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Abstract. We show that if a colouring c establishes ω2 9 [(ω1 : ω)]2 then c estab-
lishes this negative partition relation in each Cohen-generic extension of the ground model,
i.e. this property of c is Cohen-indestructible. This result yields a negative answer to a
question of Erdős and Hajnal: it is consistent that GCH holds and there is a colouring
c : [ω2]2 → 2 establishing ω2 9 [(ω1 : ω)]2 such that some colouring g : [ω1]2 → 2 does
not embed into c.

It is also consistent that 2ω1 is arbitrarily large, and there is a function g establishing
2ω1 9 [(ω1, ω2)]ω1 but there is no uncountable g-rainbow subset of 2ω1 .

We also show that if GCH holds then for each k ∈ ω there is a k-bounded colouring
f : [ω1]2 → ω1 and there are two c.c.c. posets P and Q such that

V P |= f c.c.c.-indestructibly establishes ω1 9∗ [(ω1; ω1)]k-bdd,

but

V Q |= ω1 is the union of countably many f -rainbow sets.

1. Introduction. Anti Ramsey (polychromatic Ramsey, rainbow Ram-
sey) theory deals with the following kind of problems: given a colouring
f of certain subsets of a set X, can you find a large subset Y of X such
that f is inhomogeneous (e.g. injective) on the coloured subsets of Y ? Ob-
viously, to get positive results we should have some assumption concerning
the colouring f . In the first part of the paper we will assume that

• f establishes some negative partition relation,

i.e. there are no large f -homogeneous sets, and we will try

• to get large f -inhomogeneous sets,

or, more generally,
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• to show that f is universal for certain colourings,

i.e. a certain class of colourings embeds into f . Let us recall that given two
colourings d : [A]2 → λ and f : [Y ]2 → λ we say that d embeds into f ,
or f realizes d (d ⇒ f , for short) iff there is a colour-preserving injection
Φ : A 1-1−→ Y , i.e.

(∀{ζ, ξ} ∈ [A]2) d(ζ, ξ) = f(Φ(ζ), Φ(ξ)).

To formulate our results we will use different kinds of “arrow” notation,
so first we recall their definitions.

If A and B are two sets of ordinals let

[A,B] = {{α, β} : α ∈ A, β ∈ B},
[A;B] = {{α, β} : α ∈ A, β ∈ B, α < β}.

Write A ≤ B iff supA < minB. If |A| = |B| write A / B iff otp(A ∩ α) <
otp(B ∩ α) for each α ∈ A. We now define some negative partition relation
as follows.

Definition 1.1. Let κ, λ, µ and γ be cardinals. We say that a function
f : [κ]2 → γ establishes the negative partition relation

• κ 9 [λ]2γ iff (∀A ∈ [κ]λ) f ′′[A]2 = γ,
• κ 9 [(µ, λ)]γ iff (∀A ∈ [κ]µ)(∀B ∈ [κ]λ) f ′′[A,B] = γ,
• κ 9 [(λ;λ)]γ iff (∀A,B ∈ [κ]λ) if A / B then f ′′[A;B] = γ,
• κ 9 [(µ : λ)]γ iff (∀A ∈ [κ]µ)(∀B ∈ [κ]λ) if A < B then f ′′[A,B] = γ.

A negative partition relation holds iff there is a function establishing it.

If µ < λ ≤ κ then clearly

κ 9 [(µ : λ)]γ implies κ 9 [(λ;λ)]γ implies κ 9 [(λ, λ)]γ implies κ 9 [λ]2γ ,

moreover f establishes κ 9 [(κ;κ)]γ iff f ′′[A;B] = γ for each A,B ∈ [κ]κ.
For a graph G = 〈V,E〉 define the function χG : [V ]2 → 2 by the formula

E = χ−1
G {1}. Clearly a graph G is isomorphic to a spanned subgraph of a

graph H iff χG ⇒ χH , i.e. χG embeds into χH .
Using this observation we can translate some results and problems of

Erdős and Hajnal from the language of graphs and spanned subgraphs into
the language of colourings and embeddings.

Erdős and Hajnal [5] observed that if a colouring g : [ω1]2 → 2 establishes
ω1 9 [(ω, ω1)]2 then g is universal for countable “graphs”, i.e., every function
h : [ω]2 → 2 embeds into g. This result cannot be generalized to higher
cardinals because of the following result of Shelah [10, Theorem 4.1]: It is
consistent that GCH holds and there is a colouring g : [ω2]2 → 2 which
establishes ω2 9 [(ω1, ω2)]2, but some colouring h : [ω1]2 → 2 does not
embed into g.
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Learning Shelah’s result Erdős and Hajnal raised the following question
in [6, Problem 6.b]: Assume that a colouring g : [ω2]2 → 2 establishes ω2 9
(ω1

.
+ ω)22 (i.e. there is no g-monochromatic set of order type ω1

.
+ ω). Do

all colourings c : [ω1]2 → 2 embed into g?
We answer their question in the negative in Theorem 2.4. The proof is

based on Theorem 2.2 which says that the property “g establishes ω2 9
[(ω1 : ω)]2” is indestructible by adding an arbitrary number of Cohen reals
to the ground model.

Given a colouring f : [X]n → C, a subset P ⊂ X is called rainbow for
f (or f -rainbow) iff f�[P ]n is one-to-one. We also answer another question
of Hajnal, [9, Problem 4.1], in the negative in Theorem 2.6: it is consistent
with GCH that there is a function f which establishes ω2 9 [(ω1 : ω)]ω1

such that there is no uncountable f -rainbow set.
In Theorem 2.8 we show that it is also consistent that 2ω1 is arbitrarily

large and there is a function g that establishes 2ω1 9 [(ω1, ω2)]ω1
such that

there is no uncountable g-rainbow set.
In the second part of the paper we deal with rainbow Ramsey theorems

in which we have a different type of restriction concerning our colourings. In-
stead of establishing negative partition relations we assume that our colour-
ings are “bounded”: a function f : [X]n → C is µ-bounded iff |f−1{c}| ≤ µ
for each c ∈ C.

To formulate our result we should recall one more “arrow” notation:
λ →∗ (α)nκ-bdd holds iff for every κ-bounded colouring of [λ]n there is a
rainbow set of order type α.

We say that a function f c.c.c.-indestructibly establishes the negative
partition relation Φ 9∗ Ψ iff

V P |= f establishes Φ 9∗ Ψ

for each c.c.c. poset P .
Since ω1 → (α)22 holds for α < ω1 by [4], and it was proved by Galvin [7]

that

(∗) λ→ (α)nk implies λ→∗ (α)nk-bdd,

we have ω1 →∗ (α)22-bdd for α < ω1. (A proof of (∗) can be found in [1], or
see the proof of (?) just before Theorem 3.5 in the present paper.) Moreover,
Galvin [7] showed that

Theorem. CH implies that ω1 9∗ (ω1)22-bdd.

(Lemma 3.3 also gives the result above.) On the other hand, Todorče-
vić [12] proved that

Theorem. PFA implies that ω1 →∗ (ω1)22-bdd.
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Abraham, Cummings and Smyth showed that MAℵ1 is not enough to
get ω1 →∗ (ω1)22-bdd. More precisely, they proved the following theorem:

Theorem ([1, Theorem 3]). It is consistent that there is a function c :
[ω1]2 → ω1 which c.c.c.-indestructibly establishes ω1 9∗ (ω1)22-bdd.

They also showed that the property that c establishes ω1 9∗ (ω1)22-bdd
is not automatically c.c.c.-indestructible:

Theorem ([1, Theorem 4]). If CH holds and there is a Suslin tree then
there is a function c′ : [ω1]2 → 2 and a c.c.c. poset P such that

(a) c′ establishes ω1 9∗ (ω1)22-bdd,
(b) V P |= there is an uncountable c′-rainbow set.

We say that the negative partition relation ω1 9∗ [(ω1;ω1)]κ-bdd holds
iff there is a κ-bounded colouring c of [ω1]2 such that for each A,B ∈ [ω1]ω1

there is ξ ∈ ran c such that |{{α, β} ∈ [A;B] : c(α, β) = ξ}| = k.
Clearly ω1 9∗ [(ω1;ω1)]2-bdd implies ω1 9∗ (ω1)22-bdd. We show that

even the negative partition relation ω1 9∗ [(ω1;ω1)]k-bdd is consistent with
MAℵ1 for each k ∈ ω.

Moreover, Abraham, Cummings and Smyth used two different functions
in their theorems above. We show that a single function can play a double
role.

Theorem 1.2. If GCH holds then for each k ∈ ω there is a k-bounded
colouring f : [ω1]2 → ω1 and two c.c.c. posets P and Q such that

V P |= f c.c.c.-indestructibly establishes ω1 9∗ [(ω1;ω1)]k-bdd,

but
V Q |= ω1 is the union of countably many f -rainbow sets.

The following question, however, remained open.

Problem 1.3. Does ω1 9∗ (ω1)22-bdd imply ω1 9∗ [(ω1;ω1)]2-bdd?

2. On a problem of Erdős and Hajnal. Given two functions f :
[X]2 → C and d : [Y ]2 → C we say that d embeds into f (d⇒ f , for short),
iff there is a one-to-one map Φ : Y → X such that d(y, y′) = f(Φ(y), Φ(y′))
for each {y, y′} ∈ [Y ]2.

Hajnal [8] proved that it is consistent with GCH that there is a colouring
establishing ω2 9 (ω1

.
+ ω)22. It turns out that his argument gives the

following stronger result:

Proposition 2.1. It is consistent that GCH holds and there is a func-
tion f : [ω2]2 → ω1 establishing ω2 9 [(ω1 : ω)]2ω1

.

Since Hajnal’s proof was never published we sketch his argument.
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Proof of Proposition 2.1. Assume GCH in the ground model. Define a
poset P = 〈P,≤〉 as follows. The underlying set P consists of triples 〈c,A, ξ〉
where c : [supp(c)]2 → ω for some supp(c) ∈ [ω2]ω, A ⊂ [supp(c)]ω is a
countable family and ξ ∈ ω1.

Put 〈d,B, ζ〉 ≤ 〈c,A, ξ〉 iff

(P1) c ⊂ d, A ⊂ B, ξ ≤ ζ,
(P2) for each A ∈ A and for each β ∈ (supp(d) \ supp(c)) ∩minA,

ξ ⊂ d′′[{β}, A].

Then P is a σ-complete, ω2-c.c. poset and if G is the generic filter for P then
g =

⋃
{c : 〈c,A, ξ〉 ∈ G} establishes ω2 9 [(ω1;ω)]2ω1

in V [G].

Proposition 2.1 validates the following question of Erdős and Hajnal, [6,
Problem 6.b]: Assume that a graph G establishes ω2 9 (ω1

.
+ ω)22. Do all

graphs of cardinality ℵ1 embed into G?
To answer this question in the negative we prove a preservation theorem

which enables us to apply Shelah’s method used to prove [10, Theorem 4.1]:
It is consistent that GCH holds and there is colouring g : [ω2]2 → 2 estab-
lishing ω2 9 [(ω1, ω2)]2, but some colouring h : [ω1]2 → 2 does not embed
into g. Shelah actually argued in the following way. He proved two state-
ments:

(a) Assume that κ, λ and τ are cardinals of cofinality greater than ω
and g : [κ]2 → 2. Then the property

(∗) g establishes κ 9 [(λ, τ)]2
cannot be destroyed by adding a single Cohen real, i.e. if V |= (∗)
then V Fn(ω,2) |= (∗).

(b) If you add a Cohen real to some model V then in the generic exten-
sion there is a colouring c : [ω1]2 → 2 which does not embed into any
colouring g from V .

Hence starting from a model of GCH the generic extension V Fn(ω,2) works
because any model of GCH contains a colouring g which establishes ω2 9
[(ω1, ω2)]2.

The proof of (a) is based on the observation that if cf(µ) > ω then every
“new” subset A ∈ V Fn(ω,2) of ordinals with cardinality µ contains an “old”
subset A′ ∈ V of size µ. This argument does not entail that the property
“g establishes ω2 9 [(ω1 : ω)]2” cannot be destroyed by adding a single
Cohen real because there are countable subsets of ordinals in V Fn(ω,2) which
do not contain any infinite set from the ground model.

So, if we want to apply (b) in a similar way, we should prove the following
theorem in a different way.
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Theorem 2.2. If µ ≤ ω1 and c establishes ω2 9 [(ω1 : ω)]2µ then
V Fn(κ,2) |= c establishes ω2 9 [(ω1 : ω)]2µ.

Proof. The following lemma is straightforward.

Lemma 2.3. Let µ ≤ ω1 and c : [ω2]2 → µ. The following are equivalent:

(1) c establishes ω2 9 [(ω1;ω)]2µ,
(2) (∀B ∈ [ω2]ω)(∀ν ∈ µ)

|
{
α < minB : ν /∈ c′′[{α}, B]

}
| ≤ ω,

(3) (∀B ∈ [[ω2]ω]ω)(∀ν ∈ µ)

|{α < min
⋃
B : (∃B ∈ B) ν /∈ c′′[{α}, B]}| ≤ ω.

Suppose on the contrary that the theorem fails to hold. We can assume
that we add just ω1 many Cohen reals to V , i.e. κ = ω1. We can choose
ξ ∈ ω2, ν ∈ µ, p ∈ Fn(ω1, 2) and names Ȧ and Ḃ such that

p  Ȧ ∈ [ξ]ω1 ∧ Ḃ ∈ [ω2 \ ξ]ω ∧ ν /∈ c′′[Ȧ, Ḃ].

We can assume that Ḃ ∈ V Fn(ω,2) and dom p ⊂ ω. For each q ∈ Fn(ω, 2)
with q ≤ p put

B(q) = {ζ : (∃r ∈ Fn(ω, 2)) r ≤ q ∧ r  ζ ∈ Ḃ}.
Let B = {B(q) : q ∈ Fn(ω, 2), q ≤ p} and A′ = {α ∈ ω2 : (∃r ≤ p) r 
α ∈ Ȧ}. Then A′ ∈ [ξ]ω1 and B ∈ [[ω2 \ ξ]ω]ω. Hence, by Lemma 2.3, there
is α ∈ A′ such that ν ∈ c′′[{α}, B(q)] for each q ∈ Fn(ω, 2) with q ≤ p.
Pick s ∈ Fn(ω1, 2) with s  α ∈ Ȧ. Then ν ∈ c′′[{α}, B(s�ω)], i.e. there are
β ∈ ω2 \ ξ and r ∈ Fn(ω, 2) such that r ≤ s�ω and r  β ∈ Ḃ. Then

s ∪ r  α ∈ Ȧ ∧ β ∈ Ḃ ∧ ν /∈ c′′[Ȧ, Ḃ],

but c(α, β) = ν. Contradiction.

Theorem 2.4. For 2 ≤ µ ≤ ω1 it is consistent that GCH holds and there
is a colouring f : [ω2]2 → µ establishing ω2 9 [(ω1 : ω)]2µ such that g ; f

for some colouring g : [ω1]2 → 2.

Proof. By Proposition 2.1 we can assume that in the ground model GCH
holds and there is a function f : [ω2]2 → ω1 establishing ω2 9 [(ω1 : ω)]ω1 .

If µ ≤ ω1 and πµ : ω1 → µ is onto then the function fµ = πµ ◦ f
establishes ω2 9 [(ω1 : ω)]µ. Then, by [10, Theorem 4.1], in V Fn(ω,2) there
is a function d : [ω1]2 → 2 such that d ; fµ.

Since
V Fn(ω,2) |= fµ establishes ω2 9 [(ω1 : ω)]µ

by Theorem 2.2, we are done.

As observed by Hajnal, the construction of Theorem 2.4 above left open
the following question which he raised in [9, Problem 4.1]:
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Problem. Assume GCH holds and a colouring c : [ω2]2 → ω1 estab-
lishes ω2 9 [(ω1 : ω)]ω1. Does there exist a c-rainbow set of size ω1?

Before answering this question let us recall some positive results of
Hajnal. In [9], he proved that

Theorem.

(1) If f : [ω1]2 → ω1 establishes ω1 9 [(ω1;ω1)]ω1 then d ⇒ f for each
d : [ω]2 → ω1.

(2) If f : [ω1]2 → ω establishes ω1 9 [(ω1, ω1)]ω then there exists an
infinite f -rainbow set.

When we colour the pairs of ω1 we cannot expect uncountable rainbow
sets because of the following fact.

Proposition 2.5. If CH holds then there is a function f : [ω1]2 → ω1

such that

(1) f establishes ω1 9 [(ω, ω1)]ω1 ,
(2) there is no uncountable f -rainbow.

Proof. Enumerate [ω1]ω as {Aα : ω ≤ α < ω1} such that Aα ⊂ α. By
induction on α, ω ≤ α < ω1, define f(ξ, α) for ξ < α such that

(i) β ⊂ {f(ξ, β) : ξ ∈ Aα} for α < β,
(ii) Aα ∪ {β} is not an f -rainbow for α < β.

Let A ∈ [ω1]ω, B ∈ [ω1]ω1 and σ ∈ ω1. Then A = Aα for some α < ω1. Let
β ∈ B \max(α, σ). Then σ ∈ f ′′[Aα, {β}] ⊂ f ′′[A,B] by (i). So (1) holds.

If A ∈ [ω1]ω1 then choose α < ω1 such that Aα ∈ [A]ω and then pick
β ∈ A \ α. Thus Aα ∪ {β} is not an f -rainbow by (ii), so we have (2).

Next we answer [9, Problem 4.1] in the negative.

Theorem 2.6. It is consistent that GCH holds and there is a function
g : [ω2]2 → ω1 such that

(1) g establishes ω2 9 [(ω1 : ω)]2ω1
,

(2) there is no uncountable g-rainbow.

Proof. Assume GCH in the ground model.
The naive approach is to try to modify the order of the poset P from

the proof of Proposition 2.1 by adding a condition (P3) to the definition of
the order:

(P3) for each A ∈ A and for each β ∈ supp(d) \ supp(c) the set A∪ {β}
is not a d-rainbow.

Unfortunately this approach does not work because the modified poset does
not satisfy ω2-c.c.



168 L. Soukup

Indeed, we can construct an antichain of size ω2 as follows. Let f : [ω]2

→ ω be a bijection. Fix a partition {An : n < ω} of ω \ {0, 1} into infi-
nite pieces such that n /∈ f ′′[An]2 ∪ f ′′[An, {0, 1}] for n < ω. Let {αν , βν :
ν < ω2} ⊂ ω2 \ ω be pairwise different ordinals. For each ν < ω2 define a
condition pν = 〈cν ,Aν , 0〉 as follows:

• supp(cν) = (ω \ 2) ∪ {αν , βν},
• cν�[ω \ 2]2 = f�[ω \ 2]2,
• cν(k, αν) = f(k, 0) for k ∈ ω \ 2,
• cν(k, βν) = f(k, 1) for k ∈ ω \ 2,
• f(αν , βν) = 0,
• Aν = {An ∪ {αν} : n < ω}.
Suppose on the contrary that q is a common extension of pν and pµ for

some ν 6= µ < ω2. Let n = q(αν , βµ). Then An ∪{αν}∪ {βµ} is a q-rainbow,
which contradicts (P3) because An ∪ {αν} ∈ Aν .

So we will argue in a different way. Define a poset P as follows. The
underlying set P consists of quadruples 〈c,A, ξ,D〉 where

(i) c : [supp(c)]2 → ω for some supp(c) ∈ [ω2]ω,
(ii) A ⊂ [supp(c)]ω is a countable family,

(iii) ω ≤ ξ < ω1,
(iv) D ⊂ [supp(c)]ω × ω1 is a countable family,
(v) (∀〈D,σ〉 ∈ D)(∀γ ∈ supp(c)) |{δ ∈ D : c(γ, δ) < σ}| = ω.

Put 〈d,B, ζ, E〉 � 〈c,A, ξ,D〉 iff

(a) c ⊂ d, A ⊂ B, ξ ≤ ζ, D ⊂ E ,
(b) for all A ∈ A and β ∈ (supp(d) \ supp(c)) ∩minA,

ξ ⊂ d′′[{β}, A].

Clearly � is a partial order on P and P = 〈P,�〉 is σ-complete.

Lemma 2.7. P is ω2-c.c.

Proof. For subsets A and B or ordinals we write A < B iff sup(A) <
min(B). We say that two conditions, p = 〈c,A, ξ,D〉 and p′ = 〈c′,A′, ξ′,D′〉,
are twins iff there is an order preserving bijection ϕ : supp(c) → supp(c′)
such that

(1) K = supp(c) ∩ supp(c′) is an initial segment of both supp(c) and
supp(c′),

(2) K < supp(c) \K < supp(c′) \K,
(3) c(ξ, η) = c′(ϕ(ξ), ϕ(η)) for each {ξ, η} ∈ [supp(c)]2,
(4) A′ = {ϕ′′A : A ∈ A},
(5) ξ = ξ′,
(6) D′ = {〈ϕ′′D,σ〉 : 〈D,σ〉 ∈ D}.
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Since CH holds, standard counting and ∆-system arguments show that any
subset of P of cardinality ω2 contains two elements which are twins. So
it is enough to show that if p and p′ are twins then they have a common
extension q = 〈d,B, %, E〉. Let B = A ∪A′, % = ξ = ξ′ and E = D ∪D′.

We should define d(ν, µ) for ν ∈ supp(c) \K and µ ∈ supp(c′) \K.
We enumerate all “tasks” as follows: Let

T0 = {〈β,A′, ζ〉 : β ∈ supp(c) \K, A′ ∈ A′, A′ ⊂ supp(c′) \K, ζ < ξ′},
T1 = {〈γ, 〈D′, σ′〉, n〉 : γ ∈ supp(c) \K,

〈D′, σ′〉 ∈ D′ \ D, |D′ \K| = ω, n < ω},
T2 = {〈γ′, 〈D,σ〉, n〉 : γ′ ∈ supp(c′) \K,

〈D,σ〉 ∈ D \ D′, |D \K| = ω, n < ω}.
Since T = T0 ∪ T1 ∪ T2 is countable we can pick pairwise distinct ordinals
{ηx : x ∈ T } such that
• if x = 〈β,A′, ζ〉 ∈ T0 then ηx ∈ A′,
• if x = 〈γ, 〈D′, σ′〉, n〉 ∈ T1 then ηx ∈ D′ \K,
• if x = 〈γ′, 〈D,σ〉, n〉 ∈ T2 then ηx ∈ D \K.

Choose a function d : [supp(c) ∪ supp(c′)]2 → ω1 such that
• d ⊃ c ∪ c′,
• d(β, ηx) = ζ for x = 〈β,A′, ζ〉 ∈ T0,
• d(γ, ηx) = 0 for x = 〈γ, 〈D′, σ′〉, n〉 ∈ T1,
• d(γ′, ηx) = 0 for x = 〈γ′, 〈D,σ〉, n〉 ∈ T2.
Let q = 〈d,B, %, E〉. To show q ∈ P we need only check condition (v).

So let 〈D,σ〉 ∈ E and γ ∈ supp(d). Assume that 〈D,σ〉 ∈ D. (The case
〈D,σ〉 ∈ D′ is similar.)

If γ ∈ supp(c) then d�[{γ}, D] = c�[{γ}, D] so we are done. So we can
assume that γ ∈ supp(c′) \K.

If D \K is finite then the set
E = {δ ∈ D ∩K : c(δ, ϕ−1(γ)) < σ}

is infinite because p ∈ P satisfies (v) and for each δ ∈ E we have d(δ, γ) =
c′(δ, γ) = c′(ϕ(δ), γ) = c(δ, ϕ−1(γ)) < σ. So we can assume that D \ K is
infinite. In this case xn = 〈γ, 〈D,σ〉, n〉 ∈ T2 for n ∈ ω, so d(γ, ηxn) = 0 < σ
and {ηxn : n ∈ ω} ∈ [D]ω. So q ∈ P .

It is straightforward that q � p because no instances of (b) should be
checked.

Finally, we verify q � p′. Since condition (a) is clear, assume that A′ ∈ A′
and β ∈ supp(c) \ K with β < minA′. Since supK < β we have A′ ⊂
supp(c′)\K. Hence for each ζ < ξ we have x = 〈β,A′, ζ〉 ∈ T0 so d(β, ηx) = ζ.
Thus ξ ⊂ d′′[{β}, A′].

This completes the proof of the lemma.
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Let G be the generic filter for P and put g =
⋃
{c : 〈c,A, ξ〉 ∈ G}.

Claim. g establishes ω2 9 [(ω1;ω)]2ω1
in V [G].

Indeed, let p = 〈c,A, ξ,D〉 ∈ P . If A ∈ [supp(c)]ω and η ∈ ω1 then
p′ = 〈c,A ∪ {A},max(ξ, η),D〉 � p and for each β ∈ minA \ supp(c),

p′  η ⊂ g′′[{β}, A].

Claim. There is no uncountable g-rainbow set in V [G].

Indeed, assume that p0  Ẋ ∈ [ω2]ω1 . Since P is σ-complete there are
p � p0, p = 〈c,A, ξ,D〉, and D ∈ [supp(c)]ω such that p  D ⊂ Ẋ. Let
p′ = 〈c,A, ξ,D∪{〈D, (sup ran(c))+1〉}.〉. Then p′ ∈ P and p′ � p. Moreover,

p′  Ẋ is not a g-rainbow.

Indeed, work in V [G], where p′ ∈ G. Write X = {ξν : ν ∈ ω1}. Then for each
ν < ω there are γν < sup ran(c) + 1 and δν ∈ D with g(δν , ξν) = γν . Then
there are ν < µ < ω1 with γν = γµ. Hence g(δν , ξν) = γν = γµ = g(δµ, ξµ)
and ξν 6= ξµ, i.e. X is not a g-rainbow.

So, by the claims above, g satisfies the requirements of the theorem.

In his Ph.D. thesis [3], Baumgartner proved that if CH holds and P =
Fn([κ]2, ω1;ω1) for some cardinal κ ≥ ω2, and G is the generic filter above P ,
then the function g =

⋃
G establishes κ 9 [(ω1, ω2)]2ω1

. The original proof is
not easily available, but a “stripped-down” version of the next proof gives
Baumgartner’s result (just remove the “side conditions”).

Theorem 2.8. If CH holds and κ ≥ ω2 is a cardinal then there is a σ-
complete, ω2-c.c. poset P such that in V P there is a function g : [κ]2 → ω1

such that

(1) g establishes κ 9 [(ω1, ω2)]2ω1
.

(2) there is no uncountable g-rainbow subset of κ.

Proof. Define poset P = 〈P,�〉 as follows. The underlying set P consists
of pairs 〈c,D〉 where

(i) c : [supp(c)]2 → ω for some supp(c) ∈ [κ]ω,
(ii) D ⊂ [supp(c)]ω × ω1 is a countable family,

(iii) (∀〈D,σ〉 ∈ D)(∀γ ∈ supp(c)) |{δ ∈ D : c(γ, δ) < σ}| = ω.

Put 〈d, E〉 � 〈c,D〉 iff c ⊂ d and D ⊂ E . Then � is a partial order, and P is
σ-complete.

We say that two conditions, p = 〈c,D〉 and p′ = 〈c′,D′〉, are twins iff
there is an order preserving bijection ϕ : supp(c)→ supp(c′) such that

• ϕ(ξ) = ξ for ξ ∈ supp(c) ∩ supp(c′),
• c(ξ, η) = c′(ϕ(ξ), ϕ(η)) for each {ξ, η} ∈ [supp(c)]2,
• D′ = {〈ϕ′′D,σ〉 : 〈D,σ〉 ∈ D}.
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Lemma 2.9. Assume that p = 〈c,D〉, p′ = 〈c′,D′〉 are twins. Let q � p,
q = 〈d, E〉, be such that supp(d) ∩ supp(c′) = supp(c) ∩ supp(c′). Let A ∈
[supp(d) \ supp(c′)]ω, ξ ∈ supp(c′) \ supp(c) and % < ω1. Then there is a
common extension r = 〈cr,Dr〉 of q and p′ such that % ⊂ c′′r [{ξ}, A].

Proof. Write K = supp(c) ∩ supp(c′) and fix a function ϕ witnessing
that p and p′ are twins. Let

T0 = %,

T1 = {〈γ, 〈D′, σ′〉, n〉 : γ ∈ supp(d) \K, 〈D′, σ′〉 ∈ D′, |D′ \K| = ω, n ∈ ω},
T2 = {〈γ′, 〈E, σ〉, n〉 : γ′ ∈ supp c′ \K, 〈E, σ〉 ∈ E , |E \K| = ω, n ∈ ω}.

Since T = T0 ∪ T1 ∪ T2 is countable we can pick pairwise distinct ordinals
{ηx : x ∈ T } such that

(a) if x = χ ∈ % then ηx ∈ A,
(b) if x = 〈γ, 〈D,σ〉, n〉 ∈ T1 ∪ T2 then ηx ∈ D \K.

Let cr ⊃ d ∪ cν be such that

• cr(ηx, ξ) = χ if x = χ ∈ T0,
• cr(ηx, γ) = 0 if 〈γ, 〈D,σ〉, n〉 ∈ T0 ∪ T1.

To prove r = 〈cr,D′ ∪ E〉 ∈ P it is enough to check condition (iii).
Assume first that 〈D,σ〉 ∈ D′. If γ ∈ supp(c′) then cr�[{γ}, D] =

c′�[{γ}, D] so we are done. So we can assume that γ ∈ supp(d) \K.
If D \K is finite then 〈ϕ−1D,σ〉 ∈ D ⊂ E and D ∩K = ϕ−1D ∩K, so

the set
H = {δ ∈ D ∩K : d(δ, γ) < σ}

is infinite because q ∈ P satisfies (iii), and H ⊂ {δ ∈ D : cr(δ, γ) < σ}.
So we can assume that D\K is infinite. In this case xn = 〈γ, 〈D,σ〉, n〉 ∈

T1 for n ∈ ω, so cr(γ, ηxn) = 0 < σ and {ηxn : n ∈ ω} ∈ [D]ω.
Assume now that 〈D,σ〉∈E . If γ ∈ supp(d) then cr�[{γ}, D]=d�[{γ}, D]

so we are done. So we can assume that γ ∈ supp(c′) \K.
If D \K is finite then γ′ = ϕ−1(γ) ∈ supp(c) ⊂ supp(d) and q ∈ P imply

that the set
H = {ε ∈ D ∩K : d(ε, γ′) < σ}

is infinite. But for each ε ∈ H we have cr(ε, γ) = c′(ε, γ) = c(ε, γ′) = d(ε, γ′).
So we can assume that D \K is infinite. In this case xn = 〈γ, 〈D,σ〉, n〉 ∈ T2
for n ∈ ω, so cr(γ, ηxn) = 0 < σ and {ηxn : n ∈ ω} ∈ [D]ω. So r ∈ P and
clearly r � q, p′.

Finally, for each ζ < % we have ηζ ∈ A and cr(ξ, ηζ) = ζ. So % ⊂
c′′r [{ξ}, A].

Lemma 2.10. P is ω2-c.c.
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Proof. Since any family of conditions of size ω2 contains two conditions
p and p′ which are twins we can apply the previous lemma to show that p
and p′ are compatible in P .

Let G be the generic filter for P and put g =
⋃
{c : 〈c,A, ξ〉 ∈ G}

Lemma 2.11. g establishes κ 9 [(ω1, ω2)]ω1 in V [G].

Proof. Assume that p  Ẋ = {ξ̇ν : ν < ω2} ∈ [κ]ω2 , Ẏ ∈ [κ]ω1 .
For each % < ω1 we will construct a condition r � p such that r  % ⊂

g′′[Ẋ, Ẏ ]. Write p = 〈c,D〉. For each ν < ω2 pick pν = 〈cν ,Dν〉 � p such
that pν  ξ̇ν = ξν for some ξν ∈ supp(cν). Since CH holds there is I ∈ [ω2]ω2

such that

• {supp(cν) : ν ∈ I} forms a ∆-system with kernel K,
• for each {ν, µ} ∈ [I]2 the conditions pν and pµ are twins.

Since P satisfies ω2-c.c. we can assume that ξν ∈ supp(cν) \K for ν ∈ I.
Fix µ ∈ I. Pick a condition q � pµ, q = 〈d, E〉, such that q  Z ⊂ Ẏ for

some Z ∈ [supp(d) ∩ (κ \K)]ω. Choose ν ∈ I such that supp(cν) ∩ supp(d)
= K.

By Lemma 2.9 there is a condition r = 〈cr,Dν ∪ E〉 ∈ P such that
r � q, pν and % ⊂ c′′r [{ξµ}, Z]. Then r  % ⊂ c′′r [{ξν}, Z] ⊂ g′′[Ẋ, Ẏ ].

Lemma 2.12. There is no uncountable g-rainbow set in V [G].

Proof. Indeed, assume that p0  Ẋ ∈ [ω2]ω1 . Since P is σ-complete
there are p � p0, p = 〈c,D〉, and D ∈ [supp(c)]ω such that p  D ⊂ Ẋ. Let
p′ = 〈c,D ∪ {〈D, (sup ran(c)) + 1〉}.〉. Then p′ ∈ P and p′ � p. Moreover

p′  Ẋ is not a g-rainbow.

Indeed, work in V [G], where p′ ∈ G. Write X = {ξν : ν ∈ ω1}. Then for each
ν < ω there are γν < sup ran(c) + 1 and δν ∈ D with g(δν , ξν) = γν . Then
there are ν < µ < ω1 with γν = γµ. Thus g(δν , ξν) = γν = γµ = g(δµ, ξµ)
and ξν 6= ξµ, i.e. X is not a g-rainbow.

So, by the lemmas above, g satisfies the requirements of the theorem.

3. k-bounded colourings

Definition 3.1. Let X ∈ [ω1]ω1 , f : [X]2 → ω1, k ∈ ω.

(a) f is k-bounded iff |f−1{γ}| ≤ k for each γ ∈ ran(f).
(b) Put

D(k)(X) = {D ∈ [[X]k]<ω : d ∩ d′ = ∅ for each {d, d′} ∈ [D]2}.
(c) For D ∈ D(k)(X) let

Hom(D, f) = {α : (∀d ∈ D)(∀δ, δ′ ∈ d) f(δ, α) = f(δ′, α)}.
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(d) Given any cardinal µ let

D(k)
µ (X) = {〈Di : i < µ〉 ⊂ D(k)(X) : (

⋃
Di)∩(

⋃
Dj) = ∅ for i < j < µ}.

(e) f is an AR(k)-function iff
• f is k-bounded,
• for each 〈Di : i < ω〉 ∈ D(k)

ω (X) there is γ < ω1 such that

X \ γ ⊂
⋃
{Hom(Di, f) : i < ω}.

Observation 3.2. An AR(k)-function f : [ω1]2 → ω1 establishes the
negative partition relation ω1 9∗ [(ω;ω1)]k-bdd.

Proof. Assume that A ∈ [ω1]ω and B ∈ [ω1]ω1 . Pick pairwise disjoint
sets {di : i < ω} ⊂ [A]k. Write Di = {di} and ~D = 〈Di : i < ω〉. Since
~D ∈ D(k)

ω (ω1) and f is an AR(k)-function, there is β ∈ B such that β ∈
Hom(Di, f) for some i < ω, which means that |f ′′[di, {β}]| = 1. Since di ∈
[A]k we are done.

Lemma 3.3. If CH holds then for each k ∈ ω there is an AR(k)-function
f : [ω1]2 → ω1.

Proof. The construction is standard. Let {Cα : ω ≤ α < ω1} ⊂ [ω1]ω be
disjoint sets. Fix an enumeration 〈 ~Dα : ω ≤ α < ω1〉 of D(k)

ω (ω1) such that⋃ ~Dα ⊂ α.
Let α < ω1 be fixed. For each ξ < α pick iξ ∈ ω such that the sets

{
⋃ ~Dξ(iξ) : ξ < α} are pairwise disjoint. Choose a function gα : α → Cα

such that

(∗) gα(δ) = gα(δ′) iff {δ, δ′} ∈ [d]2 for some ξ < α and d ∈ ~Dξ(iξ).

For δ < α let f(δ, α) = gα(δ).

Theorem 3.4. If GCH holds and f : [ω1]2 → ω1 is an AR(k)-function
then there is a c.c.c. poset P such that

V P |= f c.c.c.-indestructibly establishes ω1 9∗ [(ω1;ω1)]k-bdd.

We say that ω1 9∗ [(ω, ω1)]κ-bdd holds iff there is a κ-bounded colouring
c of [ω1]2 such that for each A,∈ [ω1]ω and B ∈ [ω1]ω1 there is ξ ∈ ran c
such that |{{α, β} ∈ [A,B] : c(α, β) = ξ}| = k.

Although an AR(k)-function establishes ω1 9∗ [(ω;ω1)]k-bdd, there is no
function which c.c.c.-indestructibly establishes ω1 9∗ [(ω;ω1)]k-bdd because
Martin’s Axiom implies ω1 →∗ [(ω, ω1)]2-bdd. Indeed, Martin’s Axiom (even
p > ω1) clearly implies ω1 → [(ω, ω1)]2, so it is enough to show that

(?) ω1 → [(ω, ω1)]2 implies ω1 →∗ [(ω, ω1)]2-bdd.

We prove (?) using an argument Galvin used to prove that λ → (α)nk
implies λ →∗ (α)nk-bdd. Let f : [ω1]2 → ω1 be 2-bounded. Then there is a
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function g : [ω1]2 → 2 such that f(x) = f(y) implies g(x) 6= g(y). Since
ω1 → [(ω, ω1)]2 holds there are A ∈ [ω1]ω and B ∈ [ω1]ω1 such that
g′′[A,B] = {i} for some i < 2. Then f�[A,B] is injective. So (?) holds.

Theorem 3.5. If GCH holds and f : [ω1]2 → ω1 is an AR(k)-function
then there is a set X ∈ [ω1]ω1 and a c.c.c. poset Q such that

V Q |= X has a partition into countably many f -rainbow sets.

Before proving the theorems above we need to introduce some notions.
Given a set x denote by TC(x) the transitive closure of x. Let κ be a large

enough regular cardinal (κ = (2ω1)+ works). Put Hκ = {x : |TC(x)| < κ}
and Hκ = 〈Hκ,∈,≺〉, where ≺ is a well-ordering of Hκ.

Definition 3.6.

(a) A sequence ~N = 〈Nα : α ∈ A〉 of countable, elementary submodels
of Hκ is called an A-chain iff A ⊂ ω1 and whenever α, β ∈ A with
α < β we have Nα ∈ Nβ.

(b) Suppose that ~N = 〈Nα : α ∈ A〉 is an A-chain and Y ⊂ ω1. We say
that Y is separated by ~N iff for each C ∈ [Y ]2 there is an α ∈ A with
|Nα ∩ C| = 1.

Lemma 3.7. Assume that f is an AR(k)-function. If 〈Nm : m ≤ n〉 is
an elementary n + 1-chain, f ∈ N0, ~D0, . . . , ~Dn−1 ∈ D(k)

ω (ω1) ∩ N0, and
αm ∈ Nm+1 \Nm for m < n then the set

{i < ω : (∀m < n) αm ∈ Hom( ~Dm(i), f)}
is infinite.

Proof. We prove the lemma by induction on n. So assume that the set

I = {i < ω : (∀m < n− 1) αm ∈ Hom( ~Dm(i), f)}
is infinite. (If n = 1 then I = ω.)

Write I = {ij : j ∈ ω} and for each ` < ω put
~E` = 〈 ~Dn−1(ij) : ` ≤ j < ω〉.

Let γ` be the minimal ordinal such that

ω1 \ γ` ⊂
⋃
{Hom( ~Dn−1(ij), f) : j ∈ ω \ `}.

Since f is AR(k) and ~E` ∈ D(k)
ω (ω1), we have γ` < ω1. So if we take γ =

sup{γ` : ` < ω} then for each α ∈ ω1 \ γ the set

Jα = {i ∈ I : α ∈ Hom( ~Dn−1(i), f)}
is infinite.

Since f, ~D0, . . . , ~Dn−1, α0, . . . , αn−2 ∈ Nn−1 we have I ∈ Nn−1 and so
~E` ∈ Nn−1 as well. Thus 〈γ` : ` < ω〉 ∈ Nn−1 because it is definable there
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and so γ = sup〈γ` : ` < ω〉 ∈ Nn−1 as well. Hence αn−1 ∈ Nn\Nn−1 ⊂ ω1\γ
and so Jαn−1 is infinite.

But
Jαn−1 = {i < ω : (∀m < n) αm ∈ Hom( ~Dm(i), f)},

so we are done.

Proof of Theorem 3.5. Let ~N = 〈Nξ : ξ < ω1〉 be an ω1-chain with
f ∈ N0 and let X ∈ [ω1]ω1 be ~N -separated. Let Hω1 be the family of those
sets whose transitive closure is countable.

Lemma 3.8. Hω1 ⊂
⋃
{Nξ : ξ < ω1} under CH.

Proof. Since CH holds we have |Hω1 | = ω1. Since N0 is an elementary
submodel of Hκ the family Hω1 has an enumeration ~h = 〈hα : α < ω1〉 ∈ N0.
Then

(1) {hα : α ∈ Nµ ∩ ω1} ⊂ Nµ.

For ν < µ < ω1 we have Nν ∈ Nµ and so Nν ∩ ω1 ∈ Nµ ∩ µ. Thus

(2) µ ⊂ Nµ ∩ ω1 for µ < ω1.

(1) and (2) together give the statement of the lemma.

Let us recall that Fn(X,ω) denotes the family of finite functions mapping
a subset of X into ω. Define the poset Q = 〈Q,≤〉 as follows:

Q = {q ∈ Fn(X,ω) : q−1{n} is an f -rainbow for each n ∈ ran q},
and let q ≤ q′ iff q ⊃ q′.

Lemma 3.9. Q satisfies c.c.c.

Proof. Assume that {qν : ν < ω1} ⊂ Q. Let xν = dom qν , Lν = ran qν ,
and xν,` = q−1

ν {`} for ` ∈ Lν . For two subsets x and y or ordinals we write
x < y iff sup(x) < min(y).

We can assume that

(1) {xν : ν < ω1} forms a ∆-system with kernel x,
(2) x < (xζ \ x) < (xξ \ x) for ζ < ξ < ω1,
(3) Lν = L for each ν < ω1,
(4) there is a q such that qν�[x]2 = q for each ν < ω1.

For ζ ∈ ω1 let

F (ζ) = {ξ < ω1 : f ′′[xζ , xζ \ x] ∩ f ′′[xξ, xξ \ x] 6= ∅}.
Since f is k-bounded, F (ζ) is finite, and so there is an F -free set Z = {ζi :
i < ω1} ∈ [ω1]ω1 , i.e. ζj /∈ F (ζi) for i 6= j < ω1.

For x ∈ ω1 let %(x) = min{ν : x ∈ Nν}. For each ξ ∈ X pick dξ ∈ [ω1]k

such that ξ ∈ dξ and %(η) = %(ξ) for each η ∈ dξ. For ζ ∈ Z let Dζ =
{dξ : ξ ∈ xζ \ x}. Let ~D = 〈Dζi : i < ω〉. Clearly ~D ∈ D(k)

ω (ω1). Since
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CH holds there is γ < ω1 such that ~D ∈ Nγ . Let ζ ∈ Z be such that
Nγ ∩ (xζ \ x) = ∅.

Apply Lemma 3.7 for n = |xζ \x|, ~Dm = ~D for m < n and {αm : m < n}
= xζ \ x. Then there is i < ω such that

(∀m < n) αm ∈ Hom( ~D(i), f).

By the construction it means that

(∀η ∈ xζ \ x)(∀ξ ∈ xζi \ x)(∀δ ∈ dξ) f(δ, η) = f(ξ, η).

Claim. qζi ∪ qζ ∈ Q, i.e. f is 1-1 on [xζi,` ∪ xζ,`]2 for all ` ∈ L.

Let ξ, η, ξ′, η′ ∈ xζi,` ∪ xζ,` with ξ < η and ξ′ < η′ such that f(ξ, η) =
f(ξ′, η′).

Assume first that {ξ, η}, {ξ′, η′} ∈ [xζi,`]
2 ∪ [xζ,`]2. Since qζi , qζ ∈ Q we

can assume that {ξ, η} ∈ [xζi,`]
2 \ [xζ,`]2 and {ξ′, η′} ∈ [xζ,`]2 \ [xζi,`]

2 (or
f(ξ, η) = f(ξ′, η′) implies {ξ, η} = {ξ′, η′}). Then f(ξ, η) ∈ f ′′[xζi , xζi \ x]
and f(ξ′, η′) ∈ f ′′[xζ , xζ \ x], so ζi /∈ F (ζ) implies f(ξ, η) 6= f(ξ′, η′).

So we can assume that e.g. {ξ, η} /∈ [xζi,`]
2 ∪ [xζ,`]2, i.e. ξ ∈ xζi,` \ x and

η ∈ xζ,` \ x. But we know that

(∀δ ∈ dξ) f(δ, η) = f(ξ, η).

Since f is k-bounded and |dξ| = k we have

{{ξ′, η′} : f(ξ′, η′) = f(ξ, η)} = {{δ, η} : δ ∈ dξ}.
But dξ ∩ (xζi,` ∪ xζ,`) = {ξ} because %(δ) = %(ξ) for each δ ∈ dξ. Hence
f(ξ′, η′) = f(ξ, η) implies ξ = ξ′ and η = η′.

Since {q ∈ Q : ξ ∈ dom q} is dense in Q for each ξ ∈ X, we see that
if G is the generic filter in Q and g =

⋃
G, then {g−1{n} : n ∈ ω} is a

partition of X into countably many f -rainbow sets, which completes the
proof of Theorem 3.5.

To prove Theorem 3.4 we need some more preparation. We will use a
black box theorem from [11].

Given a set K and a natural number m let

Fnm(ω1,K)= {s : s is a function, dom(s) ∈ [ω1]m, ran(s) ⊂ K}.
A sequence 〈sα : α < ω1〉 ⊂ Fnm(ω1,K) is dom-disjoint iff dom(sα) ∩
dom(sβ) = ∅ all α < β < ω1.

Let H be a graph on ω1 × K and m ∈ ω. We say that H is m-solid
if given any dom-disjoint sequence 〈sα : α < ω1〉 ⊂ Fnm(ω1,K) there are
α < β < ω1 such that

[sα, sβ] ⊂ H.
H is called strongly solid iff it is m-solid for each m ∈ ω.
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Black Box Theorem ([11, Theorem 2.2]). Assume 2ω1 = ω2. If H is
a strongly solid graph on ω1 × K, where |K| ≤ 2ω1 , then for each m ∈ ω
there is a c.c.c. poset P of size ω2 such that

V P |= H is c.c.c.-indestructibly m-solid.

The theorem above is build on a method of Abraham and Todorčević
from [2].

We need one more lemma before we can apply the Black Box Theorem
above.

Lemma 3.10. There is a function r : ω1 → ω such that for any A,B ∈
[ω1]<ω if r(A) = r(B) then A ∩B is an initial segment of A and B.

Proof. Let D be a countable dense subset of the product space ωω1 .
Moreover, for each α<ω1 fix a function fα : α 1-1−→ ω. Let A={α0, . . . , αn−1}
∈ [ω1]<ω with α0 < · · · < αn−1.

Pick dA ∈ D such that dA(αi) = i for each i < |A|. Let

r(A) = 〈dA, 〈f ′′αi
(A ∩ αi) : i < |A|〉〉.

Since the range of r is countable it is enough to prove that if r(A) = r(B)
then A ∩B is an initial segment of A and B.

Write A = {αi : i < m} with α0 < · · · < αn−1, and B = {βj : j < m}
with β0 < · · · < βm−1.

Assume that αi = βj . Then dA(αi) = i and dB(βj) = j. Since dA = dB
it follows that i = j. So r(A) = r(B) yields f ′′αi

(A∩αi) = f ′′αi
(B ∩αi). Since

fαi is 1-1 on αi it follows that A ∩ αi = B ∩ αi.
We will use the following corollary of this lemma.

Corollary 3.11. There is a function r : ω1 → ω such that for any
A,B ∈ [ω1]<ω if min(A) 6= min(B) and r(A) = r(B) then A ∩B = ∅.

Proof of Theorem 3.4. Let ~N = 〈Nξ : ξ < ω1〉 be an ω1-chain with
f ∈ N0. Fix the function r from Corollary 3.11 above. For ξ ∈ ω1 let %(ξ) =
min{ν : ξ ∈ Nν}. Let K = [ω1]k × ω1 × ω. For any function c : [ω1]2 → ω1

define a graph Hc on ω1 ×K as follows.
If x, x′ ∈ ω1 × K, x = 〈ζ, 〈d, ξ,m〉〉, x′ = 〈ζ ′, 〈d′, ξ′,m′〉〉, ζ < ζ ′, let

{x, x′} be an edge in Hc provided the conditions

(1) %(ξ) = ζ and %(ξ′) = ζ ′,
(2) ζ < min d and ζ ′ < min d′,
(3) r({ζ} ∪ d) = m and r({ζ ′} ∪ d′) = m′,
(4) m = m′

imply

(5) c(δ, ξ′) = c(ε, ξ′) for all δ, ε ∈ d.
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Lemma 3.12. If Hc is 1-solid for some colouring c : [ω1]2 → ω1 then c
establishes ω1 9∗ [(ω1;ω1)]k-bdd for each k < ω.

Proof. We will show that for all X = {ξβ : β < ω1} ∈ [ω1]ω1 and for
any disjoint family {dα : α < ω1} ⊂ [ω1]k there are α < β < ω1 such that
max dα < ξβ and |c′′[dα, {ξβ}]| = 1.

By thinning out and renumbering the sequences we can assume that

• %(ξα) < min dα < max dα < %(ξβ) for α < β < ω1,
• r({%(ξα) ∪ dα}) = m for some m ∈ ω for each α ∈ ω1.

Let xα = 〈%(ξα), 〈dα, ξα,m〉〉 for α < ω1. Since the sequence 〈{xα} : α < ω1〉
is dom-disjoint, and (1)–(4) hold for each α < β < ω1, there are α < β < ω1

such that (5) holds for xα and xβ because Hc is 1-solid, i.e. |c′′[dα, {ξβ}]| = 1,
which was to be proved.

Lemma 3.13. If c is an AR(k)-function and CH holds then Hc is strongly
solid.

Proof. Let m ∈ ω and 〈xα : α < ω1〉 ⊂ Fnm(ω1,K) be a dom-disjoint
sequence. Write xα = {xα,i : i < m}, xα,i = 〈ζα,i, 〈dα,i, ξα,i, nα,i〉〉. A pair
〈ζ, 〈d, ξ,m〉〉 ∈ ω1 ×K is good iff

(g1) %(ξ) = ζ,
(g2) ζ < min d,
(g3) r({ζ} ∪ d) = m.

We can assume that every xα,i is good because if 〈ζ, t〉 ∈ ω1×K is not good
then {〈ζ, t〉, 〈ζ ′, t′〉} ∈ Hc for each 〈ζ ′, t′〉 ∈ ω1 ×K with ζ ′ 6= ζ. So we have

(i) %(ξα,i) = ζα,i,
(ii) ζα,i < min dα,i,

(iii) r({ζα,i} ∪ (dα,i)) = ni.

By thinning out our sequence we can assume that

(iv) nα,i = ni,
(v) max dα,i < ζβ,j for α < β < ω1 and i, j < m.

Let N = {ni : i < m}. For α < ω1 and n ∈ N put Dα,n = {dα,i : ni = n}.

Claim. Dα,n ∈ D(k)(ω1).

Indeed, if i 6= j < m and ni = nj then r({ζα,i} ∪ dα,i) = ni = nj =
r({ζα,j} ∪ dα,j) but min({ζα,i} ∪ dα,i) = ζα,i 6= ζα,j = min({ζα,j} ∪ dα,j) so
dα,i ∩ dα,j = ∅ by the choice of the function r.

(iii) and (v) together give max(
⋃
Dα,n) < min(

⋃
Dβ,n) for α < β < ω1

and n ∈ N . Thus ~D′n = 〈D`,n : ` < ω〉 ∈ D(k)
ω (ω1).
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Since CH holds, from Lemma 3.8 it follows that there is γ < ω1 such
that { ~D′n : n ∈ N} ⊂ Nγ . Pick α < ω1 such that Nγ ∩ {ζα,j : j < m} = ∅.
Let ~Dj = ~D′nj

for j < m.

We are going to apply Lemma 3.7 as follows: ~M = 〈Nγ , Nζj : j < m〉 is
an elementary m+ 1-chain, f, ~D0, . . . , ~Dm−1 ∈ N0 and ξα,j ∈ Nζj \Nζj−1

for
j < m, where ζ−1 = γ. Hence, by Lemma 3.7 there is ` < ω such that for
each j < m,

(◦) ξα,j ∈ Hom( ~Dj(`), f).

Claim. [x`, xα] ⊂ Hc.

Let i, j < m. We show {x`,i, xα,j} ∈ Hc. (2)–(4) hold by construction. If
ni 6= nj then (1) fails so we are done. Assume that ni = nj = n ∈ N . Then
d`,i ∈ ~D′n(`) = ~Dj(`). Thus

(∀δ, δ′ ∈ d`,i) f(δ, ξα,j) = f(δ′, ξα,j)

by (◦). Hence (5) holds and so {x`,i, xα,j} ∈ Hc.

Now we can easily conclude the proof of 3.4.
Let f : [ω1]2 → ω1 be an AR(k)-function. By Lemma 3.13, the graph Hf

is strongly solid. Since GCH holds, we can apply our Black Box Theorem to
find a c.c.c. poset P such that

V P |= Hf is c.c.c.-indestructibly 1-solid.

But then, by Lemma 3.12,

V P |= f c.c.c.-indestructibly establishes ω1 9∗ [(ω1;ω1)]k-bdd.

Proof of Theorem 1.2. Since GCH holds, by Lemma 3.3 there is an
AR(k)-function g : [ω1]2 → ω1 . By Theorem 3.5 there is a set X ∈ [ω1]ω1

and a c.c.c. poset Q such that

V Q |= X has a partition into countably many g-rainbow sets.

Let h : ω1 → X be a bijection and put f = g ◦ h. Then

V Q |= ω1 has a partition into countably many f -rainbow sets.

Since f is an AR(k)-function as well, we can apply Theorem 3.4 to deduce
that

V P |= f c.c.c.-indestructibly establishes ω1 9∗ [(ω1;ω1)]k-bdd

for some c.c.c. poset P , which proves the theorem.

Lemma 3.3 and Theorem 3.4 give immediately

Corollary 3.14. ω1 9∗ [(ω1;ω1)]k-bdd is consistent with Martin’s Ax-
iom for each natural number k.
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[2] U. Abraham and S. Todorčević, Martin’s Axiom and first countable S- and L-spaces,
in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan (eds.), North-
Holland, New York, 1984, 327–345.

[3] J. E. Baumgartner, Results and independence proofs in combinatorial set theory,
Ph.D. Thesis, Univ. of California, Berkeley, 1970.

[4] J. Baumgartner and A. Hajnal, A proof (involving Martin’s axiom) of a partition
relation, Fund. Math. 78 (1973), 193–203.
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V. Reáltanoda utca 13-15
H-1053 Budapest, Hungary
E-mail: soukup@renyi.hu

Received 28 April 2008;
in revised form 20 July 2008


