FUNDAMENTA
MATHEMATICAE
186 (2005)

Two-to-one continuous images of N*
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Alan Dow and Geta Techanie (Charlotte, NC)

Abstract. A function is two-to-one if every point in the image has exactly two inverse
points. We show that every two-to-one continuous image of N* is homeomorphic to N*
when the continuum hypothesis is assumed. We also prove that there is no irreducible
two-to-one continuous function whose domain is N* under the same assumption.

1. Introduction. A function f: X — Y is two-to-one if for each y € Y,
there are exactly two points of X that map to y. All spaces considered are
Tikhonov. For some spaces X, there does not exist a two-to-one continuous
function f : X — Y for any choice of Y. For example, Harrold [Ha39]
showed that there is no two-to-one continuous function f : [0,1] — Y and
Mioduszewski [Mi61] proved that there is no two-to-one continuous function
f:R — Y. In fact, Heath [He86] later showed that every two-to-one function
f:R — Y has infinitely many discontinuities.

Another situation is when there are two-to-one continuous functions f :
X — Y defined on a space X, but given any such function the image space Y’
is determined up to a homeomorphism. For example, if f : [0,1) — S, where
S is the unit circle {p € R? : ||p|| = 1}, is defined by f(x) = exp(4miz), then
f is a two-to-one continuous function. Mioduszewski [Mi61] proved that if
f:[0,1) = Y is a two-to-one continuous function, then Y is homeomorphic
to S1.

In this paper we investigate the behavior of two-to-one continuous maps
defined on N*, the remainder SN \ N of the Stone—Cech compactification
of the space N of natural numbers. We give partial answers to questions
recently raised by R. Levy [Le04]. In particular, we show that every two-
to-one continuous image of N* is homeomorphic to N* when the continuum
hypothesis (CH) is assumed.
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There are two-to-one continuous functions defined on N*. For example,
the space N* is homeomorphic to N* x 2, so the projection map f: N*x2 —
N* given by f(x,k) = z is a two-to-one continuous function on N* and
the image is N*. Such an example would be called trivial. A continuous
two-to-one function f : N* — N* is trivial if there is a clopen subset C
of N* such that the restrictions f|o and f[y« o are homeomorphisms. In
[Do04], the first author proved that all maps on N* that are two-to-one are
trivial, in the above sense, under the presence of the Proper Forcing Axiom
(PFA). Eric van Douwen [vD93] has also produced a surprising answer to
a similar question raised by R. Levy. He showed that the space N*, which
is a compact space and very far from being separable, can be mapped onto
a compact separable space by a <two-to-one continuous function. We are
concerned with the question of whether every exactly two-to-one continuous
image of N* is homeomorphic to N*.

It is well known that if a space Y is homeomorphic to N*, then Y is a
Parovichenko space, that is, a compact zero-dimensional F-space of weight
¢ which has no isolated points and with the property that every nonempty
Gs-set has infinite interior. Therefore, if we are interested in whether or not
two-to-one continuous images of N* are homeomorphic to N*, we should
investigate which of these six properties are satisfied by the spaces which
are two-to-one continuous images of N*.

If Y is a two-to-one continuous image of N*, obviously Y is compact since
N* is compact, and Y has no isolated points since two-to-one continuous
maps preserve the property of having no isolated points. Ronnie Levy [Le04]
showed that Y has the property that countable discrete subsets are C*-
embedded and Y contains a copy of N* and so Y has weight ¢. We include
his proof for the reader’s convenience.

THEOREM 1 (Levy). Let X be a space such that every countable discrete
subset of X is C*-embedded in X. If f: X — Y is a two-to-one continuous
function, then every countable discrete subset of Y is C*-embedded in Y.

Proof. Let C be a countable discrete subset of Y. Since f is two-to-one
and C is countable discrete, f~1(C) is a countable discrete subset of X.
Therefore, f~1(C) is C*-embedded in X. We must show that disjoint subsets
of C have disjoint closures in Y. Let A, B C C be such that AN B = .
Assume that there exists p € Cly AN Cly B.

For each a € A let f~'({a}) = {a1,a2}, and for each b € B, let
fﬁl({b}) = {bl,bg}. Let A1 = {a1 a e A}, A2 = {ag a € A}, B, =
{by : b € B}, By = {by : b € B}. These four sets are pairwise disjoint subsets
of f~1(C) and therefore their closures are also pairwise disjoint since f~1(C)
is C*-embedded. By the continuity of f, each of the four sets Clx A1, Clx Ao,
Clx Bj, Cly By contains an element of the fiber f~1({p}). Since these sets
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are pairwise disjoint, |f~!({p})| > 4. This contradicts the fact that f is
two-to-one. m

Then Levy asked in the same paper whether Y has the remaining three
properties. We show that Y actually has these three properties under CH,
that is, Y is a zero-dimensional F-space in which every nonempty Gs-set has
infinite interior. A consequence then is that two-to-one continuous images
of N* are homeomorphic to N* when CH is assumed since N* is the only
Parovichenko space under CH [vM84].

2. Irreducible maps. A mapping f of X onto Y is irreducible if no
proper closed subset of X maps onto Y. Thus, the image of an open set by
a closed irreducible mapping will have interior. It follows easily from Zorn’s
lemma [Wa74] that if X and Y are compact spaces and f is a continuous
function from X onto Y, then there is a closed subspace F' of X such that
f1p is an irreducible map from F onto Y. Levy [Le04] asked if there exists
an irreducible two-to-one continuous function whose domain is N*. Under
CH, we will show that there is no such function.

NOTATION. For amap f: X — Y and A C X, let J4 = f~1(f[X \ 4])
N A, and for a point z, let 2’ denote a point # z such that f(z) = f(2/).

LEMMA 2. Let f: X — Y be an irreducible continuous closed map. If A
is an open subset of X, then Ja is nowhere dense in X.

Proof. Suppose that J4 is not nowhere dense in X. Then IntJ, is a
nonempty open subset of X. Then clearly f[ANIntJ4] C f[A] and J4 C
FHf[X\A]) since Ja4 C f~H(f[X\A]) and f[X\ A] is closed. Thus f[J 4] C
fIX\A] and in particular f[ANInt J 4] C f[X\A]. Therefore, X\ (ANInt J 4)
is a proper closed subset of X since A NIntJ, is a nonempty open set
contained in A, and f[X \ (ANInt J4)] =Y since f[ANInt J4] C f[A] and

f[ANTnt J4] € f[X \ A]. This is a contradiction since f is irreducible. m

The following result is the main ingredient in our analysis of the structure
of two-to-one continuous functions.

THEOREM 3 (CH). Let X be a compact space of weight ¢ and suppose
that countable discrete subsets of X are C*-embedded. If f : X — K is a
two-to-one continuous function and Z is a closed subset of X such that f[,
s 1rreducible and maps Z onto K, then for every nonempty open set W C K
there exists an open set B in X such that BNZ = () and Int(f[B])NW # ().
Furthermore, if X is zero-dimensional, then B can be chosen to be clopen.

Proof. Let W be a nonempty open subset of K. Seeking a contradic-
tion, suppose that f[B] N W is nowhere dense in K for each open set
B C X with closure disjoint from Z. For each open subset B C X \ Z,
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let Ig = f~Y(f[BJNW) N Z. Then Ip is nowhere dense in Z since f is
closed irreducible and f[Ig] C f[B] N W, which is nowhere dense.

Since f is continuous, f~}(W)N Z has nonempty interior in Z. For each
open subset A C f~Y(W)N Z, J4 is nowhere dense in Z by Lemma 2.

We construct, by induction, a family {A, : @ < wi} which is a filter
base of cozero subsets of f~'(W) N Z such that MNa<w, Aa is a singleton
{z} so that f~!(f(x)) = {z}. This yields a contradiction as f is an exactly
two-to-one function.

Let { B, : @ < wy} enumerate all the cozero sets B in X such that BNZ
= (), and let {CY,CL : o < w1} enumerate all pairs of cozero sets in Z such
that Z = C% U C}. We construct {4, : a < wi} such that for each o < wy:

(1) OBSO& Ag is nonempty;
(2) A, CCY or A, C gclw
(3) if a=pB+1, then Ay C Ag\ (Ja, U Ip,).

We show how to define the first two cozero sets Ag and Aj: Let x €
f~Y(W) N Z. Then choose a cozero set neighborhood Ay of z such that
Ao C f7Y (W) N Z and either Ag C Cg or Ay C C’é.

Then J4, and Ip, are nowhere dense in Z, hence Ag \ (Ja, U Ip,) # 0.
Let z, possibly different from the previous z, be a point in Ag \ (Ja, U Ip,).
Then choose a cozero set neighborhood A; of x with Ay C Ag \ (Ja, U Ip,)
and either 4; C C? or Ay C C’ll. For each n € w we can define A,, in the
same manner.

Suppose that o > w and we have constructed the family {Ag: 5 <~}
for all v < . If « = 41, then mvéﬁ A, # 0 by the induction assumption.
If o is a limit, then the induction hypothesis (1) ensures that Go = (5., 4p

is not empty since Z is compact and Az C Agi; for each 8 < a so that
mﬁ<a Aﬁ 2 nﬁ<a Aﬁ‘H'

If o is a limit and z € G4 =[5, A, We choose a cozero set neighbor-
hood A, of z such that A, C Cifz € CY or A, C C. otherwise. If o = 3+1
with 8 > w, we must define a cozero set A, so that A, C Ag\ [JAﬁ U IBﬁ].
Let A be the largest limit ordinal less than a. We enumerate A\ U {3} as
6 = Bo, B1,52,083,.... We now consider the cases when (G, has nonempty
interior and (G, is nowhere dense.

If G, has nonempty interior, then G \ [Ja, U Ip,] # 0 since Ja, U Ip,
is nowhere dense. Then pick a point z € G4 \ [Ja, U Ip,] and a cozero set
A, containing x such that A, C G, and either A, C C? or A, C CL.

If G, is nowhere dense, Ja, U I, U G, is nowhere dense and Ag \[Ja,U
Ip,UG.] # 0. Let 2o € A@\[JA[,UIB[,UGQ]. Then choose i; > 1 large enough
such that xg ¢ Aﬂil’ which we may do since zg ¢ G,. Then either z{, € Aﬁilv

x) € JABil’ or zy ¢ Z. In any case, x(, ¢ Eﬁil_i'_]_ since Zﬁil-i-l C Ag, \JAﬂil
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by construction. So there is an i} > 1 such that 51"1 = (i, +1 and x, ¢ Zﬁi’l'
Thus z, z(, ¢ Ga.

Similarly, pick z1 € [AgN Ag, N---NAg, |\ [Ja, Ulp, UGq] and choose
ig > 41,11 > 1 large enough so that 1 ¢ Ag, . Then 2} ¢ Ap, 11 by con-
struction. So there is an 4 > i},4; > 1 such that 3, = 8;,+1 and 2} ¢ Agi,Z.
Thus x1,2) ¢ G,. Continuing this process, for every integer n, pick z, €
[Ag N Ag, N---NAg, ]\ [Ja, U Ip, U G,| and choose an integer i,41 > iy,
i, > -+ > dg,ih > df,i1 > 1 large enough so that x, ¢ Ag, .- Then there
is an integer i), > i}, 4, such that z] ¢ AB%H. Thus zp, x], ¢ Gq.

Hence, we get a countable set {xy}, U {z] },. We remark that the x,,’s
and x/,’s can be chosen from some dense subset of f~1(W) N Z. From the
construction of the z,’s and z/,’s:

Vi>n mi,x;6fﬁl(f[ZgﬂZglﬂ‘”ﬂZgin]),
Vi<n ajaig fTHfAgN Ag NN Ag, L)),

and since f~1(f[AgN Ag, N---N Ag,]) is closed for all k, the set {z,}, U
{2}, }n is discrete. Therefore {z,}, N {x}}, = 0 since {xn}, N {2}, =0
and countable discrete subsets of X are C*-embedded. We have f({zn}n) =
f({z!,}n) by continuity of f and the fact that f({zn}n) = f({z],}n). We also
have {xp}n \ {zn}n # 0 and {2/}, \ {«],}n # 0 since every infinite subset of
a compact set has a limit point. By the construction of the x;,’s we see that
{xn}n \ {xn}n C Ga.

If{z€Z:2e€Z}nfYW)isdensein f~1(W)NZ, we can choose the
xl’s in f~Y(W) N Z so that we also have {z],},, \ {z},}n € Ga. In this case
if we choose x € {x,}n \ {zn}n, then 2’/ € {2/}, \ {2, }n and = # 2’ since
{zn}n N {z),}n = 0. Moreover x € Ja, since x € Ja, implies 2’ ¢ Ag, which
contradicts 2’ € Go C Ag. We also have x ¢ Ip,, that is, 2’ ¢ Bp since
z, & Bg for all n and Bg is a cozero set. Thus we have found an = € G,
such that z ¢ Ja, U Ip,.

If {z€ Z:2 € Z}n f~1(W) is nowhere dense in f~1(W) N Z, find a
cozero set A C Ag C f~1(W) N Z such that f[, is one-to-one on all points
of A, that is, f~!(f[A]) meets Z in A. In this case we can choose the x,,’s so
that {x,,}, C A and hence {z},},, € X\ Z. Then {z,}n \{zn}n C A. Choose
an z € {xp}n \ {zn}n. Then z € A and so 2’ ¢ Z; in particular 2/ € Z \ Ag
and so x € Ja,. It is also true that = ¢ I, that is, 2’ ¢ Bg since x;, ¢ Bg
for all n and Bg is a cozero set. Therefore z € G and © ¢ Ja, U Ip,.

We choose a cozero set A, containing = with A, C Ag\ [Ja, UIp,] and

either A, C CY or A, C CL. Then A, satisfies all the induction assumptions
and this completes the inductive construction.
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But now (,,, 4a # 0 since Nz, 45 2 Ns<w, Agyy and X is com-
pact. Moreover the fact that [, <w, Ao 1s a singleton is easily seen by the
induction hypothesis (2). Let (., 4o = {7}

Cram 1. f=1(f(x)) = {z}.

Proof of Claim. Suppose that for some 2/ # x, we have f(z) = f(2/).
If 2/ € Z, then 2’ ¢ A, for some o < w;. This implies € J4_, and so
x ¢ Aqy1. This is a contradiction. If 2’ ¢ Z, then 2/ € B, for some o < wy.
This implies « € I, and so x ¢ A,+1. This is also a contradiction. m

This contradicts f being an exactly two-to-one function. Moreover the
zero-dimensional case follows immediately from the general case. If X is
zero-dimensional, and B is an open set such that BN Z = (), then there is
a clopen set disjoint from Z containing B. =

COROLLARY 4 (CH). Let X* be the Stone—Cech remainder of a locally
compact separable metric space X . If f : X*— K is a two-to-one continuous
function, then f is not irreducible. In particular, if f:N*—K or f:R* > K
is two-to-one and continuous, then f is not irreducible.

Proof. Suppose that f is irreducible. Taking X = Z = X* and W = K
in Theorem 3 we get a nonempty subset B of the empty set X*\ Z. =

COROLLARY 5 (CH). If f: N* — K is a two-to-one continuous func-
tion, then K is not ccc.

Proof. Let W be a nonempty open subset of K. By Zorn’s lemma [Wa74],
there is a closed subset Z of N* such that f[, : Z — K is irreducible. Then,
by Theorem 3, there exists a nonempty clopen set B C N* \ Z such that
Int(f[B]) N W # () since N* is zero-dimensional. Then f| is a closed one-
to-one function and so B is homeomorphic to f[B]. Thus, f[B] has no open
cce subset since N* has no open ccc subset. Therefore, K is not ccc. =

3. Examples of nontrivial two-to-one maps. A two-to-one function
f X — Y will be called trivial if there exist disjoint clopen sets A and
B such that X = AU B and f[A] = f[B] =Y. In [Do04] the first author
proved that all functions defined on N* that are two-to-one continuous are
trivial under PFA. In this section we will give some nontrivial examples of
two-to-one continuous functions defined on N* when CH is assumed.

A point is called a P-point if the family of its neighborhoods is closed
under countable intersections. A subset of a space is a P-set if the family
of its neighborhoods is closed under countable intersections. CH implies
that N* has P-points and contains a nowhere dense closed P-set which is
homeomorphic to N* [vM84].
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ExaMPLE 1 (CH). We give an example of a nontrivial two-to-one con-
tinuous function f : N* — N* such that f is locally one-to-one at every
point of N* except for two P-points.

Consider two copies of N*: N7, N3. Let p; € N] and p2 € N3 be P-points.
There is a homeomorphism g : Nj — N} such that g(p1) = p2 under CH
[VM84]. Then g~! : N5 — N is also a homeomorphism and g~!(p2) = p1.
The free union of the two copies of N*, N7 U N3, is homeomorphic to N*.
Let hy : Nj UNj — Ni UNj be defined by hy = g U g~ !. Then h? = id.
In a similar manner define he : N} UN; — Nj UNj so that hy = guUg?
and h? = id, where N3 and N} are other copies of N* with corresponding
P-points p3 and ps and g : N§ — Nj is a homeomorphism with g(ps) = pa.
The quotient spaces

(NJUN3)/p1=p2, (NjUN})/ps=ps, (NTUN})/p1=ps,

identifying p; and p2, ps and py4, p1 and p4, as single P-points in their
respective spaces, are homeomorphic to N* [vM84]. The free union of the
first two spaces, (Nj UN3)/p1=p2 & (N5 UN})/p3=pa, is also homeomorphic
to N*. Now define

[ [(NJUN3)/pi=p2 @ (N3 UN})/p3s=p4] — (N] UN})/p1=py,
hi(z) if x € N3\ {pa},

ho(x)  if x € N3\ {ps},

x if z € (N]\ {p1}) U (N} \ {ps}),
p1=ps if z € {p1=p2, p3=pa},

Then f is a continuous and exactly two-to-one function. Moreover, the image
of f is homeomorphic to N*.

fz) =

We now introduce some notation that will be used in our future discus-
sions about this kind of two-to-one continuous maps. Let

Xo = (NJUN3)/p1=p2 & (N3 UN})/ps=pa,
In={AC Xy: A= Ay U Ay, Ay, Aj clopen, f[Ao] = fIA(]}-

So Iy is a family of clopen sets A in Xy such that A = f~1(f[4]), i.e.,
saturated, and f is locally one-to-one on A. Let Uy denote the union of all

the A’s in Iy,
U= J 4,
A€l

and in this example Uy = X¢ \ {p1=p2, p3=p4}. Thus f is locally one-to-one
except at the two P-points p1=ps and ps=p4. Let X; = X \ Uy, which is
again for this example given by

X1 = {p1=p2, p3=pa}.
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Then I is the analogous set in X but the points in X; are not in i because
as can be seen above f is not locally one-to-one at the points p1=ps and
Pp3=p4.

By using a similar construction to Velickovié’s poset [Ve93], Example 1
can be done consistent with MA + —-CH. But MA 4+ —CH is not by it-
self enough to do the construction because of the first author’s PFA result
[Do04].

ExamPLE 2 (CH). We give an example of a nontrivial two-to-one contin-
uous function f : N* — N* such that f is locally one-to-one at every point
of N* except for two P-sets. We extend the first example by considering
nowhere dense closed P-sets instead of P-points.

Consider two copies of N*: N7, N3. Let P, C N} and P, C N} be two
different closed P-sets such that P; is homeomorphic to P». There is a
homeomorphism g2 : Nf — N} such that gi2(P1) = P> under CH [vM84].
Therefore g, : N5 — Ni is also a homeomorphism and g7, (P) = P;. The
free union of the two copies of N*, NJ U N3, is homeomorphic to N*. Let

hi :NJUN; — N7 UN3  be defined by hy = g12U 91_21‘

Then hy(z) # x for each x and h? = id. In a similar manner define hy :
N3 UN} — N3 UN]} so that hy = g34 U g:,;f and h3 = id, where N} and N
are other copies of N* with corresponding homeomorphic P-sets P3 and Pjy.
The adjunction spaces
N1 Ug N3, N3Ug, N, NjUg Ny,
where we identify the P-sets P, with P, P3 with Py, and P} with Py, are
homeomorphic to N* [vM84]. The free union
(NT U, N3) & (N3 Ug, N})

is also homeomorphic to N*.
Let ¢ : P, — P4 be a homeomorphism. Now let us define

[ (N Ugy Ny) @ (N; Ug, Np| — Nj Ugs Nj
by
hi(z) ifx € N3\ P,
hg(x) ifx e N; \ Ps,
x if 2 € (N} \ Py) UN},
e(x) ifzxe b

fz) =

Then f is a continuous and exactly two-to-one function and the image is
homeomorphic to N*. Let us find the sets Iy, Uy, X1, I1, U1, and Xs for this
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example, which are introduced in Example 1:
Xo = (N7 Ug, N3) & (N3 U, Nj),
Iy = {A C Xo: A= Ag U A67 AOaA/O clopen, f[AO] = f[A/O]}v
Uy = U A:Xo\(PQUP4),
A€l
Xi = Xo\uO =P, UP;.
The function f is not locally one-to-one in the nowhere dense closed sets P»

and Py. But f[y. is a continuous two-to-one function. I is the analogous
set in X7 and

1

=) A=x1, Xp=Xi\U=0.
Aelb

ExampLE 3 (CH). We give an example of a nontrivial two-to-one con-
tinuous function f : N* — N* which is locally one-to-one at every point of
N* except for two P-sets and with the property that Xo # () and X3 = ().
We know that N* can be embedded as a nowhere dense P-set in N* assum-
ing CH [vM84]. Consider two copies of N*: N}, N§. Embed N} Uy, N3 and
N3 Ug, N} of Example 2 as nowhere dense P-sets P5 and Fs in Nj and Ng,
respectively:

N Ug, N5 — N5 and N3 U, N} — Nj

In a similar fashion to Example 1, let g : N5 — N§ be a homeomorphism
such that g(P5) = Ps. Therefore g~! : N§ — Nt is also a homeomorphism
and 971<P6) = P5. Let

hi:NiUN; — NfUN;  be defined by hy =gUg™?

Then h% = id. Let N7 U Ng be another copy of Ni U N§. Suppose that
ho : N2 UN§ — N2 UNZ is defined similarly so that h3 = id.

The adjunction spaces

N5 Ugs Ng, N7 Ugg Ny, N5 Ug, Ng,
where we identify the P-sets P; with Ps, Pr with Ps, and Ps5 with Pj, are
homeomorphic to N* [vM84]. The free union (N} Ug; Ni) @ (N5 Uy, N3) is also
homeomorphic to N*. Let ¢ : P — Ps be the two-to-one function defined
in Example 2. Define
f [(N5 Ugs No) @ (N7 Ugg Ng)] — N5 Ug; Ny

by
hi(z) if x € N\ Ps,
ho(z) if x € N:\ Py,
x if z € (Nf\ P5) U (N§ \ Py),
p(x) ifxe PsUPDs.

fz) =
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Let us find the sets Iy, Uy, X1, 11, U1, X2, 12, U, X3 in this example:
Xo = (N; Ugs NZ) ® (N; Ugs N;)v
I() = {A - XO A= AQ U A6, AO,A6 clopen, f[A[)] = f[Aé]},
U= | A=Xo\ (PsUFy),
A€l
XlzXo\U():P(;UPg.
The function f is not locally one-to-one in the nowhere dense closed sets P

and Ps. Now f[x, is an exactly two-to-one continuous function which is the
same as the function in Example 2. Therefore,

L ={ACX;: A=A UA}, Ay, A clopen, f[A1] = f[A}]},
U, = U A:Xl\(PQUP4),
Aelh
Xo=X; \Lﬁ = P2UP4,
IQ = {A Q X2 A= A2 U All, AQ,AIQ clopen, f[AQ] = f[AIQ]},
UQ = U A= X27
AE]Q
X3 = Xo\ U = 0.
It is clear that we can continue this process for any finite number of steps

in the following sense: If f : N* — K is a two-to-one continuous function
and X = N*, then for each integer n,

I,={ACX,: A=A, UAl A, A clopen, f[A,] = f[AL]},
U, = U A, Xpg1 = Xn \Up.
Ael,
Then for each integer n there is an f so that X,, # () while X,,;1 = 0.

4. Zero-dimensional spaces. A space X is called zero-dimensional if
it has a base consisting of clopen sets, that is, if for every point x € X and
for every neighborhood U of z there exists a clopen subset C' C X such that
x € C CU. N*is a zero-dimensional space and in this section we show that
every two-to-one continuous image of N* is zero-dimensional under CH.

Suppose that f: N* — K is a two-to-one continuous function. As in the
examples given in Section 3, let

Xo = N*a Ky =K,
I() = {A - X() A= AO U AE), A(),A6 clopen, f[A()] = f[Aéj]},

Uy = UA.

AEIO
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Cram 2. Iy # 0.

Proof of Claim. By Theorem 3, there is a clopen set B C N* such that
f1p is one-to-one and Intf[B] # (). Therefore, f[B] is homeomorphic to B
and hence there is a clopen set B’ C Intf[B] and f~![B’] is clopen since
f1p is one-to-one and it can be written as a union of two disjoint clopen
sets f71[B'] = Ap U A} such that f[Ag] = f[A}]. Therefore, f~1[B'] € Iy.
This shows Iy is nonempty and f[Up] is dense in Kj. =

Now let X7 = X\ Up and K; = Ko \ f(Up). Then X is a closed subset
of Xo. If X1 # 0, then flx, : X1 — K is an exactly two-to-one continuous
function. In a similar way as before let

L ={ACX,: A=A UA], Ay, A clopen, f[A1] = f[A]},
=] A Xo=Xi\Uh, K=K /fUh).
Ael
If Xy # 0, then I # () by Theorem 3. If X3 # (), then f[y, : Xo — Kp is

an exactly two-to-one continuous function. Continuing in a similar fashion,
for each n we define

I, = {A CX,: A=A, U A;w AnaA/n clopen, f[An] = f[A'ln,]}v

Uy, = U A; Xn+1 =X, \um Kn+1 =K, \ f(u”)
Ael,

Then X, =), X» and K, = (), K. Recall that we showed in Section 3
that X,, may be nonempty for any given natural number n. Therefore, the
next result is quite a surprise.

THEOREM 6 (CH). X, =0 and K, = 0.
Proof. Suppose X, # (). Then I, # () where
I,={ACX,: A=A, UA,, A,, A, clopen, f[A,] = flAL]}.

Therefore, there exist two nonempty disjoint clopen sets A, A/, C X, such
that f[A,] = f[A]. Since X,, is compact and X is zero-dimensional there
are disjoint clopen sets By, B, C Xy such that By N X, = A,, and B{N X,
= Al,. Thus X — (By U By)) is clopen in X and

(Ay UAL) N fH(f(Xo = (BoU By))) =0
by the definition of A, and A/,. But
Ay UA], = (ByUBy) N X, = (BoUBy) N[ Xn=()(BoUBp) N Xp.

Therefore f=1(f[Xo \ (Bo U B})]) N ((Bo U Bf) N X,,) = 0 for some m.

CrAM 3. There exists ng > m such that f~*(f[Bo]) 2 X, N B} for all
n > ng.
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Proof of Claim. Otherwise for every n > ng there are x,, z,, € (X, N By)
\ f~Y(f[Bo]) such that f(x,) = f(z!). Then {z,}U{z!} is a discrete subset
of N* and therefore {z,,} N {z!,} = 0. Moreover {x,} \ {z,} U{z/}\ {z/} C
X,NBj = Al and {z,} \{z,} U{z!,} \ {z],} is nonempty since every infinite
discrete set in a compact space has a limit point.

But then there are elements z € {x,} \ {z,} and 2’ € {2/} \ {z/,} such
that f(z) = f(z'). This is a contradiction since f[,, is one-to-one. m

By symmetry there exists ko > m such that f~1(f[Bo]) 2 X,, N B} for
all n > kg. Let k = max{ko,no}. Then f(BO N XkJrl) = f(36 N XkJrl).
This implies A, C Uy and A, C Ugyq. This is a contradiction since
AW,A‘/U - Xw - Xk+1 \ Uk+1. Hence Xw = @ and Kw = @ ]

LEMMA 7. If A C X7 is clopen with f~1(f[A]) = A and U C X, is open
with A C U, then there is a clopen set A C U in X such that ANX,=A
and f~1(f[A]) = A".

Proof. Since A is clopen in X7 and X; is a subspace of Xy, there is a
clopen set B C Xy such that BNX; = A and B C U. Then f[X\ B]N f[4]
= 0.

Let A’ = B\ f~1(f[Xo \ B]). We now show that A’ is the clopen subset
of Xy we are looking for. Clearly A’ is open in Xg, A’ C U, A/ NX; = A,
and f~1(f[A']) = A’. It remains to show that A’ is closed in X,. This is
equivalent to showing that BN f~1(f[Xo \ B]) is open.

Let z € BN f~Y(f[Xo \ B)) and let 2’ € X be such that f(x) = f(a').
This implies z, 2" € Uy = X \ X;. Therefore, by the definition of Uy, there
are disjoint clopen sets Ay, A, C Uy in Xy such that z € Ay, 2’ € A, and
J1Ao] = f[A{]. Now shrink Ay and Aj to clopen sets By and B, respectively,
so that z € By C B, 2/ € By C f~1(f[Xo \ B]), and f[Bo] = f[B}]. Then
z € By C BN fH(f[Xo\ B)).

Therefore, BN f~1(f[Xo \ B]) is open and A’ is closed in Xp. =

LEMMA 8. If A C X1 is clopen with f~1(f[A]) = A and U C X,
is open with A C U, then there is a clopen set A C U in X, such that
AN X1 =A and f7Hf[A]) = A'.

Proof. The proof is similar to the proof of Lemma 7 with X,,;+1 and X,
playing the roles of X; and Xy, respectively. »

LEMMA 9. If A C X,, is clopen with f~1(f[A]) = A and U C X is open
with A C U, then there is a clopen set A’ C U in X such that ANX, = A
and f~1(f[A]) = A".

Proof. This follows from Lemmas 7 and 8 by induction. =

THEOREM 10 (CH). If f: N* — K is a two-to-one continuous function,
then K is zero-dimensional.
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Proof. Let y € V where V is an open subset of K. Then y € K, \ K, +1
since K, = () by Theorem 6. This implies y € f(U,,) = K,,\ K, +1. Therefore,
y € flAn] C f(Uy) = K, \ Kp4q1 for some clopen set A, C X,, such that
f[Ay] is clopen and f[ 4 is one-to-one. This is by the definition of if,. Then
f[Ay] is homeomorphic to A,, and so there is a clopen set B C Intf[A,,]
containing y. Shrink B so that y € B C VN K,,.

Let A = f~YB) and U = f~Y(V). Then A C X, is clopen with
FYHfIA]) = A and U C X, is open with A C U. By Lemma 7, there
exists A’ C U clopen in X such that A’ N X,, = A and f~1(f[4]]) = A'.
Then y € f[A] CV and f[A'] is clopen in K since f~1(f[A4’]) = A’. Hence

K is zero-dimensional.

5. F-spaces. A space is called an F-space if every pair of disjoint cozero
subsets are completely separated. It is well known that N* is an F-space
[Wa74] and in this section we show that every two-to-one continuous image
of N* is also an F-space under CH.

THEOREM 11 (CH). If f: N* — K is a two-to-one continuous function,
then K is an F-space.

Proof. Let C; and C3 be two disjoint cozero sets in K. Then f~1(C})
and f~1(Cy) are disjoint cozero sets in N*. Since N* is an F-space we have
f~1(C1) N f~1(Cs) = 0. We must show that C; N Cy = (. It is sufficient
to show that for any y € C; there are two elements x,2’ € f~1(C}) such
that f(z) =y = f(«'). This shows that y ¢ Cy. Otherwise, if y € Cp C
f[f~H(Ca)], there exists an z” € f— (02) such that f(z”) =y and 2" # x, 2/
since f=1(C1) N f~1(Cy) = 0 and x,2' € f~1(C}). So three different points
x,x’, " map to y. This is a contradiction to the fact that the function f is
exactly two-to-one.

Let y € C1. Then y € C; C f[f~1(C1)] since C1 = f[f1(Cy)] C
fIf~1(C1)]. This implies there exists an x € f~1(C}) such that f(z) = y.
By Theorem 6, K,, = () and so y € K,,\ K,,+1 for some integer n. Let m <n
be maximal such that y € C; N K,,. Then y ¢ C; N K, and so there is
a cozero set C, C K,, such that y € Cy and C, NC1 N K11 = @. Thus
Cy N Cl N Km+1 == @

Therefore, without loss of generality, we can assume that C1 N K, 11 =0
and (1 is a cozero set in K, since we can take C7 to be the cozero set
CyNCy. Then f~1(C1) is a cozero set in X,, and f~1(C1) N X,,01 = 0, that
is, f~1(C1) C Uy, where Uy, is defined as in Section 4 by

U 4

A€l
Im={AC Xp:A=AnUA,, Apn, A clopen, f[An] = f[A,]}.
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Since f~1(C}) is a cozero set in X, and X, is a compact zero-dimensio-
nal F-space, it can be written as a countable union of disjoint clopen sets
in such a way that f~1(C1) = o2, [An U A}] where A, and A/, are disjoint
clopen sets in X,,, and f[A,] = f[A}]. Therefore, f~1(C}) can be written as
a union of two disjoint sets

rer=(3a(@

and by the definition of A,, and A/, we get

G-

Thus

F1(Cy) = [j A U G AL
n=0 n=0

The sets |~ An and ;2 A}, are cozero sets since a countable union of
clopen sets is a cozero set, and they are disjoint by construction. Therefore,
since X, is an F'-space we get

GAnm GA;L:G)
n=0 n=0

Now since

ze f~1(Cy) = DA” U GA;%
n=0 n=0

we assume, without loss of generality, that

x € DA” and ngGA;L
n=0

n=0
By continuity of f and the fact that f[U,~—, A = flU,—oAn] we get
FlUnZo Anl = U2 4] and

ye i C fI7T(C)] = f[QOAn} - f[QOAg].

Therefore, there exists an 2’ € |J;~, A!, such that f(z') = y.
Now 2’ # x because z’ € |J;~ AL, v € U,~, An, and

U4a.n 4, =0
n=0 n=0

Thus, there are two different points x,2’ € f=1(C1) such that f(z) = y
= f(2'). Hence K is an F-space. m
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6. Nonempty Ggs-sets. The intersection of countably many open sets
is called a Gg-set. Nonempty Gs-sets on N* have nonempty interiors. In this
section we prove that two-to-one continuous images of N* have the same

property.

THEOREM 12 (CH). If f: N* — K is a two-to-one continuous function,
then nonempty Gs-sets in K have nonempty interior.

Proof. Suppose that {b, : n € w} is a descending sequence of clopen
subsets of K with by = K. It suffices to deal with clopen sets since we have
shown that K is zero-dimensional. Assume to the contrary that (), b, is
nowhere dense. Let Z C N* be such that f], is irreducible. This is possible
by Zorn’s lemma.

For each n let a, = f~1(b,) N Z. Then {a, : n € w} is a descending
sequence of clopen subsets of Z and a9 = Z. Therefore, by Theorem 3,
for each n pick clopen sets e, C a, \ ant1 and e}, C N*\ Z such that
flen] = fle}). Then, in Z, |J,, (an \ (en Uant1)) N, en = 0 since Z is an
F-space.

Since we assumed (), by, is nowhere dense in K, f~1((,, b»)NZ is nowhere
dense and so

Z =J(an\ (en Uani1)) U Jen

Thus J,, en is clopen in Z. Clearly |, (an \ any1) N, €, = 0 since Z is
closed and €], C N*\ Z.

Let us show that |, (an \ ant1) NU, €, = 0. For each n, f~1(K \ by)
is clopen in N* since b, is clopen and f is continuous. By construction
Umsn €m0 1K \by) =0 and U, e, €5, N f (K \ by) is clopen in N* since
it is a finite intersection of clopen sets. Because

an \ ant1 C fTHE \bot1) and  [ay \ (apg1 Uep)] N U en =10

new

we have (J,, (an \ ant1) NU, €, = 0. Thus |, (an \ ant1) NU,, €, = 0 since

N* is an F-space. Therefore J,, e, NJ,, €, = 0 and hence f is a two-to-one

3 /
function on | J,, e, U, €.

Now since f[J,, en] = fIU,, €] we have K = f[J,, en]U f[Z\ U, en] and
flU,en) N fIZ\ U, en] = 0. Therefore f[J,, en] C K is clopen in K. But
then

() - e

is clopen. This is a contradiction since |J,, e, U J,, €}, is not clopen by the

fact that in N* nonempty Ggs-sets have nonempty interior. m
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If f:N* — K is a two-to-one continuous function, Levy [Le04] proved
that countable discrete subsets of K are C*-embedded and the weight of K
is ¢. This completes everything needed to prove that a two-to-one continuous
image of N* is N* up to a homeomorphism.

CoOROLLARY 13 (CH). If f : N* — K is a two-to-one continuous func-
tion, then K is homeomorphic to N*.

Proof. Follows from Theorems 1, 10, 11, and 12. =

OPEN PROBLEMS. Our results are all under the set-theoretic assumption
CH. Is it possible to eliminate CH? In particular, if f : N* — K is a two-to-
one continuous function:

1) Is it true that f is not irreducible?
) Is K homeomorphic to N*?
) Is every countable subset of K C*-embedded?
4) Can K be separable or ccc? (Levy question [vD93)).
) If f is n-to-one continuous with n > 2, is K homeomorphic to N*
under CH or ZFC?
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