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Inhomogeneities in non-hyperbolic
one-dimensional invariant sets
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Brian E. Raines (Oxford and Waco, TX)

Abstract. The topology of one-dimensional invariant sets (attractors) is of great in-
terest. R. F. Williams [20] demonstrated that hyperbolic one-dimensional non-wandering
sets can be represented as inverse limits of graphs with bonding maps that satisfy cer-
tain strong dynamical properties. These spaces have “homogeneous neighborhoods” in the
sense that small open sets are homeomorphic to the product of a Cantor set and an arc.
In this paper we examine inverse limits of graphs with more complicated bonding maps.
This allows us to understand the topology of a wider class of spaces that includes both
hyperbolic and non-hyperbolic attractors. Many of these spaces have the property that
most small open sets are homeomorphic to the product of a Cantor set and an arc. The
interesting “inhomogeneities” occur away from these neighborhoods. By examining the
dynamics of the bonding maps that generate these spaces, we characterize the inhomo-
geneities, and we show that there is a natural nested hierarchy in the collection of these
points that is topological.

1. Introduction. The topology of hyperbolic one-dimensional sets left
invariant under a dynamical system is well understood. R. F. Williams
[20] showed that these can be described as inverse limits of branched one-
manifolds, and he developed much of the necessary theory for analyzing
these spaces ([21], [22]). Anderson and Putnam [1] have shown that this
class of spaces also includes the substitution tiling spaces. Recently, Barge
and Diamond classified all such spaces that are orientable [3]. Topological
invariants for the non-orientable case have also been found (see [23]).

However, very little is understood about the topology of one-dimensional
invariant sets that are not hyperbolic. Perhaps the main difficulty in under-
standing the structure of these spaces is the fact that they tend to be quite
complicated locally. Hyperbolic one-dimensional sets are solenoid-like in the
sense that all sufficiently small neighborhoods are homeomorphic to the
product of a Cantor set and an arc. Without the restriction that the space
is hyperbolic, small neighborhoods can display very complicated structure.
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The points in these spaces that do not have such solenoid-like neighborhoods
are the points of interesting topology.

In Section 2 we introduce new topological ideas to distinguish between
points that have solenoid-like neighborhoods and those that do not in terms
of linear covers. The utility of these definitions is demonstrated in Theo-
rem 2.2 where we show that these definitions completely characterize the
property of having a solenoid-like neighborhood.

In Sections 3 and 4 we apply Theorem 2.2 to give a sequence of theorems,
Theorems 3.7, 4.1, and 4.6, that characterize points that have solenoid-like
neighborhoods in terms of dynamics. Our characterization uses arbitrarily
fine collections of linear covers called local chains. For spaces that can be
modeled by an inverse limit of a graph and for sets left invariant under a
dynamical system the structure of these covers is directly related to the
dynamics of the bonding map or system that generates the space.

In Section 5, we demonstrate that the collection of points without sole-
noid-like neighborhoods can be partitioned into a nested ordinal hierarchy
of sets, each level of which is preserved under homeomorphism. This leads
to Theorem 5.3 and Corollary 5.4 which give both cardinal and order invari-
ants for such spaces based only on the dynamics of the map that generated
them. These theorems are generalizations of results of Barge and Martin
[7] in which the dynamics of a unimodal interval map were shown to gen-
erate the endpoints of the inverse limit space giving a cardinal invariant
for the associated inverse limit space. These spaces are good examples of
non-hyperbolic attractors (see [6]).

Another well known family of non-hyperbolic attractors are the Hénon
attractors. Most of the full attracting sets for maps in the Hénon family with
dissipation parameter near zero appear to be locally solenoid-like. Barge
and Holte [4] showed that many of the attractors for the Hénon family
are inverse limits of unimodal maps of the interval. In [2], the authors re-
mark that computer-aided investigation of the structure of the transitive
Hénon attractors seems to indicate that these spaces are locally solenoid-
like. However upon magnification many of these regions appear to have
“hooks”. They go on to demonstrate that, for a family of conceptual models
for the Hénon attractors, inverse limits of tent maps, there is a dense Gδ

set of parameters for which these spaces are nowhere locally solenoid-like.
In fact they are “locally universal” in the sense that every neighborhood
contains a homeomorph of every member of the family. On the other ex-
treme, it is well known that there is a dense set of parameters for which
the space is locally solenoid-like, except at its (finitely many) endpoints.
These two cases are far from exhaustive, and in Sections 6 and 7 we will
apply the results from previous sections to address the remaining case: that
of spaces that have some neighborhoods homeomorphic to the product of a
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Cantor set and an arc but infinitely many points that have no such neigh-
borhood.

Following Barge and Holte [4], in Sections 6 and 7 we focus on the struc-
ture of inverse limits of unimodal interval maps. In Section 6, we prove
that given a locally eventually onto unimodal map f with critical point c,
and a point x ∈ lim←−{[0, 1], f}, x has a neighborhood homeomorphic to a
Cantor set of arcs if, and only if, xn 6∈ ωf (c) for infinitely many n ∈ N.
In Section 7, we end the paper with a collection of examples of unimodal
maps, tent maps in fact, that illustrate some of the various topological struc-
tures possible in ωf (c) and the resulting structure of the inhomogeneities in
lim←−{[0, 1], f}.

2. Preliminary definitions and graph maps. We give a few defini-
tions here, and introduce the others as needed. For standard definitions from
topology or dynamics see [13] or [8]. If f is a function, U is a set, and U is a
collection of sets, we will abuse notation throughout the paper by using f(U)
to mean the collection of points {f(x) : x ∈ U} and f(U) = {f(U) : U ∈ U}.
We denote the closure of a set A by A. We call a compact, connected, metric
space a continuum, and we call a compact connected subset of a continuum
a subcontinuum.

Let X be a topological space and x ∈ X. Let V be an open set con-
taining x. Call a finite collection U = {U1, . . . , Un} of open subsets of V a
linear cover provided U i ∩ U j 6= ∅ if, and only if, |i − j| < 2. We will call
the elements of such a linear cover links. If mesh(U) < ε then we call U
a linear ε-cover. Call a finite collection U = {U1, . . . ,Um} of linear covers
of V , where Ui = {U i1, . . . , U ipi}, a local chaining of V if

⋃
i≤m Ui covers V

and U ij ∩ Ukl 6= ∅ if, and only if, i = k and |j − l| < 2. Call each element
Ui of a local chaining U of V a strand of U . If each strand of U is a linear
ε-cover, call U a local ε-chaining of V .

Let C = {C1, . . . , Cn} and D = {D1, . . . ,Dm} be linear covers such that
for each i ≤ m there is a j ≤ n such that Di ⊆ Cj . Then we say D refines
C and we write D ≤ C.

If U = {U1, . . . ,Un} and V = {V1, . . . ,Vm} are local chainings of V with
the property that

(1) every strand of V refines exactly one strand of U ,
(2) every strand of U is refined by some strand of V,

then we say V refines U and we write V ≤ U . The mesh of a local chaining
is the largest mesh of its strands.

X is locally chainable at x iff there is a neighborhood U of x and a
sequence {Ci}∞i=1 of local chainings of U such that
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(1) mesh(Ci)→ 0 as i→∞,
(2) Ci ≤ Ci−1.

We will say that the neighborhood U is locally chainable in this case.
Let U be a local chaining of some U ⊆ X. Let L = {L1, . . . , Lp} be a

linear cover that refines some strand Ui of U . Let L be a link of Ui. We
say that L turns in L provided there is a link M in Ui, adjacent to L, and
integers a and b with 1 ≤ a < b− 1 < b ≤ p such that

(1) La, Lb ⊆M ,
(2) Lj ⊆ L−M for some a < j < b,
(3)

⋃b
i=a Li ⊆ L ∪M .

We will then call L a local turnlink, or just a turnlink. If every local ε-
chaining of U that refines Ui has a turnlink in L then we call L a local
essential turnlink, or just an essential turnlink.

Let C be a linear cover in some space X and let D be a linear cover
that refines C. Let C ′ = {Ci, Ci+1, . . . , Ci+k} be a subset of C and let D′ =
{Dj ,Dj+1, . . . ,Dj+l} be a subset of D that refines C ′ with Dj ⊆ Ci. Suppose
that we can find an integer m1 such that

(1) Dj+m1 ∩ Ci 6= ∅,
(2) Dj+m1 ⊆ Ci+1,
(3) Dj+p ⊆ Ci for all 0 ≤ p < m1,
(4) Dj+q ∩ Ci = ∅ for all m1 < q ≤ l.

Inductively, given such an mr−1 we can define mr larger than mr−1 such
that

(1) Dj+mr ∩ Ci+(r−1) 6= ∅,
(2) Dj+mr ⊆ Ci+r,
(3) Dj+p ⊆ Ci+(r−1) for all mr−1 ≤ p < mr,
(4) Dj+q ∩ Ci+(r−1) = ∅ for all mr < q ≤ l.

If l ≥ mk+1 then we say that D′ is straight in C ′. Likewise if Dj ⊆ Ci+k and
we appropriately alter the above definition of the mi’s we still say that D′
is straight in C ′.

Let C be a local chaining of a neighborhood U of a point x ∈ X of local
chainability. Let D be another local chaining of U such that D ≤ C. If every
strand of D is straight in every strand of C then we say that D is straight
in C.

Let x be a point of local chainability of a metric space X with neighbor-
hood U . Call x a local non-cut point of X if for every neighborhood V ⊆ U
of x and for every ε > 0 there is a local ε-chaining D of U that contains a
strand Di that has the closure of its first link contained inside V . Denote the
set of local non-cut points of a space X by LNC0(X) or just by LNC(X).
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Let X be a metric space with a point x ∈ X such that X is locally
chainable at x. Let U be a neighborhood of x that is locally chainable. Call
x a folding point of X if for every ε > 0 there is a local ε-chaining C of U
that contains x in an essential turnlink. Denote the set of folding points for
a space X by Fold0(X) or just Fold(X).

We will show that the set of local non-cut points and of folding points
contains all of the points x ∈ X that are locally chainable and do not have
solenoid-like neighborhoods. This will show that the inhomogeneities that
can occur around points of local chainability are exactly folding points and
non-cut points.

The next lemma describes explicitly the type of local chaining that occurs
near a point that has a neighborhood that is solenoid-like. The proof is
straightforward.

Lemma 2.1. Let x be a point in a metric space X such that x has a
neighborhood U homeomorphic to the product of a Cantor set and an open
arc, (0, 1). Then there exists a sequence {Di}∞i=1 of local chainings of U such
that mesh(Di)→ 0 as i→∞ and each Di is labeled such that

(1) D1 = {D1
0,D1

1},
(2) Di = {Dt1,...,ti−1

j : j ∈ {0, 1} and tk ∈ {0, 1} for all k ≤ i− 1},
(3) Dt1,...,ti−1

j refines Dt1,...,ti−2
ti−1

for all t1, . . . , ti−1, j ∈ {0, 1},
(4) Dt1,...,ti−1

j is straight in Dt1,...,ti−2
ti−1

for all t1, . . . , ti−1, j ∈ {0, 1}.
Moreover , x is not in LNC(X).

Using the previous lemma we obtain the following result connecting the
sets Fold(X) and LNC(X) with the property of being solenoid-like.

Theorem 2.2. Let X be a metric continuum. Then x ∈ X has a neigh-
borhood homeomorphic to the product of a zero-dimensional set and an arc
if , and only if , X is locally chainable at x and x 6∈ Fold(X) ∪ LNC(X).

Proof. Suppose that x has a neighborhood U homeomorphic to the prod-
uct of a Cantor set and an arc (the case that U is homeomorphic to the
product of another zero-dimensional set and an arc is easier so we do not
handle it). Then clearly X is locally chainable at x. Let {Di}∞i=1 be the se-
quence of local refining chainings for U guaranteed by Lemma 2.1. Suppose
that x ∈ Fold(X). By Lemma 2.1, x 6∈ LNC(X), so let ε > 0 and δ > 0 be
small enough, with ε > δ, so that no δ-local chaining of U has a strand with
the closure of its first link in B(x, ε) ⊆ U . Let C be a local δ/2-chaining of
U such that C has a local essential turnlink C containing x. Clearly C ⊆ U .
Let γ > 0 be such that every local γ-chaining of X that refines C has a local
turnlink in C. Let n be large enough such that mesh(Dn) < γ. Then Dn
contains a local turnlink in C. Let Dni be the strand of Dn containing x in a
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turnlink L. Let E = {E1, . . . , Em} be a linear cover that refines Dni such that
E turns in L ∈ Dni . Let M be the link adjacent to L given in the definition
of local turnlink. Let J be large enough such that mesh(DJ) is less than the
Lebesgue number for E . Then some subset of a strand of DJ refines E and
hence some strand of DJ turns in Dn (notice it cannot have its first or last
link contained in Dn

i so some “middle” link is in Dn
i and since it refines E

it must enter and exit Dn
i via the same link, namely M), a contradiction.

Hence x 6∈ Fold(X), so x 6∈ Fold(X) ∪ LNC(X) .
Now suppose that x 6∈ Fold(X) ∪ LNC(X) and X is locally chainable

at x. Let U be a neighborhood of x with a sequence {Di}∞i=1 of refining local
chainings. We will show that each Di is straight in Di−1. Then, since X is a
metric continuum, and since the intersection K of the closures of all of the
links of each strand is a compact connected subset of X (i.e. a subcontinuum
of X) it must be the case that K is either an arc or a point, as these are
the only continua which can be defined by a sequence of straight refining
chains.

We will also show that there is another neighborhood V of x contained
in U such that each strand of Di has its first and last link outside V but
several links with closures contained in V . This will demonstrate that each
possible K is in fact an arc. Then we will have shown that the intersection of
these links in V is the product of a zero-dimensional set and an arc. Hence x
will have a neighborhood (namely V ) that is homeomorphic to the product
of a zero-dimensional set and an arc.

Since x is not in LNC(X), there is a neighborhood V1 ⊆ U and a positive
number δ such that no local δ-chaining of U has the closure of its first
link in V1. Since x is not in Fold(X), let Di be a local chaining of U with
some link D containing x so that its closure is contained inside V1 and such
that D is not a local essential turnlink. Then for each ε there is a local
chaining E of U that refines Di such that E has no turnlinks inside D. Let
E ′ = {Eα, . . . , Eα+β} be a subchain of E with

⋃β
k=0Eα+k ⊆ D. Then there

are no turnlinks in E ′. Thus if J = {J1, . . . , Jc} is a refinement of E ′ it
must be the case that if 1 ≤ γ1 ≤ γ2 ≤ c is defined so that (without loss of
generality)

⋃γ2
k=γ1

Jk ⊆ Eα+r for some 0 ≤ r ≤ β then there is no integer d
with d < γ1 or d > γ2 such that Jd ⊆ Eα+r, because if there were such a
value d then the chain J would have turned in one of the links of E ′. However
none of the links of E are turnlinks. This implies that every refinement of
such a local chaining is straight in the links of E that are contained in D.

Let E1 be a local chaining of U that refines Di and has no turnlinks in D.
Let E1 be a link of a strand of E1 that contains x. We will show that E1 is
the product of a zero-dimensional set and an arc. Let δ1 be the Lebesgue
number for E1. Let E2 be a local chaining of U with mesh(E2) < δ1 and such
that no link of E2 in D is a turnlink (we can assume this because D is not an
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essential turnlink). Then no strand of E2 turns in E1 and since E1 ⊆ V1, no
strand of E2 starts (equivalently stops) in E1. Hence every strand of E2 that
meets E1 runs straight through it (i.e. it either comes from a preceding link
and leaves through the following link or vice versa). Let F2 = {F2

1 , . . . ,F2
m2
}

be the strands of E2 that pass through E1.
We proceed inductively. Assume we have a local chaining En of U defined

such that no link of En in D is a turnlink, each strand Fni of En, for i ≤ mn,
that meets E1 is straight in the links of the strands Fn−1 of En−1 that meet
E1, and each such strand either originates in the link before E1 and passes
through to the link following it or vice versa. We can easily define En+1
to have these properties. Clearly if we intersect the appropriate closures of
links of “nested” strands in E1 we will get an arc. Then the union of them
is the product of some zero-dimensional set and an arc.

3. Local chainability of inverse limits of graph maps. In the
previous section we gave a characterization of points in a space X with
a solenoid-like neighborhood in terms of being both locally chainable and
not being in Fold(X) and LNC(X). Thus the interesting topology occurs
precisely at the points x such that either X is not locally chainable at x or
x ∈ Fold(X) or x ∈ LNC(X).

We now leave the general setting of the previous section to consider the
case where the space is an inverse limit of a graph. Let f : G→ G be a contin-
uous surjection that has finitely many turning points, C = {c1, . . . , cq}. Let
V = {v1, . . . , vr} be the set of branch points for G and let E = {e1, . . . , es}
be the set of endpoints for G. Denote lim←−{G, f} by XG.

In this section we use the dynamics of f to examine the points of local
chainability of XG. It is quite easy to see that if x is a branch point for XG

then XG will not be locally chainable at x and x cannot have a solenoid-like
neighborhood. Further if x is a limit of branch points for XG, then XG

cannot be locally chainable at x. Unfortunately, this does not exhaust the
possibilities. In 1972, W. T. Ingram [14] constructed a tree-like continuum
TIngram with no branch points that cannot be chained, i.e. TIngram cannot
be covered by a sequence of refining linear covers with vanishing mesh. If
x ∈ XG has the property that x is not a branch point but each neighborhood
of x contains arbitrarily small copies of TIngram then x is also not a point of
local chainability for XG. The problem of when x is a point of local chain-
ability of XG seems closely related to an old and hard problem in continuum
theory known as the Span Zero Problem [19, Problem 8, Chapter 19]. We
do not contribute to the solution of that problem here. But, interestingly,
we demonstrate many conditions that when satisfied by the projections of
a point x ∈ XG guarantee that x is a point of local chainability. These con-
ditions are all related to either projecting far away from branch points of G



248 B. E. Raines

or far away from recurrent branch points of G. This leads to the strongest
theorem of the section regarding this property, Theorem 3.7, which implies,
among other things, that even though TIngram is not chainable, every point
of TIngram is a point of local chainability.

Occasionally we will assume that f is “non-contracting” in the following
sense:

(†) if B ⊆ G is connected and A is some component of f−1(B) then
diam(A) ≤ diam(B).

Let Γ > 0 be small enough so that if x, y ∈ C ∪ V ∪ E with x 6= y then
d(x, y) ≥ 2Γ . Call the union of n arcs that share a single branch point
in common an n-star or simply a star. Our choice of Γ implies that every
subcontinuum of G with diameter less than Γ must be either an arc or an
n-star.

At times we will also assume that f is eventually at least a two-pass map
in the following sense:

(‡) there is an integer N so that for every subcontinuum A of G, f−n(A)
consists of at least two components for all n ≥ N .

Both the assumptions (†) and (‡) are quite general—they ensure that we are
considering maps with somewhat complicated dynamics that generate non-
trivial inverse limit spaces. We will indicate in each result which assumption
(if any) we are using.

We start with a few quite easy lemmas demonstrating neighborhoods
that can be covered with local chains.

Lemma 3.1. Let U be an arc in G such that f−n(U) is a collection of
disjoint arcs for each n ∈ N. Then π−1

1 (U) is locally chainable.

Proof. Let U = U0 and let U0
1 , . . . , U

0
n0

be the components of f−1(U0).
There are finitely many such components because f has finitely many turn-
ing points. Notice that each U 0

i is an arc by assumption. Continuing, de-
fine U t1,...,ts1 , U t1,...,ts2 , . . . , U t1,...,tsnt1,...,ts

to be the components of the preimage of
U
t1,...,ts−1
ts . Again these are finitely many and they are each arcs. Let Σ ⊆ NN

be such that τ = (t1, . . . , tn, . . .) ∈ Σ if for each initial tuple τ |q = (t1, . . . , tq)
of τ , there is an arc U t1,...,tq−1

tq defined as above.
There is a very natural way to define a chaining C0 of U0, and given τ ∈ Σ

and q ∈ N we can define a chaining Ct1,...,tq to be a chaining of U t1,...,tq−1
tq such

that f(Ct1,...,tq) refines Ct1,...,tq−1 . We can further impose upon this sequence
of chains that mesh(π−1

q (Ct1,...,tq)) < 1/2q. Let C′t1,...,tq = π−1
q (Ct1,...,tq). Define

Cq = {C′τ |q : τ ∈ Σ}. Then each Cq is a local chaining of π−1
1 (U), mesh(Cq) <

1/2q, and Cq refines Cq−1. Hence π−1
1 (U) is a neighborhood that can be

locally chained in lim←−{G, f}.
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Lemma 3.2. Let U be a subcontinuum of G such that f−n(U) is a collec-
tion of disjoint arcs for all n ≥ N . Then π−1

N [f−N (U)] is locally chainable.

Proof. Take each component of f−N (U) as the set U0 in the proof given
previously. This will lead to a local chaining of π−1

N [f−N (U)].

The following theorem is a well known tool in the study of inverse limit
spaces.

Theorem 3.3 ([15, Thm. 1.7], the Subsequence Theorem). Let fi :X→
X be a mapping for every i ∈ N. Then lim←−{X, fi} is homeomorphic to
lim←−{X, fni} for any subsequence {ni}i∈N (where by fni we mean the map
fnini−1

= fni−1 ◦ fni−1+1 ◦ · · · ◦ fni−1).

Lemma 3.4. Let U be a subcontinuum of G such that for some increasing
sequence {ni}i∈N of positive integers, f−ni(U) does not meet {v1, . . . , vr}.
Then π−1

n1
[f−n1(U)] is locally chainable.

Proof. The proof is an easy application of the ideas found in the pre-
vious proofs and the Subsequence Theorem 3.3. Pull U back to f−n1(U).
This is then a finite collection of arcs. So also is f−ni(U) for each i. Hence
π−1
n1

[f−n1(U)] is locally chainable in lim←−{G, f
ni}, which is homeomorphic to

lim←−{G, f}. The lemma follows.

Lemma 3.5. Let U be a subcontinuum of G such that for infinitely many
N ∈ N, U does not meet {fN (vi)}i≤r. If M is the least such N ∈ N, then
π−1
M [f−M(U)] is locally chainable.

Proof. The proof is an application of the previous lemma using M as n1
and defining each of the other ni’s appropriately.

Theorem 3.6. Let x ∈ XG be such that xn 6∈ ω(V ) for all n ∈ N. Then
XG is locally chainable at x.

Proof. Follows immediately from the lemmas.

Theorem 3.7. (†) Let x ∈ XG be such that if xn ∈ ω(V ) then the set
Vn = {vj1 , . . . , vjr : xn ∈ ω(vji)} has the property that Vn ∩ ω(V ) = ∅. Then
XG is locally chainable at x.

Proof. Since ω(vi) is forward invariant, we can construct V ′ = {vj1 , . . .
. . . , vjr} ⊂ V to be the collection of branch points such that xn ∈ ω(vji) for
all n larger than some fixed integer L. By hypothesis, none of the branch
points in V ′ are in the ω-limit set of a branch point. So for each ji there is a
positive number γi such that Bγi(vji)∩ orb(V ) = {vji}. Let γ < Γ/2 be less
than all the γi’s and notice that if U is a neighborhood of xn with n ≥ L
and diam(U) < γ then, by assumption (†) about f , each component of an
inverse image of U must have diameter less than γ. So each component of
an inverse image of U meets V ′ at at most a single point. Moreover each
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component A of a preimage of U that contains a branch point vji meets
orb(V ′) at that single branch point, and it has the property that f−1(A) is
a disjoint collection of arcs.

Let U be a γ-neighborhood around xL. We will show that π−1
L (U) can

be covered by a sequence of refining local chainings with vanishing mesh.
For each vji ∈ V ′, let {nik}k∈N be defined so that fn

i
k(vji)→ xL as k →∞

and each fn
i
k(vji) is in U . Let M = max{ni1 : i ≤ r}. Then

⋃{f−s(U) :
s ≤ M} ⊇ V ′. Moreover, given any vji ∈ V ′ and a star S containing vji ,
that is, a component of some f−K(U), we know:

(1) since diam(S) < γ, f−1(S) is a disjoint collection of arcs,
(2) f−(M+1)(U) contains a collection of arcs that cover f−1(S) which is

a subset of f−(K+1)(U),
(3) if A is an arc in f−1(S) then f−R(A) is an arc for all R > 0 due to

our choice of γ.

This gives us a useful tool for constructing local chainings of π−1
L (U) because

we know that the arcs in f−(M+1)(U) suffice to cover all of the possible
inverse images of stars in f−K(U).

Let ε1 > 0 be so small that if diam(V ) < ε1 then diam(π−1
L+M+1(V )) <

1/2 and diam(π−1
L+M+2(V ))<1/2. Consider f−(M+1)(U). Clearly f−(M+1)(U)

consists of a collection of disjoint stars S1
1 , . . . , S

1
w1

, each centered at some
branch point from V ′, and a disjoint collection of arcs A1

1, . . . , A
1
p1

. By our
choice of γ we know that f−1(S1

i ) is a disjoint collection of arcs and by our
selection of M we have f−1(S1

i ) ⊆ f−(M+1)(U).
Let E1

i be a linear cover of the arc A1
i with mesh(E1

i ) < ε1 such that any
E1
i and E1

j have links that have disjoint closures. Let

C1
i = π−1

L+M+1(E1
i ).

For each star S1
k , let A1

k1
, . . . , A1

kl
be the subcollection of A1

1, . . . , A
1
p1

that
covers f−1(S1

k). Then define

D1
ki

= π−1
M+L+2(E1

ki
) ∩ π−1

M+L+1(Sk).

Let
C1 = {C1

i }i≤p1 ∪ {D1
ki
}k≤w1, i≤l.

We claim that C1 is a local chaining of π−1
L (U) with mesh(C1) < 1/2. Notice

that C1 is a cover of π−1
L (U). To see this let z ∈ π−1

L (U). Then πM+L+1(z) is
either in one of the arcs or in one of the stars. If it is in one of the arcs, say
A1
k, then z is in a link of C1

k . If zM+L+1 is in a star, say S1
k , then zM+L+2 is

in an arc A1
kd

, because of our original choice of γ. So z is in a link of D1
kd

.

Thus
⋃ C1 covers π−1

L (U). Clearly if C1,i
s is a link of C1

i and C1,h
t is a link

of C1
h and C1,i

s meets C1,h
t , then h = i and |s− t| < 2. The same is true for
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the strands D1
ks

. If there is a point w in π−1
L (U) that is in the closure of a

link of some D1
ks

and in the closure of a link of some C1
t then wM+L+1 is

contained in an arc A1
t and in a star S1

k , a contradiction. Hence there is no
such point w. Thus C1 is a local chaining for π−1

L (U).
Let ε2 be small enough so that if V is a subse of G with diam(V ) < ε2

then diam[π−1
L+M+2(V )] < 1/4 and diam[π−1

L+M+3(V )] < 1/4.
Consider f−(M+2)(U). It is a collection of arcs A2

1, . . . , A
2
p2

and stars
S2

1 , . . . , S
2
w2

. For each arc A2
k that is a preimage of an arc A1

l , we can construct
a linear cover E2

k of A2
k with mesh(E2

k ) < ε2 such that f(E2
k ) refines E1

l .
For each arc A2

m that is the preimage of a star S1
n, we have A2

m = A1
q

for some q ≤ p1. So we can refine E1
q with a linear cover E2

m of A1
q with

mesh(E2
m) < ε2. This leads to the construction of a linear cover E2

i with
mesh(E2

i ) < ε2 for each arc A2
i in f−(M+2)(U). Clearly if f(E2

k) refines E1
l

then π−1
M+L+2(E2

k ) refines C1
l . Also for the linear covers E2

m that refine E1
q ,

π−1
M+L+2(E2

m) refines D2
q . So define

C2
s = π−1

M+L+2(E2
s ).

Notice also that each of the stars S2
i has the property that f−1(S2

k) is a
collection of arcs A2

k1
, . . . , A2

kl
. So define

D2
kr = π−1

M+L+3(E2
kr) ∩ π−1

M+L+2(S2
k).

Again, let
C2 = {C2

i }p2
i=1 ∪ {D2

ki}k≤w2, i≤l.

By the same argument as given previously we find that C2 is a local
chaining of π−1

L (U), mesh(C2) < 1/4, and by construction, C2 ≤ C1.
It is not hard to see that we can inductively define chains E ij and construct

refinements of them of sufficiently small mesh to build a local chaining Ci+1
of π−1

L (U) such that mesh(Ci+1) < 1/2i+1 and Ci+1 ≤ Ci. Thus XG is locally
chainable at x.

Corollary 3.8. Assume that ω(V )∩V = ∅. Then XG is locally chain-
able at every point x.

Each point x ∈ XG satisfies the assumptions of the previous theorem.
Hence XG is locally chainable at x.

Corollary 3.9. There are continua which are not chainable but which
are locally chainable at every point.

Proof. Consider TIngram, the space described in [14]. The single branch
point of the factor space is not recurrent, so the hypotheses of the previous
theorem are satisfied for every point in TIngram. Hence every point of TIngram
is a point of local chainability.
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4. Inhomogeneities and dynamics. In this section we examine the
other way in which a point cannot have a solenoid-like neighborhood: being
a member of Fold(XG)∪ LNC(XG). We assume throughout that the points
we are considering are points of local chainability, and we demonstrate that
under assumption (†) the folding points for XG correspond exactly to the
points that project infinitely often into ω(C), the ω-limit set of the turn-
ing points for f , and the local non-cut points for XG correspond to the
points that project infinitely often into ω(E), the ω-limit set of the end-
points of G. If we add assumption (‡) then it follows that ω(E) ⊆ ω(C) and
so LNC(XG) ⊆ Fold(XG). So, under assumptions (†) and (‡), we get the
main result of the section: x has a solenoid-like neighborhood if, and only
if, XG is locally chainable at x and xn 6∈ ω(C) for all n ∈ N.

We begin with an examination of points in LNC(XG).

Theorem 4.1. (†) Let x ∈ XG be a point of local chainability. If for
every n∈N there is an integer i≤ s such that xn ∈ ω(ei) then x∈LNC(XG).

Proof. Let K ≤ s be such that xn ∈ ω(eK) for all n ∈ N. Let U be
an open set containing x such that U is covered by a sequence {Ci}i∈N of
refining local chainings with vanishing mesh. If for every x ∈ W ⊆ U there
is one of these local chainings, say Ci, such that the closure of the first (or
equivalently last) link of a strand of Ci is contained in W for infinitely many
i then clearly we are finished because then x ∈ LNC(XG). So suppose that
this is not the case. Let x ∈ W ⊆ U be an open set such that each local
chaining Ci with i ≥ Q from the sequence of refining local chainings of U
does not have the closure of any of its strands’ first or last links in W .

Let ε > 0 and let N be large enough and δ < Γ/4, so that if D is a cover
of G with mesh(D) < δ then mesh[π−1

N (D)] < min{diam(W )/4, ε}. Let D
be such a δ-cover of G and let j be large enough so that mesh(Cj) < λ, the
Lebesgue number for π−1

N (D). Let M be large enough so that πM (Cj) = C′j ,
with links Cj,u

′
s = πM (Cj,us ), has the property that Cj,m

′
l ∩Cj,n′p 6= ∅ if, and

only if,m = n and |l−p| < 2. Choosem, p, p+1 so that xM ∈ Cj,m
′

p ∪Cj,m′p+1 and

if xM ∈ Cj,n
′

q then n = m and q ∈ {p, p+1}. Thus there is a connected open set
W ′ containing xM such thatW ′ ⊆ Cj,m′p ∪Cj,m′p+1 with diam(W ′) < Γ/2. LetR
be a positive integer large enough so that fR(eK) ∈W ′. Notice that f−R(W ′)
is a disjoint collection of arcs A1, . . . , Aw and stars S1, . . . , Sv in G such that
each component of f−R(W ′) meets V ∪E at at most one point, because each
has diameter less than Γ/2. So the component of f−R(W ′) that contains eK
is an arc, since it cannot also contain a branch point for G. Call it Ar.

Consider the (R + M)th projection of only the strand Cjm. Call it Cj′′m .
Then Cj

′′
m is a linear cover of some subset H of G. Let Br be the component
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of H that contains Ar. Let Djm = π−1
M+R[Cj′′m ∩ (H − Br)]. Then Djm is a

linear cover of a subset of the portion of U that is covered by the strand Cjm
of Cj . Note that Djm only fails to cover points z that have the property that
zR+M ∈ Br. Define E to be a linear cover of Br such that E ≤ Cj′′m and:

(1) the first link of E contains eK ,
(2) the closures of the first three links of E are contained inside Ar and

miss Br −Ar,
(3) the closures of the links of E are disjoint from the links of πM+R(Cjs),

s 6= m and πM+R(Djm).

Let E ′ = π−1
M+R(E). Then (Cj − {Cjm}) ∪ {Djm, E ′} is a local chaining of U

and the first link of E ′ has its closure inside W . Hence x ∈ LNC(XG).

Corollary 4.2. Let x ∈ XG be a point of local chainability. If for in-
finitely many n∈N there is an i≤ s such that xn ∈ ω(ei) then x∈LNC(XG).

Proof. f(ω(x)) = ω(x).

Under the “two-pass” assumption (‡), we have the following, which
demonstrates that LNC(XG) is just a special case of Fold(XG).

Lemma 4.3. (†)(‡) For each endpoint of G, ei ∈ orb(C) so ω(E) ⊆ ω(C).

Proof. Recall assumption (‡). Let N be large enough so that every sub-
continuum K of G has at least two components in f−N(K). Assume ei is
an endpoint so that no turning point cj is mapped to ei. So ei 6∈ orb(C).
Consider the unique closed arc Ai in G containing ei of diameter Γ/4. By
the definition of Γ , Ai ∩ (E ∪ V ∪ C) = {ei}. If there is a point z in G that
gets mapped to ei that is not an endpoint of G then it must be a turning
point for f . This does not occur because ei 6∈ orb(C). So f−1(ei) consists
of only endpoints of G; moreover, f−1(ei) ∩ orb(C) = ∅. Thus f−N (ei) is a
collection of at least two endpoints for G. Let Xi ⊆ {1, . . . , s} be defined
so that k ∈ Xi if, and only if, ek ∈ f−N (ei). For k ∈ Xi, ek 6∈ orb(C),
so define Xi,k ⊆ {1, . . . , s} by l ∈ Xi,k if, and only if, el ∈ f−N (ek). If
k 6= m are two points of Xi then Xi,k ∩Xi,m = ∅. Assuming we have defined
Xi,t1,...,tn−1 , given a number tn ∈ Xi,t1,...,tn−1 , let Xi,t1,...,tn−1,tn ⊆ {1, . . . , s}
be defined so that m ∈ Xi,t1,...,tn−1,tn if, and only if, em ∈ f−N (etn). Thus
we construct a sequence of sets that contain at least two integers with
Xi,t1,...,tn−1,tn ∩ Xi,t1,...,tn−1,t′n = ∅ whenever tn 6= t′n. Notice that for ev-
ery n there are at least 2n−1 disjoint subsets of {1, . . . , s} of size 2. This
contradicts the fact that we have only finitely many endpoints of G. Hence
ei ∈ orb(C).

Now we shift our attention to the points in Fold(XG).
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Theorem 4.4. (†) Let x ∈ XG be a point of local chainability. If for
each n ∈ N there is a positive integer i such that xn ∈ ω(ci), then x ∈
Fold(XG).

Proof. Let {Ci}∞i=1 be a collection of local refining chainings of a neigh-
borhood U of x such that mesh(Ci) → 0 as i → ∞. We will show that
there is a natural number N such that each Ci contains x in a local essential
turnlink for i ≥ N . It will follow that x ∈ Fold(XG).

Let F be an open cover of G with mesh(F) < Γ/4. Let F ′ = π−1
1 (F).

This is an open cover of XG. Let λ0 be the Lebesgue number for this cover.
Let N be chosen large enough such that mesh(CN ) < λ0.

Let K be a natural number larger than N and let CKl be the strand of
CK containing x in a link. Let r be such that if x ∈ CK,l

j then j ∈ {r, r+ 1}.
Let λ be less than the Lebesgue number for CK such that any λ-refinement
E of CK must contain x in a strand with the property that if x ∈ Ej

i then
Eju ⊆ CK,lr ∪ CK,lr+1 for all u = i − 2, i − 1, i, i + 1, i + 2. Let D be some
λ-refinement of CK . We will show that D contains a local turnlink in either
CK,lr or CK,lr+1.

Let M be large enough such that πM(D) is a collection of disjoint linear
covers of subsets of G with non-adjacent links having disjoint closures. Since
D refines CK , it also refines CN , so no component of a link of πM (D) contains
two turning points for f . Let DT be the strand of D containing x in a link.
Let s be such that if x ∈ DT

v then v ∈ {s, s + 1}. So xM ∈ πM (DT
s ) ∪

πM (DT
s+1) = DT ′

s ∪ DT ′
s+1. Let W be a connected open set containing xM

such that W ⊆ DT ′
s ∪DT ′

s+1.
Since there is a turning point cJ such that xM ∈ ω(cJ), let {J1, . . . , Jm}

be the indices such that xM ∈ ω(cJi) for all i ≤ m. For each such cJi , there

is an increasing sequence {nJis }∞s=1 of integers such that fn
Ji
s (cJi) → xM as

s→∞; additionally, we can pick these integers such that fn
Ji
s (cJi) ∈W for

each s ∈ N. Let w = nJis be the least such integer. Then fw(cJi) ∈ W and
f t(cl) 6∈W for all turning points cl, and for all t < w. Since mesh(πM(D)) <
Γ/2, the diameter of W can be made less than Γ . So W does not meet more
than one turning point for f , nor does any preimage of W .

Assume, without loss of generality, that fw(cJi) ∈ DT ′
s and if (a, b) is

an arc containing cJi that is not mapped completely into DT ′
s under fw

then fw[(a, b)] meets DT ′
s+1. Clearly if this is not the case we could have

chosen a different index s such that this was true. Since f satisfies the non-
contracting property (†), no component of a preimage of W contains more
than one turning point for f . Let W ′ ⊆ f−w(W ) be the component that
contains cJi . Since W ′ contains no more than one turning point for f , there
is an arc (a, b) containing cJi such that fw[(a, b)] is not contained in DT ′

s and
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even fw(a) = fw(b) = z. Then there must be components A0 of f−w(DT ′
s )

and A1 and A2 of f−w(DT ′
s+1) such that cJi ∈ A0, a ∈ A1 and b ∈ A2.

Let E = {E1, . . . , E6} be a linear covering of A0 ∪ A1 ∪ A2 with connected
links such that a ∈ E1 ⊆ A1 − A0, cJi ∈ E3 ⊆ A0 and b ∈ E6 ⊆ A3 − A0.
Then π−1

M+w(E) = E ′ is a linear cover of a subset of U that refines a strand
of D, namely DT , and E ′ turns in DT ′

s . Thus DT ′
s is a local turnlink and CK

contains x in a local essential turnlink. Hence x ∈ Fold(XG).

Corollary 4.5. (†) Let x ∈ XG be a point of local chainability. Sup-
pose that for infinitely many n ∈ N there is an integer i ≤ q such that
xn ∈ ω(ci). Then x ∈ Fold(XG).

Proof. Let m ∈ N. Choose n ≥ m and i ≤ q such that xn ∈ ω(ci).
Then xm = fn−m(xn) ∈ fn−m(ω(ci)) = ω(ci). Hence x ∈ Fold(XG) by
Theorem 4.4.

Theorem 4.6. (†) Let x ∈ XG be a point of local chainability. Suppose
that for every n ∈ N there is no i ≤ q or j ≤ s such that xn ∈ ω(ci)∪ω(ej).
Then x 6∈ Fold(XG) ∪ LNC(XG).

Proof. Suppose x ∈ XG is a point of local chainability and for all n ∈ N,
j ≤ s, and i ≤ q, xn 6∈ ω(ci) and xn 6∈ ω(ej). Then for every n there
is an open set Un containing xn that is disjoint from {fm(cj)}j≤q,m∈N ∪
{fm(ej)}m∈N, j≤s. Let U be a neighborhood of x with a sequence {Ci}i∈N of
local refining chains covering U with mesh(Ci) → 0 as i → ∞. Notice that
π−1

1 (U1)∩U = U ′ is also a neighborhood of x and {C ′i}i∈N can be constructed
from {Ci}i∈N to be a sequence of local refining chains of U ′ with vanishing
mesh.

Suppose that the theorem is false and that x is in an essential turnlink
of C′1. Let γ be small enough so that any local γ-refinement of C ′1 has a
local turnlink in some link C1,i

m of C′1 that contains x, and suppose γ is less
than the Lebesgue number for C ′1. Let N be large enough so that πN [C′1]
is a collection of (not necessarily open) linear covers of a subset of G. Let
δ be small enough so that any δ-cover E of G has mesh(π−1

N (E)) < γ. Let
D be a collection of linear covers with connected links of the portion of G
covered by πN (C′1). Then π−1

N (D) = D′ has a local turnlink in C1,i
m . Let DK′

s

and DK′
s+1 be links of D′K , a strand of D′, contained in C1,i

m such that DK′
s

is a turnlink and some refinement turns in DK′
s and enters and exits DK′

s

via DK′
s+1.

We will demonstrate that this cannot happen by refining D with a se-
quence of refining local chainings with vanishing mesh that do not turn in
DK′
s , entering and exiting via DK′

s+1. This will imply that no refinement of
D could turn in DK′

s entering and exiting via DK′
s+1.
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The construction of such a sequence of refining local chains follows from
the observation that since U1 contains no points in {fm(cj)}m∈N, j≤q ∪
{fm(ej)}m∈N, j≤s, no inverse image of U1 meets this set. So we have DK

s

preceded by DK
s−1 and followed by DK

s+1. This will be true for every com-
ponent of f−n(DK

s ) and f−n(Dk
s−1) and f−n(DK

s+1). Since none of these
components contain a turning point for f , there is no arc with endpoints
being mapped under some fm into DK

s+1 and an interior point being mapped
under fm into DK

s . Thus we can easily construct such a sequence of refining
chains with vanishing mesh; call it {Fi}i∈N. Hence D′ does not contain a
turnlink in C1,i

m , and C1,i
m is not an essential turnlink.

If x ∈ Fold(XG) then for every ε there is a local ε-chaining of U1 con-
taining x in an essential turnlink. This would clearly imply that some link
of C1 containing x is an essential turnlink, which we showed was false. Hence
x 6∈ Fold(XG).

Moreover, suppose that x ∈ LNC(XG). Then for every neighborhood
W ⊆ U of x and for all ε > 0 there is a local ε-chaining of U with some
strand that has the closure of its first link in W . Notice that DK′

s is a
neighborhood of x and is contained in U . Suppose that E is a local chaining
of U with mesh(E) less than the Lebesgue number for D. Also suppose that
some strand Ei of E has the closure of its first link in DK′

s . Let J be large
enough so that FJ ≤ E . Then some strand FJt of FJ refines Ei. But no strand
of FJ starts in DK′

s , so there is some link F J,tu of FJt with u 6∈ {1, |FJt |} that
is contained in Ei

1 ⊆ DK′
s . Let w be the least integer such that Ei

w∩DK′
s = ∅.

Then clearly there are integers a, b with a < u < b such that F J,t
a and F J,tb

are contained in Ei
w and F J,tv ⊆ Ei1 for all a < v < b. Thus FJ turns in DK′

s ,
a contradiction. Hence x 6∈ LNC(XG).

Notice that if we had added assumption (‡) to the previous theorem we
could have omitted the assumption that xn 6∈ ω(ej) for all j ≤ s.

Corollary 4.7. (†)(‡) LNC(XG) ⊆ Fold(XG) ⊆ ⋂
i∈N π

−1
i [ω(C)].

Moreover if ω(V ) ∩ V = ∅ then Fold(XG) =
⋂
i∈N π

−1
i [ω(C)].

Proof. This follows immediately from the previous two theorems.

Notice that the only points that might project always into ω(C) and not
be in Fold(XG) are those points where XG fails to be locally chainable.

Corollary 4.8. Let x ∈ XG.

(1) (†) x has a neighborhood homeomorphic to the product of a zero-
dimensional set and an arc if , and only if , XG is locally chainable
at x and xn 6∈ ω(C) ∪ ω(E) for some n ∈ N.
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(2) (†) Suppose that ω(V ) ∩ V = ∅. Then x has a neighborhood homeo-
morphic to the product of a zero-dimensional set and an arc if , and
only if , xn 6∈ ω(C) ∪ ω(E) for some n ∈ N.

(3) (†)(‡) x has a neighborhood homeomorphic to the product of a zero-
dimensional set and an arc if , and only if , XG is locally chainable
at x and xn 6∈ ω(C) for some n ∈ N.

(4) (†)(‡) Suppose that ω(V )∩V = ∅. Then x has a neighborhood hom-
eomorphic to the product of a zero-dimensional set and an arc if ,
and only if , xn 6∈ ω(C) for some n ∈ N.

Proof. The corollary follows from Theorem 2.2 combined with the char-
acterization of Fold(XG) and LNC(XG) given in the previous corollary.

5. The nested hierarchy of inhomogeneities. We now shift our
attention to the structure of Fold(XG) and LNC(XG). For a set A denote the
limit points of A by A′. Denote ω(A) by ω0(A). For each non-limit ordinal α,
define ωα(A) = ωα−1(A)′, and for λ a limit ordinal let ωλ(A) =

⋂
β<λ ω

β(A).
We can extend this idea to both LNC(X) and Fold(X). Inductively define

LNCα(X) to be the collection of limit points of LNCα−1(X) for each non-
limit ordinal α, and for λ a limit ordinal let LNCλ(X) =

⋂
α<λ LNCα(X).

Similarly, we inductively define Foldα(X) to be the collection of limit points
of Foldα−1(X) for each non-limit ordinal α, and for λ a limit ordinal let
Foldλ(X) =

⋂
α<λ Foldα(X). If x ∈ Foldα(X) but x 6∈ Foldβ(X) for all

β > α then we call x an α-folding point.
This is simply the definition of the iterated Cantor–Bendixson deriva-

tives of each of these sets (see [16]). For any Polish space, X, there must
exist a countable ordinal α0 such that Xα0 = Xα for all α > α0 [16, The-
orem 6.11]. This α0 is called the Cantor–Bendixson rank of X and it is
denoted by |X|CB.

The following two lemmas are immediate consequences of the definitions.

Lemma 5.1. Let X be a metric space. Then Foldα(X) ⊇ Foldβ(X) and
LNCα(X) ⊇ LNCβ(X) for all ordinals α < β.

Lemma 5.2. Let X and Y be metric spaces and h : X → Y a homeo-
morphism. Then h[Foldα(X)] = Foldα(Y ) and h[LNCα(X)] = LNCα(Y ).

Combining this lemma with Corollary 4.8 we see that the points of local
chainability that fail to have solenoid-like neighborhoods occur in a nested
ordinal hierarchy of sets, each level of which is preserved under homeomor-
phism. This significantly strengthens previous results regarding invariants
for inverse limits of graphs. What is more, we also have an order invariant
for these spaces. If XG has the property that |Fold(XG)|CB = γ then ev-
ery homeomorphic space has the same property. The same result is true for
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LNC(XG). We summarize these comments in the following theorem. By |A|
we simply mean the cardinality of A.

Theorem 5.3. (†) Let f : G→ G be a continuous surjection of a finite
graph G satisfying (†) with finite sets C of turning points and E of endpoints.
Let α be an ordinal , and let

βF = |Fold(lim←−{G, f})|CB, βL = |LNC(lim←−{G, f})|CB.

Then the following express topological properties for lim←−{G, f}:
(1) βF ; (3) |Foldα(lim←−{G, f})|;
(2) βL; (4) |LNCα(lim←−{G, f})|.

For many maps of graphs it can be shown that |Foldα(lim←−{G, f})| =
|ωα(C)| and |LNCα(lim←−{G, f})| = |ωα(E)|. We call such maps f well-
founded and we give a family of examples of well-founded interval maps
in Section 7.

Corollary 5.4. (†) Let f : G → G be a continuous surjection of G
with finitely many turning points satisfying assumption (†) such that ω(V )∩
V = ∅ and suppose f is well-founded. Let C, E, α, βF and βL be as in
Theorem 5.3. Then the following express topological properties of lim←−{G, f}:

(1) βF ; (3) |ωα(C)|;
(2) βL; (4) |ωα(E)|.

Proof. If ω(V ) ∩ V = ∅, then, by Corollary 3.8, every point of the in-
verse limit lim←−{G, f} is a point of local chainability. Thus by Theorem 2.2
the only points in lim←−{G, f} that do not have solenoid-like neighborhoods
occur in Fold(lim←−{G, f})∪LNC(lim←−{G, f}). By Corollary 4.8 these sets cor-
respond directly to ω(C) and ω(E). Since f is well-founded, for any or-
dinal α, Foldα(lim←−{G, f}) and LNCα(lim←−{G, f}) correspond to ωα(C) and
ωα(E), respectively. The result then follows by Lemma 5.2.

In Section 7 we give examples of well-founded interval maps f such that
lim←−{[0, 1], f} exhibits such cardinal and order invariants.

6. Maps of the interval. A space X is chainable if X can be covered
by a sequence of refining linear covers with vanishing mesh. Each such linear
cover is called a chaining of X or just a chain. The elements of a chain are
called its links. The largest diameter of a chain’s link is called its mesh. If
mesh(C) < ε, for a chain C, then we call C an ε-chain.

The following is a well known theorem.

Theorem 6.1 ([15]). Let f : X → X be a continuous mapping on a
chainable continuum X. Then lim←−{X, f} is chainable.
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Notice that if X is chainable and x ∈ X then we can cover any neighbor-
hood U of x with a sequence of local chainings with vanishing mesh. Thus
X is locally chainable at every point. It takes very little modification for all
of the results from the previous sections to be applied to chainable continua.
The main modification is that we no longer need to concern ourselves about
the local chainability at a point.

If X is a chainable continuum then x is an endpoint of X provided that
for every ε > 0 there is a chaining of X with mesh less than ε containing x
in its first link.

Lemma 6.2. Let X be chainable. Then x ∈ LNC(X) if , and only if , x is
an endpoint of X.

Proof. If x ∈ LNC(X) then by the definition, for all ε > 0 there is a
chaining of X with its first link containing x. Thus x is an endpoint for X.
The converse is similarly straightforward.

Let End(X) denote the set of endpoints for X. Combining the previous
lemma with Theorem 2.2 we immediately have the following result.

Theorem 6.3. Let X be a chainable continuum. Then x ∈ X has a
neighborhood homeomorphic to the product of a zero-dimensional set and an
arc if , and only if , x 6∈ End(X) ∪ Fold(X).

If we assume f : [0, 1] → [0, 1] is a continuous function with a finite set
C of turning points, then lim←−{[0, 1], f} is a chainable continuum so we can
combine the previous theorem with Corollary 4.8 to obtain the following
theorem.

Theorem 6.4. (†)(‡) Let x ∈ lim←−{[0, 1], f}. Then x has a neighborhood
homeomorphic to the product of a zero-dimensional set and an arc if , and
only if , xn 6∈ ω(C) for some n ∈ N.

Using the same definitions found in Section 5 and the previous results
we have the following theorem.

Theorem 6.5. (†) Let f be well-founded. Let α be an ordinal and let
βC = |ω(C)|CB. Then the following express topological properties of the in-
verse limit lim←−{[0, 1], f}:

(1) βC ;
(2) |ωα(C)|.
A continuum X is indecomposable provided that if X = A ∪B where A

and B are subcontinua then one of A or B is X.

Lemma 6.6. Let K be an indecomposable chainable continuum and x an
endpoint of X. Then x is a folding point.
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Proof. Let C be a chaining of K with links L and M such that x ∈ L
and x 6∈M for all M ∈ C \{L}. Let γ > 0 be less than the Lebesgue number
for C such that any γ-chaining of K has at least two links. Let D be such a
γ-chaining of K. We will show that D has a turnlink in L.

Let E be a refinement of D with the property that the first link of E ,
say E1, contains x and no other link of E contains x. Let Di ∈ D be the link
containing x and let Dj be adjacent to Di in D such that the first link of
E not contained in Di is in Dj . Call that link Et. Let a and b be points of
Et ∩ (Dj\Di) that are on different composants of K. The existence of such
points in Et is guaranteed by the fact that K is indecomposable.

There must exist a refinement F of E , with links Fu and Fv containing
the points a and b, respectively, such that the subchain {Fi}vi=u meets every
link of E . This follows from the fact that lim←−{[0, 1], f} is irreducible between
a and b. Also assume that the mesh of F is small enough to guarantee that
Fu and Fv are contained in Dj\Di. Let c be a positive integer such that
u < c < v and Fc ⊂ E1. Clearly there must be two other positive integers
d, g with u ≤ d < c < g ≤ v such that Fd, Fg ⊂ Et∩ (Dj\Di). Then F turns
in Di. Thus L is an essential turnlink and x is a folding point for K.

Usually inverse limits of “interesting” interval maps are indecomposable.
In [5], M. Barge and J. Martin explore the relationship between complicated
dynamics of f and the indecomposability of lim←−{[0, 1], f}, and in the light
of that paper, it is with little hesitation that we add the assumption that a
certain map f generates an indecomposable inverse limit space. The previous
theorem demonstrates that in this quite general case, the set of folding
points for the inverse limit contains all of the endpoints, and thus it contains
all of the “inhomogeneities” of lim←−{[0, 1], f}. So lim←−{[0, 1], f} consists of
two types of points, points with solenoid-like neighborhoods and folding
points. Recall, though, that the structure of Fold(lim←−{[0, 1], f}) is usually
quite complicated. In fact it is at least as complicated as ω(C). If ω(C) =
[0, 1], then Fold(lim←−{[0, 1], f}) will be lim←−{[0, 1], f}, and if f is unimodal, we
could be in the case described in [2]: lim←−{[0, 1], f} being locally universal. If
however ω(C) is a totally disconnected subset of [0, 1] then the set of folding
points can have a quite interesting structure. We give examples of this in
the next section.

7. Unimodal maps and folding points. Let f : [0, 1] → [0, 1] be a
unimodal surjective map with critical point c such that f is locally eventually
onto (l.e.o.). Notice that f must satisfy (†). For each x ∈ [0, 1], let If (x)
be the itinerary of x under f , and let If [f(c)] = Kf denote the kneading
sequence of f . We are primarily concerned with the structure of ω(c) in this
section, and to further our examination of that set, we present the following,
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easily proved, lemmas. Some of these results have proofs in one of [8, 11, 12],
the others immediately follow from the definitions.

Lemma 7.1. If f is l.e.o. then If (x) is one-to-one.

Let Σf be the collection of possible itineraries under f . Then Σf is a
collection of finite and infinite sequences of symbols from the set {0, 1, C}.
If the sequence is finite then we have the symbol C as its last term, if the
sequence is infinite then every term is in {0, 1}. We take 0 < C < 1. The
standard order to put on Σf is the parity-lexicographical order, ≺f . Let
s = s1s2 . . . and t = t1t2 . . . be different itineraries in Σf and let n be the
first index where they differ. If n = 1 then s ≺f t if s1 < t1. If n > 1
and s1 . . . sn−1 has an even number of 1’s, then define s ≺f t if sn < tn. If
instead that string has an odd number of 1’s then define s ≺f t if tn < sn.
If x < y then If (x) ≺f If (y) (see [11]). If s = s1s2s3 . . . is an infinite
sequence of symbols and W = snsn+1 . . . sk then we call W a subword of s.
If W = s1 . . . sj is the first j symbols of s then we call W an initial segment
of s and we write W ≤ s. By W n we mean the word W repeated n times,
and if A is a word we write WA for W concatenated with A.

The shift map σ on the set of itineraries is defined as σ[s1s2 . . .] =
s2s3 . . . . A sequence s is shift-maximal if σn(s) ≺f s for all n. Since f(c) is
the maximum value of the unimodal function f , Kf is shift-maximal.

An admissible sequence is an infinite sequence of 0’s and 1’s or a finite
sequence of 0’s and 1’s ending in C. Define 1 = 0 and 0 = 1. Then for
admissible sequences A = A′C and B = b0b1 . . ., we define A ∗B as follows:

(1) If A contains an even (resp. odd) number of 1’s and B is infinite,
then A ∗B = A′b0A′b1 . . . (resp. A′b0A′b1 . . .);

(2) If A contains an even (resp. odd) number of 1’s and B is finite of
length n, then

A ∗B = A′b0A′b1 . . . A′bn−1A
′C (resp. A′b0A′b1 . . . A′bn−1A

′C).

If C ≺f B then A ≺f A ∗B. Call a sequence s = A ∗B renormalizable if A
and B are non-empty sequences. A sequence that is not renormalizable is
primary.

Lemma 7.2 ([11, Lemma 3.1.6]). Let (101)∞ ≺f W be an infinite se-
quence of 0’s and 1’s that is strictly shift-maximal and primary. Then there
is a tent map Ta with kneading sequence W and a >

√
2.

Let fa denote the core of the tent map Ta, i.e. fa is the restriction of Tα
to the interval [T 2

a (c), Ta(c)] rescaled to be a map of [0, 1]. Then, assuming
a ∈ (

√
2, 2], fa is a l.e.o. surjection, and lim←−{[0, 1], fa} is indecomposable.

All of the examples from this section will fall into this case. So the struc-
ture of Foldα(lim←−{[0, 1], fa}) will be closely related to the structure of ωα(c).
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In order to analyze this set, we need a few lemmas relating the kneading
sequence with the ω-limit set. If Kfa is finite or eventually periodic then
ω(c) is a finite set, either the periodic postcritical orbit or the periodic
orbit into which c is mapped. In the first instance Fold(lim←−{[0, 1], fa}) is
exactly End(lim←−{[0, 1], f}), as was demonstrated in [7]. In the second case
Fold(lim←−{[0, 1], f}) is a finite collection of points corresponding to the pe-
riodic part of the critical point’s preperiodic orbit, as was demonstrated
in [10]. We will be interested in the case of an infinite postcritical orbit.
Since fa has no stable periodic points, the assumption of an infinite post-
critical orbit implies that ω(c) is infinite. Since fa is l.e.o. and ω(c) is fa-
invariant, ω(c) is either totally disconnected, or the entire interval. The case
of ω(c) = [0, 1] has every point of lim←−{[0, 1], f} in Fold(lim←−{[0, 1], f}) so there
are no solenoid-like neighborhoods. This was the focus of [2]. We will not
consider it here. We focus instead on the case of ω(c) infinite and totally
disconnected.

Lemma 7.3. Let x ∈ [0, 1]. Then x ∈ ω(c) if , and only if , for each initial
segment W of If (x), there is an increasing sequence {ni}i∈N of integers such
that W ≤ σni(Kf ) for all i ∈ N.

Using this lemma and the test of admissible sequences as kneading se-
quences (Lemma 7.2), we can proceed to construct examples. First, though,
consider the following theorem due to Barge and Martin [7], and an easily
proven lemma.

Theorem 7.4 ([7]). End(lim←−{[0, 1], f}) 6= ∅ if , and only if , c is recur-
rent under f .

Lemma 7.5. If c is recurrent but orb(c) is neither finite nor dense, then
ω(c) is a Cantor set. Moreover , if c is not recurrent but ω(c) contains a
recurrent non-periodic point then ω(c) contains a Cantor set.

For any tent map core f with c recurrent but orb(c) not dense, the set
Foldα(lim←−{[0, 1], f}) is uncountable for uncountably many ordinals α, and
also End(lim←−{[0, 1], f}) is uncountable by [9]. If instead c is not recurrent
but ω(c) contains a recurrent point then again Foldα(lim←−{[0, 1], f}) is un-
countable for uncountably many ordinals α, but since c is not recurrent,
End(lim←−{[0, 1], f}) = ∅ by [7].

Similarly, it is quite easy to construct a tent map core f such that
Fold0(lim←−{[0, 1], f}) 6= ∅: any tent map core with a periodic critical point
will suffice. It is likewise simple to construct f with Fold0(lim←−{[0, 1], f}) 6= ∅
but End(lim←−{[0, 1], f}) = ∅: any tent map core with a preperiodic critical
point will suffice. In both of these cases though, Fold1(lim←−{[0, 1], f}) = ∅.

We will construct examples that fall between these two extremes. Our
examples will have a finite number of levels of folding points that are count-
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ably infinite and a “top” level γ of folding points that is finite. Notice that
any time this occurs, the top level is necessarily a union of periodic orbits
under every autohomeomorphism of the space. Thus points in this top level
of the folding points of the inverse limit must form a finite union of periodic
orbits under the shift homeomorphism. This implies that there are “special”
periodic orbits under the bonding map that generate the most complicated
neighborhoods of lim←−{[0, 1], f}.

We will now only consider the tent map cores fa. We denote the kneading
sequence of such a map by simply Ka, and if x ∈ [0, 1] the itinerary of x
under fa will be denoted by Ia(x) rather than Ifa(x). We use ≺ to stand for
≺f where no confusion will arise.

Example 1. Let A = 1001 and B = 101. Let {ni}∞i=1 be an increasing
sequence of positive integers with n1 > 4. Consider s = AABn1ABn2A . . . .

Claim 1. (101)∞ ≺ s and s is strictly shift-maximal.

Proof. Clearly 101W ≺ s for any word W of symbols from {0, 1}. Let
n ∈ N and consider σn(s). If σn(s) begins with 0 then σn(s) ≺ s. So assume it
begins with 11. Clearly 11W ≺ 10M for any words M and W . So we consider
the case of σn(s) beginning with 100. Since 1000 is not a subword of s, σn(s)
must begin with 1001. This is the word A. If n is non-zero and σn(s) begins
with A it must be followed by B. Clearly σn(s) = AB . . . ≺ AA . . . = s for
this case. Thus s is strictly shift-maximal.

Claim 2. s is primary.

Proof. Suppose that s = T ∗ B where T = t1 . . . tr is a finite word
and B = b1b2 . . . is an infinite word from {0, 1}. Then s = Tb1Tb2 . . . =
AABn1ABn2 . . . . Then either T ≤ A or A ≤ T . Suppose that A ≤ T . Let
j be large enough so that nj > 2|T |. Then Bnj contains T as a subword.
This is a contradiction because A is not a subword of Bnj . So suppose that
T ≤ A. Then either T = 10 or T = 100. The first case cannot happen
because s = 10011001 . . . 6= Tu1T . . . = 10u110 regardless of our choice
for u1. If T = 100 then we find that eventually 100 is a subword of 101nj ,
which is a contradiction. Thus s is primary.

Claim 3. There is a parameter z ∈ (
√

2, 2] such that K(fz) = s.

Proof. s is primary and shift-maximal and (101)∞ ≺ s. Thus by Lem-
ma 7.2 such a parameter exists.

Now we will analyze the structure of ω(c) for the core of this tent map.
We do this by appealing to Lemma 7.3, and finding points x with itineraries
such that every subword of Iz(x) occurs infinitely often in Kz.

Let α, β, γ ∈ [0, 1] be such that Iz(α) = (101)∞, Iz(β) = (011)∞ and
Iz(γ) = (110)∞. Clearly these are the points of a period three orbit. We will
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show that ω1(c) = {α, β, γ}. For each k ∈ N∪{0} define ak, bk, ck ∈ [0, 1] by

Iz(ak) = (101)kA(101)∞,

Iz(bk) = σ[(101)k]A(101)∞,

Iz(ck) = σ2[(101)k]A(101)∞.

For 0 ≤ j ≤ 4, define dj ∈ [0, 1] by

Iz(dj) = σj(A)(101)∞.

Claim 4. ω(c) = {α, β, γ} ∪ {ak, bk, ck}∞k=0 ∪ {dj}4j=0.

Proof. Set Q = {α, β, γ} ∪ {ak, bk, ck}∞k=0 ∪ {dj}4j=0. Clearly, by Lemma
7.3, Q ⊆ ω(c). Suppose that w ∈ ω(c) and Iz(w) = r1r2r3 . . . . If Iz(w)
does not contain A and does not begin with σ(A), then clearly Iz(w) =
(101)∞, (011)∞ or (110)∞.

Suppose that Iz(w) contains A. Notice that for m = 0, 1, the word
σm(A)A cannot be a subword of Iz(w), because that word only occurs once
in Kz. So now suppose that Iz(w) contains A twice, but separated by some
word V , i.e. AV A is a subword of Iz(w). Let j be large enough so that
nj > 2|V |. Then after the first occurrence of Bnj there must be an occur-
rence of AV A. But all of the words past Bnj in Kz containing two copies of
A are of the form ABnkA, where k > j. Clearly none of these equal AV A.
Thus Iz(W ) can contain at most one occurrence of A.

In a previous paragraph we discussed the possibility of no occurrence
of A. Now suppose that Iz(w) contains A as a subword. Assume that Iz(w) =
r1r2 . . . rnArn+5 . . . . Clearly, this must be r1 . . . rnA(101)∞, because if any
other string occurs after A then we would have an easy contradiction. Now
consider the possibilities for the symbols before A. It is not hard to see that
these must be of the form (101)k, σ[(101)k] or σ2[(101)k] for k ∈ N ∪ {0}.
Thus Q = ω(c).

Claim 5. {α, β, γ} = ω′(c).

Proof. Let w ∈ [0, 1]. For each word W of finite length from Iz(w) there
is a subinterval SW of [0, 1] such that x ∈ SW if, and only if, Iz(x) = WV
for some word V . The diameter of SW decreases to zero as the length of W
increases to infinity. Thus it is not hard to see that ak → α, bk → β and
ck → γ as k →∞. The claim follows.

In this case fz is well-founded. To see this let x0 ∈ ω(c). Call an in-
finite sequence (x0, x−1, x−2, . . .) permitted provided f(x−i) = x−(i−1) and
x−i ∈ ω(c) for each i ∈ N. Notice that the collection of permitted sequences
is the collection of points in lim←−{[0, 1], fz} that always project into ω(c).
Hence by previous results this collection is the collection of folding points
for lim←−{[0, 1], fz}. Assume n ∈ N and x0 ∈ ωn(c). Call a permitted sequence
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(x0, x−1, x−2, . . .) n-permitted provided that x−i ∈ ωn(c) for all i ∈ N. If
n = 1 and x0 ∈ ω1(c) then by the structure of ω(c) it is easy to see that
there is exactly one 1-permitted sequence starting with x0. However there
are countably many permitted sequences for x0 and there are three possi-
ble x0 ∈ ω1(c) to choose from. Thus there are three points in lim←−{[0, 1], fz}
which always project into ω1(c). For any other permitted sequence starting
with x0 there is a least integer j such that x−j ∈ ω0(c) and (x−j, x−j−1, . . .)
is a 0-permitted sequence. Let α̂, β̂, γ̂ ∈ lim←−{[0, 1], f} be the points that
correspond to the 1-permitted sequence starting with α, β, or γ respec-
tively. Given α and a positive integer j it is not hard to see that there is
exactly one permitted sequence starting with α such that j is the least in-
teger with (x−j , x−j−1, . . .) a 0-permitted sequence. Let âj be the point in
the inverse limit that corresponds to this permitted sequence. Clearly âj is
isolated and âj → α̂ as j → ∞. Similar sequences of points can be con-
structed for both β̂ and γ̂. Thus Fold0(lim←−{[0, 1], fz}) is countably infinite
and Fold1(lim←−{[0, 1], fz}) contains three points, α̂, β̂ and γ̂. Therefore, fz is
well-founded.

Clearly there was nothing special about our choice of A or B, and it
is apparent that B is the portion of the kneading sequence that generates
the points in Fold1(lim←−{[0, 1], fz}). We could have made B a longer peri-
odic itinerary and then Fold1(lim←−{[0, 1], fz}) would have had more points.
In order to maintain s being shift-maximal and primary we would have had
to lengthen A accordingly. We could also have chosen n different periodic
itineraries B1, . . . , Bn and a word A so that Fold1(lim←−{[0, 1], fz}) would cor-
respond to the orbits of n different periodic points.

In order to construct a map that generates non-trivial Fold2 points we
must alter the above construction in a significant way. We will present that
construction. The interested reader can easily iterate our technique to gen-
erate a well-founded tent map core f with Foldn(lim←−{[0, 1], f}) a finite set
corresponding to finitely many periodic orbits for any positive integer n.

Example 2. Let A = 1001, B = 101, {mi}∞i=1 be an increasing sequence
of positive integers, and let Ci = ABiA. Let t be the sequence of positive
integers given by

t = t1, t2, t3, . . . = 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, . . . .

Define s by

s = ACt1B
m1Ct2B

m2Ct3B
m3Ct4 . . . .

It is not hard to see that s is strictly shift-maximal and primary. Thus there
is a parameter y ∈ (

√
2, 2] such that Ky = s. Let now c be the critical point

of the tent map core fy. Consider ω(c).
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Define α, β, γ ∈ [0, 1] by Iy(α) = (101)∞, Iy(β) = (011)∞ and Iy(γ) =
(110)∞. We will show that {α, β, γ} = ω2(c) and thus they correspond to
the three points in Fold2(lim←−{[0, 1], fy}).

As before, given k ∈ N ∪ {0}, let ak, bk, ck ∈ [0, 1] be given by

Iy(ak) = (101)kA(101)∞,

Iy(bk) = σ[(101)k]A(101)∞,

Iy(ck) = σ2[(101)k]A(101)∞.

For 0 ≤ j ≤ 4, define dj ∈ [0, 1] by

Iy(dj) = σj(A)(101)∞.

For the same reason as previously all of these points will be in ω(c) and still
ak → α, bk → β and ck → γ. However, now we have {ak, bk, ck}∞k=1 = ω′(c).
To see this, let k ∈ N ∪ {0} and let n ∈ N. Notice that Cn = ABnA
occurs infinitely often in s, and in fact BkCn = BkABnA, σ(Bk)Cn =
σ(Bk)ABnA, and σ2(Bk)Cn = σ2(Bk)ABnA occurs infinitely often in s. So
define akn, b

k
n, c

k
n ∈ [0, 1] by

Iy(akn) = (101)kCn(101)∞ = (101)kA(101)nA(101)∞,

Iy(bkn) = σ[(101)k]Cn(101)∞ = σ[(101)k]A(101)nA(101)∞,

Iy(ckn) = σ2[(101)k]Cn(101)∞ = σ2[(101)k]A(101)nA(101)∞.

It is not hard to see that {akn, bkn, ckn}∞k=0,n=1 ⊆ ω(c), and akn → ak, bkn → bk
and ckn → ck as n→∞. Thus {ak, bk, ck}∞k=0 ⊆ ω′(c). It can be shown that
the only points left in ω(c) form a finite collection of isolated points. Thus
ω′(c) = {ak, bk, ck}∞k=0 and ω2(c) = {α, β, γ}. It can also be shown in the
same manner as before that fy is well-founded. Hence fy is the core of a tent
map with Fold(lim←−{[0, 1], fy}) a countably infinite set, Fold1(lim←−{[0, 1], fy})
a countably infinite set and Fold2(lim←−{[0, 1], fy}) three points, each of which
project into {α, β, γ}.

It is easy to see that we could have chosen a different word B that could
have led to more points in Fold2(lim←−{[0, 1], fy}), and we could have even
chosen finitely many periodic itineraries B1, . . . , Bn that would have led to
a slightly more rich structure for Fold2(lim←−{[0, 1], fy}). Of course in each
case, A would have to be altered slightly.

For more examples of such structures in ω(c) see [17, 18]. We will end
the paper with a brief description of how to alter the previous example into
tent maps that generate inverse limit spaces with a non-empty but finite
collection of n-folding points for any positive integer n.

Example 3. Given A,B, {mi}i∈N and ti defined as in Example 2, let
N = {(α1, . . . , αj) : αi ∈ N and j ≤ n}. Clearly N is countable, so enumer-
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ate N by N = {α1, α2, . . .}, where αi = (αi1, . . . , α
i
ki

). Let

Ci = ABαi1ABαi2A . . . AB
αikiA.

Define
s = AACt1B

m1Ct2B
m2Ct3B

m4 . . . .

Using techniques from previous examples it can be shown that s is strictly
shift-maximal and primary. Thus there is a parameter v ∈ (

√
2, 2] such that

Kv = s. Let c be the critical point for fv. It can be shown that ωn(c) =
{α, β, γ}, where Iv(α) = B∞, Iv(β) = σ(B)∞ and Iv(γ) = σ2(B)∞, and
that fv is well-founded.

In an upcoming paper we completely classify all possible topological struc-
tures of these ω-limit sets, giving examples of α-folding points for countable
transfinite ordinalsα. We also give examples in which |Fold(lim←−{[0, 1], fa})|CB
= α is a transfinite ordinal, but Foldα(lim←−{[0, 1], fa}) is a Cantor set rather
than a finite collection of periodic orbits.
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