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Abstract. A function is two-to-one if every point in the image has exactly two inverse
points. We show that every two-to-one continuous image of N

∗ is homeomorphic to N
∗

when the continuum hypothesis is assumed. We also prove that there is no irreducible
two-to-one continuous function whose domain is N

∗ under the same assumption.

1. Introduction. A function f : X → Y is two-to-one if for each y ∈ Y ,
there are exactly two points of X that map to y. All spaces considered are
Tikhonov. For some spaces X, there does not exist a two-to-one continuous
function f : X → Y for any choice of Y . For example, Harrold [Ha39]
showed that there is no two-to-one continuous function f : [0, 1] → Y and
Mioduszewski [Mi61] proved that there is no two-to-one continuous function
f : R → Y . In fact, Heath [He86] later showed that every two-to-one function
f : R → Y has infinitely many discontinuities.

Another situation is when there are two-to-one continuous functions f :
X → Y defined on a space X, but given any such function the image space Y
is determined up to a homeomorphism. For example, if f : [0, 1) → S1, where
S1 is the unit circle {p ∈ R

2 : ‖p‖ = 1}, is defined by f(x) = exp(4πix), then
f is a two-to-one continuous function. Mioduszewski [Mi61] proved that if
f : [0, 1) → Y is a two-to-one continuous function, then Y is homeomorphic
to S1.

In this paper we investigate the behavior of two-to-one continuous maps
defined on N

∗, the remainder βN \ N of the Stone–Čech compactification
of the space N of natural numbers. We give partial answers to questions
recently raised by R. Levy [Le04]. In particular, we show that every two-
to-one continuous image of N

∗ is homeomorphic to N
∗ when the continuum

hypothesis (CH) is assumed.
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There are two-to-one continuous functions defined on N
∗. For example,

the space N
∗ is homeomorphic to N

∗×2, so the projection map f : N
∗×2 →

N
∗ given by f(x, k) = x is a two-to-one continuous function on N

∗ and
the image is N

∗. Such an example would be called trivial. A continuous
two-to-one function f : N

∗ → N
∗ is trivial if there is a clopen subset C

of N
∗ such that the restrictions f↾C and f↾N∗\C are homeomorphisms. In

[Do04], the first author proved that all maps on N
∗ that are two-to-one are

trivial, in the above sense, under the presence of the Proper Forcing Axiom
(PFA). Eric van Douwen [vD93] has also produced a surprising answer to
a similar question raised by R. Levy. He showed that the space N

∗, which
is a compact space and very far from being separable, can be mapped onto
a compact separable space by a ≤two-to-one continuous function. We are
concerned with the question of whether every exactly two-to-one continuous
image of N

∗ is homeomorphic to N
∗.

It is well known that if a space Y is homeomorphic to N
∗, then Y is a

Parovichenko space, that is, a compact zero-dimensional F -space of weight
c which has no isolated points and with the property that every nonempty
Gδ-set has infinite interior. Therefore, if we are interested in whether or not
two-to-one continuous images of N

∗ are homeomorphic to N
∗, we should

investigate which of these six properties are satisfied by the spaces which
are two-to-one continuous images of N

∗.

If Y is a two-to-one continuous image of N
∗, obviously Y is compact since

N
∗ is compact, and Y has no isolated points since two-to-one continuous

maps preserve the property of having no isolated points. Ronnie Levy [Le04]
showed that Y has the property that countable discrete subsets are C∗-
embedded and Y contains a copy of N

∗ and so Y has weight c. We include
his proof for the reader’s convenience.

Theorem 1 (Levy). Let X be a space such that every countable discrete

subset of X is C∗-embedded in X. If f : X → Y is a two-to-one continuous

function, then every countable discrete subset of Y is C∗-embedded in Y.

Proof. Let C be a countable discrete subset of Y . Since f is two-to-one
and C is countable discrete, f−1(C) is a countable discrete subset of X.
Therefore, f−1(C) is C∗-embedded in X. We must show that disjoint subsets
of C have disjoint closures in Y . Let A, B ⊆ C be such that A ∩ B = ∅.
Assume that there exists p ∈ ClY A ∩ ClY B.

For each a ∈ A let f−1({a}) = {a1, a2}, and for each b ∈ B, let
f−1({b}) = {b1, b2}. Let A1 = {a1 : a ∈ A}, A2 = {a2 : a ∈ A}, B1 =
{b1 : b ∈ B}, B2 = {b2 : b ∈ B}. These four sets are pairwise disjoint subsets
of f−1(C) and therefore their closures are also pairwise disjoint since f−1(C)
is C∗-embedded. By the continuity of f , each of the four sets ClX A1, ClX A2,
ClX B1, ClX B2 contains an element of the fiber f−1({p}). Since these sets
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are pairwise disjoint, |f−1({p})| ≥ 4. This contradicts the fact that f is
two-to-one.

Then Levy asked in the same paper whether Y has the remaining three
properties. We show that Y actually has these three properties under CH,
that is, Y is a zero-dimensional F -space in which every nonempty Gδ-set has
infinite interior. A consequence then is that two-to-one continuous images
of N

∗ are homeomorphic to N
∗ when CH is assumed since N

∗ is the only
Parovichenko space under CH [vM84].

2. Irreducible maps. A mapping f of X onto Y is irreducible if no
proper closed subset of X maps onto Y . Thus, the image of an open set by
a closed irreducible mapping will have interior. It follows easily from Zorn’s
lemma [Wa74] that if X and Y are compact spaces and f is a continuous
function from X onto Y , then there is a closed subspace F of X such that
f↾F is an irreducible map from F onto Y . Levy [Le04] asked if there exists
an irreducible two-to-one continuous function whose domain is N

∗. Under
CH, we will show that there is no such function.

Notation. For a map f : X → Y and A ⊆ X, let JA = f−1(f [X \ A])
∩ A, and for a point x, let x′ denote a point 6= x such that f(x) = f(x′).

Lemma 2. Let f : X → Y be an irreducible continuous closed map. If A
is an open subset of X, then JA is nowhere dense in X.

Proof. Suppose that JA is not nowhere dense in X. Then IntJA is a
nonempty open subset of X. Then clearly f [A ∩ IntJA] ⊆ f [A] and JA ⊆
f−1(f [X \A]) since JA ⊆ f−1(f [X \A]) and f [X \A] is closed. Thus f [JA] ⊆
f [X\A] and in particular f [A∩IntJA] ⊆ f [X\A]. Therefore, X\(A∩IntJA)
is a proper closed subset of X since A ∩ IntJA is a nonempty open set
contained in A, and f [X \ (A∩ IntJA)] = Y since f [A∩ IntJA] ⊆ f [A] and
f [A ∩ IntJA] ⊆ f [X \ A]. This is a contradiction since f is irreducible.

The following result is the main ingredient in our analysis of the structure
of two-to-one continuous functions.

Theorem 3 (CH). Let X be a compact space of weight c and suppose

that countable discrete subsets of X are C∗-embedded. If f : X → K is a

two-to-one continuous function and Z is a closed subset of X such that f↾Z

is irreducible and maps Z onto K, then for every nonempty open set W ⊆ K
there exists an open set B in X such that B∩Z = ∅ and Int(f [B])∩W 6= ∅.
Furthermore, if X is zero-dimensional , then B can be chosen to be clopen.

Proof. Let W be a nonempty open subset of K. Seeking a contradic-
tion, suppose that f [B] ∩ W is nowhere dense in K for each open set
B ⊆ X with closure disjoint from Z. For each open subset B ⊆ X \ Z,
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let IB = f−1(f [B] ∩ W ) ∩ Z. Then IB is nowhere dense in Z since f is
closed irreducible and f [IB] ⊆ f [B] ∩ W , which is nowhere dense.

Since f is continuous, f−1(W )∩Z has nonempty interior in Z. For each
open subset A ⊆ f−1(W ) ∩ Z, JA is nowhere dense in Z by Lemma 2.

We construct, by induction, a family {Aα : α < ω1} which is a filter
base of cozero subsets of f−1(W ) ∩ Z such that

⋂
α<ω1

Aα is a singleton

{x} so that f−1(f(x)) = {x}. This yields a contradiction as f is an exactly
two-to-one function.

Let {Bα : α < ω1} enumerate all the cozero sets B in X such that B∩Z
= ∅, and let {C0

α, C1
α : α < ω1} enumerate all pairs of cozero sets in Z such

that Z = C0
α ∪ C1

α. We construct {Aα : α < ω1} such that for each α < ω1:

(1)
⋂

β≤α Aβ is nonempty;

(2) Aα ⊆ C0
α or Aα ⊆ C1

α;
(3) if α = β + 1, then Aα ⊆ Aβ \ (JAβ

∪ IBβ
).

We show how to define the first two cozero sets A0 and A1: Let x ∈
f−1(W ) ∩ Z. Then choose a cozero set neighborhood A0 of x such that
A0 ⊆ f−1(W ) ∩ Z and either A0 ⊆ C0

0 or A0 ⊆ C1
0 .

Then JA0
and IB0

are nowhere dense in Z, hence A0 \ (JA0
∪ IB0

) 6= ∅.
Let x, possibly different from the previous x, be a point in A0 \ (JA0

∪ IB0
).

Then choose a cozero set neighborhood A1 of x with A1 ⊆ A0 \ (JA0
∪ IB0

)
and either A1 ⊆ C0

1 or A1 ⊆ C1
1 . For each n ∈ ω we can define An in the

same manner.
Suppose that α ≥ ω and we have constructed the family {Aβ : β < γ}

for all γ < α. If α = β + 1, then
⋂

γ≤β Aγ 6= ∅ by the induction assumption.
If α is a limit, then the induction hypothesis (1) ensures that Gα =

⋂
β<α Aβ

is not empty since Z is compact and Aβ ⊆ Aβ+1 for each β < α so that⋂
β<α Aβ ⊇

⋂
β<α Aβ+1.

If α is a limit and x ∈ Gα =
⋂

β<α Aβ, we choose a cozero set neighbor-

hood Aα of x such that Aα ⊆ C0
α if x ∈ C0

α or Aα ⊆ C1
α otherwise. If α = β+1

with β ≥ ω, we must define a cozero set Aα so that Aα ⊆ Aβ \ [JAβ
∪ IBβ

].
Let λ be the largest limit ordinal less than α. We enumerate λ ∪ {β} as
β = β0, β1, β2, β3, . . . . We now consider the cases when Gα has nonempty
interior and Gα is nowhere dense.

If Gα has nonempty interior, then Gα \ [JAβ
∪ IBβ

] 6= ∅ since JAβ
∪ IBβ

is nowhere dense. Then pick a point x ∈ Gα \ [JAβ
∪ IBβ

] and a cozero set

Aα containing x such that Aα ⊆ Gα and either Aα ⊆ C0
α or Aα ⊆ C1

α.
If Gα is nowhere dense, JAβ

∪ IBβ
∪ Gα is nowhere dense and Aβ \ [JAβ

∪
IBβ

∪Gα] 6= ∅. Let x0 ∈ Aβ\[JAβ
∪IBβ

∪Gα]. Then choose i1 > 1 large enough
such that x0 /∈ Aβi1

, which we may do since x0 /∈ Gα. Then either x′
0 ∈ Aβi1

,

x′
0 ∈ JAβi1

, or x′
0 /∈ Z. In any case, x′

0 /∈ Aβi1
+1 since Aβi1

+1 ⊆ Aβi1
\ JAβi1
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by construction. So there is an i′1 > 1 such that βi′
1

= βi1 +1 and x′
0 /∈ Aβi′

1

.

Thus x0, x
′
0 /∈ Gα.

Similarly, pick x1 ∈ [Aβ ∩Aβ1
∩ · · · ∩Aβi1

] \ [JAβ
∪ IBβ

∪Gα] and choose

i2 > i′1, i1 > 1 large enough so that x1 /∈ Aβi2
. Then x′

1 /∈ Aβi2
+1 by con-

struction. So there is an i′2 > i′1, i1 > 1 such that βi′
2

= βi2 +1 and x′
1 /∈ Aβi′

2

.

Thus x1, x
′
1 /∈ Gα. Continuing this process, for every integer n, pick xn ∈

[Aβ ∩ Aβ1
∩ · · · ∩ Aβin

] \ [JAβ
∪ IBβ

∪ Gα] and choose an integer in+1 > in,
i′n > · · · > i2, i

′
2 > i′1, i1 > 1 large enough so that xn /∈ Aβin+1

. Then there

is an integer i′n+1 > i′n, in such that x′
n /∈ Aβi′

n+1

. Thus xn, x′
n /∈ Gα.

Hence, we get a countable set {xn}n ∪ {x′
n}n. We remark that the xn’s

and x′
n’s can be chosen from some dense subset of f−1(W ) ∩ Z. From the

construction of the xn’s and x′
n’s:

∀i > n xi, x
′
i ∈ f−1(f [Aβ ∩ Aβ1

∩ · · · ∩ Aβin
]),

∀j ≤ n xj , x
′
j 6∈ f−1(f [Aβ ∩ Aβ1

∩ · · · ∩ Aβin+2
]),

and since f−1(f [Aβ ∩ Aβ1
∩ · · · ∩ Aβk

]) is closed for all k, the set {xn}n ∪

{x′
n}n is discrete. Therefore {xn}n ∩ {x′

n}n = ∅ since {xn}n ∩ {x′
n}n = ∅

and countable discrete subsets of X are C∗-embedded. We have f({xn}n) =
f({x′

n}n) by continuity of f and the fact that f({xn}n) = f({x′
n}n). We also

have {xn}n \ {xn}n 6= ∅ and {x′
n}n \ {x′

n}n 6= ∅ since every infinite subset of
a compact set has a limit point. By the construction of the xn’s we see that
{xn}n \ {xn}n ⊆ Gα.

If {z ∈ Z : z′ ∈ Z} ∩ f−1(W ) is dense in f−1(W )∩Z, we can choose the

x′
n’s in f−1(W ) ∩ Z so that we also have {x′

n}n \ {x′
n}n ⊆ Gα. In this case

if we choose x ∈ {xn}n \ {xn}n, then x′ ∈ {x′
n}n \ {x′

n}n and x 6= x′ since
{xn}n ∩ {x′

n}n = ∅. Moreover x 6∈ JAβ
since x ∈ JAβ

implies x′ 6∈ Aβ , which
contradicts x′ ∈ Gα ⊆ Aβ . We also have x 6∈ IBβ

, that is, x′ 6∈ Bβ since
x′

n 6∈ Bβ for all n and Bβ is a cozero set. Thus we have found an x ∈ Gα

such that x 6∈ JAβ
∪ IBβ

.

If {z ∈ Z : z′ ∈ Z} ∩ f−1(W ) is nowhere dense in f−1(W ) ∩ Z, find a
cozero set A ⊆ Aβ ⊆ f−1(W ) ∩ Z such that f↾Z is one-to-one on all points
of A, that is, f−1(f [A]) meets Z in A. In this case we can choose the xn’s so
that {xn}n ⊆ A and hence {x′

n}n ⊆ X \Z. Then {xn}n \{xn}n ⊆ A. Choose

an x ∈ {xn}n \ {xn}n. Then x ∈ A and so x′ 6∈ Z; in particular x′ 6∈ Z \ Aβ

and so x 6∈ JAβ
. It is also true that x 6∈ IBβ

, that is, x′ 6∈ Bβ since x′
n 6∈ Bβ

for all n and Bβ is a cozero set. Therefore x ∈ Gα and x 6∈ JAβ
∪ IBβ

.

We choose a cozero set Aα containing x with Aα ⊆ Aβ \ [JAβ
∪ IBβ

] and

either Aα ⊆ C0
α or Aα ⊆ C1

α. Then Aα satisfies all the induction assumptions
and this completes the inductive construction.
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But now
⋂

α<ω1
Aα 6= ∅ since

⋂
β<ω1

Aβ ⊇
⋂

β<ω1
Aβ+1 and X is com-

pact. Moreover the fact that
⋂

α<ω1
Aα is a singleton is easily seen by the

induction hypothesis (2). Let
⋂

α<ω1
Aα = {x}.

Claim 1. f−1(f(x)) = {x}.

Proof of Claim. Suppose that for some x′ 6= x, we have f(x) = f(x′).
If x′ ∈ Z, then x′ /∈ Aα for some α < ω1. This implies x ∈ JAα

and so
x /∈ Aα+1. This is a contradiction. If x′ /∈ Z, then x′ ∈ Bα for some α < ω1.
This implies x ∈ IBα

and so x /∈ Aα+1. This is also a contradiction.

This contradicts f being an exactly two-to-one function. Moreover the
zero-dimensional case follows immediately from the general case. If X is
zero-dimensional, and B is an open set such that B ∩ Z = ∅, then there is
a clopen set disjoint from Z containing B.

Corollary 4 (CH). Let X∗ be the Stone–Čech remainder of a locally

compact separable metric space X. If f : X∗→ K is a two-to-one continuous

function, then f is not irreducible. In particular , if f :N∗→K or f :R∗→K
is two-to-one and continuous, then f is not irreducible.

Proof. Suppose that f is irreducible. Taking X = Z = X∗ and W = K
in Theorem 3 we get a nonempty subset B of the empty set X∗ \ Z.

Corollary 5 (CH). If f : N
∗ → K is a two-to-one continuous func-

tion, then K is not ccc.

Proof. Let W be a nonempty open subset of K. By Zorn’s lemma [Wa74],
there is a closed subset Z of N

∗ such that f↾Z : Z → K is irreducible. Then,
by Theorem 3, there exists a nonempty clopen set B ⊆ N

∗ \ Z such that
Int(f [B]) ∩ W 6= ∅ since N

∗ is zero-dimensional. Then f↾B is a closed one-
to-one function and so B is homeomorphic to f [B]. Thus, f [B] has no open
ccc subset since N

∗ has no open ccc subset. Therefore, K is not ccc.

3. Examples of nontrivial two-to-one maps. A two-to-one function
f : X → Y will be called trivial if there exist disjoint clopen sets A and
B such that X = A ∪ B and f [A] = f [B] = Y . In [Do04] the first author
proved that all functions defined on N

∗ that are two-to-one continuous are
trivial under PFA. In this section we will give some nontrivial examples of
two-to-one continuous functions defined on N

∗ when CH is assumed.

A point is called a P -point if the family of its neighborhoods is closed
under countable intersections. A subset of a space is a P-set if the family
of its neighborhoods is closed under countable intersections. CH implies
that N

∗ has P -points and contains a nowhere dense closed P -set which is
homeomorphic to N

∗ [vM84].
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Example 1 (CH). We give an example of a nontrivial two-to-one con-
tinuous function f : N

∗ → N
∗ such that f is locally one-to-one at every

point of N
∗ except for two P -points.

Consider two copies of N
∗: N

∗
1, N

∗
2. Let p1 ∈ N

∗
1 and p2 ∈ N

∗
2 be P -points.

There is a homeomorphism g : N
∗
1 → N

∗
2 such that g(p1) = p2 under CH

[vM84]. Then g−1 : N
∗
2 → N

∗
1 is also a homeomorphism and g−1(p2) = p1.

The free union of the two copies of N
∗, N

∗
1 ∪ N

∗
2, is homeomorphic to N

∗.
Let h1 : N

∗
1 ∪ N

∗
2 → N

∗
1 ∪ N

∗
2 be defined by h1 = g ∪ g−1. Then h2

1 = id.
In a similar manner define h2 : N

∗
3 ∪ N

∗
4 → N

∗
3 ∪ N

∗
4 so that h2 = g̃ ∪ g̃−1

and h2
2 = id, where N

∗
3 and N

∗
4 are other copies of N

∗ with corresponding
P -points p3 and p4 and g̃ : N

∗
3 → N

∗
4 is a homeomorphism with g̃(p3) = p4.

The quotient spaces

(N∗
1 ∪ N

∗
2)/p1≡p2, (N∗

3 ∪ N
∗
4)/p3≡p4, (N∗

1 ∪ N
∗
4)/p1≡p4,

identifying p1 and p2, p3 and p4, p1 and p4, as single P -points in their
respective spaces, are homeomorphic to N

∗ [vM84]. The free union of the
first two spaces, (N∗

1 ∪N
∗
2)/p1≡p2 ⊕ (N∗

3 ∪N
∗
4)/p3≡p4, is also homeomorphic

to N
∗. Now define

f : [(N∗
1 ∪ N

∗
2)/p1≡p2 ⊕ (N∗

3 ∪ N
∗
4)/p3≡p4] → (N∗

1 ∪ N
∗
4)/p1≡p4,

f(x) =





h1(x) if x ∈ N
∗
2 \ {p2},

h2(x) if x ∈ N
∗
3 \ {p3},

x if x ∈ (N∗
1 \ {p1}) ∪ (N∗

4 \ {p4}),

p1≡p4 if x ∈ {p1≡p2, p3≡p4},

Then f is a continuous and exactly two-to-one function. Moreover, the image
of f is homeomorphic to N

∗.

We now introduce some notation that will be used in our future discus-
sions about this kind of two-to-one continuous maps. Let

X0 = (N∗
1 ∪ N

∗
2)/p1≡p2 ⊕ (N∗

3 ∪ N
∗
4)/p3≡p4,

I0 = {A ⊆ X0 : A = A0 ∪̇ A′
0, A0, A

′
0 clopen, f [A0] = f [A′

0]}.

So I0 is a family of clopen sets A in X0 such that A = f−1(f [A]), i.e.,
saturated, and f is locally one-to-one on A. Let U0 denote the union of all
the A’s in I0,

U0 =
⋃

A∈I0

A,

and in this example U0 = X0 \ {p1≡p2, p3≡p4}. Thus f is locally one-to-one
except at the two P -points p1≡p2 and p3≡p4. Let X1 = X0 \ U0, which is
again for this example given by

X1 = {p1≡p2, p3≡p4}.
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Then I1 is the analogous set in X1 but the points in X1 are not in U0 because
as can be seen above f is not locally one-to-one at the points p1≡p2 and
p3≡p4.

By using a similar construction to Veličković’s poset [Ve93], Example 1
can be done consistent with MA + ¬CH. But MA + ¬CH is not by it-
self enough to do the construction because of the first author’s PFA result
[Do04].

Example 2 (CH). We give an example of a nontrivial two-to-one contin-
uous function f : N

∗ → N
∗ such that f is locally one-to-one at every point

of N
∗ except for two P -sets. We extend the first example by considering

nowhere dense closed P -sets instead of P -points.

Consider two copies of N
∗: N

∗
1, N

∗
2. Let P1 ⊆ N

∗
1 and P2 ⊆ N

∗
2 be two

different closed P -sets such that P1 is homeomorphic to P2. There is a
homeomorphism g12 : N

∗
1 → N

∗
2 such that g12(P1) = P2 under CH [vM84].

Therefore g−1
12

: N
∗
2 → N

∗
1 is also a homeomorphism and g−1

12
(P2) = P1. The

free union of the two copies of N
∗, N

∗
1 ∪ N

∗
2, is homeomorphic to N

∗. Let

h1 : N
∗
1 ∪ N

∗
2 → N

∗
1 ∪ N

∗
2 be defined by h1 = g12 ∪ g−1

12
.

Then h1(x) 6= x for each x and h2
1 = id. In a similar manner define h2 :

N
∗
3 ∪ N

∗
4 → N

∗
3 ∪ N

∗
4 so that h2 = g34 ∪ g−1

34
and h2

2 = id, where N
∗
3 and N

∗
4

are other copies of N
∗ with corresponding homeomorphic P -sets P3 and P4.

The adjunction spaces

N
∗
1 ∪g1

N
∗
2, N

∗
3 ∪g2

N
∗
4, N

∗
1 ∪g3

N
∗
4,

where we identify the P -sets P1 with P2, P3 with P4, and P1 with P4, are
homeomorphic to N

∗ [vM84]. The free union

(N∗
1 ∪g1

N
∗
2) ⊕ (N∗

3 ∪g2
N
∗
4)

is also homeomorphic to N
∗.

Let ϕ : P2 → P4 be a homeomorphism. Now let us define

f : [(N∗
1 ∪g1

N
∗
2) ⊕ (N∗

3 ∪g2
N
∗
4)] → N

∗
1 ∪g3

N
∗
4

by

f(x) =





h1(x) if x ∈ N∗
2 \ P2,

h2(x) if x ∈ N∗
3 \ P3,

x if x ∈ (N∗
1 \ P1) ∪ N∗

4 ,

ϕ(x) if x ∈ P2.

Then f is a continuous and exactly two-to-one function and the image is
homeomorphic to N

∗. Let us find the sets I0, U0, X1, I1, U1, and X2 for this
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example, which are introduced in Example 1:

X0 = (N∗
1 ∪g1

N
∗
2) ⊕ (N∗

3 ∪g2
N
∗
4),

I0 = {A ⊆ X0 : A = A0 ∪̇ A′
0, A0, A

′
0 clopen, f [A0] = f [A′

0]},

U0 =
⋃

A∈I0

A = X0 \ (P2 ∪ P4),

X1 = X0 \ U0 = P2 ∪ P4.

The function f is not locally one-to-one in the nowhere dense closed sets P2

and P4. But f↾X1
is a continuous two-to-one function. I1 is the analogous

set in X1 and

U1 =
⋃

A∈I1

A = X1, X2 = X1 \ U1 = ∅.

Example 3 (CH). We give an example of a nontrivial two-to-one con-
tinuous function f : N

∗ → N
∗ which is locally one-to-one at every point of

N
∗ except for two P -sets and with the property that X2 6= ∅ and X3 = ∅.

We know that N
∗ can be embedded as a nowhere dense P -set in N

∗ assum-
ing CH [vM84]. Consider two copies of N

∗: N
∗
5, N

∗
6. Embed N

∗
1 ∪g1

N
∗
2 and

N
∗
3 ∪g2

N
∗
4 of Example 2 as nowhere dense P -sets P5 and P6 in N

∗
5 and N

∗
6,

respectively:
N
∗
1 ∪g1

N
∗
2 →֒ N

∗
5 and N

∗
3 ∪g2

N
∗
4 →֒ N

∗
6

In a similar fashion to Example 1, let g : N
∗
5 → N

∗
6 be a homeomorphism

such that g(P5) = P6. Therefore g−1 : N
∗
6 → N

∗
5 is also a homeomorphism

and g−1(P6) = P5. Let

h1 : N
∗
5 ∪ N

∗
6 → N

∗
5 ∪ N

∗
6 be defined by h1 = g ∪ g−1

Then h2
1 = id. Let N

∗
7 ∪ N

∗
8 be another copy of N

∗
5 ∪ N

∗
6. Suppose that

h2 : N
∗
7 ∪ N

∗
8 → N

∗
7 ∪ N

∗
6 is defined similarly so that h2

2 = id.
The adjunction spaces

N
∗
5 ∪g5

N
∗
6, N

∗
7 ∪g6

N
∗
8, N

∗
5 ∪g7

N
∗
8,

where we identify the P -sets P5 with P6, P7 with P8, and P5 with P8, are
homeomorphic to N

∗ [vM84]. The free union (N∗
5∪g5

N
∗
6)⊕(N∗

7∪g6
N
∗
8) is also

homeomorphic to N
∗. Let ϕ : P6 → P8 be the two-to-one function defined

in Example 2. Define

f : [(N∗
5 ∪g5

N
∗
6) ⊕ (N∗

7 ∪g6
N
∗
8)] → N

∗
5 ∪g7

N
∗
8

by

f(x) =





h1(x) if x ∈ N
∗
6 \ P6,

h2(x) if x ∈ N
∗
7 \ P7,

x if x ∈ (N∗
5 \ P5) ∪ (N∗

8 \ P8),

ϕ(x) if x ∈ P6 ∪ P8.
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Let us find the sets I0, U0, X1, I1, U1, X2, I2, U2, X3 in this example:

X0 = (N∗
5 ∪g5

N
∗
6) ⊕ (N∗

7 ∪g6
N
∗
8),

I0 = {A ⊆ X0 : A = A0 ∪̇ A′
0, A0, A

′
0 clopen, f [A0] = f [A′

0]},

U0 =
⋃

A∈I0

A = X0 \ (P6 ∪ P8),

X1 = X0 \ U0 = P6 ∪ P8.

The function f is not locally one-to-one in the nowhere dense closed sets P6

and P8. Now f↾X1
is an exactly two-to-one continuous function which is the

same as the function in Example 2. Therefore,

I1 = {A ⊆ X1 : A = A1 ∪̇ A′
1, A1, A

′
1 clopen, f [A1] = f [A′

1]},

U1 =
⋃

A∈I1

A = X1 \ (P2 ∪ P4),

X2 = X1 \ U1 = P2 ∪ P4,

I2 = {A ⊆ X2 : A = A2 ∪̇ A′
1, A2, A

′
2 clopen, f [A2] = f [A′

2]},

U2 =
⋃

A∈I2

A = X2,

X3 = X2 \ U2 = ∅.

It is clear that we can continue this process for any finite number of steps
in the following sense: If f : N

∗ → K is a two-to-one continuous function
and X0 = N

∗, then for each integer n,

In = {A ⊆ Xn : A = An ∪̇ A′
n, An, A′

n clopen, f [An] = f [A′
n]},

Un =
⋃

A∈In

A, Xn+1 = Xn \ Un.

Then for each integer n there is an f so that Xn 6= ∅ while Xn+1 = ∅.

4. Zero-dimensional spaces. A space X is called zero-dimensional if
it has a base consisting of clopen sets, that is, if for every point x ∈ X and
for every neighborhood U of x there exists a clopen subset C ⊆ X such that
x ∈ C ⊆ U . N

∗ is a zero-dimensional space and in this section we show that
every two-to-one continuous image of N

∗ is zero-dimensional under CH.
Suppose that f : N

∗ → K is a two-to-one continuous function. As in the
examples given in Section 3, let

X0 = N
∗, K0 = K,

I0 = {A ⊆ X0 : A = A0 ∪̇ A′
0, A0, A

′
0 clopen, f [A0] = f [A′

0]},

U0 =
⋃

A∈I0

A.
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Claim 2. I0 6= ∅.

Proof of Claim. By Theorem 3, there is a clopen set B ⊆ N
∗ such that

f↾B is one-to-one and Intf [B] 6= ∅. Therefore, f [B] is homeomorphic to B
and hence there is a clopen set B′ ⊆ Intf [B] and f−1[B′] is clopen since
f↾B is one-to-one and it can be written as a union of two disjoint clopen
sets f−1[B′] = A0 ∪̇ A′

0 such that f [A0] = f [A′
0]. Therefore, f−1[B′] ∈ I0.

This shows I0 is nonempty and f [U0] is dense in K0.

Now let X1 = X0 \ U0 and K1 = K0 \ f(U0). Then X1 is a closed subset
of X0. If X1 6= ∅, then f↾X1

: X1 → K1 is an exactly two-to-one continuous
function. In a similar way as before let

I1 = {A ⊆ X1 : A = A1 ∪̇ A′
1, A1, A

′
1 clopen, f [A1] = f [A′

1]},

U1 =
⋃

A∈I1

A, X2 = X1 \ U1, K2 = K1 \ f(U1).

If X1 6= ∅, then I1 6= ∅ by Theorem 3. If X2 6= ∅, then f↾X2
: X2 → K2 is

an exactly two-to-one continuous function. Continuing in a similar fashion,
for each n we define

In = {A ⊆ Xn : A = An ∪̇ A′
n, An, A′

n clopen, f [An] = f [A′
n]},

Un =
⋃

A∈In

A, Xn+1 = Xn \ Un, Kn+1 = Kn \ f(Un).

Then Xω =
⋂

n Xn and Kω =
⋂

n Kn. Recall that we showed in Section 3
that Xn may be nonempty for any given natural number n. Therefore, the
next result is quite a surprise.

Theorem 6 (CH). Xω = ∅ and Kω = ∅.

Proof. Suppose Xω 6= ∅. Then Iω 6= ∅ where

Iω = {A ⊆ Xω : A = Aω ∪̇ A′
ω, Aω, A′

ω clopen, f [Aω] = f [A′
ω]}.

Therefore, there exist two nonempty disjoint clopen sets Aω, A′
ω ⊆ Xω such

that f [Aω] = f [A′
ω]. Since Xω is compact and X0 is zero-dimensional there

are disjoint clopen sets B0, B
′
0 ⊆ X0 such that B0 ∩ Xω = Aω and B′

0 ∩ Xω

= A′
ω. Thus X0 − (B0 ∪ B′

0) is clopen in X0 and

(Aω ∪ A′
ω) ∩ f−1(f(X0 − (B0 ∪ B′

0))) = ∅

by the definition of Aω and A′
ω. But

Aω ∪ A′
ω = (B0 ∪ B′

0) ∩ Xω = (B0 ∪ B′
0) ∩

⋂

n

Xn =
⋂

n

(B0 ∪ B′
0) ∩ Xn.

Therefore f−1(f [X0 \ (B0 ∪ B′
0)]) ∩ ((B0 ∪ B′

0) ∩ Xm) = ∅ for some m.

Claim 3. There exists n0 > m such that f−1(f [B0]) ⊇ Xn ∩ B′
0 for all

n > n0.



188 A. Dow and G. Techanie

Proof of Claim. Otherwise for every n > n0 there are xn, x′
n ∈ (Xn ∩ B′

0)
\f−1(f [B0]) such that f(xn) = f(x′

n). Then {xn}∪{x′
n} is a discrete subset

of N
∗ and therefore {xn} ∩ {x′

n} = ∅. Moreover {xn} \ {xn} ∪ {x′
n} \ {x

′
n} ⊆

Xω∩B′
0 = A′

ω and {xn}\{xn}∪{x′
n}\{x

′
n} is nonempty since every infinite

discrete set in a compact space has a limit point.
But then there are elements x ∈ {xn} \ {xn} and x′ ∈ {x′

n} \ {x
′
n} such

that f(x) = f(x′). This is a contradiction since f↾A′

ω
is one-to-one.

By symmetry there exists k0 > m such that f−1(f [B0]) ⊇ Xn ∩ B′
0 for

all n > k0. Let k = max{k0, n0}. Then f(B0 ∩ Xk+1) = f(B′
0 ∩ Xk+1).

This implies Aω ⊆ Uk+1 and A′
ω ⊆ Uk+1. This is a contradiction since

Aω, A′
ω ⊆ Xω ⊆ Xk+1 \ Uk+1. Hence Xω = ∅ and Kω = ∅.

Lemma 7. If A ⊆ X1 is clopen with f−1(f [A]) = A and U ⊆ X0 is open

with A ⊆ U , then there is a clopen set A′ ⊆ U in X0 such that A′ ∩X1 = A
and f−1(f [A′]) = A′.

Proof. Since A is clopen in X1 and X1 is a subspace of X0, there is a
clopen set B ⊆ X0 such that B∩X1 = A and B ⊆ U . Then f [X0 \B]∩f [A]
= ∅.

Let A′ = B \ f−1(f [X0 \B]). We now show that A′ is the clopen subset
of X0 we are looking for. Clearly A′ is open in X0, A′ ⊆ U , A′ ∩ X1 = A,
and f−1(f [A′]) = A′. It remains to show that A′ is closed in X0. This is
equivalent to showing that B ∩ f−1(f [X0 \ B]) is open.

Let x ∈ B ∩ f−1(f [X0 \ B]) and let x′ ∈ X0 be such that f(x) = f(x′).
This implies x, x′ ∈ U0 = X0 \ X1. Therefore, by the definition of U0, there
are disjoint clopen sets A0, A

′
0 ⊆ U0 in X0 such that x ∈ A0, x′ ∈ A′

0, and
f [A0] = f [A′

0]. Now shrink A0 and A′
0 to clopen sets B0 and B′

0, respectively,
so that x ∈ B0 ⊆ B, x′ ∈ B′

0 ⊆ f−1(f [X0 \ B]), and f [B0] = f [B′
0]. Then

x ∈ B0 ⊆ B ∩ f−1(f [X0 \ B]).
Therefore, B ∩ f−1(f [X0 \ B]) is open and A′ is closed in X0.

Lemma 8. If A ⊆ Xn+1 is clopen with f−1(f [A]) = A and U ⊆ Xn

is open with A ⊆ U , then there is a clopen set A′ ⊆ U in Xn such that

A′ ∩ Xn+1 = A and f−1(f [A′]) = A′.

Proof. The proof is similar to the proof of Lemma 7 with Xn+1 and Xn

playing the roles of X1 and X0, respectively.

Lemma 9. If A ⊆ Xn is clopen with f−1(f [A]) = A and U ⊆ X0 is open

with A ⊆ U , then there is a clopen set A′ ⊆ U in X0 such that A′ ∩Xn = A
and f−1(f [A′]) = A′.

Proof. This follows from Lemmas 7 and 8 by induction.

Theorem 10 (CH). If f : N
∗ → K is a two-to-one continuous function,

then K is zero-dimensional.
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Proof. Let y ∈ V where V is an open subset of K. Then y ∈ Kn \Kn+1

since Kω = ∅ by Theorem 6. This implies y ∈ f(Un) = Kn\Kn+1. Therefore,
y ∈ f [An] ⊆ f(Un) = Kn \ Kn+1 for some clopen set An ⊆ Xn such that
f [An] is clopen and f↾An

is one-to-one. This is by the definition of Un. Then
f [An] is homeomorphic to An and so there is a clopen set B ⊆ Intf [An]
containing y. Shrink B so that y ∈ B ⊆ V ∩ Kn.

Let A = f−1(B) and U = f−1(V ). Then A ⊆ Xn is clopen with
f−1(f [A]) = A and U ⊆ X0 is open with A ⊆ U . By Lemma 7, there
exists A′ ⊆ U clopen in X0 such that A′ ∩ Xn = A and f−1(f [A′]) = A′.
Then y ∈ f [A′] ⊆ V and f [A′] is clopen in K since f−1(f [A′]) = A′. Hence
K is zero-dimensional.

5. F -spaces. A space is called an F-space if every pair of disjoint cozero
subsets are completely separated. It is well known that N

∗ is an F -space
[Wa74] and in this section we show that every two-to-one continuous image
of N

∗ is also an F -space under CH.

Theorem 11 (CH). If f : N
∗ → K is a two-to-one continuous function,

then K is an F-space.

Proof. Let C1 and C2 be two disjoint cozero sets in K. Then f−1(C1)
and f−1(C2) are disjoint cozero sets in N

∗. Since N
∗ is an F -space we have

f−1(C1) ∩ f−1(C2) = ∅. We must show that C1 ∩ C2 = ∅. It is sufficient

to show that for any y ∈ C1 there are two elements x, x′ ∈ f−1(C1) such
that f(x) = y = f(x′). This shows that y /∈ C2. Otherwise, if y ∈ C2 ⊆

f [f−1(C2)], there exists an x′′ ∈ f−1(C2) such that f(x′′) = y and x′′ 6= x, x′

since f−1(C1) ∩ f−1(C2) = ∅ and x, x′ ∈ f−1(C1). So three different points
x, x′, x′′ map to y. This is a contradiction to the fact that the function f is
exactly two-to-one.

Let y ∈ C1. Then y ∈ C1 ⊆ f [f−1(C1)] since C1 = f [f−1(C1)] ⊆

f [f−1(C1)]. This implies there exists an x ∈ f−1(C1) such that f(x) = y.
By Theorem 6, Kω = ∅ and so y ∈ Kn \Kn+1 for some integer n. Let m ≤ n
be maximal such that y ∈ C1 ∩ Km. Then y /∈ C1 ∩ Km+1 and so there is
a cozero set Cy ⊆ Km such that y ∈ Cy and Cy ∩ C1 ∩ Km+1 = ∅. Thus
Cy ∩ C1 ∩ Km+1 = ∅.

Therefore, without loss of generality, we can assume that C1∩Km+1 = ∅
and C1 is a cozero set in Km since we can take C1 to be the cozero set
Cy ∩C1. Then f−1(C1) is a cozero set in Xm and f−1(C1)∩Xm+1 = ∅, that
is, f−1(C1) ⊆ Um where Um is defined as in Section 4 by

Um =
⋃

A∈Im

A,

Im = {A ⊆ Xm : A = Am ∪̇ A′
m, Am, A′

m clopen, f [Am] = f [A′
m]}.
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Since f−1(C1) is a cozero set in Xm and Xm is a compact zero-dimensio-
nal F -space, it can be written as a countable union of disjoint clopen sets
in such a way that f−1(C1) =

⋃∞
n=0

[An ∪ A′
n] where An and A′

n are disjoint
clopen sets in Xm and f [An] = f [A′

n]. Therefore, f−1(C1) can be written as
a union of two disjoint sets

f−1(C1) =
( ∞⋃

n=0

An

)
∪

( ∞⋃

n=0

A′
n

)

and by the definition of An and A′
n we get

f
[ ∞⋃

n=0

An

]
= f

[ ∞⋃

n=0

A′
n

]
.

Thus

f−1(C1) =
∞⋃

n=0

An ∪
∞⋃

n=0

A′
n.

The sets
⋃∞

n=0
An and

⋃∞
n=0

A′
n are cozero sets since a countable union of

clopen sets is a cozero set, and they are disjoint by construction. Therefore,
since Xm is an F -space we get

∞⋃

n=0

An ∩
∞⋃

n=0

A′
n = ∅.

Now since

x ∈ f−1(C1) =
∞⋃

n=0

An ∪
∞⋃

n=0

A′
n

we assume, without loss of generality, that

x ∈
∞⋃

n=0

An and x /∈
∞⋃

n=0

A′
n.

By continuity of f and the fact that f [
⋃∞

n=0
An] = f [

⋃∞
n=0

A′
n] we get

f [
⋃∞

n=0
An] = f [

⋃∞
n=0

A′
n] and

y ∈ C1 ⊆ f [f−1(C1)] = f
[ ∞⋃

n=0

An

]
= f

[ ∞⋃

n=0

A′
n

]
.

Therefore, there exists an x′ ∈
⋃∞

n=0
A′

n such that f(x′) = y.

Now x′ 6= x because x′ ∈
⋃∞

n=0
A′

n, x ∈
⋃∞

n=0
An, and

∞⋃

n=0

An ∩
∞⋃

n=0

A′
n = ∅.

Thus, there are two different points x, x′ ∈ f−1(C1) such that f(x) = y
= f(x′). Hence K is an F -space.
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6. Nonempty Gδ-sets. The intersection of countably many open sets
is called a Gδ-set. Nonempty Gδ-sets on N

∗ have nonempty interiors. In this
section we prove that two-to-one continuous images of N

∗ have the same
property.

Theorem 12 (CH). If f : N
∗ → K is a two-to-one continuous function,

then nonempty Gδ-sets in K have nonempty interior.

Proof. Suppose that {bn : n ∈ ω} is a descending sequence of clopen
subsets of K with b0 = K. It suffices to deal with clopen sets since we have
shown that K is zero-dimensional. Assume to the contrary that

⋂
n bn is

nowhere dense. Let Z ⊆ N
∗ be such that f↾Z is irreducible. This is possible

by Zorn’s lemma.

For each n let an = f−1(bn) ∩ Z. Then {an : n ∈ ω} is a descending
sequence of clopen subsets of Z and a0 = Z. Therefore, by Theorem 3,
for each n pick clopen sets en ⊆ an \ an+1 and e′n ⊆ N

∗ \ Z such that

f [en] = f [e′n]. Then, in Z,
⋃

n (an \ (en ∪ an+1)) ∩
⋃

n en = ∅ since Z is an
F -space.

Since we assumed
⋂

n bn is nowhere dense in K, f−1(
⋂

n bn)∩Z is nowhere
dense and so

Z =
⋃

n

(an \ (en ∪ an+1)) ∪
⋃

n

en.

Thus
⋃

n en is clopen in Z. Clearly
⋃

n (an \ an+1) ∩
⋃

n e′n = ∅ since Z is
closed and e′n ⊆ N

∗ \ Z.

Let us show that
⋃

n (an \ an+1) ∩
⋃

n e′n = ∅. For each n, f−1(K \ bn)
is clopen in N

∗ since bn is clopen and f is continuous. By construction⋃
m≥n e′m∩f−1(K \bn) = ∅ and

⋃
m∈ω e′m∩f−1(K \bn) is clopen in N

∗ since
it is a finite intersection of clopen sets. Because

an \ an+1 ⊆ f−1(K \ bn+1) and [an \ (an+1 ∪ en)] ∩
⋃

n∈ω

e′n = ∅

we have
⋃

n (an \ an+1) ∩
⋃

n e′n = ∅. Thus
⋃

n (an \ an+1) ∩
⋃

n e′n = ∅ since

N
∗ is an F -space. Therefore

⋃
n en ∩

⋃
n e′n = ∅ and hence f is a two-to-one

function on
⋃

n en ∪
⋃

n e′n.

Now since f [
⋃

n en] = f [
⋃

n e′n] we have K = f [
⋃

n en]∪ f [Z \
⋃

n en] and

f [
⋃

n en] ∩ f [Z \
⋃

n en] = ∅. Therefore f [
⋃

n en] ⊆ K is clopen in K. But
then

f−1
(
f
[⋃

n

e′n

])
=

⋃

n

en ∪
⋃

n

e′n

is clopen. This is a contradiction since
⋃

n en ∪
⋃

n e′n is not clopen by the
fact that in N

∗ nonempty Gδ-sets have nonempty interior.
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If f : N
∗ → K is a two-to-one continuous function, Levy [Le04] proved

that countable discrete subsets of K are C∗-embedded and the weight of K
is c. This completes everything needed to prove that a two-to-one continuous
image of N

∗ is N
∗ up to a homeomorphism.

Corollary 13 (CH). If f : N
∗ → K is a two-to-one continuous func-

tion, then K is homeomorphic to N
∗.

Proof. Follows from Theorems 1, 10, 11, and 12.

Open Problems. Our results are all under the set-theoretic assumption
CH. Is it possible to eliminate CH? In particular, if f : N

∗ → K is a two-to-
one continuous function:

(1) Is it true that f is not irreducible?
(2) Is K homeomorphic to N

∗?
(3) Is every countable subset of K C∗-embedded?
(4) Can K be separable or ccc? (Levy question [vD93]).
(5) If f is n-to-one continuous with n > 2, is K homeomorphic to N

∗

under CH or ZFC?
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