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Countable produts of spaes of �nite setsbyAntonio Avilés (Muria)
Abstrat. We onsider the ompat spaes σn(Γ ) of subsets of Γ of ardinality atmost n and their ountable produts. We give a omplete lassi�ation of their Banahspaes of ontinuous funtions and a partial topologial lassi�ation.For an in�nite set Γ and a natural number n, we onsider the spae

σn(Γ ) = {x ∈ {0, 1}Γ : |supp(x)| ≤ n}.Here supp(x) = {γ ∈ Γ : xγ 6= 0}. This is a losed, hene ompat subset of
{0, 1}Γ , whih is identi�ed with the family of all subsets of Γ of ardinalityat most n. In this work we will study the spaes whih are ountable prod-uts of spaes σn(Γ ), mainly their topologial lassi�ation as well as thelassi�ation of their Banah spaes of ontinuous funtions.Let T be the set of all sequenes (τn)∞n=1 with 0 ≤ τn ≤ ω. When τ runsover T , στ (Γ ) =

∏∞
n=1 σn(Γ )τn runs over all �nite and ountable produtsof spaes σk(Γ ). For τ ∈ T we will denote by j(τ) the supremum of all nwith τn > 0, and by i(τ) the supremum of all n with τn = ω. If τn < ω forall n ≥ 1, then i(τ) = 0. Always 0 ≤ i(τ) ≤ j(τ) ≤ ω. Theorem 1 belowsummarizes our knowledge about the topologial lassi�ation and its proofonsists of a number of lemmas given in Setion 2.Theorem 1. Let τ, τ ′ ∈ T and Γ an unountable set.(1) Suppose j(τ) < ω. In this ase, στ ′(Γ ) is homeomorphi to στ (Γ ) ifand only if i(τ) = i(τ ′) and τn = τ ′n for all n > i(τ).(2) Suppose i(τ) = ω. In this ase, if i(τ ′) = ω, then στ (Γ ) is homeo-morphi to στ ′(Γ ).2000 Mathematis Subjet Classi�ation: 46B50, 46B26, 54B10, 54D30, 46B03.Key words and phrases: uniform Eberlein ompat, regular averaging operator, ount-able produt.This researh was partially supported by the grant BFM2002-01719 of MCyT (Spain)and a FPU grant of MEC (Spain). [147℄



148 A. AvilésThis is not a omplete lassi�ation and leaves the following questionopen:Problem 1. Let Γ be an unountable set and τ, τ ′ ∈ T suh that j(τ ′) =
j(τ) = ω, i(τ) < ω and there exists some n ≥ i(τ) with τn 6= τ ′n. Is στ (Γ )homeomorphi to στ ′(Γ )?For example, one partiular instane of the problem is whether ∏∞

i=1σi(Γ )is homeomorphi to ∏∞
i=2 σi(Γ ).About the spaes of ontinuous funtions, it has reently been provedby Mariszewski [6℄ that a Banah spae C(K) (K a ompat spae) isisomorphi to c0(Γ ) if and only ifK ⊂ σn(Γ ) for some n < ω. This is the aseof any ompat spae of the form K =

∏n
i=1 σki

(Γ ) whih an be embeddedinto σ∑

ki
(
⋃n

i=1 Γ × {i}) by x 7→
⋃n

i=1 xi × {i}. Hene, it is a onsequeneof Mariszewski's result that the Banah spaes of ontinuous funtions over�nite produts of spaes σk(Γ ) over a �xed Γ are all isomorphi. In Setion 1we prove a similar result for ountable produts:Theorem 2. Let Γ be an in�nite set and (kn) be any sequene of posi-tive integers. Then the Banah spaes C(
∏

n<ω σkn
(Γ )) and C(σ1(Γ )ω) areisomorphi.The tehniques that we will use are based on the use of regular averagingoperators and the so alled Peªzy«ski's deomposition method, developedin [8℄ and [9℄ in order to prove Milyutin's result that the spaes of ontinuousfuntions over unountable metrizable ompata are all isomorphi.Definition 3. Let φ : L→ K be a ontinuous surjetion between om-pat spaes. A regular averaging operator for φ is a bounded positive linearoperator T : C(L) → C(K) with T (1L) = 1K and T (x ◦ φ) = x for all

x ∈ C(K).The ountable produts of spaes of the form σn(Γ ) are uniform Eberleinompat spaes (f. [3℄). This lass onsists of all weakly ompat subsets ofHilbert spaes, or equivalently of all ompat subsets of the spaes
B(Γ ) =

{

x ∈ [−1, 1]Γ :
∑

γ∈Γ

|xγ | ≤ 1
}

∼ (Bℓ2(Γ ), w)

for some set Γ . Indeed, σn(Γ ) is homeomorphi to B(Γ ) ∩ {0, 1/n}Γ . Weestablish the following result:Theorem 4. Let K be a uniform Eberlein ompat spae of weight κ.Then there is a losed subspae L of σ1(κ)
N and an onto ontinuous map

f : L→ K whih admits a regular averaging operator.This improves a result of Argyros and Arvanitakis [1℄ that for everyuniform Eberlein ompat spae K there is a totally disonneted uniform



Spaes of �nite sets 149Eberlein ompat spae L of the same weight and a ontinuous surjetion
f : L → K whih admits a regular averaging operator, and also a result ofBenyamini, Rudin and Wage [2℄ that every uniform Eberlein ompat spaeof weight κ is a ontinuous image of a losed subset of σ1(κ)

N. We note thatthere are many totally disonneted uniform Eberlein ompat spaes whihannot be embedded into σ1(κ)
N (f. Lemma 12 below).

Notations. All topologial spaes will be assumed to be ompletelyregular. By identifying elements of {0, 1}Γ with subsets of Γ , the spae
σn(Γ ) ⊂ {0, 1}Γ an be viewed as the family of all subsets of Γ of ar-dinality less than or equal to n, endowed with the topology whih has a basethe sets of the form

ΦG
F = {y ∈ σn(Γ ) : F ⊂ y ⊂ Γ \G}for F and G �nite subsets of Γ . We will denote by p : σ1(Γ )k → σk(Γ ) theontinuous surjetion given by
p(x1, . . . , xk) = x1 ∪ · · · ∪ xk.Note that from the existene of suh a funtion it follows that any ountableprodut ∏

i<ω σki
(Γ ) is a ontinuous image of σ1(Γ )ω. We will also write

B+(Γ ) = B(Γ ) ∩ [0, 1]Γ .1. Banah spae lassi�ation. The following Theorem 5 is the keyresult of this setion. A somewhat similar fat an be found in [10℄, namelythat the natural surjetion K2 → exp2(K) = {{x, y} : x, y ∈ K} given by
(x, y) 7→ {x, y} has a regular averaging operator.Theorem 5. The map p : σ1(Γ )k → σk(Γ ) admits a regular averagingoperator.Proof. For every y ∈ σk(Γ ) denote by L(y) the subset of p−1(y) onsist-ing of all (x1, . . . , xk) ∈ p−1(y) suh that xi ∩ xj = ∅ for i 6= j (that is, L(y)onsists of those tuples of p−1(y) in whih no singleton appears twie).The regular averaging operator T : C(σ1(Γ )k) → C(σk(Γ )) is de�ned asfollows:

T (f)(y) =
1

|L(y)|

∑

x∈L(y)

f(x).

The only di�ult point is to prove that T (f) is a ontinuous funtion when-ever f is ontinuous. So �x f ∈ C(σ1(Γ )k) and a point y ∈ σk(Γ ) and ε > 0.For eah x = (x1, . . . , xk) ∈ L(y), sine f is ontinuous at x, there is aneighborhood Ux of x in σ1(Γ )k for whih supx′∈Ux
|f(x) − f(x′)| < ε. Theset Ux must ontain a basi neighborhood of x of the form

Φ
Gx

1
x1 × · · · × Φ

Gx
k

xk
⊂ Ux



150 A. Aviléswhere Gx
i is a �nite subset of Γ disjoint from xi. We de�ne a neighborhoodof y as

V = Φ

⋃

x∈L(y)

⋃k
i=1 Gx

i \y
yand we shall see that |T (f)(y) − T (f)(y′)| < ε for every y′ ∈ V . So we �x

y′ ∈ V (in partiular y ⊂ y′). First, we de�ne an onto map r : L(y′) → L(y)in the following way: if (x1, . . . , xk) ∈ L(y′) then r(x) = (r(x)1, . . . , r(x)k)where r(x)i = xi ∩ y. It is straightforward to hek that all the �bers of rhave the same ardinality, say n = |r−1(x)|, so that |L(y′)| = n|L(y)|.The key fat (used in the �nal inequality below) is that if x ∈ L(y) and
x′ ∈ r−1(x), then x′ ∈ Ux. To see this, take x = (x1, . . . , xk) ∈ L(y) and
x′ = (x′1, . . . , x

′
k) ∈ r−1(x). We hek that x′i ∈ Φ

Gx
i

xi . If x′i ⊂ y then x′i = xi.If x′i = {γ} ⊂ y′ \ y then xi = ∅ and sine y′ ∈ V , we have γ 6∈ Gx
i and again

x′i ∈ Φ
Gx

i
xi . Finally,

|T (f)(y′) − T (f)(y)| =

∣

∣

∣

∣

1

|L(y′)|

∑

x′∈L(y′)

f(x′) −
1

|L(y)|

∑

x∈L(y)

f(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

1

|L(y′)|

∑

x∈L(y)

∑

x′∈r−1(x)

f(x′) −
1

|L(y)|

∑

x∈L(y)

f(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

1

n|L(y)|

∑

x∈L(y)

∑

x′∈r−1(x)

f(x′) −
1

|L(y)|

∑

x∈L(y)

f(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

1

|L(y)|

∑

x∈L(y)

((

1

n

∑

x′∈r−1(x)

f(x′)

)

− f(x)

)∣

∣

∣

∣

=

∣

∣

∣

∣

1

|L(y)|

∑

x∈L(y)

(

1

n

∑

x′∈r−1(x)

(f(x′) − f(x))

)∣

∣

∣

∣

≤
1

|L(y)|

∑

x∈L(y)

(

1

n

∑

x′∈r−1(x)

|f(x′) − f(x)|

)

<
1

|L(y)|

∑

x∈L(y)

(

1

n

∑

x′∈r−1(x)

ε

)

= ε.

Lemma 6. (a) Let g : L→ K be a ontinuous surjetion between ompatspaes whih admits a regular averaging operator and let M be alosed subset of K. Then the restrition g : g−1(M) →M also admitsa regular averaging operator [1, Proposition 18℄.(b) Let {gi : Li → Ki} be a family of ontinuous surjetions betweenompat spaes whih admit regular averaging operators. Then theprodut map ∏

gi :
∏

Li →
∏

Ki also admits a regular averagingoperator [9, Proposition 4.7℄.



Spaes of �nite sets 151Proof of Theorem 4. Observe that the spae B(Γ ) an be embedded into
B+(Γ × {a, b}) ∼ B+(Γ ) by the map u(x)γ,a = max(0, xγ) and u(x)γ,b =
max(0,−xγ). This allows us to onsiderK as a subset of B+(Γ ) with |Γ | = κ.Let φ : {0, 1}ω → [0, 1] be given by φ(x) =

∑

rixi where ri = 1
3

(

2
3

)i.It is proven in [1℄ that φ admits a regular averaging operator and heneby Lemma 6 also φΓ : {0, 1}ω×Γ → [0, 1]Γ and its restrition φΓ : L′ =
(φΓ )−1(K) → K admit a regular averaging operator. The spae L′ is asubspae of L0 = (φΓ )−1(B+(Γ )) with the following desription:

x ∈ L0 ⇔ φΓ (x) ∈ B+(Γ ) ⇔
∑

γ∈Γ

φΓ (x)γ ≤ 1

⇔
∑

γ∈Γ

∞
∑

n=0

rnx(γ,n) ≤ 1 ⇔
∞

∑

n=0

rnNn(x) ≤ 1,

where Nn(x) is the ardinality of supp(x|Γ×{n}). From this desription, ifMndenotes the integer part of r−1
n , then L′ ⊂ L0 ⊂

∏∞
n=1 σMn(Γ ). Theorem 5and Lemma 6(b) yield the existene of a ontinuous surjetion g : σ1(Γ )ω →

∏∞
n=1 σMn(Γ ) whih admits a regular averaging operator. Making use ofLemma 6(a) we get a surjetion g : L = g−1(L′) → L′ with a regularaveraging operator, and the omposition L→ L′ → K is the desired map.We shall now need the so alled Peªzy«ski's deomposition method,whih is used to establish the existene of isomorphisms between Banahspaes. For Banah spaes X and Y we shall write X|Y if there exists aBanah spae Z suh that X ⊕ Z is isomorphi to Y , brie�y X ⊕ Z ∼ Y .Also, Y = (X1 ⊕ X2 ⊕ · · · )c0 denotes the c0-sum of the Banah spaes

X1, X2, . . . ,

Y =
{

y = (xn) ∈
∏

Xn : lim ‖xn‖ = 0
}

, ‖y‖ = sup
n

‖xn‖.Theorem 7 (f. [9, �8℄). Let X and Y be Banah spaes suh that X|Y ,
Y |X and (X ⊕X ⊕ · · ·)c0 ∼ X. Then X ∼ Y .If there exists a surjetion φ : L→ K with a regular averaging operator,then C(K)|C(L) (f. [9℄). In partiular, if L ⊂ K is a retrat of K, thenthe restrition operator is a regular averaging operator for the retration.On the other hand, in order to guarantee the last hypothesis in Theorem 7we shall use the riterion of Lemma 8 below. For topologial spaes Kn,
K1 ⊕K2 ⊕ · · · denotes the disrete topologial sum, while α(S) is the one-point ompati�ation of a loally ompat spae S.Lemma 8. Let K be a ompat spae homeomorphi to α(K ⊕K ⊕ · · ·).Then (C(K) ⊕ C(K) ⊕ · · ·)c0 ∼ C(K).



152 A. AvilésProof. We apply Theorem 7 to X = (C(K) ⊕ C(K) ⊕ · · · )c0 and Y =
C(K). The only point is to hek that X|Y . Let ∞ denote the in�nity pointof α(K ⊕ K ⊕ · · · ) ∼ K. Then X ∼ Y ′ = {f ∈ C(K) : f(∞) = 0} and
Y ∼ Y ′ ⊕ R.Proof of Theorem 2. Set K = σ1(Γ )ω and L =

∏

σkn
(Γ ). We applyTheorem 7 to X = C(K) and Y = C(L). First, we have already observedthat Theorem 5 and Lemma 6(b) imply the existene of a surjetion f : K

→ L with a regular averaging operator, and hene C(L)|C(K). On the otherhand, K is a retrat of L beause for any k, σ1(Γ ) is homeomorphi toa lopen subset of σk(Γ ), the family of all subsets whih ontain �xed ele-ments γ1, . . . , γk−1. Therefore C(K)|C(L). By Lemma 8, it only remains toshow that α(K⊕K⊕· · · ) ∼ K. For this, �x γ ∈ Γ and set, for n = 1, 2, . . . ,

Kn = {x ∈ K = σ1(Γ )ω : γ ∈ x1 ∩ · · · ∩ xn−1 \ xn}.The sets Kn are disjoint lopen sets homeomorphi to K, and K is the one-point ompati�ation of their union with in�nity point ({γ}, {γ}, . . .).2. Topologial lassi�ation. This setion is devoted to the proof ofTheorem 1. Before entering it, we point out why we assume Γ to be un-ountable. In the ountable ase, the reasonings below do not apply andthe situation is indeed ompletely di�erent. All perfet totally disonnetedmetrizable ompat spaes are homeomorphi [5, Theorem 7.4℄ and this im-plies that all ountable produts of spaes σk(ω) are homeomorphi. The�nite produts are ountable ompata, whose topologial lassi�ation isalso well known after the lassial paper [7℄: two of them are homeomor-phi if and only if they have the same Cantor�Bendixson derivation indexand the same ardinality of the last nonempty Cantor�Bendixson derivative.Straightforward omputations show that these two invariants for a �niteprodut ∏n
i=1 σki

(ω) take the values 1 +
∑n

i=1 ki and 1 respetively. Fromnow on, Γ will always be an unountable set.Lemma 9. If m < n then σm(Γ )× σn(Γ )ω is homeomorphi to σn(Γ )ω.Proof. We denote again by (X1 ⊕X2 ⊕ · · · ) the disrete topologial sumof the spaes X1, X2, . . . and by αX the one-point ompati�ation of theloally ompat spae X. Fix γ0, . . . , γn−1 ∈ Γ . We onsider the set L =
ω × {0, . . . , n − 1} endowed with the lexiographial order: (k, i) < (k′, i′)whenever either k < k′, or k = k′ and i < i′. For every (k, i) ∈ L we de�nea lopen subset of σn(Γ )ω as
A(k,i) = {x ∈ σn(Γ )ω : γi 6∈ xk, γi′ ∈ xk′ ∀(k′, i′) < (k, i)}

= {x ∈ σn(Γ )ω : γi 6∈ xk ⊃ {γ0, . . . , γi−1}, xj = {γ0, . . . , γn−1} ∀j < k}.



Spaes of �nite sets 153Notie that A(k,i) is homeomorphi to σn−i(Γ )×σn(Γ )ω and that {Al : l ∈ L}onstitutes a disjoint sequene of lopen subsets of σn(Γ )ω with the only limitpoint being the sequene ξ ∈ σn(Γ )ω onstantly equal to {γ0, . . . , γn−1}.Hene,
σn(Γ )ω ≈ α

(

⊕

l∈L

Al

)

≈ α
(

n−1
⊕

i=0

⊕

j<ω

(σn−i(Γ ) × σn(Γ )ω)
)

.

On the other hand, we an perform a similar deomposition in σm(Γ )×
σn(Γ )ω, de�ning, for j < m and (k, i) ∈ L,

B′
j = {(y, x) ∈ σm(Γ ) × σn(Γ )ω : γj 6∈ y, {γ0, . . . , γj−1} ⊂ y},

B(k,i) = {(y, x) ∈ σm(Γ ) × σn(Γ )ω : γi 6∈ xk, γi′ ∈ xk′ ∀(k′, i′) < (k, i),

{γ0, . . . , γm−1} ⊂ y}.Again B′
j is homeomorphi to σm−j(Γ )×σn(Γ )ω, B(k,i) is homeomorphito σn−i(Γ ) × σn(Γ )ω and altogether they onstitute a disjoint sequene oflopen sets with a unique limit point ({γ0, . . . , γm−1}, ξ) not belonging tothem, so

σm(Γ )× σn(Γ )ω ≈ α
(

⊕

l∈L

Bl ⊕
m−1
⊕

j=0

B′
j

)

≈ α
(

n−1
⊕

i=0

⊕

j<ω

(σn−i(Γ )× σn(Γ )ω)
)

.

Lemma 10. If m < n < ω then σm(Γ )ω × σn(Γ )ω is homeomorphi to
σn(Γ )ω.Proof. We have

σm(Γ )ω × σn(Γ )ω ≈ (σm(Γ ) × σn(Γ )ω)ω ≈ (σn(Γ )ω)ω ≈ σn(Γ )ω.Lemma 11. Let m1, . . . ,mr < n < ω and e1, . . . , er ≤ ω. Then the spae
∏r

i=1 σmi
(Γ )ei × σn(Γ )ω is homeomorphi to σn(Γ )ω.Proof. Follows from repeated appliation of Lemmas 9 and 10 above.From Lemma 11 it follows that any spae στ (Γ ) with i(τ) = ω is hom-eomorphi to σ(ω,ω,...)(Γ ) (beause we an substitute eah fator σn(Γ )ω of

στ (Γ ) by the homeomorphi ∏

i≤n σi(Γ )ω), and this proves part (2) of The-orem 1. Lemma 11 also shows that the values τn for n < i(τ) are irrelevantto the homeomorphism lass of στ (Γ ). Hene, in order to prove part (1) ofTheorem 1 it remains to show that if j(τ) < ω and στ (Γ ) is homeomorphito στ ′(Γ ) then τn = τ ′n for all n > i(τ).We reall that a family {Sη}η∈H of sets is a ∆-system if there is a set S(alled the root of the ∆-system) suh that Sη ∩ Sη′ = S for all η 6= η′. Wewill make use of the fat that any unountable family of �nite sets has anunountable subfamily whih is a ∆-system (f. [4, Theorem 1.4℄ for κ = ωand α = ω1).



154 A. AvilésThe following lemma inludes as a partiular ase the fat that σn+1(Λ)does not embed into σn(Γ )ω. This fat, whose proof orresponds to Steps1�3 below, was shown to us by Witold Mariszewski, and it seems that itwas known to several people before.Lemma 12. If |Λ| > ω, n ≥ 0, k ≥ 0, then the spae σn+1(Λ)k+1 doesnot embed into σn(Γ )ω × σn+1(Γ )k.Proof. Suppose that there exists suh an embedding.
Step 1. Passing to a suitable unountable subset of Λ, we an supposethat there is an embedding

φ : σn+1(Λ)k+1 → σn(Γ )m × σn+1(Γ )kfor somem < ω. To see this, let ϕ : σn+1(Λ)k+1 → σn(Γ )ω×σn+1(Γ )k be ouroriginal embedding. In this step, we shall denote an element x ∈ σn+1(Λ)k+1as x = (x0, . . . , xk). For eah λ ∈ Λ and every i ∈ {0, . . . , k} we �nd a lopensubset Ai
λ of σn(Γ )ω × σn+1(Γ )k whih separates the disjoint ompat sets

ϕ({x : λ ∈ xi}) and ϕ({x : λ 6∈ xi}). Assoiated to Ai
λ we have a �nitesubset F i

λ ⊂ ω suh that Ai
λ = σn(Γ )ω\F i

λ × Bi
λ with Bi

λ a lopen subset of
σn(Γ )F i

λ × σn+1(Γ )k. We hoose Λ′ to be an unountable subset of Λ suhthat ⋃k
i=0 F

i
λ =

⋃k
i=0 F

i
λ′ = F for all λ, λ′ ∈ Λ′; in this ase the omposition

σn+1(Λ
′)k+1 →֒ σn+1(Λ)k+1 → σn(Γ )ω × σn+1(Γ )k → σn(Γ )F × σn+1(Γ )kis one-to-one. The reason is that if x, y ∈ σn+1(Λ

′)k+1 are di�erent thenthere exist i ∈ {0, . . . , k} and λ ∈ Λ′ suh that λ ∈ xi but λ 6∈ yi (or vieversa). Then φ(x) ∈ Ai
λ and φ(y) 6∈ Ai

λ so either the oordinate of σn+1(Γ )kor some oordinate of F λ
i ⊂ F must be di�erent for φ(x) and φ(y).

Step 2. For i = 0, . . . , k and λ ∈ Λ we de�ne eλ
i ∈ σn+1(Λ)k+1 to be theelement whih has {λ} in oordinate i and ∅ in all other oordinates. Eah

φ(eλ
i ) will be of the form

φ(eλ
i ) = (xλ

i [1], . . . , xλ
i [m], xλ

i [m+ 1], . . . , xλ
i [m+ k])with xλ

i [j] ∈ σn(Γ ) if j ≤ m and xλ
i [j] ∈ σn+1(Γ ) if m < j ≤ m + k.Passing to a suitable unountable subset of Λ, we an assume that for every�xed i ∈ {0, . . . , k} and j ∈ {1, . . . ,m + k} the family {xλ

i [j] : λ ∈ Λ} is a
∆-system of root Ri[j] formed by sets of the same ardinality ci[j].
Step 3. We laim that for i = 0, . . . , n and j = 1, . . . ,m, the ∆-system

{xλ
i [j] : λ ∈ Λ} is onstant. Suppose the ontrary for some �xed i ≤ n and

j ≤ m. Then xλ
i [j] = R ∪ Sλ ∈ σn(Γ ) where R ∩ Sλ = ∅, Sλ 6= ∅, and

Sλ ∩ Sλ′

= ∅ for λ 6= λ′. We onsider the sets
Aλ = {y = (y[1], . . . , y[m+ k]) ∈ σn(Γ )m × σn+1(Γ )k : y[j] ⊃ Sλ}.



Spaes of �nite sets 155The Aλ's are neighborhoods of the φ(eλ
i )'s with the property that for every

F ⊂ Λ with |F | > n, ⋂

λ∈F Aλ = ∅ (beause for y in that intersetion,
|y[j]| > n and y[j] ∈ σn(Γ )). Let ψ : σn+1(Λ) → σn+1(Λ)k+1 be the mapde�ned by ψ(x)i = x and ψ(x)i′(x) = ∅ if i′ 6= i. Then the (φψ)−1(Aλ)'sare neighborhoods of the {λ}'s in σn+1(Λ) with ⋂

λ∈F (φψ)−1(Aλ) = ∅ forevery F ⊂ Λ with |F | > n. This is a ontradition sine suh a familyof neighborhoods annot be found. Namely, take basi neighborhoods with
{λ} ∈ ΦGλ

{λ} ⊂ (φψ)−1(Aλ) and take Λ′ ⊂ Λ unountable with {Gλ : λ ∈ Λ′}a ∆-system of root R′. Then onstrut indutively a �nite sequene F =
{λ1, . . . , λn+1} ⊂ Λ′\R′ suh that λp 6∈

⋃

q<pGλq
and Gλp

∩{λ1, . . . , λp−1} =
∅ (notie that it is possible to hoose suh a λp beause {λ1, . . . , λp−1} ∩
R′ = ∅ and hene there are only �nitely many Gλ's with λ ∈ Λ′ and Gλ ∩
{λ1, . . . , λp−1} 6= ∅). In this ase we have F ∈

⋂

λ∈F (φψ)−1(Aλ).
Step 4. Notie that for k = 0 we have already arrived at a ontraditionand the proof is omplete. When k > 0 we need some extra work. FromStep 3, we dedue that for eah i ∈ {0, . . . , k} there must exist j ∈{m + 1,

. . . ,m+ k} suh that the family {xλ
i [j] : λ ∈ Λ} is a nononstant ∆-system.Sine i runs through a set of k+1 elements and j through a set of k elements,there must exist two di�erent i, i′ ∈ {0, . . . , k} suh that for the same j,

{xλ
i [j] : λ ∈ Λ} and {xλ

i′ [j] : λ ∈ Λ} are nononstant ∆-systems. We assumethat ci[j] ≥ ci′ [j] (these numbers are de�ned in Step 2). Again, for λ ∈ Λ weonsider the sets
Aλ = {(y[1], . . . , y[m+ k]) ∈ σn(Γ )m × σn+1(Γ )k : y[j] ⊃ xλ

i [j]},

A′
λ = {(y[1], . . . , y[m+ k]) ∈ σn(Γ )m × σn+1(Γ )k : y[j] ⊃ xλ

i′ [j]}.The Aλ's and the A′
λ's are neighborhoods of the φ(eλ

i )'s and the φ(eλ
i′)'srespetively with the property that

(∗) ∀λ ∈ Λ ∀F ⊂ Λ
(

|F | > n ∧ xλ
i [j] 6⊆

⋃

µ∈F

xµ
i′ [j]

)

⇒ Aλ∩
⋂

µ∈F

A′
µ = ∅.

That intersetion is empty beause if y belongs to it, then
xλ

i [j] ∪
⋃

µ∈F

xµ
i′ [j] ⊂ y[j] ∈ σn+1(Γ )

and the set on the left, if xλ
i [j] 6⊆

⋃

µ∈F x
µ
i′ [j], has ardinality greater than

n+1, a ontradition. Sine the ∆-systems are not onstant and ci[j] ≥ ci′ [j],it follows that if xλ
i [j] ⊆

⋃

µ∈F x
µ
i′ [j] holds, there must be some µ ∈ F and

γ ∈ xλ
i [j] suh that γ ∈ xµ

i′ [j] \ Ri′ [j]. For a �xed λ there are only �nitelymany µ's with (xµ
i′ [j] \ Ri′ [j]) ∩ x

λ
i [j] 6= ∅. Hene for every λ, we an �nda o�nite subset Λλ of Λ suh that the hypothesis xλ

i [j] 6⊆
⋃

µ∈F x
µ
i′ [j] ofstatement (∗) holds whenever F ⊂ Λλ. For short, we know that for every
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λ ∈ Λ there exists a o�nite subset Λλ of Λ suh that

∀F ⊂ Λλ |F | > n ⇒ Aλ ∩
⋂

µ∈F

A′
µ = ∅.

This ontradits the following lemma for Bλ = φ−1(Aλ) and B′
λ = φ−1(A′

λ):Lemma 13. For every λ ∈ Λ, let Bλ and B′
λ be neighborhoods of eλ

i and
eλ
i′ respetively in σn+1(Λ)k+1. Then there exists λ0 ∈ Λ and an in�nite set
S ⊂ Λ suh that for every F ⊂ S with |F | = n+ 1,

Bλ0 ∩
⋂

µ∈F

B′
µ 6= ∅.

Proof. For a simpler notation, we will assume that i = 0 and i′ = 1.Notie that a basi lopen subset ΦG
F of σn+1(Λ) is nonempty if and only if

F ∩G = ∅ and |F | ≤ n+ 1. Eah Bλ and eah B′
µ ontain basi lopen setsof the form

Φ
Gλ

0

{λ} × Φ
Gλ

1

∅ × Φ
Gλ

2

∅ × · · · × Φ
Gλ

k

∅ ⊆ Bλ,

Φ
H

µ
0

∅ × Φ
H

µ
1

{µ} × Φ
H

µ
2

∅ × · · · × Φ
H

µ
k

∅ ⊆ B′
µ,with all Gλ

l and Hµ
l �nite subsets of Λ and λ 6∈ Gλ

0 and µ 6∈ Hµ
1 . First, we �nda ountably in�nite setM ⊂ Λ suh that µ′ 6∈ Hµ

1 for all µ, µ′ ∈M . This anbe done as follows. We begin with an in�nite M1 ⊂ Λ suh that the family
{Hµ

1 : µ ∈ M1} is a ∆-system of root R, and we set M2 = M1 \ R. Thenwe an �nd reursively a sequene (µp)p<ω ⊂ M2 suh that µp 6∈
⋃

q<pH
µq

1and H
µp

1 ∩ {µ1, . . . , µp−1} = ∅. Next, we set M = {µp : p < ω}. Now, wehoose λ0 6∈
⋃

µ∈M Hµ
0 and set S = {µ ∈ M : µ 6∈ Gλ0

1 }. Then λ0 and S areas desired. Namely, take F ⊂ S with |F | = n+ 1, and for every j = 0, . . . , kde�ne Ij = Gλ0
j ∪

⋃

µ∈F H
µ
j so that

Bλ0 ∩
⋂

µ∈F

B′
µ ⊃ Φ

I
µ
0

{λ0}
× Φ

I
µ
1

F ×
k

∏

j=2

Φ
I

µ
j

∅ .

On the one hand, ΦI
µ
0

{λ0}
6= ∅ beause we have hosen λ0 6∈

⋃

µ∈M Hµ
0 , so

λ0 6∈ Iµ
0 . On the other hand, ΦI

µ
1

F 6= ∅ beause, �rst, sine F ⊂ M and
µ′ 6∈ Hµ

1 for all µ, µ′ ∈ M , it follows that F ∩
⋃

µ∈F H
µ
1 = ∅, and seond,sine F ⊂ S, just by the de�nition of S, F ∩Gλ0

1 = ∅.Lemma 12 implies that j(τ) = j(τ ′) whenever στ (Γ ) = στ ′(Γ ), sine itshows that j(τ) = ω if and only if σn(Γ ) an be embedded into στ (Γ ) forall n < ω and, if this is not the ase, j(τ) is the greatest integer n for whih
σn(Γ ) embeds into στ (Γ ). Hene, in the situation of part (1) of Theorem 1,it happens that j(τ) = j(τ ′) = j and moreover that τn = τ ′n for all n ≥ j



Spaes of �nite sets 157sine, by Lemma 12 again, τj = τ ′j is the greatest integer k suh that σj(Γ )kembeds into στ (Γ ) and of ourse, τn = τ ′n = 0 for all n > j. In order to �nishthe proof of part (1), we must hek that i(τ) = i(τ ′) = i and that τk = τ ′kfor i < k < j. To see this, we shall look at embeddability of spaes σn(Γ )kinto lopen subsets of στ (Γ ). For this purpose, we observe that it is enoughto look at some basi family of lopen sets, if the others are their unions:Lemma 14. Let X be a ompat spae and C1, . . . , Ct open subsets of
X. If σn(Λ)k embeds into ⋃t

i=1Ci, then there exists i ≤ t suh that σn(Λ)kembeds into Ci.Proof. It redues to proving that whenever we express σn(Λ)k as a unionof open sets as
σn(Λ)k = C1 ∪ · · · ∪ Ctthen some Ci must ontain a opy of σn(Λ)k. Pik i ∈ {1, . . . , t} suh that

x0 = (∅, . . . , ∅) ∈ Ci. There are �nite subsets G1, . . . , Gk of Λ suh that
x0 ∈ ΦG1

∅ × · · · × ΦGk

∅ ⊂ Ci.This �nishes the proof beause ΦG1

∅ ×· · ·×ΦGk

∅ is homeomorphi to σn(Λ)k.Let now K =
∏

s∈S σns(Γ ) be any �nite or ountable produt of spaesof type σn(Γ ). Any lopen subset of K is a �nite union of basi lopen setsof the form
C =

∏

s∈A

ΦGs

Fs
×

∏

s6∈A

σns(Γ )

where A is a �nite subset of S and ΦGs

Fs
a basi lopen set of σns(Γ ). Suh abasi lopen set is homeomorphi to

(⋆) C ∼
∏

s∈A

σns−|Fs|(Γ ) ×
∏

s6∈A

σns(Γ ).Now, by Lemma 12, Lemma 14 and the topologial desription (⋆) of thebasi lopen sets given above, we are in a position to state that, in thesituation of part (1) of Theorem 1, the following hold:(A) i(τ) = i(τ ′) = i is the greatest integer n suh that σn(Γ ) embedsinto any lopen subset of στ (Γ ).(B) For n = j, j−1, j−2, . . . , i+1, τn = τ ′n is the greatest integer k suhthat there is a lopen subset C of στ (Γ ) in whih σn+1(Γ ) annot beembedded, but in whih nevertheless σn(Γ )k+
∑

r>n τr does embed.This �nishes the proof of Theorem 1. For statement (A), sine σi(τ)(Γ )ωis one of the fators of στ (Γ ), it is lear that σi(τ)(Γ )ω is still a fator ofany lopen set like in (⋆). On the other hand, there are only �nitely manyfators of type σm(Γ ), m > i(τ), in στ (Γ ), hene a lopen set like in (⋆) anbe obtained so that all fators in ∏

s∈A σns−|Fs|(Γ )×
∏

s6∈A σns(Γ ) are of the



158 A. Avilésform σm(Γ ) with m ≤ i(τ). By Lemma 12, σk(Γ ) does not embed in suh Cif k > i(τ).Statement (B) is proved by �downward indution� starting at j and �n-ishing at i+ 1. We know, by Lemma 11, that
στ (Γ ) ∼ σi(Γ )ω ×

j
∏

m=i+1

σm(Γ )τm .Now statement (B) for n = j is a diret onsequene of Lemma 12 sine nolopen set an ontain σj+1(Γ ) and the maximal exponent of σj(Γ ) inside
στ (Γ ) is τj . We pass to the ase when i < n < j. The �biggest� possible basilopen subset C of στ (Γ ) not ontaining σn+1(Γ ) is obtained by reduing ifneessary the fators σm(Γ ) with m > n:

C ∼ σi(Γ )ω ×
n

∏

m=i+1

σm(Γ )τm ×

j
∏

m=n+1

σn(Γ )τm

The maximal exponent of σn(Γ ) in suh a C is ∑j
m=n στm .The present work was written during a visit to the University of War-saw. The author wishes to thank for the hospitality, speially to WitoldMariszewski and Roman Pol, and to Rafaª Górak from the Polish Aademyof Sienes. This work owes very muh to the disussion with them and theirsuggestions.
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