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A note on strong negative partition relations
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Abstract. We analyze a natural function definable from a scale at a singular cardinal,
and use it to obtain some strong negative square-brackets partition relations at successors
of singular cardinals. The proof of our main result makes use of club-guessing, and as
a corollary we obtain a fairly easy proof of a difficult result of Shelah connecting weak
saturation of a certain club-guessing ideal with strong failures of square-brackets partition
relations. We then investigate the strength of weak saturation of such ideals and obtain
some results on stationary reflection.

1. Introduction. Recall that the square-brackets partition relation κ→
[λ]µθ of Erdős, Hajnal, and Rado [7] asserts that for every function F : [κ]µ →
θ (where [κ]µ denotes the subsets of κ of cardinality µ), there is a set H ⊆ κ
of cardinality λ such that

(1.1) ran(F �[H]µ) 6= θ,

that is, the function F omits at least one value when we restrict it to [H]µ.
The negations of square-brackets partition relations are particularly inter-
esting, as such combinatorial principles have many applications outside of
pure set theory.

This paper is primarily concerned with the combinatorial statement

(1.2) λ 9 [λ]2λ,

for λ the successor of a singular cardinal. The assertion (1.2) states that
there exists a function F : [λ]2 → λ with the property that

(1.3) ran(F �[A]2) = λ

for any unbounded subset A of λ. Traditionally, more descriptive language
is used when discussing (1.2): F is called a coloring, and (1.2) says that we
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can color the pairs of ordinals from λ using λ colors in such a way that all
colors appear in any unbounded subset of λ. Thus, Ramsey’s theorem fails
for λ in an incredibly spectacular way.

The question of whether λ 9 [λ]2λ necessarily holds for λ the successor
of a singular cardinal is still open. Much research has been devoted to this
question (particularly by Shelah [10], [11], [13], [5]) and the related question
of whether such a λ can be a Jónsson cardinal. This has resulted in a complex
web of conditions that tightly constrains what a potential counterexample
can look like, but still no proof that a counterexample cannot exist has
emerged.

In this paper, we show (assuming λ = µ+ for µ singular) that in many sit-
uations there is a natural coloring c : [λ]2 → λ with the property that c takes
on almost every color on every unbounded A ⊆ λ. We have used two quali-
fying phrases in the previous sentence. The first—“in many situations”—we
leave vague for now, although our theorem is general enough to cover the
case where µ is singular of uncountable cofinality. The second qualifying
phrase—“almost every color”—means “the set of omitted colors is small in
the sense that it lies in a certain ideal associated with Shelah’s theory of
guessing clubs”. The proof that the coloring has the required characteris-
tics is a blending of techniques due to Todorčević (namely, the method of
minimal walks [15, 16, 14]) and techniques due to Shelah (combinatorics
associated with scales [10, 4]).

We will actually be working with negative square-brackets partition re-
lations much stronger than those discussed in the first two paragraphs of
the paper. In particular, we will be investigating instances of the following,
which is a specific case of a much more general property introduced and
studied by Shelah in several works [9, 13, 5, 12].

Definition 1. Let λ = µ+ for µ a singular cardinal, and suppose σ ≤ λ.
We say Pr1(λ, λ, σ, cf(µ)) holds if there is a function f : [λ]2 → σ such that
whenever 〈tα : α < λ〉 is a sequence of pairwise disjoint elements of [λ]<cf(µ),
then for any ε < σ we can find α < β < λ such that

(1.4) f(ζ, ξ) = ε for all ζ ∈ tα and ξ ∈ tβ.

Note that Pr1(λ, λ, σ, cf(µ)) implies λ 9 [σ]2λ, as we may take the tα to
be singletons.

This work continues research begun in [5] and is further continued in [6],
where we (together with Shelah) address the question of what happens at
successors of cardinals of countable cofinality.

2. Preliminaries. The background material needed for our results di-
vides fairly neatly into four categories: club-guessing, minimal walks, scales,
and elementary submodels. We handle each of these topics in turn.
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Guessing clubs. Shelah’s theory of club-guessing has been a key ingredi-
ent in many of his theorems establishing negative square-brackets partition
relations. The foundations of the theory can be found in [11], while [13], [5],
and [12] provide glimpses of how useful the material can be in combinato-
rial set theory. We will be concerned with a particular type of club-guessing
that has proven exceedingly relevant in this context, as well as a certain
club-guessing ideal—the ideal idp(C, I)—that has heretofore not received
as much attention in the literature as it perhaps deserves. This ideal has a
fairly complicated definition, and so our initial discussion will be concerned
with its description.

Definition 2. Let S ⊆ λ be a stationary set of limit ordinals. We say
that a sequence C = 〈Cδ : δ ∈ S〉 is an S-club system if Cδ is closed and
unbounded in δ for each δ ∈ S. We can extend this notion to sets containing
successor ordinals by requiring that for successor δ, Cδ is a closed subset of
δ containing the predecessor of δ. In the special case where S is all of λ, we
note that 〈Cα : α < λ〉 is a C-sequence in the sense of Todorčević.

The above definition makes no demands on the order-type or cardinality
of Cδ—all that is required is that it be closed and unbounded in δ. We note
as well that although the terms “λ-club system” and “C-sequence (on λ)”
denote exactly the same sorts of objects, we will preserve the distinct termi-
nology because these objects are used for two entirely different reasons—a
sequence 〈Cδ : δ < λ〉 used solely for club-guessing purposes will be re-
ferred to using the former notation, while we will use the latter notation if
we intend to use the object exclusively for minimal walks. In the author’s
opinion, the possibility of confusion is far outweighed by the advantage of
staying consistent with notation in the extant literature.

Definition 3. Let C = 〈Cδ : δ ∈ S〉 be an S-club system for S a
stationary subset of some cardinal λ, and suppose I = 〈Iδ : δ ∈ S〉 is a
sequence such that Iδ is an ideal on Cδ for each δ ∈ S. The ideal idp(C, I)
consists of all sets A ⊆ λ such that for some closed unbounded E ⊆ λ,

(2.1) δ ∈ S ∩ E ⇒ E ∩A ∩ Cδ ∈ Iδ.

Notice that idp(C, I) is a proper ideal if and only if the sequence (C, I)
guesses clubs in the sense that for every closed unbounded E ⊆ λ, the set
of δ ∈ S such that

(2.2) E ∩ Cδ /∈ Iδ
is stationary. This is weaker than the usual notions of club-guessing prevalent
in the literature, which would require that E contains almost all members
of Cδ, as measured by Iδ. Note as well that a set A is idp(C, I)-positive if



100 T. Eisworth

and only if for every closed unbounded E ⊆ λ, the set of δ ∈ S for which

(2.3) E ∩A ∩ Cδ /∈ Iδ
is stationary.

We will be interested in idp(C, I) for a particular choice of I which we
define after establishing a bit of notation.

Definition 4. Suppose C is closed and unbounded in δ. Then

(2.4) nacc(C) := {α ∈ C : sup(C ∩ α) < α},
and acc(C) := C \ nacc(C). (The notation “acc” and “nacc” comes from
“accumulation points” and “non-accumulation points”.)

The notation of the preceding definition allows us to state the particular
form of club-guessing of concern to us in this paper.

Definition 5. Suppose λ = µ+ for µ a singular cardinal, and S is a
stationary subset of {δ < λ : cf(δ) = cf(µ)}. We say that (C, I) is an S-good
pair if the following conditions are satisfied:

(1) C = 〈Cδ : δ ∈ S〉 is an S-club system,
(2) sup{|Cδ| : δ ∈ S} < µ,
(3) I = 〈Iδ : δ ∈ S〉,
(4) for δ ∈ S, Iδ is the ideal on Cδ generated by sets of the form,

(2.5) {γ ∈ Cδ : γ ∈ acc(Cδ) or cf(γ) < α or γ < β}
for α < µ and β < δ,

(5) for every closed unbounded E ⊆ λ,

(2.6) {δ ∈ S : E ∩ Cδ /∈ Iδ} is stationary.

Some remarks are in order here. First, the term “S-good pair” is not
a standard one, nor do we intend it to be—it simply captures the particu-
lar instance of club-guessing relevant for the problem at hand. Second, the
ideals Iδ in the preceding definition are designated by “Jb[µ]

Cδ
” in Shelah’s

research, and at the suggestion of the referee we have gone with simpler no-
tation. Third, Shelah has shown that S-good pairs exist for every stationary
S ⊆ {δ < λ : cf(δ) = cf(µ)} in the case where µ has uncountable cardi-
nality. This result follows immediately from Claim 2.6 on page 127 of [9]
(see part (5) of his Remark 2.6A); there are a few small errors in the proof
given there, so a complete (and simpler) proof appears as Theorem 2 of the
forthcoming [6]. It is still an open problem whether S-good pairs exist when
µ has countable cofinality. Finally, with regard to condition (5), we remark
that the statement “E ∩ Cδ /∈ Iδ” means that for every τ < µ and ε < δ,
there is a γ in E ∩ nacc(Cδ) such that γ > ε and cf(γ) > τ .

The ideal idp(C, I) is a proper ideal whenever (C, I) is an S-good pair
because of condition (5) in Definition 5. In this situation, the equation (2.3)



Strong negative partition relations 101

means that for every τ < µ and ε < δ, there is a γ ∈ nacc(Cδ)∩E ∩A such
that γ > ε and cf(γ) > τ .

Minimal walks. Suppose now that e = 〈eα : α < λ〉 is a C-sequence for
some cardinal λ. Following Todorčević, given α < β < λ, the minimal walk
from β to α along e is defined to be the sequence β = β0 > · · · > βn+1 = α
obtained by setting

(2.7) βi+1 = min(eβi \ α).

The use of “n+ 1” as the index of the last step is deliberate, as the ordinal
βn (the penultimate step) is quite important in our proof. The trace of the
walk from β to α is defined by

(2.8) Tr(α, β) = {β = β0 > β1 > · · · > βn > βn+1 = α}.
We make use of standard facts about minimal walks. In particular, sup-

pose δ is a limit ordinal, δ < β < λ, and β = β0 > · · · > βn+1 = δ is the
minimal walk from β to δ. For i < n, we know that α /∈ eβi , and so

(2.9) γ∗ := max{max(eβi ∩ δ) : i < n} < δ.

Suppose now that γ∗ < α < δ, and let β = β∗0 > · · · > β∗n∗+1 = α be the
minimal walk from β to α. From the definition of γ∗ it follows that

(2.10) βi = β∗i for i ≤ n.
Thus, the walks from β to δ and from β to α agree up to and and including
the step before the former reaches its destination. A proper discussion of
minimal walks and their applications is beyond the scope of this paper, and
we develop the theory only to the degree that we need it for our proof. We
refer the reader to [15], [2], [14], or [16] for more information.

Scales. The next ingredient we need for our theorem is the concept of a
scale for a singular cardinal.

Definition 6. Let µ be a singular cardinal. A scale for µ is a pair (~µ, ~f )
satisfying

(1) ~µ = 〈µi : i < cf(µ)〉 is an increasing sequence of regular cardinals
such that supi<cf(µ) µi = µ and cf(µ) < µ0.

(2) ~f = 〈fα : α < µ+〉 is a sequence of functions such that

(a) fα ∈
∏
i<cf(µ) µi.

(b) If γ < δ < β then fγ <
∗ fβ, where the notation f <∗ g means

that {i < cf(µ) : g(i) ≤ f(i)} is bounded in cf(µ).
(c) If f ∈

∏
i<cf(µ) µi then there is an α < β such that f <∗ fα.

It is an important theorem of Shelah [10] that scales exist for any singular
µ; readers seeking a gentler exposition of this and related topics should
consult [8], [3], or [4]. If µ is singular and (~µ, ~f ) is a scale for µ, then there is
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a natural way to color the pairs of ordinals α < β < µ+ using cf(µ) colors,
namely

(2.11) Γ (α, β) = sup({i < cf(µ) : fβ(i) ≤ fα(i)}).
Although we do not use it, we mention that the coloring Γ defined above
witnesses that Pr1(µ+, µ+, cf(µ), cf(µ)) holds for any singular µ—this is a
result of Shelah (Conclusion 4.1(a) on page 67 of [10]), and Section 5 of [4]
contains an explication of this result.

The next lemma will be used in the proof of our main theorem; it is
a result that holds for arbitrary scales at singular cardinals µ. We remind
the reader that notation of the form “(∃∗β < λ)ψ(β)” means {β < λ :
ψ(β) holds} is unbounded below λ, while “(∀∗β < λ)ψ(β)” means that
{β < λ : ψ(β) fails} is bounded below λ.

Lemma 7. Let λ = µ+ for µ a singular cardinal of cofinality κ, and
suppose (~µ, ~f ) is a scale for µ. Then there is a closed unbounded C ⊆ λ
such that the following holds for every β ∈ C:

(2.12) (∀∗i < κ)(∀η < µi)(∀ν < µi+1)(∃∗α < β)[fα(i) > η ∧ fα(i+ 1) > ν].

Proof. Our first step is to prove the following statement:

(2.13) (∀∗i < κ)(∀η < µi)(∀ν < µi+1)(∃∗α < λ)[fα(i) > η ∧ fα(i+ 1) > ν].

Assume by way of contradiction that (2.13) fails. It follows that there is an
unbounded I ⊆ κ (without loss of generality satisfying i ∈ I → i + 1 /∈ I)
such that a “bad pair” (ηi, νi) exists for every i ∈ I. Define a function
f ∈

∏
i<κ µi by

(2.14) f(i) =


ηi, i ∈ I,
νi−1, i− 1 ∈ I,
0, otherwise.

For each i ∈ I, there is an αi < λ such that

(2.15) α ≥ αi ⇒ ¬(ηi < fα(i) and νi < fα(i+ 1)).

We now choose an α∗ < λ greater than each such αi and such that f <∗ fα∗ ,
and the contradiction is immediate.

To see that there is a closed unbounded set of β < λ satisfying (2.12),
we apply (2.13) to choose an i∗ < κ so large that

(2.16) (∀η < µi)(∀ν < µi+1)(∃∗α < λ)[fα(i) > η ∧ fα(i+ 1) > ν]

holds for all i satisfying i∗ ≤ i < κ.
Given such an i, for each each pair (η, ν) ∈ µi × µi+1 we let Ai(η, ν) be

the set of α < λ satisfying

(2.17) η < fα(i) and ν < fα(i+ 1).
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There are only µ sets of the form Ai(η, ν), and therefore the set of β < λ
that are limit points of all Ai(η, ν) simultaneously is closed and unbounded
in λ as required.

Elementary submodels. Our conventions regarding elementary submod-
els are fairly standard—we assume that χ is a sufficiently large regular cardi-
nal and let A denote the structure 〈H(χ),∈, <χ〉 where H(χ) is the collection
of sets hereditarily of cardinality less than χ, and <χ is some well-order of
H(χ). The use of <χ means that our structure A has definable Skolem func-
tions, and we obtain the set of Skolem terms for A by closing the collection
of Skolem functions under composition.

Definition 8. Let B ⊆ H(χ). Then SkA(B) denotes the Skolem hull of
B in the structure A. More precisely,

SkA(B) = {t(b0, . . . , bn) : t a Skolem term for A and b0, . . . , bn ∈ B}.

The set SkA(B) is an elementary substructure of A, and it is the smallest
such structure containing every element of B.

The following technical lemma due originally to Baumgartner [1] will
provide a key ingredient for our proof.

Lemma 9. Assume that M ≺ A and let σ ∈ M be a cardinal. If we
define N = SkA(M ∪σ) then for all regular cardinals τ ∈M greater than σ,
we have

sup(M ∩ τ) = sup(N ∩ τ).

Proof. Given an α ∈ N ∩ τ , we must produce a β ≥ α in M ∩ τ . Since α
is in N , there is a Skolem term t and parameters α0, . . . , αi, β0, . . . , βj such
that

α = t(α0, . . . , αi, β0, . . . , βj)

where each α` is less than σ and each β` is an element of M \ σ.
Now define a function F with domain [σ]i+1 by

F (x0, . . . , xi) =
{
t(x0, . . . , xi, β0, . . . , βj) if this is an ordinal less than τ ,
0 otherwise.

The function F is an element of M , and so β := sup(ran(F )) is in M as
well. Since τ is a regular cardinal, it is clear that α ≤ β < τ as required.

As a corollary to the above, we can deduce an important fact about
characteristic functions of models, which we define next.

Definition 10. Let µ be a singular cardinal of cofinality κ, and let
~µ = 〈µi : i < κ〉 be an increasing sequence of regular cardinals cofinal in µ.
If M is an elementary submodel of A such that
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• |M | < µ,
• 〈µi : i < cf(µ)〉 ∈M ,
• κ+ 1 ⊆M ,

then the characteristic function of M on ~µ (denoted Ch~µM ) is the function
with domain κ defined by

Ch~µM (i) :=
{

sup(M ∩ µi) if sup(M ∩ µi) < µi,
0 otherwise.

If ~µ is clear from context, then we suppress reference to it in the notation.

In the situation of Definition 10, it is clear that Ch~µM is an element of the
product

∏
i<κ µi, and furthermore Ch~µM (i) = sup(M ∩µi) for all sufficiently

large i < κ. We can now see that the following corollary follows immediately
from Lemma 9.

Corollary 11. Let µ, κ, ~µ, and M be as in Definition 10. If i∗ < κ
and we define N to be SkA(M ∪ µi∗), then

(2.18) ChM�[i∗ + 1, κ) = ChN�[i∗ + 1, κ).

We introduce one more bit of notation concerning elementary submod-
els, with an eye toward simplifying the terminology used in various proofs
throughout the paper.

Definition 12. Let λ be a regular cardinal. A λ-approximating sequence
is a continuous ∈-chain M = 〈Mi : i < λ〉 of elementary submodels of A
such that

(1) λ ∈M0,
(2) |Mi| < λ,
(3) 〈Mj : j ≤ i〉 ∈Mi+1,
(4) Mi ∩ λ is a proper initial segment of λ.

If x ∈ H(χ), then we say that M is a λ-approximating sequence over x if
x ∈M0.

Note that if M is a λ-approximating sequence and λ = µ+, then µ+ 1 ⊆
M0 because of condition (4) and the fact that µ is an element of each Mi.

3. Preliminary results. In this section, we will examine how minimal
walks can be made to interact with S-good pairs. The first thing we prove is
that such S-good pairs can be “swallowed” by C-sequences—this technique
is due to Shelah [9] and it is used as well in [5]. The C-sequence that results
from such an operation possesses a weak form of coherence that is the key
ingredient in our proof.

Lemma 13. Let λ = µ+ for µ a singular cardinal , and suppose (C, I)
is an S-good pair for some stationary subset S of {δ < λ : cf(δ) = cf(µ)}.
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There is a C-sequence e = 〈eα : α < λ〉 such that |eα| < µ for all α < λ,
and

(3.1) δ ∈ eα ∩ S ⇒ Cδ ⊆ eα.
Proof. Let σ < µ be a regular cardinal distinct from cf(µ), and let

〈e∗α : α < λ〉 be a C-sequence such that otp(e∗α) = cf(α) for α a limit
ordinal, and such that e∗α+1 = {α}. For each α < λ, we define a sequence
〈eα[i] : i < σ〉 as follows:

• eα[0] = e∗α,
• eα[i+ 1] is the closure in α of eα[i] ∪

⋃
{Cδ : δ ∈ eα[i] ∩ S},

• for limit i < σ, eα[i] is the closure in α of
⋃
j<i eα[j].

Now we define eα to be the closure in α of
⋃
i<σ eα[i]; it is straightforward

to see that 〈eα : α < λ〉 has all the required properties (note that |eα| < µ
because we have a uniform bound on the cardinalities of the Cδ’s, and that
taking closures in this context does not increase cardinality).

We sometimes refer to conclusion (2) of the preceding lemma by saying
that the C-sequence e swallows the S-good pair (C, I). Note as well that the
above lemma is much more general than stated—the ideals I are irrelevant,
as the proof requires only that sup{|Cδ| : δ ∈ S} is less than µ.

Our first result extracts a key property of minimal walks along C-se-
quences that swallow a given good pair. The result is implicit in Shelah’s
work, but we isolate it here as it provides an explanation for many of the
theorems he obtains in the final section of [11] as well as our Theorem 2
below.

Definition 14. Let e = 〈eα : α < λ〉 be a C-sequence on some car-
dinal λ. Given a subset t of λ, we say that a limit ordinal β∗ is t-ok if
β∗ < min(t) and there exists an ordinal γ∗ < β∗ (which we refer to as a
witness for β∗ and t) such that for any α in the interval (γ∗, β∗) and any
ξ ∈ t, the walk from ξ down to α end extends the walk from ξ to β∗. (So in
particular, we have β∗ ∈ Tr(α, ξ).)

Lemma 15. Suppose λ = µ+ for µ singular , and let e = 〈eα : α < λ〉
be a C-sequence that swallows an S-good pair (C, I) for some stationary
S ⊆ {δ < λ : cf(δ) = cf(µ)}. If δ ∈ S and t ∈ [λ]<cf(µ) satisfies δ < min(t),
then Iδ-almost every element of Cδ is t-ok.

Proof. For each ξ ∈ t, we let the walk from ξ to δ along e consist of the
ordinals

(3.2) ξ = βξ0 > · · · > βξn(ξ)>β
ξ
n(ξ)+1 = δ,

so Tr(δ, ξ) = {βξi : i ≤ n(ξ) + 1}. Next, we define (for each ξ ∈ t)
(3.3) τ(ξ) := |e

βξ
n(ξ)

| < µ
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and

(3.4) ε(ξ) := max{max(e
βξi
∩ δ) : i < n(ξ)} < δ.

Finally, define

(3.5) τ := cf(µ) + sup{τ(ξ) : ξ ∈ t}
and

(3.6) ε := sup{ε(ξ) : ξ ∈ t}.
Since |t| < cf(µ) = cf(δ), it is clear that τ < µ and ε < δ and so it suffices

to establish that any β∗ ∈ nacc(Cδ) satisfying β∗ > ε and cf(β∗) > τ is t-ok.
Let such a β∗ be given; we will give a witness γ∗ for β∗ and t. For each

ξ ∈ t, we know

(3.7) δ ∈ e
βξ
n(ξ)

and hence

(3.8) Cδ ⊆ eβξ
n(ξ)

because e swallows the pair (C, I). In particular, this means that β∗ is in
every such e

βξ
n(ξ)

, and furthermore, since cf(β∗) > τ we know that β∗ cannot

be an accumulation point of this set. Thus,

(3.9) β∗ ∈ nacc(e
βξ
n(ξ)

) for all ξ ∈ t.

We now define

(3.10) γ∗ := ε+ sup{max(e
βξ
n(ξ)

∩ β∗) : ξ ∈ t}.

Since β∗ is a limit ordinal of cofinality greater than |t|, we know that γ∗ < β∗.
Suppose now that γ∗ < α < β∗. Given ξ ∈ t, since

(3.11) ε(ξ) < α < δ

it follows (by a standard “minimal walk argument”) that the walk from ξ
to α commences with the sequence

(3.12) ξ = βξ0 > · · · > βξn(ξ),

and our choice of γ∗ guarantees that

(3.13) β∗ = min(e
βξ
n(ξ)

\ α).

Thus, β∗ is the next step past βξn(ξ) in the walk from ξ to α, and from this
we conclude that β∗ is t-ok.

It will become clear in the course of the paper that the preceding lemma
is the cornerstone for the proofs we will give. As an illustration of how it can
be used, we will prove an easy theorem connecting idp(C, I) with minimal
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walks. In order to state the result, we need the following (modification of a)
definition from Todorčević’s [16].

Definition 16. Let e be a C-sequence on some cardinal λ. The trace
filter of the C-sequence e is defined to be the filter on λ generated by sets
of the form

(3.14)
⋃
{Tr(α, β) : {α, β} ∈ [A]2}

for A an unbounded subset of λ.

This is slightly at odds with the terminology of [16], as Todorčević de-
fines the trace filter to be the normal filter on λ generated by sets of the
form (3.14). However, the changing of notation here is done with his bless-
ing. We remark that the question of whether or not a given C-sequence has
a proper trace filter is a delicate one—it is not something that happens au-
tomatically. We send the reader to Section 8.2 of [16] for more information
on these matters.

Theorem 1. Let λ = µ+ for µ singular , and assume (C, I) is an S-good
pair for some stationary S ⊆ {δ < λ : cf(δ) = cf(µ)}. If e is a C-sequence
such that

• |eα| < µ for all α < λ,
• e swallows (C, I),

then the trace filter of e is disjoint from the ideal idp(C, I). In particular ,
the trace filter of e is a proper uniform filter on λ disjoint from the non-
stationary ideal.

Proof. Let A be an unbounded subset of λ. We prove that

ΓA :=
⋃
{Tr(α, β) : {α, β} ∈ [A]2}

has measure one with respect to the ideal idp(C, I). To see this, we define
E to be the closed unbounded subset of λ consisting of ordinals α for which
α = sup(A ∩ α), and show that

(3.15) δ ∈ S ∩ E ⇒ (E ∩ Cδ) \ ΓA ∈ Iδ.

It suffices to show for each δ ∈ S ∩ E with E ∩ Cδ /∈ Iδ that the set ΓA
contains almost every member of E ∩ Cδ, as measured by the ideal Iδ.

This follows almost immediately from Lemma 15. To see why, simply fix
any β > δ. By Lemma 15, we know that Iδ-almost every member of Cδ is
{β}-ok. If β∗ ∈ E ∩ Cδ is {β}-ok, then for all sufficiently large α ∈ A ∩ β∗
we have β∗ ∈ Tr(α, β) and therefore ΓA contains Iδ-almost all members of
E ∩ Cδ.
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4. The main theorem. We now move to the main theorem of this
paper. Throughout this section, we adopt the following list of assumptions:

Assumptions.

• λ = µ+ for µ singular of cofinality κ.
• (C, I) is an S-good pair for some stationary S ⊆ {δ < λ : cf(δ) = κ}.
• e = 〈eα : α < λ〉 is a C-sequence that swallows (C, I).
• (~µ, ~f ) is a scale for µ.
• A = 〈H(χ),∈, <χ〉 for some sufficiently large regular cardinal χ.

Our next task is to define a certain function c : [λ]2 → λ using walks
associated with the C-sequence e.

Definition 17. Given α < β < λ, let β = β0 > β1 > · · · > βn > βn+1 =
α list Tr(α, β) in decreasing order. The function c : [λ]2 → λ is defined by
setting c(α, β) equal to βm, where m ≤ n+ 1 is the least number for which

(4.1) Γ (α, βm) 6= Γ (α, β).

The function c can easily be described in English: to calculate the value
of c(α, β), we first compute Γ (α, β), and then walk along e until we reach
an ordinal βm where Γ (α, βm) is different from Γ (α, β). This ordinal βm is
the value of c(α, β).

Theorem 2. Suppose 〈tα : α < λ〉 is a sequence of pairwise disjoint
subsets of λ, each of cardinality less than κ. Then for idp(C, I)-almost all
β∗ < λ the following holds:

(∃∗β < λ)(∀∗i < κ)(∃∗α < β∗)(∀ζ ∈ tα)(∀ξ ∈ tβ)[c(ζ, ξ) = β∗ ∧ Γ (ζ, ξ) = i].

Proof. We first prove the theorem under the assumptions that α <
min(tα) and sup(tα) < min(tβ) whenever α < β < λ. Given this, let A
be the set of all β∗ < λ for which the conclusion of the theorem fails, and
assume by way of contradiction that A is idp(C, I)-positive.

Let M = 〈Mi : i < λ〉 be a λ-approximating sequence over all the objects
mentioned so far. We define E to be the set of δ < λ for which Mδ ∩ λ = δ.
Since E is a closed unbounded subset of λ and A /∈ idp(C, I), we know there
is a δ ∈ S ∩ E with

(4.2) A ∩ E ∩ Cδ /∈ Iδ.
We have assumed δ < min(tδ), so for each ξ ∈ tδ let

(4.3) ξ = βξ0 > · · · > βξn(ξ) > βξn(ξ)+1 = δ

list Tr(δ, ξ) in decreasing order.
Taking (4.2) together with Lemma 15, we can find β∗ ∈ A∩E ∩Cδ and

γ∗ < β∗ with cf(β∗) > κ so that whenever γ∗ < α < β∗ and ξ ∈ tδ the walk
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along e from ξ to α commences with the sequence

(4.4) ξ = βξ0 > · · · > βξn(ξ) > β∗.

We will now prove that the following statement holds:

(4.5) (∀∗i < κ)(∃∗α < β∗)(∀ζ ∈ tα)(∀ξ ∈ tδ)[c(ζ, ξ) = β∗ ∧ Γ (ζ, ξ) = i].

If we combine the above with the fact that sup(Mβ∗+1 ∩ λ) ∈ Mδ ∩ λ = δ,
we find that Mβ∗+1 |= β∗ /∈ A, which is a contradiction.

For each α < λ, we define a function fmin
α as follows:

(4.6) fmin
α (i) = min{fζ(i) : ζ ∈ tα}.

Since |tα| < κ for each α, it follows that

(4.7) (∀∗i < κ)[fmin
α (i) = fmin(tα)(i)].

In particular, the sequence 〈fmin
α : α < λ〉 is a scale, and we note that this

new scale is an element of M0.
An appeal to Lemma 7 gives us a closed unbounded set in M0 as there.

In particular, this closed unbounded set is also an element of Mβ∗ , and so
β∗ = sup(Mβ∗ ∩ λ) is necessarily a member of this closed unbounded set.
We conclude

(∀∗i < κ)(∀η < µi)(∀ν < µi+1)(∃∗α < β∗)[fmin
α (i) > η ∧ fmin

α (i+ 1) > ν].

This means we can choose i0 < κ such that

i0 ≤ i < κ

⇒ (∀η < µi)(∀ν < µi+1)(∃∗α < β∗)[fmin
α (i) > η ∧ fmin

α (i+ 1) > ν].

The next piece of the proof makes use of Skolem hulls. Let us define

x := {λ, µ, κ, (~µ, ~f ), S, e, 〈tα : α < λ〉, β∗},
and define M to be the Skolem hull in A of x together with all ordinals less
than or equal to κ, that is,

M := SkA(x ∪ κ+ 1).

Since |M | = κ < µ0, it follows that

(4.8) ChM (i) = sup(M ∩ µi) for all i < κ,

where ChM is the characteristic function of M from Definition 10. We note
that M can be computed by taking a Skolem hull in the model Mβ∗+1 and
therefore M ∈Mδ. In particular,

(4.9) ChM ∈Mδ ∩
∏
i<κ

µi

and ChM <∗ fα for some α ∈Mδ ∩ λ = δ.
Thus, we can find i1 < κ such that

(4.10) ChM �[i1, κ) < f
βξj

�[i1, κ) for all ξ ∈ tδ and i ≤ n(ξ).
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Finally, let i2 < κ be such that cf(β∗) < µi2 and define

(4.11) i∗ = max{i0, i1, i2}.
We claim that if i∗ ≤ i < κ, then

(4.12) (∃∗α < β∗)(∀ξ ∈ tδ)(∀ζ ∈ tα)[c(ζ, ξ) = β∗ ∧ Γ (ζ, ξ) = i].

Fix such an i, and define

(4.13) N = SkA(M ∪ µi).
By Corollary 11, it follows that

(4.14) ChN �[i+ 1, κ) = ChM �[i+ 1, κ),

and therefore by our choice of i1, for all α ∈ N ∩ λ we have

(4.15) fα�[i+ 1, κ) < f
βξj

�[i+ 1, κ) for all ξ ∈ tδ and j ≤ n(ξ).

We now define

η∗ := sup{f
βξj

(i) : ξ ∈ tδ and j ≤ n(ξ)}, ν∗ = fβ∗(i+ 1).

Clearly η∗ < µi and ν∗ < µi+1, and both are elements of N . By our choice
of i2, we know cf(β∗) ⊆ N and therefore N ∩ β∗ is unbounded in β∗. Given
this, from our choice of i0 it follows that

(4.16) (∃∗α < β∗)[α ∈ N ∧ fmin
α (i) > η∗ ∧ fmin

α (i+ 1) > ν∗].

Suppose now that α ∈ N satisfies γ∗ < α < β, fmin(i)
α > η∗, and

fmin
α (i+ 1) > ν∗. From (4.15) and the choice of η∗, we conclude

(4.17) Γ (ζ, βξj ) = i for all ζ ∈ tα, ξ ∈ tδ, and j ≤ n(ξ).

By our choice of ν∗, we know

(4.18) Γ (ζ, β∗) ≥ i+ 1 for all ζ ∈ tα.

The conjunction of (4.17) and (4.18) establishes

(4.19) (∀ζ ∈ tα)(∀ξ ∈ tδ)[c(ζ, ξ) = β∗ ∧ Γ (ζ, ξ) = i].

Thus, (4.5) holds and a contradiction arises because β∗ was chosen to be in
the set A.

We now fulfill the promise made at the start of the proof by handling
the case of an arbitrary sequence 〈tα : α < λ〉. Given such a sequence, we
define an increasing function ι : λ→ λ such that

• α < min(tι(α)) for all α < λ,
• α < β < λ⇒ max(tα) < ι(β).

If we define sα = tι(α), then our work applies to the sequence 〈sα : α < λ〉.
In particular, there is a set B in the filter dual to idp(C, I) so that the
conclusion of our theorem (as it applies to 〈sα : α < λ〉) holds for every
β∗ ∈ B.
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Let B∗ be the set of all β∗ ∈ B that are closed under the function ι. Since
idp(C, I) extends the non-stationary ideal, it is clear that B∗ is in the filter
dual to idp(C, I) and routine to check that the conclusion of the theorem
(as it applies to 〈tα : α < λ〉) holds for all β∗ ∈ B∗.

We will shortly deduce an interesting theorem of Shelah as a corollary
to our main result, but to do this we need to fix some terminology.

Definition 18. Let I be an ideal on some set A, and let σ be a cardinal.
The ideal I is weakly σ-saturated if A cannot be partitioned into σ disjoint
I-positive sets, i.e., there is no function π : A→ σ such that

π−1(i) /∈ I for all i < σ.

It is clear that any maximal ideal is weakly 2-saturated, so weakly satu-
rated ideals are not very difficult to find. The rest of this paper will demon-
strate that the question of “how weakly saturated is idp(C, I)” is quite
important. We begin with the following, which follows from the work in
Section 4 of Shelah’s [11].

Corollary 19. Suppose λ = µ+ for µ singular , and (C, I) is an S-good
pair for some stationary subset S of {δ < λ : cf(δ) = cf(µ)}. If idp(C, I) is
not weakly σ-saturated , then Pr1(λ, λ, σ, cf(µ)) holds; in particular , we have
λ 9 [σ]2λ.

Proof. Let π : λ→ σ partition λ into disjoint idp(C, I)-positive sets, and
define f : [λ]2 → σ by

f(α, β) = π(c(α, β)).

Suppose 〈tα : α < λ〉 is a family of disjoint subsets of λ each of cardinality
less than cf(µ), and let ε < σ be given. By Theorem 2, we can find α <
β∗ < β such that π(β∗) = ε and

c(ζ, ξ) = β∗ for all ζ ∈ tα and ξ ∈ tβ.
It is clear that f is constant with value ε when restricted to tα × tβ.

Shelah’s original proof of the above is much more difficult, as he starts
with a partition of λ into idp(C, I)-positive sets and uses this as a parameter
to define his coloring, whereas we use a scale to get a single “master coloring”
that can be used (in the sense of the proof of Corollary 19) in conjunction
with any such partition.

5. From µ to µ+. Let µ be a singular cardinal, and suppose (C, I) is
an S-good pair for some stationary S ⊆ {δ < µ+ : cf(δ) = cf(µ)}. The
results of the previous section focused our attention on the degree of weak
saturation possessed by idp(C, I). In this section we get an improvement of
Corollary 19.
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If we assume that idp(C, I) is not weakly µ-saturated, then Corollary 19
tells us that

(5.1) Pr1(µ+, µ+, µ, cf(µ))

holds, and we immediately obtain the relation

(5.2) µ+ 9 [µ]2µ+ .

Now an elementary argument allows us to “upgrade” the relation (5.2)
to the case of µ+ colors, that is, we can easily obtain the stronger result

(5.3) µ+ 9 [µ+]2µ+

from (5.2). It is natural to ask if we can also upgrade (5.1) to obtain

(5.4) Pr1(µ+, µ+, µ+, cf(µ)).

We do not know if (5.4) follows from (5.1) in general, but we have as con-
solation the following new theorem that tells us that (5.4) can be obtained
from the same hypotheses we use to obtain (5.1).

Theorem 3. Suppose λ = µ+ for µ a singular cardinal , and suppose
(C, I) is an S-good pair for some stationary S ⊆ {δ < λ : cf(δ) = cf(µ)}.
Then Pr1(µ+, µ+, µ+, cf(µ)) holds if idp(C, I) is not weakly µ-saturated.

Proof. For each α < λ we fix a surjection gα from µ onto α, and let
π : λ→ µ give a partition of λ into disjoint idp(C, I)-positive sets. We also
fix a function h : cf(µ) → ω such that h−1({n}) is unbounded in cf(µ) for
each n < ω, and let e be a C-sequence swallowing (C, I).

Given α < β, let β = β0 > · · · > βn > βn+1 = α list Tr(α, β) (where we
walk along e, just as in the proof of Theorem 2) in decreasing order, and let
i∗ denote Γ (α, β). We define m(α, β) to be the least m ≤ n+ 1 with

(5.5) Γ (α, βm) 6= i∗,

so that in terms of the coloring from Section 4, we have

(5.6) c(α, β) = βm(α,β).

We also define

(5.7) k(α, β) =
{
m(α, β)− h(Γ (α, β)) if h(Γ (α, β)) ≤ m(α, β),
0 otherwise.

Finally, we define

(5.8) c∗(α, β) = gβk(α,β)
(π ◦ c(α, β)).

A formula like (5.8) surely deserves some explanation, so we will describe
the coloring we use in English. Given α < β, we first compute i∗ = Γ (α, β)
and note that h(i∗) is some natural number. We then walk from β to α
until the first place where Γ changes. This isolates βm(α,β) = c(α, β), and
π(c(α, β)) records the piece of the partition that contains the ordinal βm(α,β).
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Next, we turn around and retrace h(i∗) steps of the walk from β to βm(α,β)

(so we are walking up, not down). This takes us to an ordinal

(5.9) βk(α,β) > βm(α,β).

Now to compute the value of c∗(α, β), we take the bijection between µ and
βk(α,β) and apply it to the ordinal π(βm(α,β)).

We now prove that the coloring c∗ has the properties required by
Pr1(λ, λ, λ, cf(µ)). Let 〈ti : i < λ〉 be a sequence of pairwise disjoint ele-
ments of [λ]<cf(µ). Given ε < λ, we need to find α < β such that c∗�tα × tβ
is constant with value ε.

Let M = 〈Mi : i < λ〉 be a λ-approximating sequence over all the
parameters accumulated so far. Let E = {δ < λ : Mδ ∩ λ = δ}, and choose
δ ∈ S ∩E for which E ∩Cδ /∈ Iδ. We may (and will) assume δ < min(tδ), so
we can apply Lemma 15 and find β∗ ∈ E ∩Cδ that β∗ is tδ-ok with γ∗ < β∗

acting as a witness. Next, since ε ∈ Mβ∗ ∩ λ = β∗, we can find ς∗ < µ for
which

(5.10) gβ∗(ς∗) = ε.

Since β∗ ∈ E, both γ∗ and ς∗ are in Mβ∗ , and (again using the fact that
β∗ ∈ E) it follows that there must be a stationary set T ⊆ λ and g : T → λ
such that for all β ∈ T ,

• β < g(β),
• β is tg(β)-ok, with γ∗ acting as witness,
• gβ(ς∗) = ε.

By passing to a stationary subset if necessary, we can assume

(5.11) α < β in T ⇒ sup(tg(α)) < β,

so that if we define

(5.12) t∗β = {β} ∪ tg(β) for β ∈ T,
the resulting family of sets {t∗β : β ∈ T} is pairwise disjoint.

We know that π−1(ς∗) is idp(C, I)-positive, and so an application of
Theorem 2 to the family 〈t∗β : β ∈ T 〉 gives us a β ∈ T and β∗ < β such that
π(β∗) = ς∗, and

(5.13) (∀∗i < cf(µ))(∃∗α < β∗)(∀ζ ∈ t∗α)(∀ξ ∈ t∗β)

[c(ζ, ξ) = β∗ ∧ Γ (ζ, ξ) = i].

Now let n∗ be the length of the walk from β to β∗. Since h−1(n∗) is un-
bounded in cf(µ), we can use (5.13) to select i∗ < cf(µ) and α ∈ T ∩β∗ such
that h(i∗) = n∗, γ∗ < α, and

(5.14) (∀ζ ∈ t∗α)(∀ξ ∈ t∗β)[c(ζ, ξ) = β∗ ∧ Γ (ζ, ξ) = i∗].

We finish by proving that c∗(ζ, ξ) = ε whenever ζ ∈ tg(α) and ξ ∈ tg(β).
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Suppose ζ ∈ tg(α) and ξ ∈ tg(β), and let ξ = β0 > β1 > · · · > βn = ζ list
Tr(ζ, ξ) in decreasing order. Since c(ζ, ξ) = β∗, we know that β∗ = βm(ζ,ξ).
Now

γ∗ < ζ < β∗ < β < ξ,

and so the choice of γ∗ implies that the walk from ξ to ζ must pass through
β before proceeding on to β∗. Since h(Γ (ζ, ξ)) is the length of the walk from
β to β∗, we know

βk(ζ,ξ) = β.

Since gβ(ς∗) = ε and π(β∗) = ς∗, we conclude c∗(ζ, ξ) = ε, as required.

In the next section, we show that in our usual context, if an ideal of the
form idp(C, I) is weakly µ-saturated for µ strong limit singular then every
stationary subset of {δ < µ+ : cf(µ) 6= cf(δ)} reflects.

6. On the weak saturation of idp(C, I). In this section, we directly
address the question of weak saturation of ideals of the form idp(C, I). Our
results do not require the full strength of Definition 5. In particular, the
requirement (2), although important for the arguments in the preceding
two theorems, is not a necessary ingredient in the proofs of this section.
With this in mind, we offer the following definition in the same spirit as
Definition 5.

Definition 20. Suppose λ = µ+ for µ a singular cardinal, and S is a
stationary subset of {δ < λ : cf(δ) = cf(µ)}. We say that (C, I) is an S-fair
pair if the following conditions are satisfied:

(1) C = 〈Cδ : δ ∈ S〉 is an S-club sequence,
(2) I = 〈Iδ : δ ∈ S〉,
(3) for δ ∈ S, Iδ is the ideal on Cδ generated by sets of the form

(6.1) {γ ∈ Cδ : γ ∈ acc(Cδ) or cf(γ) < α or γ < β}
for α < µ and β < δ,

(4) for every closed unbounded E ⊆ λ,

(6.2) {δ ∈ S : E ∩ Cδ /∈ Iδ} is stationary.

It is clear that any S-good pair is also S-fair. In contrast to S-good
pairs, it is known that S-fair pairs exist for any stationary S ⊆ {δ < µ+ :
cf(µ) = cf(δ)} regardless of the cofinality of µ—the countable cofinality case
is handled by Claim 2.8 of page 131 in [9], while another proof (yielding more
information) can be found in [6].

Definition 3 still applies, so we have a proper ideal idp(C, I) associated
with every S-fair pair. We note the following facts about this ideal:

Proposition 21. Let λ = µ+ for µ singular , and suppose (C, I) is an
S-fair pair for some stationary subset S of {δ < λ : cf(δ) = cf(µ)}.
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(1) The ideal idp(C, I) is closed under unions of fewer than cf(µ) sets.
(2) There is an increasing sequence 〈Ai : i < cf(µ)〉 of sets in idp(C, I)

such that
λ =

⋃
i<cf(µ)

Ai.

(So in particular , this ideal can never be normal.)
(3) If cf(µ) < σ = cf(σ) < µ, then the ideal idp(C, I) is closed under

increasing unions of length σ.

Proof. The first and third statements follow easily from the fact that
each of the ideals Iδ is closed under such unions (see Observation 3.2 on
page 139 of [9]). To see the second statement, let

Ai := {δ < λ : cf(δ) ≤ µi}
(note that successor ordinals land in A0).

The result (3) of the preceding proposition essentially says that the ideal
idp(C, I) is σ-indecomposable, a notion that has long history in the literature
(Section 2 of [4] gives many references for this notion). More precisely, for
regular σ an ideal I is σ-indecomposable if and only if it is closed under
increasing unions of length σ. Since we will never consider the case of σ-
indecomposability for singular σ, we will take the conclusion of (3) as our
definition of σ-indecomposability when we use this terminology below.

Let us now assume that λ = µ+ for µ singular, and (C, I) is an S-fair
pair for some stationary S ⊆ {δ < λ : cf(δ) = cf(µ)}. Let κ denote the
cofinality of µ, and let 〈µi : i < κ〉 be an increasing sequence of regular
cardinals cofinal in µ. There is a natural function g : λ→ κ defined by

(6.3) g(δ) := least i such that cf(δ) < µi,

and the image of idp(C, I) under this function, defined by

(6.4) A ∈ g(idp(C, I)) ⇔ g−1(A) ∈ idp(C, I),

is a proper κ-complete ideal on κ because idp(C, I) itself is a proper κ-
complete ideal.

This simple observation already sheds considerable light on questions of
weak saturation for the ideal idp(C, I), for if idp(C, I) is weakly σ-saturated
for some σ, then the same is true for the ideal g(idp(C, I)) on κ. Thus,
if idp(C, I) is a maximal ideal (something whose consistency is still open)
then the cofinality of µ must be countable or a measurable cardinal. If
idp(C, I) is weakly cf(µ)-saturated, then g(idp(C, I)) is a cf(µ)-complete
cf(µ)-saturated ideal on cf(µ), and a well-known argument of Ulam tells us
that in this case cf(µ) cannot be a successor cardinal. It is open whether
or not the statement considered in the preceding sentence can ever occur,
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but the following theorem and corollary show us that under mild cardinal
arithmetic assumptions it cannot.

Theorem 4. Suppose λ = µ+ for µ singular , and (C, I) is an S-fair pair
for some stationary S ⊆ {δ < λ : cf(δ) = cf(µ)}. If 2cf(µ) < µ, then there
is a function g : λ → cf(µ) such that g(idp(C, I)) is the ideal of bounded
subsets of cf(µ).

Proof. Let κ denote the cofinality of µ, and let 〈µi : i < κ〉 be an in-
creasing sequence of regular cardinals cofinal in µ. If f : κ→ κ is increasing,
then we define the function Φf : λ→ κ by setting Φf (δ) equal to the least i
such that cf(δ) < µf(i).

Given such an f , let If denote the ideal Φf (idp(C, I)) on κ. We note that
If contains all the bounded subsets of κ, and we will prove that there is an
f such that If is exactly the ideal of bounded subsets of κ.

Assume by way of contradiction that no such function exists. Then for
each increasing f : κ→ κ, there is an unbounded Af ⊆ κ such that

(6.5) Φ−1
f (Af ) ∈ idp(C, I).

It follows that there is a closed unbounded Ef ⊆ λ such that

(6.6) δ ∈ S ∩ Ef ⇒ Ef ∩ Cδ ∩ Φ−1
f (Af ) ∈ Iδ.

Let E ⊆ λ be the intersection of all these sets Ef . It is clear that E is closed
and unbounded in λ because we assumed 2κ to be less than µ.

By applying definition of “S-fair”, we choose δ ∈ S∩E for which E∩Cδ /∈
Iδ, and let 〈δi : i < κ〉 be an increasing and continuous sequence of ordinals
cofinal in δ. We define a function f∗ : κ→ κ as follows:

Begin by setting f∗(0) = 0. If i < κ and f∗(j) < κ has been defined for
all j < i, then we define η = sup{f∗(j) : j < i}. Since E ∩ Cδ /∈ Iδ, we
know there is an ε ∈ E ∩ nacc(Cδ) for which δη ≤ ε and µη ≤ cf(ε). Choose
f∗(i) < κ so that ε < δf∗(i) and cf(ε) < µf∗(i).

It is clear that the function f∗ defined above is an increasing function
from κ to κ, and therefore Ef∗ exists and E is a subset of Ef∗ . Because of
this, an appeal to (6.6) tells us that

(6.7) E ∩ Cδ ∩ Φ−1
f∗ (Af∗) ∈ Iδ.

However, for each i < κ the interval [δf∗(i), δf∗(i+1)) contains an ordinal ε
from E ∩ nacc(Cδ) with µf∗(i) ≤ cf(ε) < µf∗(i+1), and therefore for every
unbounded A ⊆ κ we have

(6.8) E ∩ Cδ ∩ Φ−1
f∗ (A) /∈ Iδ.

The conjunction of (6.7) and (6.8) gives us the required contradiction.

The preceding theorem yields the following corollary which strengthens
an unpublished result of Shelah.
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Corollary 22. If λ = µ+ for µ singular with 2cf(µ) < µ and (C, I) is
an S-fair pair for some stationary S ⊆ {δ < λ : cf(δ) = cf(µ)}, then λ can
be partitioned into cf(µ) disjoint idp(C, I)-positive sets.

Proof. Fix g : λ → cf(µ) as in Theorem 4. If we partition cf(µ) into
disjoint sets {Ai : i < cf(µ)} of cardinality cf(µ), then the sets {g−1(Ai) :
i < cf(µ)} give us the required partition of λ.

The result of Shelah referred to above appeared in an unpublished pre-
liminary version of [5], and established under the same hypotheses the ex-
istence of pairs (C, I) for which the corresponding ideal fails to be cf(µ)-
saturated.

Our next goal is to establish a connection between ideals of the sort we
have been considering and reflection of stationary sets. In particular, we will
prove the following theorem.

Theorem 5. Suppose λ = µ+ for µ a strong limit singular , and let
(C, I) be an S-fair pair for some stationary S ⊆ {δ < λ : cf(δ) = cf(µ)}.
If idp(C, I) is weakly µ-saturated , then every stationary subset of {δ < λ :
cf(δ) 6= cf(µ)} reflects.

The proof of Theorem 5 will use ideas from many places. One of the
main ingredients is a variant of the following result of Shelah from [13].

Theorem 6 (Shelah, Claim 2.9 of [13]). Suppose λ = µ+ for singular
strong limit µ, and (C, I) is an S-fair pair for some stationary S ⊆ {δ <
λ : cf(δ) = cf(µ)}. If idp(C, I) is weakly θ+-saturated for some θ < µ, then
|P(λ)/idp(C, I)| ≤ 2θ < µ.

In the course of our proof of Theorem 5 we will prove a mild general-
ization of Theorem 6, but this seemed a good opportunity to make a few
remarks on this result of Shelah.

The conclusion of Theorem 6 tells us that under the assumptions given,
the ideal idp(C, I) is “almost” maximal, in the sense that the reduced prod-
uct P(λ)/idp(C, I) is small (if it were maximal, the reduced product would
have size 2). If µ is of uncountable cofinality, then the fact that idp(C, I) is
cf(µ)-complete gives this conclusion some added strength—there is a cf(µ)-
complete filter on λ that is close to being an ultrafilter in some sense. This
explains some rather cryptic remarks in the Analytical Guide to [9]—Shelah
says (page 462 of [9]) that in the situation of the above theorem,

λ is close to being “κ-supercompact”.

It seems that what is meant here is that cf(µ) is close to being µ+-super-
compact, in the sense that there is a uniform cf(µ)-complete filter on µ+

that is close to being an ultrafilter.
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We now turn to the generalization of Theorem 6 that we require for our
proof of Theorem 5.

Lemma 23. Suppose λ = µ+ for µ a strong limit singular , and let (C, I)
be an S-fair pair for some stationary S ⊆ {δ < λ : cf(δ) = cf(µ)}. If
idp(C, I) is weakly µ-saturated , then there is an idp(C, I)-positive set A ⊆ λ
so that

|P(A)/idp(C, I)| < µ.

Proof. From previous work, we know that there is a partition 〈Ai : i <
cf(µ)〉 of λ into disjoint idp(C, I)-positive sets. Since idp(C, I) is assumed to
be weakly µ-saturated, it is clear that for some i < cf(µ) and τ ∈ [cf(µ), µ),
the ideal idp(C, I)∩P(Ai) must be weakly τ -saturated. Thus, we can fix an
idp(C, I)-positive set A and τ < µ for which

(6.9) idp(C, I) ∩ P(A) is weakly τ -saturated.

Our argument now follows the line of attack used by Shelah in his proof
of Theorem 6. In particular, we will prove the following statement:

(6.10) |P(A)/idp(C, I)| ≤ 2τ .

By way of contradiction, assume (6.10) fails. Let M be an elementary
submodel of H(χ) for some sufficiently large regular cardinal χ such that

• S, A, (C, I), and idp(C, I) are all in M ,
• |M | = (2τ )+,
• M is closed under sequences of length less than or equal to τ .

It should be clear that such models exist.
Because µ is a strong limit cardinal, it follows that |M | < µ, and therefore

the set

(6.11) E∗ :=
⋂
{E ∈M : E closed unbounded in λ}

is a closed unbounded subset of λ. The set E∗ provides a litmus test for those
subsets of λ that are in M , as a set B ∈ M ∩ P(A) is idp(C, I)-positive if
and only if there is a δ ∈ S such that B ∩A∩E∗ ∩Cδ /∈ Iδ. We will exploit
this as a way of ensuring sets are idp(C, I)-positive.

By recursion on i < τ , we will choose objects Bi, δi, and Yi such that

(1) Bi ∈M ∩ P(A),
(2) δi ∈ S ∩ E∗ (but not necessarily an element of M),
(3) |Yi| is an Iδi-positive subset of Bi ∩ E∗ ∩ Cδi of cardinality cf(µ),
(4) Bi ∩

⋃
j<i Yj = ∅.

We postpone for now the proof that such objects can be found, and
instead prove that the above construction yields a collection 〈Di : i < τ〉 of
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disjoint idp(C, I)-positive sets. We do this by setting

Di := Bi \
⋃

i<k<τ

Bk.

It should be clear that the collection {Di : i < τ} is pairwise disjoint, so we
are done if we can prove that each Di is idp(C, I)-positive.

Note that since M is closed under sequences of length τ , the sequence
〈Bi : i < τ〉 is an element of M , and therefore each Di is in M as well.
Requirement (4) of our construction tells us that Yi ⊆ Di. By (3), there is
an ordinal δ ∈ S (namely δi) for which

Di ∩A ∩ E∗ ∩ Cδ /∈ Iδ.

Since Di is in M , our “litmus test” tells us that Di must be idp(C, I)-
positive, and so the collection 〈Di : i < τ〉 contradicts the assumption that
idp(C, I)∩P(A) is weakly τ -saturated. We are forced to conclude that (6.10)
holds, and the theorem follows.

Now why can such objects be found? Suppose that we have managed
to find Bj , Yj , and δj for all j < i < τ . Since we assume (6.10) fails and
|M | = (2τ )+, we can find a collection 〈Xα : α < (2τ )+〉 of sets in M ∩P(A)
such that

α 6= β ⇒ Xα 6=I Xβ.

Since i < τ and Yj is of cardinality at most cf(µ) ≤ τ for each j < i, there
exist distinct α and β such that

Xα ∩ Yj = Xβ ∩ Yj for all j < i.

Now either Xα\Xβ /∈ I or Xβ \Xα /∈ I. In the former case, let Bi = Xα\Xβ,
otherwise we set Bi = Xβ \Xα. In either case,

(6.12) Bi /∈ I,

and
Bi ∩ Yj = ∅ for all j < i.

Because of (6.12), we can find an ordinal δi ∈ S ∩ E∗ such that

(6.13) Bi ∩ E∗ ∩ Cδi /∈ Iδi .

We now choose Yi to be a subset of Bi ∩ E∗ ∩ nacc(Cδi) that is cofinal in
δi of order-type cf(δi) = cf(µ) and such that the sequence 〈cf(α) : α ∈ Yi〉
increases to µ. This can be done using (6.13) and the definition of Iδi , and
with this choice of Yi, we have shown how to carry out the recursion.

Returning to the matter of Theorem 5, we will need to make use of
the following combinatorial notion which appears in many guises in the
literature.
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Definition 24. Suppose θ is a regular cardinal, and A = {Aα : α ∈ Λ}
is a family of sets, each of size θ. We say that A is essentially disjoint if
there are sets {Bα : α ∈ Λ} such that each Bα is of cardinality less than θ,
and the family {Aα \Bα : α ∈ Λ} is pairwise disjoint.

The following lemma is a sharpening of well-known results concerning
indecomposable ultrafilters.

Lemma 25. Let θ < κ be regular cardinals, let I be an θ-indecomposable
ideal on κ extending the ideal of bounded sets, and let A be a family of κ sets
each of cardinality θ. If every subfamily of A of size less than κ is essentially
disjoint , then A can be written as a union of at most |P(κ)/I| essentially
disjoint families.

Proof. Let A = {Aα : α < κ}, and for each α < κ fix a function Fα
witnessing that the family {Aβ : β < α} is essentially disjoint, that is,

• dom(Fα) = α,
• Fα(β) ∈ [Aβ]<θ for each β < α,
• the family {Aβ \ Fα(β) : β < α} is disjoint.

Also fix, for each α, a bijection bα between Aα and θ.
For each β < κ and ε < θ, define

(6.14) B(β, ε) := {α < κ : bβ[Fα(β)] ⊆ ε}.
For each β < κ, the sequence 〈B(β, ε) : ε < θ〉 is increasing, and clearly

(6.15)
⋃
ε<θ

B(β, ε) = κ \ (β + 1) /∈ I.

Since I is θ-indecomposable, it follows that for each β < κ, there is a value
ε(β) < θ such that B(β, ε(β)) is not in I.

We now define an equivalence relation on κ according to the rule

(6.16) β ∼ γ ⇔ B(β, ε(β)) = B(γ, ε(γ)) mod I.

If we let τ denote the cardinality of P(κ)/I, then it is clear that the number
of ∼-equivalence classes is at most τ .

Now define a function F with domain κ by

(6.17) F (α) := b−1
α [ε(α)].

It is clear that F (α) is a subset of Aα of cardinality less than θ. To finish,
we verify that Aβ \ F (β) and Aγ \ F (γ) are disjoint whenever β ∼ γ.

Given β ∼ γ, we note that

(6.18) B(β, ε(β)) ∩B(γ, ε(γ)) /∈ I.
This is easily seen—since the two sets are equivalent modulo I, the only way
(6.18) can fail is if both are in I, but this would contradict the definition
of ε(β).
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In particular, this means that the two sets have non-empty intersection
and so we can choose α ∈ B(β, ε(β)) ∩ B(γ, ε(γ)). Recall that the function
Fα has the property that

(6.19) (Aβ \ Fα(β)) ∩ (Aγ \ Fα(γ)) = ∅.
We can appeal to (6.17) and the definition of B(β, ε(β)) to conclude that
Fα(β) is a subset of F (β), and the same argument tells us that Fα(γ) ⊆ F (γ).
Therefore, the sets Aβ \ F (β) and Aγ \ F (γ) are disjoint, as required.

Now at last we are in a position to combine the preceding lemmas to
give a proof of Theorem 5.

Proof of Theorem 5. Let λ, µ, S, and (C, I) be as in the statement of
the theorem. If idp(C, I) is weakly µ-saturated, then by Lemma 23 we know
that there is an idp(C, I)-positive set A for which

|P(A)/idp(C, I)| < µ.

Suppose now that T is a non-reflecting stationary subset of {δ < λ :
cf(δ) = θ} for some regular θ < µ different from cf(µ). For each δ ∈ T ,
let Aδ ⊆ δ be cofinal of order-type θ. Since T does not reflect, a well-
known result (see Section 2.2 of [4], for example) tells us that every subset
of {Aδ : δ ∈ S} of cardinality less than λ is essentially disjoint.

The ideal idp(C, I) is θ-indecomposable by Proposition 21, and it follows
immediately that the ideal idp(C, I)∩P(A) is θ-indecomposable as well. By
an appeal to Lemma 25 we conclude that the family {Aδ : δ ∈ T} is the
union of at most |P(A)/idp(C, I)| essentially disjoint families.

Now |P(A)/idp(C, I)| < µ, and therefore there must be a stationary
T ∗ ⊆ T for which {Aδ : δ ∈ T ∗} is essentially disjoint. This is absurd, as we
immediately get a contradiction to Fodor’s lemma. Thus, the stationary set
T must reflect.

Corollary 26. Let λ = µ+ with µ a strong limit singular. If �µ holds,
then for any stationary S ⊆ {δ < λ : cf(δ) = cf(µ)} and S-fair pair (C, I),
we can partition λ into µ disjoint idp(C, I)-positive sets.

Proof. The proof consists of the conjunction of Theorem 5 with the
well-known fact that �µ implies that every stationary subset of λ has a
non-reflecting stationary subset.

7. Final comments. There are several natural questions raised by this
research. One such is the question of the extent to which similar results
hold at successors of singular cardinals of countable cofinality, and this has
been addressed in recent joint work of the author and Saharon Shelah [6].
In particular, we obtain coloring theorems (not quite as strong as Pr1) using
S-fair pairs satisfying certain structural requirements. These S-fair pairs can
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be shown to exist at all successors of singular cardinals, including successors
of singular cardinals of countable cofinality. However, the following question
is still very much open:

Question 1. Suppose λ = µ+ for µ singular of countable cofinality , and
let S ⊆ {δ < λ : cf(δ) = cf(µ)}. Does there exist an S-good pair?

Of course, the main question we have not been able to answer is the
following:

Question 2. Is it consistent that an ideal of the form idp(C, I) (with
(C, I) an S-fair or even S-good pair) can be weakly µ-saturated?

The answer is almost certainly “yes”, but we have made no inroads.
Finally, we have the following two questions. We will discuss the motivation
in a moment.

Question 3. Suppose λ = µ+ for µ singular , and let (~µ, ~f ) be a scale
for µ, where ~µ = 〈µi : i < cf(µ)〉. Define

S∗ = {α < λ : cf(α) = µi for some i < cf(µ)}.
Can we find a stationary S ⊆ {δ < λ : cf(δ) = cf(µ)} and an S-fair pair
(C, I) such that S∗ /∈ idp(C, I)?

Question 4. Suppose λ = µ+ for µ singular , and let (C, I) be an S-fair
pair for some stationary S ⊆ {δ < λ : cf(δ) = cf(µ)}. If there is a strictly
increasing sequence of regular cardinals ~µ = 〈µi : i < cf(µ)〉 cofinal in µ
such that

{α < λ : cf(α) = µi for some i < cf(µ)} /∈ idp(C, I),

must it be the case that this sequence ~µ carries a scale for µ?

The above questions are rooted in the observation that there are many
examples in this area where the same conclusions follow from hypotheses on
club-guessing, as well as hypotheses concerning scales. For example, consider
the following pair of results (1) due to Shelah:

Assume (~µ, ~f ) is a scale for µ and

(∀∗i < cf(µ))(µi 9 [µi]<ωµi ).

Then we can conclude that µ+ 9 [µ+]<ω
µ+ holds as well.

On the other hand, if we assume (C, I) is an S-fair pair, and

{α < λ : cf(α) 9 [cf(α)]<ωcf(α)} /∈ idp(C, I),

then we obtain the same conclusion µ+ 9 [µ+]<ω
µ+ .

(1) The first of these two results appears explicitly as Conclusion 4.6 on page 73 of
[9], while the second follows easily from the proof of Lemma 1.9 on page 121 of the same
book.
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Our questions are intended to probe the extent to which club-guessing
and scales are related, and to see if there is any deep reason why we often
have such pairs of results. A positive answer to either Question 3 or Ques-
tion 4 would be surprising as there do not seem to be any compelling reasons
for the two ideas to be connected. Still, the phenomena of “same conclusion
from parallel hypotheses” is puzzling and perhaps there is an explanation
for it.
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