∏

gi :
∏

Li →
∏

Ki also admits a regular averagingoperator [9, Proposition 4.7℄.



Spa
es of �nite sets 151Proof of Theorem 4. Observe that the spa
e B(Γ ) 
an be embedded into
B+(Γ × {a, b}) ∼ B+(Γ ) by the map u(x)γ,a = max(0, xγ) and u(x)γ,b =
max(0,−xγ). This allows us to 
onsiderK as a subset of B+(Γ ) with |Γ | = κ.Let φ : {0, 1}ω → [0, 1] be given by φ(x) =

∑

rixi where ri = 1
3

(

2
3

)i.It is proven in [1℄ that φ admits a regular averaging operator and hen
eby Lemma 6 also φΓ : {0, 1}ω×Γ → [0, 1]Γ and its restri
tion φΓ : L′ =
(φΓ )−1(K) → K admit a regular averaging operator. The spa
e L′ is asubspa
e of L0 = (φΓ )−1(B+(Γ )) with the following des
ription:

x ∈ L0 ⇔ φΓ (x) ∈ B+(Γ ) ⇔
∑

γ∈Γ

φΓ (x)γ ≤ 1

⇔
∑

γ∈Γ

∞
∑

n=0

rnx(γ,n) ≤ 1 ⇔
∞

∑

n=0

rnNn(x) ≤ 1,

where Nn(x) is the 
ardinality of supp(x|Γ×{n}). From this des
ription, ifMndenotes the integer part of r−1
n , then L′ ⊂ L0 ⊂

∏∞
n=1 σMn(Γ ). Theorem 5and Lemma 6(b) yield the existen
e of a 
ontinuous surje
tion g : σ1(Γ )ω →

∏∞
n=1 σMn(Γ ) whi
h admits a regular averaging operator. Making use ofLemma 6(a) we get a surje
tion g : L = g−1(L′) → L′ with a regularaveraging operator, and the 
omposition L→ L′ → K is the desired map.We shall now need the so 
alled Peª
zy«ski's de
omposition method,whi
h is used to establish the existen
e of isomorphisms between Bana
hspa
es. For Bana
h spa
es X and Y we shall write X|Y if there exists aBana
h spa
e Z su
h that X ⊕ Z is isomorphi
 to Y , brie�y X ⊕ Z ∼ Y .Also, Y = (X1 ⊕ X2 ⊕ · · · )c0 denotes the c0-sum of the Bana
h spa
es

X1, X2, . . . ,

Y =
{

y = (xn) ∈
∏

Xn : lim ‖xn‖ = 0
}

, ‖y‖ = sup
n

‖xn‖.Theorem 7 (
f. [9, �8℄). Let X and Y be Bana
h spa
es su
h that X|Y ,
Y |X and (X ⊕X ⊕ · · ·)c0 ∼ X. Then X ∼ Y .If there exists a surje
tion φ : L→ K with a regular averaging operator,then C(K)|C(L) (
f. [9℄). In parti
ular, if L ⊂ K is a retra
t of K, thenthe restri
tion operator is a regular averaging operator for the retra
tion.On the other hand, in order to guarantee the last hypothesis in Theorem 7we shall use the 
riterion of Lemma 8 below. For topologi
al spa
es Kn,
K1 ⊕K2 ⊕ · · · denotes the dis
rete topologi
al sum, while α(S) is the one-point 
ompa
ti�
ation of a lo
ally 
ompa
t spa
e S.Lemma 8. Let K be a 
ompa
t spa
e homeomorphi
 to α(K ⊕K ⊕ · · ·).Then (C(K) ⊕ C(K) ⊕ · · ·)c0 ∼ C(K).



152 A. AvilésProof. We apply Theorem 7 to X = (C(K) ⊕ C(K) ⊕ · · · )c0 and Y =
C(K). The only point is to 
he
k that X|Y . Let ∞ denote the in�nity pointof α(K ⊕ K ⊕ · · · ) ∼ K. Then X ∼ Y ′ = {f ∈ C(K) : f(∞) = 0} and
Y ∼ Y ′ ⊕ R.Proof of Theorem 2. Set K = σ1(Γ )ω and L =

∏

σkn
(Γ ). We applyTheorem 7 to X = C(K) and Y = C(L). First, we have already observedthat Theorem 5 and Lemma 6(b) imply the existen
e of a surje
tion f : K

→ L with a regular averaging operator, and hen
e C(L)|C(K). On the otherhand, K is a retra
t of L be
ause for any k, σ1(Γ ) is homeomorphi
 toa 
lopen subset of σk(Γ ), the family of all subsets whi
h 
ontain �xed ele-ments γ1, . . . , γk−1. Therefore C(K)|C(L). By Lemma 8, it only remains toshow that α(K⊕K⊕· · · ) ∼ K. For this, �x γ ∈ Γ and set, for n = 1, 2, . . . ,

Kn = {x ∈ K = σ1(Γ )ω : γ ∈ x1 ∩ · · · ∩ xn−1 \ xn}.The sets Kn are disjoint 
lopen sets homeomorphi
 to K, and K is the one-point 
ompa
ti�
ation of their union with in�nity point ({γ}, {γ}, . . .).2. Topologi
al 
lassi�
ation. This se
tion is devoted to the proof ofTheorem 1. Before entering it, we point out why we assume Γ to be un-
ountable. In the 
ountable 
ase, the reasonings below do not apply andthe situation is indeed 
ompletely di�erent. All perfe
t totally dis
onne
tedmetrizable 
ompa
t spa
es are homeomorphi
 [5, Theorem 7.4℄ and this im-plies that all 
ountable produ
ts of spa
es σk(ω) are homeomorphi
. The�nite produ
ts are 
ountable 
ompa
ta, whose topologi
al 
lassi�
ation isalso well known after the 
lassi
al paper [7℄: two of them are homeomor-phi
 if and only if they have the same Cantor�Bendixson derivation indexand the same 
ardinality of the last nonempty Cantor�Bendixson derivative.Straightforward 
omputations show that these two invariants for a �niteprodu
t ∏n
i=1 σki

(ω) take the values 1 +
∑n

i=1 ki and 1 respe
tively. Fromnow on, Γ will always be an un
ountable set.Lemma 9. If m < n then σm(Γ )× σn(Γ )ω is homeomorphi
 to σn(Γ )ω.Proof. We denote again by (X1 ⊕X2 ⊕ · · · ) the dis
rete topologi
al sumof the spa
es X1, X2, . . . and by αX the one-point 
ompa
ti�
ation of thelo
ally 
ompa
t spa
e X. Fix γ0, . . . , γn−1 ∈ Γ . We 
onsider the set L =
ω × {0, . . . , n − 1} endowed with the lexi
ographi
al order: (k, i) < (k′, i′)whenever either k < k′, or k = k′ and i < i′. For every (k, i) ∈ L we de�nea 
lopen subset of σn(Γ )ω as
A(k,i) = {x ∈ σn(Γ )ω : γi 6∈ xk, γi′ ∈ xk′ ∀(k′, i′) < (k, i)}

= {x ∈ σn(Γ )ω : γi 6∈ xk ⊃ {γ0, . . . , γi−1}, xj = {γ0, . . . , γn−1} ∀j < k}.



Spa
es of �nite sets 153Noti
e that A(k,i) is homeomorphi
 to σn−i(Γ )×σn(Γ )ω and that {Al : l ∈ L}
onstitutes a disjoint sequen
e of 
lopen subsets of σn(Γ )ω with the only limitpoint being the sequen
e ξ ∈ σn(Γ )ω 
onstantly equal to {γ0, . . . , γn−1}.Hen
e,
σn(Γ )ω ≈ α

(

⊕

l∈L

Al

)

≈ α
(

n−1
⊕

i=0

⊕

j<ω

(σn−i(Γ ) × σn(Γ )ω)
)

.

On the other hand, we 
an perform a similar de
omposition in σm(Γ )×
σn(Γ )ω, de�ning, for j < m and (k, i) ∈ L,

B′
j = {(y, x) ∈ σm(Γ ) × σn(Γ )ω : γj 6∈ y, {γ0, . . . , γj−1} ⊂ y},

B(k,i) = {(y, x) ∈ σm(Γ ) × σn(Γ )ω : γi 6∈ xk, γi′ ∈ xk′ ∀(k′, i′) < (k, i),

{γ0, . . . , γm−1} ⊂ y}.Again B′
j is homeomorphi
 to σm−j(Γ )×σn(Γ )ω, B(k,i) is homeomorphi
to σn−i(Γ ) × σn(Γ )ω and altogether they 
onstitute a disjoint sequen
e of
lopen sets with a unique limit point ({γ0, . . . , γm−1}, ξ) not belonging tothem, so

σm(Γ )× σn(Γ )ω ≈ α
(

⊕

l∈L

Bl ⊕
m−1
⊕

j=0

B′
j

)

≈ α
(

n−1
⊕

i=0

⊕

j<ω

(σn−i(Γ )× σn(Γ )ω)
)

.

Lemma 10. If m < n < ω then σm(Γ )ω × σn(Γ )ω is homeomorphi
 to
σn(Γ )ω.Proof. We have

σm(Γ )ω × σn(Γ )ω ≈ (σm(Γ ) × σn(Γ )ω)ω ≈ (σn(Γ )ω)ω ≈ σn(Γ )ω.Lemma 11. Let m1, . . . ,mr < n < ω and e1, . . . , er ≤ ω. Then the spa
e
∏r

i=1 σmi
(Γ )ei × σn(Γ )ω is homeomorphi
 to σn(Γ )ω.Proof. Follows from repeated appli
ation of Lemmas 9 and 10 above.From Lemma 11 it follows that any spa
e στ (Γ ) with i(τ) = ω is hom-eomorphi
 to σ(ω,ω,...)(Γ ) (be
ause we 
an substitute ea
h fa
tor σn(Γ )ω of

στ (Γ ) by the homeomorphi
 ∏

i≤n σi(Γ )ω), and this proves part (2) of The-orem 1. Lemma 11 also shows that the values τn for n < i(τ) are irrelevantto the homeomorphism 
lass of στ (Γ ). Hen
e, in order to prove part (1) ofTheorem 1 it remains to show that if j(τ) < ω and στ (Γ ) is homeomorphi
to στ ′(Γ ) then τn = τ ′n for all n > i(τ).We re
all that a family {Sη}η∈H of sets is a ∆-system if there is a set S(
alled the root of the ∆-system) su
h that Sη ∩ Sη′ = S for all η 6= η′. Wewill make use of the fa
t that any un
ountable family of �nite sets has anun
ountable subfamily whi
h is a ∆-system (
f. [4, Theorem 1.4℄ for κ = ωand α = ω1).



154 A. AvilésThe following lemma in
ludes as a parti
ular 
ase the fa
t that σn+1(Λ)does not embed into σn(Γ )ω. This fa
t, whose proof 
orresponds to Steps1�3 below, was shown to us by Witold Mar
iszewski, and it seems that itwas known to several people before.Lemma 12. If |Λ| > ω, n ≥ 0, k ≥ 0, then the spa
e σn+1(Λ)k+1 doesnot embed into σn(Γ )ω × σn+1(Γ )k.Proof. Suppose that there exists su
h an embedding.
Step 1. Passing to a suitable un
ountable subset of Λ, we 
an supposethat there is an embedding

φ : σn+1(Λ)k+1 → σn(Γ )m × σn+1(Γ )kfor somem < ω. To see this, let ϕ : σn+1(Λ)k+1 → σn(Γ )ω×σn+1(Γ )k be ouroriginal embedding. In this step, we shall denote an element x ∈ σn+1(Λ)k+1as x = (x0, . . . , xk). For ea
h λ ∈ Λ and every i ∈ {0, . . . , k} we �nd a 
lopensubset Ai
λ of σn(Γ )ω × σn+1(Γ )k whi
h separates the disjoint 
ompa
t sets

ϕ({x : λ ∈ xi}) and ϕ({x : λ 6∈ xi}). Asso
iated to Ai
λ we have a �nitesubset F i

λ ⊂ ω su
h that Ai
λ = σn(Γ )ω\F i

λ × Bi
λ with Bi

λ a 
lopen subset of
σn(Γ )F i

λ × σn+1(Γ )k. We 
hoose Λ′ to be an un
ountable subset of Λ su
hthat ⋃k
i=0 F

i
λ =

⋃k
i=0 F

i
λ′ = F for all λ, λ′ ∈ Λ′; in this 
ase the 
omposition

σn+1(Λ
′)k+1 →֒ σn+1(Λ)k+1 → σn(Γ )ω × σn+1(Γ )k → σn(Γ )F × σn+1(Γ )kis one-to-one. The reason is that if x, y ∈ σn+1(Λ

′)k+1 are di�erent thenthere exist i ∈ {0, . . . , k} and λ ∈ Λ′ su
h that λ ∈ xi but λ 6∈ yi (or vi
eversa). Then φ(x) ∈ Ai
λ and φ(y) 6∈ Ai

λ so either the 
oordinate of σn+1(Γ )kor some 
oordinate of F λ
i ⊂ F must be di�erent for φ(x) and φ(y).

Step 2. For i = 0, . . . , k and λ ∈ Λ we de�ne eλ
i ∈ σn+1(Λ)k+1 to be theelement whi
h has {λ} in 
oordinate i and ∅ in all other 
oordinates. Ea
h

φ(eλ
i ) will be of the form

φ(eλ
i ) = (xλ

i [1], . . . , xλ
i [m], xλ

i [m+ 1], . . . , xλ
i [m+ k])with xλ

i [j] ∈ σn(Γ ) if j ≤ m and xλ
i [j] ∈ σn+1(Γ ) if m < j ≤ m + k.Passing to a suitable un
ountable subset of Λ, we 
an assume that for every�xed i ∈ {0, . . . , k} and j ∈ {1, . . . ,m + k} the family {xλ

i [j] : λ ∈ Λ} is a
∆-system of root Ri[j] formed by sets of the same 
ardinality ci[j].
Step 3. We 
laim that for i = 0, . . . , n and j = 1, . . . ,m, the ∆-system

{xλ
i [j] : λ ∈ Λ} is 
onstant. Suppose the 
ontrary for some �xed i ≤ n and

j ≤ m. Then xλ
i [j] = R ∪ Sλ ∈ σn(Γ ) where R ∩ Sλ = ∅, Sλ 6= ∅, and

Sλ ∩ Sλ′

= ∅ for λ 6= λ′. We 
onsider the sets
Aλ = {y = (y[1], . . . , y[m+ k]) ∈ σn(Γ )m × σn+1(Γ )k : y[j] ⊃ Sλ}.
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es of �nite sets 155The Aλ's are neighborhoods of the φ(eλ
i )'s with the property that for every

F ⊂ Λ with |F | > n, ⋂

λ∈F Aλ = ∅ (be
ause for y in that interse
tion,
|y[j]| > n and y[j] ∈ σn(Γ )). Let ψ : σn+1(Λ) → σn+1(Λ)k+1 be the mapde�ned by ψ(x)i = x and ψ(x)i′(x) = ∅ if i′ 6= i. Then the (φψ)−1(Aλ)'sare neighborhoods of the {λ}'s in σn+1(Λ) with ⋂

λ∈F (φψ)−1(Aλ) = ∅ forevery F ⊂ Λ with |F | > n. This is a 
ontradi
tion sin
e su
h a familyof neighborhoods 
annot be found. Namely, take basi
 neighborhoods with
{λ} ∈ ΦGλ

{λ} ⊂ (φψ)−1(Aλ) and take Λ′ ⊂ Λ un
ountable with {Gλ : λ ∈ Λ′}a ∆-system of root R′. Then 
onstru
t indu
tively a �nite sequen
e F =
{λ1, . . . , λn+1} ⊂ Λ′\R′ su
h that λp 6∈

⋃

q<pGλq
and Gλp

∩{λ1, . . . , λp−1} =
∅ (noti
e that it is possible to 
hoose su
h a λp be
ause {λ1, . . . , λp−1} ∩
R′ = ∅ and hen
e there are only �nitely many Gλ's with λ ∈ Λ′ and Gλ ∩
{λ1, . . . , λp−1} 6= ∅). In this 
ase we have F ∈

⋂

λ∈F (φψ)−1(Aλ).
Step 4. Noti
e that for k = 0 we have already arrived at a 
ontradi
tionand the proof is 
omplete. When k > 0 we need some extra work. FromStep 3, we dedu
e that for ea
h i ∈ {0, . . . , k} there must exist j ∈{m + 1,

. . . ,m+ k} su
h that the family {xλ
i [j] : λ ∈ Λ} is a non
onstant ∆-system.Sin
e i runs through a set of k+1 elements and j through a set of k elements,there must exist two di�erent i, i′ ∈ {0, . . . , k} su
h that for the same j,

{xλ
i [j] : λ ∈ Λ} and {xλ

i′ [j] : λ ∈ Λ} are non
onstant ∆-systems. We assumethat ci[j] ≥ ci′ [j] (these numbers are de�ned in Step 2). Again, for λ ∈ Λ we
onsider the sets
Aλ = {(y[1], . . . , y[m+ k]) ∈ σn(Γ )m × σn+1(Γ )k : y[j] ⊃ xλ

i [j]},

A′
λ = {(y[1], . . . , y[m+ k]) ∈ σn(Γ )m × σn+1(Γ )k : y[j] ⊃ xλ

i′ [j]}.The Aλ's and the A′
λ's are neighborhoods of the φ(eλ

i )'s and the φ(eλ
i′)'srespe
tively with the property that

(∗) ∀λ ∈ Λ ∀F ⊂ Λ
(

|F | > n ∧ xλ
i [j] 6⊆

⋃

µ∈F

xµ
i′ [j]

)

⇒ Aλ∩
⋂

µ∈F

A′
µ = ∅.

That interse
tion is empty be
ause if y belongs to it, then
xλ

i [j] ∪
⋃

µ∈F

xµ
i′ [j] ⊂ y[j] ∈ σn+1(Γ )

and the set on the left, if xλ
i [j] 6⊆

⋃

µ∈F x
µ
i′ [j], has 
ardinality greater than

n+1, a 
ontradi
tion. Sin
e the ∆-systems are not 
onstant and ci[j] ≥ ci′ [j],it follows that if xλ
i [j] ⊆

⋃

µ∈F x
µ
i′ [j] holds, there must be some µ ∈ F and

γ ∈ xλ
i [j] su
h that γ ∈ xµ

i′ [j] \ Ri′ [j]. For a �xed λ there are only �nitelymany µ's with (xµ
i′ [j] \ Ri′ [j]) ∩ x

λ
i [j] 6= ∅. Hen
e for every λ, we 
an �nda 
o�nite subset Λλ of Λ su
h that the hypothesis xλ

i [j] 6⊆
⋃

µ∈F x
µ
i′ [j] ofstatement (∗) holds whenever F ⊂ Λλ. For short, we know that for every
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λ ∈ Λ there exists a 
o�nite subset Λλ of Λ su
h that

∀F ⊂ Λλ |F | > n ⇒ Aλ ∩
⋂

µ∈F

A′
µ = ∅.

This 
ontradi
ts the following lemma for Bλ = φ−1(Aλ) and B′
λ = φ−1(A′

λ):Lemma 13. For every λ ∈ Λ, let Bλ and B′
λ be neighborhoods of eλ

i and
eλ
i′ respe
tively in σn+1(Λ)k+1. Then there exists λ0 ∈ Λ and an in�nite set
S ⊂ Λ su
h that for every F ⊂ S with |F | = n+ 1,

Bλ0 ∩
⋂

µ∈F

B′
µ 6= ∅.

Proof. For a simpler notation, we will assume that i = 0 and i′ = 1.Noti
e that a basi
 
lopen subset ΦG
F of σn+1(Λ) is nonempty if and only if

F ∩G = ∅ and |F | ≤ n+ 1. Ea
h Bλ and ea
h B′
µ 
ontain basi
 
lopen setsof the form

Φ
Gλ

0

{λ} × Φ
Gλ

1

∅ × Φ
Gλ

2

∅ × · · · × Φ
Gλ

k

∅ ⊆ Bλ,

Φ
H

µ
0

∅ × Φ
H

µ
1

{µ} × Φ
H

µ
2

∅ × · · · × Φ
H

µ
k

∅ ⊆ B′
µ,with all Gλ

l and Hµ
l �nite subsets of Λ and λ 6∈ Gλ

0 and µ 6∈ Hµ
1 . First, we �nda 
ountably in�nite setM ⊂ Λ su
h that µ′ 6∈ Hµ

1 for all µ, µ′ ∈M . This 
anbe done as follows. We begin with an in�nite M1 ⊂ Λ su
h that the family
{Hµ

1 : µ ∈ M1} is a ∆-system of root R, and we set M2 = M1 \ R. Thenwe 
an �nd re
ursively a sequen
e (µp)p<ω ⊂ M2 su
h that µp 6∈
⋃

q<pH
µq

1and H
µp

1 ∩ {µ1, . . . , µp−1} = ∅. Next, we set M = {µp : p < ω}. Now, we
hoose λ0 6∈
⋃

µ∈M Hµ
0 and set S = {µ ∈ M : µ 6∈ Gλ0

1 }. Then λ0 and S areas desired. Namely, take F ⊂ S with |F | = n+ 1, and for every j = 0, . . . , kde�ne Ij = Gλ0
j ∪

⋃

µ∈F H
µ
j so that

Bλ0 ∩
⋂

µ∈F

B′
µ ⊃ Φ

I
µ
0

{λ0}
× Φ

I
µ
1

F ×
k

∏

j=2

Φ
I

µ
j

∅ .

On the one hand, ΦI
µ
0

{λ0}
6= ∅ be
ause we have 
hosen λ0 6∈

⋃

µ∈M Hµ
0 , so

λ0 6∈ Iµ
0 . On the other hand, ΦI

µ
1

F 6= ∅ be
ause, �rst, sin
e F ⊂ M and
µ′ 6∈ Hµ

1 for all µ, µ′ ∈ M , it follows that F ∩
⋃

µ∈F H
µ
1 = ∅, and se
ond,sin
e F ⊂ S, just by the de�nition of S, F ∩Gλ0

1 = ∅.Lemma 12 implies that j(τ) = j(τ ′) whenever στ (Γ ) = στ ′(Γ ), sin
e itshows that j(τ) = ω if and only if σn(Γ ) 
an be embedded into στ (Γ ) forall n < ω and, if this is not the 
ase, j(τ) is the greatest integer n for whi
h
σn(Γ ) embeds into στ (Γ ). Hen
e, in the situation of part (1) of Theorem 1,it happens that j(τ) = j(τ ′) = j and moreover that τn = τ ′n for all n ≥ j
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es of �nite sets 157sin
e, by Lemma 12 again, τj = τ ′j is the greatest integer k su
h that σj(Γ )kembeds into στ (Γ ) and of 
ourse, τn = τ ′n = 0 for all n > j. In order to �nishthe proof of part (1), we must 
he
k that i(τ) = i(τ ′) = i and that τk = τ ′kfor i < k < j. To see this, we shall look at embeddability of spa
es σn(Γ )kinto 
lopen subsets of στ (Γ ). For this purpose, we observe that it is enoughto look at some basi
 family of 
lopen sets, if the others are their unions:Lemma 14. Let X be a 
ompa
t spa
e and C1, . . . , Ct open subsets of
X. If σn(Λ)k embeds into ⋃t

i=1Ci, then there exists i ≤ t su
h that σn(Λ)kembeds into Ci.Proof. It redu
es to proving that whenever we express σn(Λ)k as a unionof open sets as
σn(Λ)k = C1 ∪ · · · ∪ Ctthen some Ci must 
ontain a 
opy of σn(Λ)k. Pi
k i ∈ {1, . . . , t} su
h that

x0 = (∅, . . . , ∅) ∈ Ci. There are �nite subsets G1, . . . , Gk of Λ su
h that
x0 ∈ ΦG1

∅ × · · · × ΦGk

∅ ⊂ Ci.This �nishes the proof be
ause ΦG1

∅ ×· · ·×ΦGk

∅ is homeomorphi
 to σn(Λ)k.Let now K =
∏

s∈S σns(Γ ) be any �nite or 
ountable produ
t of spa
esof type σn(Γ ). Any 
lopen subset of K is a �nite union of basi
 
lopen setsof the form
C =

∏

s∈A

ΦGs

Fs
×

∏

s6∈A

σns(Γ )

where A is a �nite subset of S and ΦGs

Fs
a basi
 
lopen set of σns(Γ ). Su
h abasi
 
lopen set is homeomorphi
 to

(⋆) C ∼
∏

s∈A

σns−|Fs|(Γ ) ×
∏

s6∈A

σns(Γ ).Now, by Lemma 12, Lemma 14 and the topologi
al des
ription (⋆) of thebasi
 
lopen sets given above, we are in a position to state that, in thesituation of part (1) of Theorem 1, the following hold:(A) i(τ) = i(τ ′) = i is the greatest integer n su
h that σn(Γ ) embedsinto any 
lopen subset of στ (Γ ).(B) For n = j, j−1, j−2, . . . , i+1, τn = τ ′n is the greatest integer k su
hthat there is a 
lopen subset C of στ (Γ ) in whi
h σn+1(Γ ) 
annot beembedded, but in whi
h nevertheless σn(Γ )k+
∑

r>n τr does embed.This �nishes the proof of Theorem 1. For statement (A), sin
e σi(τ)(Γ )ωis one of the fa
tors of στ (Γ ), it is 
lear that σi(τ)(Γ )ω is still a fa
tor ofany 
lopen set like in (⋆). On the other hand, there are only �nitely manyfa
tors of type σm(Γ ), m > i(τ), in στ (Γ ), hen
e a 
lopen set like in (⋆) 
anbe obtained so that all fa
tors in ∏

s∈A σns−|Fs|(Γ )×
∏

s6∈A σns(Γ ) are of the



158 A. Avilésform σm(Γ ) with m ≤ i(τ). By Lemma 12, σk(Γ ) does not embed in su
h Cif k > i(τ).Statement (B) is proved by �downward indu
tion� starting at j and �n-ishing at i+ 1. We know, by Lemma 11, that
στ (Γ ) ∼ σi(Γ )ω ×

j
∏

m=i+1

σm(Γ )τm .Now statement (B) for n = j is a dire
t 
onsequen
e of Lemma 12 sin
e no
lopen set 
an 
ontain σj+1(Γ ) and the maximal exponent of σj(Γ ) inside
στ (Γ ) is τj . We pass to the 
ase when i < n < j. The �biggest� possible basi

lopen subset C of στ (Γ ) not 
ontaining σn+1(Γ ) is obtained by redu
ing ifne
essary the fa
tors σm(Γ ) with m > n:

C ∼ σi(Γ )ω ×
n

∏

m=i+1

σm(Γ )τm ×

j
∏

m=n+1

σn(Γ )τm

The maximal exponent of σn(Γ ) in su
h a C is ∑j
m=n στm .The present work was written during a visit to the University of War-saw. The author wishes to thank for the hospitality, spe
ially to WitoldMar
iszewski and Roman Pol, and to Rafaª Górak from the Polish A
ademyof S
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es. This work owes very mu
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