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On analytic flows on the torus which are
disjoint from systems of probabilistic origin

by

Mariusz Lemariczyk and Magdalena Wysokiriska (Torur)

Abstract. We describe two methods of obtaining analytic flows on the torus which
are disjoint from dynamical systems induced by some classical stationary processes.

Introduction. In [9] the notion of ELF-flows has been introduced. These
flows are defined as follows: We look at the set of time ¢ automorphisms,
t € R, of an ergodic flow as Markov operators of the underlying L?-space,
and the flow has the ELF property if the closure of this set in the weak
operator topology consists of indecomposable Markov operators. The ELF-
property is automatically satisfied for all mixing systems, however in the
weak mixing and non-mixing case it seems to be a common property of
systems that might be called of probabilistic origin. Indeed, already in [9]
it was remarked that Gaussian systems enjoy the ELF-property. Moreover,
in the recent paper [3] it is proved that systems induced by (symmetric) a-
stable processes as well as Poisson suspension flows are also examples of ELF-
systems. This is still generalized in [25] because one of the main consequences
of the developed theory of infinitely divisible joinings for systems generated
by infinitely divisible stationary processes is that such systems also have the
ELF-property.

It is rather clear that the flow induced by a stationary process given by
a function of a classical stationary process should also be regarded as one
of probabilistic origin. In other words, factors of systems of probabilistic
origin are also of probabilistic origin (note that the ELF-property is closed
under taking factors). Therefore if we want to exhibit systems different from
ELF-flows, it is natural to require that such systems are disjoint (in the sense
of Furstenberg [12]) from the ELF-class. We recall that disjoint systems have
no nontrivial common factors.
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In the series of papers [9]-[8] some classes of smooth flows on surfaces are
shown to be disjoint from ELF-flows. However, no smooth flow appearing
in those papers was analytic. In the present paper we will show how to
obtain analytic flows on the torus which are disjoint from the ELF-class.
Our first method is “generic’—we show that given a positive analytic function
(which is not a trigonometric polynomial) on the circle, for a generic set of
irrational rotations the resulting special flows are disjoint from all ELF-flows.
Our analysis is similar to the one of A. Katok (see Theorem 5.7 in [15]).
The second approach uses the a.a.c.c.p. method from [17]. This method has
a prescribed set of parameters and, over each irrational a belonging to a
certain residual subset of [0,1), it leads to a construction of a real-valued
step cocycle ¢ which is cohomologous to an analytic zero mean cocycle.
Assuming additionally that ¢ € L? and ¢ + C > 0 for a constant C, as
shown in [9], in order to obtain a special flow (under ¢ + C) disjoint from
the ELF-class we need two conditions to be satisfied: along a certain rigidity
time (w,) for the irrational rotation by a,

(A) the sequence of distributions ((¢(*»)),),>1 weakly converges to a
non-Dirac measure on R,
(B) the sequence (||¢“")||;2)n>1 is bounded.

This is the condition (B) which introduces a new restriction on the set of a’s
over which a given a.a.c.c.p. can be realized. We argue however that such a
set of a’s is still residual.

It should be noticed that the approach when one deals with limit dis-
tributions along a rigidity sequence is not an original one. For example the
condition (A) is satisfied for analytic constructions of cocycles over irrational
rotations in [28] (see also [22]). Also, convergence towards particular distri-
butions including Gaussian distributions appears in [4]. It might be expected
that certain modifications in [28] should also give condition (B), and there-
fore should also lead to constructions of analytic special flows disjoint from
the ELF-class.

Our second approach, which uses the a.a.c.c.p. method, will allow us
to construct an uncountable family {7%¢}.cx of flows obtained by analytic
changes of times for the linear flow on R?/Z2 ie. T ¢ € E, is deter-
mined by

d_:z: B «
dt  F.(z,y)’
P )

such that each flow of the family is disjoint from the ELF-class. In fact,
E ={0,1}" and on E we consider the equivalence relation ~:

e~e & g =¢; eventually.
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The family {7%:}.cx enjoys additionally the property that 77 is disjoint
from 7'« whenever ¢ o £’. Note that, by the Liouville theorem, each flow
T preserves a “physical” measure, but this measure depends on ¢. By con-
sidering the whole family of such flows as non-singular flows for the Lebesgue
measure on R?/Z? we show that the map e — 7 Fe is Borel, whence we are
in the situation which first appeared in [5] (see also e.g. [6]). Consequently,
by [5], it is impossible to solve the problem of measure-theoretic classifica-
tion of flows on R?/Z? preserving a “physical” measure by a countable set
of Borel invariants (in fact, we prove the same result also for the spectral
classification).

By further modifications of the a.a.c.c.p. method we will obtain weakly
mixing analytic flows (th )ter such that for every probability Borel measure
P on R the integral Markov operator SR th dP(t) belongs to the weak closure
of the time ¢ automorphisms th ,t € R. In particular, using a result of Ageev
([1]), if we denote by o the reduced maximal spectral type of T' = Tlf , then
the Gaussian automorphism determined by o will have simple spectrum and
in particular, convolutions of the reduced maximal spectral type are pairwise
singular (see [15], [24], [27] for similar results on convolutions). Such Gaussian
automorphisms are interesting because they have the GAG property while
Foiag-Stratild’s theorem fails for them (see |20]).

The authors would like to thank K. Fraczek for useful discussions on the
subject, and the referee for numerous remarks, comments, suggestions and
for correcting errors in the original version of the paper.

1. Preliminaries. Throughout the paper we will identify R/Z with
[0,1) (with addition mod 1). Each function defined on [0, 1) will be treated as
a l-periodic function on R. The Lebesgue measure on [0, 1) will be denoted
by . For the complex circle {z € C : |z| = 1} we will use the notation T.

1.1. Continued fraction expansion. We will now recall some basic facts
about the continued fraction expansion of an irrational number. Each a €
(0,1) has a representation as a continued fraction

a=[0;a1,a2,...],

where the positive integers a, are called the partial quotients of «. This
expansion is infinite whenever « is irrational. Put

@o=1 q=a, Gui1=0n1qn+ Gn-1,
po=0, p1=1,  pp+1=ant1Pn + Pn-1-

The rationals p, /g, are called the convergents of o and the following in-

equality holds: 1

qndn+1

Pn
o — —

an

<
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for n > 0. Moreover, we have

nt1llgne]| + anllgnr1af = 1,

where ||v]| = dist(v,Z) for v € R. The fractional part of a real number v
will be denoted by {v}. Take now an irrational rotation by  on X = [0, 1),
Tx = x + . Recall some facts (contained e.g. in [17]) about the dynamics
of T. Fix n € N even. Then the union of the disjoint Rokhlin towers

G = {10, {gn}), T[0, {gne}), ..., T 710, {gn})},
Cn = {[{qn—i-la}? 1)7 T[{qn+1a}7 1)7 ceey an_l[{qn-l-la}a 1)}
coincides with [0, 1). For a subsequence (nj) C N define
Iy = [0, {a2ny 102, 0}),  JF =T D20, {go,, a})

fort =1,...,a2n,+1. We get

a2np,+1

I, = U Jfa
t=1

and forall t =1,..., a2, +1,
1
2 I o= |JF| < ——.
( ) ’ t| a2nk+1Qan
Then {I},TI}, ..., T%?% I} is a Rokhlin tower and if we put
Qan_l

=00\ |J T°L
s=0

= G2n;+1—1
then Xy = (J(ap, U UT=;2ik+1—q2nk71 T" J¥, hence
(3) #(Zk) = qony llg2m1all + qani—1llgan, el < 2/azn,11.

We will also need the following lemma.

LEMMA 1 (see e.g. [17]). Given an infinite increasing sequence (qn) of
natural numbers and a positive real-valued function r = r(qy), the set

{a €10,1) : for infinitely many n we have |o — py/qn| < r(qn),
and pp/qn are convergents of o}
1s residual.

1.2. The class of flows with the ELF-property. Consider a measurable
flow & = (S¢)ier, that is, for each ¢ € R, S; is an automorphism on a
standard probability Borel space (X, B, u) and the corresponding unitary
representation of R on L2(X,B,u) given by Us,(f) = f o S; is (weakly)
continuous. Depending on the context, S; may denote Ug,. Assume S to
be ergodic and take another ergodic flow R = (R:)ier on (Y,C,v). Now
we define a joining of S and R as an arbitrary probability measure ¢ on
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(X xY,B®C) which is (S¢ x R¢)ier-invariant and whose marginals are p
and v respectively. The set of all joinings between & and R will be denoted
by J(S,R). In case S = R we write J(S) and speak about self-joinings. The
subset of ergodic joinings will be denoted by J°(S,R) (J°(S) for ergodic
self-joinings).

Having a joining ¢ € J(S,R) we define a map &, : L*(X,B,u) —
L2(Y,C,v) such that for each f € L?(X,B,u) and g € L*(Y,C,v),

Vo,(f)gdv =\ fegde.

Y XxY
Notice that we get a Markov operator @, : L*(X, B, u) — L*(Y,C,v), i.e. a
bounded linear operator satisfying

P,1=&,1=1 and &,f >0 whenever f > 0.

Conversely, having a Markov operator @ : L?(X, B, u) — L*(Y,C,v) we can
obtain a unique measure on (X x Y, B ® C) whose projections on X and Y
are equal to p and v respectively: indeed, we put

0o(Ax B) = | &(xa)dv
B

for all A € B and B € C. Moreover, the (S; X Ry;)icr-invariance of g is
equivalent to

(4) QSOUSt:URtOQ5

for each t € R. Thus we can identify the set of all Markov operators satisfying
(4) (denoted by J(S,R)) with the set J(S,R). The set of Markov operators
corresponding to ergodic joinings will be denoted by J°(S,R) (such Markov
operators are indecomposable, that is, they are extremal elements of the sim-
plex J(S,R)). The notation J(S) and J¢(S) is used for self-joinings. Note
that Ug, € J°(S), t € R. Denote by § the Markov operator corresponding
to the product measure, i.e. {(f) = { fdp.

Following [12], S and R are called disjoint (in the sense of Furstenberg)
if J(S,R) ={p®v}.

Recall also (see [13]) that whenever the maximal spectral types o5 and or
of the corresponding Koopman representations on L3(X,B,u) and
L3(Y,C,v) are mutually singular then S and R are disjoint.

Finally, following [9], we say that an ergodic flow S = (S;)ier has the
ELF-property (briefly, is an ELF-flow) if {Ug, : t € R} C J°(S) (the closure
in the weak operator topology).

1.3. Special flows and ELF-property. Denote by P(R) the space of all
Borel probability measures on R. Recall that a sequence (o,) of measures
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converges weakly in P(R) to a measure o if for each function h € CB(R),

\ hdo, — | hdo.

R R
Let (X,B,u) be a standard probability Borel space. Given a measurable
function f : X — R, we denote by f.u the image of p via f, i.e. fiu(A) =
u(f~1(A)) for an arbitrary Borel set A in R.

Note that whenever (fi), (gx) are sequences of real measurable functions
on X satisfying (fx).u — o as k — oo for some o € P(R) and p{z € X :
fr(x) # gr(x)} — 0 as k — oo, then (gx)«pu — o as k — oo.

Now we recall basic facts concerning special flows.

Let T be an ergodic automorphism of (X, B, u). We will denote by A
Lebesgue measure on R. Assume f : X — R to be a measurable positive
function with §, fdu < oc.

We define an R-action, denoted by 77, on the space (X f.Bf uf ) where

Xf:{(x,t)eXxR:O§t<f($)},

B/ is the restriction of B ® B(R) and u/ is the restriction to X/ of the
product measure p ® A of X x R. This action, denoted by T/ = ((T¥);)scr,
will be called the special flow built from T and the roof function f and it
is as follows. Each point from X/ moves vertically upwards with unit speed
and as soon as it reaches the graph of f, the point (x, f(z)) is identified with
(T'z,0) (see e.g. |2, Chapter 11]). Put

f(@)+ f(Tz) + -+ f(TF ) for k>0,
(5) f®@)y=<0 for k =0,
—(f(TFx) 4 -+ f(T™'2)) for £ < 0.

Only functions f satisfying f > ¢ > 0 will be considered. It follows that
for a.e. z € X,

f®(z) > ck, keN.

Recall that a sequence (gy,) is said to be a rigidity time for the auto-
morphism T if U — Id as n — oo in the weak (or, equivalently, strong)
operator topology.

We now recall some results from [9] that will be needed in what follows.

PROPOSITION 1 ([9]). Suppose that T = (1i)ier is an ergodic flow on
(Y,C,v) such that for a sequence (t,,) C R with t,, — oo,

T, — | T.dP(s),
R
where P € P(R). Then

(i) 7 is disjoint from all mizing flows,
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(i1) 7T 1is disjoint from all weakly mizing ELF-flows whenever P is not a
Dirac measure.

PROPOSITION 2 ([9]). Let (gn) be a rigidity sequence for T. Suppose
that f € L*(X,p), f = ¢ > 0 and {y f(z)du(z) = d < oo. Put fo =
f — d. Moreover, suppose that the sequence (féq")) is bounded in L*(X, i)
and (féq"))*,u — P weakly in P(R). Then

(T)aq, — | (TF) -1 dP(2).
R
From the above propositions we obtain the following.
COROLLARY 1 ([9]). Under the assumptions of Proposition 2 suppose

additionally that T is weakly mizing and that the limit measure P is not a
Dirac measure. Then the special flow T7 is disjoint from all ELF-flows.

Recall also that if (g,) is a rigidity time for 7" and ( (gq”))*p — P with

P continuous then the special flow T7 is weakly mixing (see [21]).
We will need some disjointness results concerning flows having integral
Markov operators in the weak closure of their time ¢ automorphisms, ¢ € R.

LEMMA 2. Let T = (T})ier and S = (St)ier be R-actions on (X, B, i)
and (Y,C,v) respectively. Assume additionally that T is weakly mizing and
S is ergodic. Moreover, suppose that for a sequence (t,,) C R with t,, — oo,

T,, - \TidP(t) and S, — |5, dQ(2).
R R
If P # Q) then the flows T and S are disjoint in the sense of Furstenberg.

Proof. Let J : L?>(X,B,u) — L?(Y,C,v) be the Markov operator corre-
sponding to an ergodic joining between 7 and S. Thus

(6) JoTy=S80J forallteR.
By taking t = t,, and passing to the limits we obtain

Jo | TapP(t) = (SStdQ(t)) o J.
R R

Hence from (6) we have
(7) | JoTiaP(t) =\ 7o T, dQ(t).
R R
Suppose that J # {. Denote by P’ and @’ the images via the (continuous)
mapping
(8) t— JoT;
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of the measures P and () respectively. We obtain

\JomdP(ty= | @dP'/(o),

R Je(S,T)
{JoTidQt)y= | ®dQ'(®).
R Je(8,T)

In view of (7) and from the uniqueness of the ergodic decomposition we have
P’ = @'. Now using weak mixing of 7, we conclude that the continuous map
(8) is an injection, so (by the Suslin theorem) P = @. The result follows. =

LEMMA 3. Under the assumptions of Lemma 2, if P # 69 and Q = o,
then the flows T and S are spectrally disjoint.

Proof. Assume that the (reduced) maximal spectral types oy, and oy, of
T and S are not mutually singular. Then there exists a probability measure
o such that 0 < oy, and 0 < oyg. We have 0 = o7y, = 04 v for some
functions f € LE(X, B, u) and g € L3(Y,C,v) and | f| = ||g]| = 1. From the
assumptions we obtain

(tn) = (T, f. f) = \(Tuf. ) dP(t

o=

(tn) = (St,9.9) — Sstgg ) ddo(t) = [lg||* =

A convexity argument shows 1mmed1ately that (T.f, f) =1 for P-a.e. t € R.
Now the equality in the Schwarz inequality and the weak mixing of 7 yield
f=0.m

REMARK 1. Note that the proof of Corollary 5.2 from [9] gives rise to
the following: If for flows 7 = (T})ier, S = (St)ter, one of which is weakly
mixing, we have

T, =\ T dP(t), S, — S dQ(t)

for some t,, — 00, P # @ and P and @ have compact supports then 7 and
S are spectrally disjoint.
Indeed, otherwise, as in the proof of the above lemma, we obtain

&(tn) — \(Tif. ) dP(t) = {(Sig, g) dQ(t).
R R
But

\(Tof, ) dP(t) = | P(s) dogu (5) = | P(s) do(s)

R R R
and hence {, P P(s)do(s) = (& Q(s) do(s). Moreover, we can repeat the same
reasoning for each probability measure n < ¢ and therefore P( ) = @(s)
for o-a.e. s € R. Since P and ) have compact supports, P and Q have
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~

analytic extensions to the whole complex plane. Since o is continuous, P = @
everywhere, and hence P = Q).

Finally, notice that the set of integral Markov operators is closed under
the weak convergence of measures: if P,, converges weakly to P in P(R) then
(9) \ T dP.(t) — | T dP(2).

R R
Indeed, we only need to check that for each f,g € L?(X, B, ),

<< S Tthn<t))f,g> = (11, 9) dPu (1)
= \(@if.g)ap®) = ((§ 74P ) £.9).
R

R

which is immediate as the function R 5 ¢ — (T}f,g) is continuous and
bounded.

2. Analytic special flows disjoint from the ELF-class

2.1. Generic method. Let f : [0,1) — R be a real-analytic function.
Consider its Fourier expansion
o0
Z bneQﬂinx

n=—oo

where b, = o(Al") for some 0 < A < 1, n € Z. We additionally require that
{f =0 (bp = 0) and that #{n € Z : b, # 0} = oo (so that f is not a
trigonometric polynomial).

LEMMA 4. There exists an infinite sequence (g,) such that by, # 0 and

b
S 0N
n—oo |bqn| + ’qun| + -

Proof. Choose ¢ > 1 and §1 > 0 so that

:1.

gy | [bs]
(10) Y >0; and Ve

for all s > ¢y.
Then

i A A
Z |bZQ1| < ZA 6y = 51Aq1 —Aa = <| Q1‘ — Aa

Now choose Q@ > q and (52 > 0 so that (10) holds with g2 instead of ¢; and
09 instead of d1. It follows that we can choose an increasing sequence (gy,)

for which 00 A
; [bign | < 1bg. | T4 = 0(1bg.l),

and the proof is complete. m
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For a fixed integer ¢ > 1 consider now a 1/g-periodic function f; : [0,1) —
R given by

1 -1
fo(2) :f(:c)+f<x+ 5) +~-+f<:c+ qT)'
By the Koksma inequality, f;, — 0 uniformly as ¢ — oo, in particular

(fg)sp — b0 as g — oo.

Moreover,

[ee]
fq(x) —q Z blq627riqu'
l=—o00
We will consider functions of the form sf, for some positive integer s.
We have

5fy(7) = 5q2Re(bye*™ %) + 5q2 Re(bog€®™ 9% + by, e*™39% 4 ...,

Since by — 0 exponentially fast, gb, — 0 as ¢ — oo. Hence g, by, — 0, where
(gn) is the sequence from Lemma 4. We now select a sequence (s,,) of natural
numbers so that

(11) Snqnlbg,| — 1 asn — oo.
It follows from (11) and Lemma 4 that
(12) Snqn(|b2g,| + |b3g,| +---) =0 asn — oo.

PROPOSITION 3. The sequence of distributions (spfy,)«it converges
weakly to o, where o is an absolutely continuous measure on [—2,2]. Fur-
thermore

[snfanllc(oy) <3 forn = mne.
Proof. Since |spgnbg,| — 1 as n — oo, the sequence of distributions
(8nGnbq, €™%) i tends to Lebesgue measure on T. It follows that

(2Re(snqnby, €¥™ %)) — &, where & is the image of Lebesgue measure
from T via the map z — 2Re z. In view of (12),

(13)  2Re(snqnbag, €™ 27" + s,qnbsg, €™ +...) -0  asn — oo

uniformly, so the corresponding sequence of distributions converges to the
Dirac measure d. In particular s, f;, and 2 Re(s,qnb,, €2™4"%) have the same
limit distributions as their difference tends to zero in measure. Therefore
(Snfq )+t — 0. The uniform bound of s,, f;, is obvious from (13) and (11). =

In view of Lemma 1 the set of a’s for which |a — p,/qn| < r(g,) for
infinitely many n’s, where r(g,) = o(|b,,|?) and p,/q, are the convergents
of a, is residual. For an irrational « in this set, (s,q,) is a rigidity time for
Tz = x + a. Moreover, for some infinite subsequence (ny) we get

(14) | Sy fan,, () = FEmEm) ()] = 0 as k — oo
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uniformly in = € [0,1). Indeed (to simplify notation we write ¢ and s instead
of gn, and s,, respectively),

fyle) = @) = 3 ([f(w) +f(:c+ é) +'“+f<“ %ﬂ

—[fx+ (G —Dga) + f(z+ (j — 1)ga + a)

++f(x—|—(]—1)q06+(q_1)a)])

Given 1 < j<sand 0 <k <q-—1, forsomeie {(j —1)g,...,j5¢ — 1} we
have k/q = ip/q (mod 1) and then

k ) )
‘f(w + 5) — flx+ia)| < [[f'lleqoay) @ <N Neqoysar(a).

p

- -«
q
Now in view of (11),

s r\q
5650 = 1) < sall ooy (@) = L7 ooy (salba) 713 — 0
q
as ¢ — 0o, which completes the proof of (14).
Thus we have proved the following.

PROPOSITION 4. There exists a residual subset of [0,1) such that when-
ever an irrational « belongs to this set there exists a sequence (q,) (a sub-
sequence of denominators of ) such that for some sequence (sy), (Spqn) s
a rigidity time for T, the sequence of distributions (f(an"))*u tends to
an absolutely continuous measure on [—2,2] and the sequence of norms
(||f(5"‘1")||0([071))) is bounded. w

Take now the function f: f +d for some d so that f> 0. Then fo =f
and f (with the sequence (s,qy),) satisfies the assumptions of Corollary 1.

2.2. The a.a.c.c.p. (“almost analytic cocycle construction procedure”).
First, we briefly recall the a.a.c.c.p. from [17], with a small modification
for the purpose of this paper (see Remark 2 below).

The aim of an a.a.c.c.p. is to construct a (non-trivial) cocycle of the form
© =Y 12 ¢k, where @’s are step-cocycles which are coboundaries and ¢ is
cohomologous to some analytic cocycle f.

We are given a collection of the following parameters: a sequence (M},)
C N and an array ((dg1, ..., dkm,))k>1 with di; € R such that for each £,

My,
(15) S = 0
=1
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and
k—1 9
(16) My = 2( Y D)
=1

where Dy = maxj<i<nm, |dii|. Then we choose a sequence (e) C Ry such
that > po ) /Exr Mi < 00, > pe 16k < 1 and e < 1/D3 for k=1,2,.... The
last needed parameter is a real number A > 1.

Having collected the above parameters, we say that the a.a.c.c.p. is re-

alized over an irrational number a = [0; a1, aq,...] if there exists a strictly
increasing sequence (ny) C N satisfying

Dy M, 1
(17) ANk TRk < =,

2ny+1492n;, 2
where N}, is the degree of a real trigonometric polynomial

Ny
Pk(t) — Z bgk)e%m’st
=Ny

such that S[l) Pi(t)dt =1, P, > 0, and Py(t) < ej for t € (n;/2,1) (notice that

|b§’“)| < ||Px|lzr = 1), where the n’s satisfy 4Myni < €/qon, - Furthermore,
we require that agp, +1 > 2 and 1/a2n, +1¢2n, < %ﬁk-

Now we can define a cocycle ¢ = > 77| ¢ in the following way. In the
interval I, = [0, {a2n,+1¢2n,}) we will choose pairwise disjoint intervals
Wk, - - -, Wk, of the same length A\, € (n, 2my;) such that each wy; consists
of ez > 3 (odd) consecutive subintervals JF. For i = 1,..., My — 1 the
interval wy, ;41 follows wy,; in the natural ordering of [0, 1) and, in general, they
are separated by a certain number of consecutive subintervals J]’-“. Denoting

by Jsk,m, the central subinterval in wy; define

pr(z) = o

dii for x € J¥ 1=1,..., My,
0 otherwise.

Since I, 1 C Jf, the ¢p’s have disjoint supports and ¢ = Zzozl g is well
defined.

REMARK 2. In comparison with [17] we slightly reduced the number of
conditions imposed on a.a.c.c.p. (for example (8) in [17]| follows from (7)
and (10) there, ||Pgl|r = 1), however we added a new condition (16). In
what follows we will still add some extra conditions on M} and d;. It is
however clear that the argument contained in the proof of Proposition 1 in
[17] persists, and the set of a’s over which an a.a.c.c.p. (in the sense of the
present paper) is realized is a G5 and dense subset of [0,1). Recall that the
argument used in [17] was a simple observation that the a.a.c.c.p. can be
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carried out over an a = [0;ay, ag, ...| whenever for a subsequence (nj) the
aon,+1’s are sufficiently large. This also says that we can find an « for which
we can require the agy,, +1’s to have a special form (for example be multiples

of My, etc.)

REMARK 3. Assume that an a.a.c.c.p. with an array (dy;) is realized
over an irrational . We now take another a.a.c.c.p. which has the same
sequences of parameters except for an array (dy;) which is now (dj;). Then
the second a.a.c.c.p. is realized over the same « provided that D} < Dy,
k > 1. In other words, to define o we need the sequence (Djy) rather than
the sequence ((dg1, ..., dkm,))-

Moreover, the following theorem holds true.

THEOREM 1 ([17]). Suppose that for an irrational o an a.a.c.c.p. is re-
alized. Then there exists an analytic cocycle f : [0,1) — R which is a-
cohomologous to .

REMARK 4. In the proof of Theorem 1 in [17] an explicit form of the
analytic cocycle f (cohomologous to ¢) has been given. Namely

fe’e) My,
(18) F) = I > dy Pt — myrar),
k=1 r=1

where my, is determined by Jfk o= T™#r JF. Recall that I}, = |JF|. Thus the
Fourier expansion of f is given by

oo M,
19 fO= 3 (X MO dyeteiome) i

s=—00  {k:|s|<Ni} r=1

This allows us to show (see the lemma below) that the analytic functions
f obtained from the a.a.c.c.p. enjoy a universal bound which depends only
on A>1.

LEMMA 5. For each f given by (18), |f(t)| < 2/(A —1) for eacht€|0,1).
Proof. From (19), (2) and (17), for s # 0 we have

M,
‘f;’ = ‘ Z lkbgk) Z dkref%rism,wa
r=1

{k:|s|<Nk}

1
ok =

< Z lkMka
{k:[sI< Ny} =t

|<Z|fs|—2ZA5: A_1

S§=—00

Thus
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We will also need the following property of the a.a.c.c.p.

LEMMA 6 ([17]). For an arbitrary a.a.c.c.p., an arbitrary o over which
it is realized and for any k, the cocycle ¢ is constant on each interval T*(Iy),
i=1,...,qm, — 1. Moreover, if we put by, ; = ¢|T*(I}) then

q2nk_1
> b =0
=1

Now, we will carry out an a.a.c.c.p., selecting the parameters so that
the sequence of distributions (gp(bkqu))* w tends to a continuous measure on
[—1, 1], where (brqan, ) is a certain rigidity time for 7.

Fix an arbitrary probability continuous measure v on [—1, 1]. We will put
some extra conditions on My, dg;:

My,
(21) Mt Zédki — v weakly in P([—1,1]) as k — oo,
i=1

in particular (from (21))
(22) My — oo as k — oc.
Let « be an irrational over which the a.a.c.c.p. is carried out. We require
additionally that as,,+1 is a multiple of M}, more precisely
(23) a/2nk+1 = Mkbk,
where by, is odd, k > 1.
We now define ¢y’s by putting

b 1
Skﬂ':(i—l)bk—i- k;_ s i=1,..., M,

and then defining
gok(x):dki ifoJk 1=1,..., Mg,

Sk,i’

and 0 elsewhere (notice that bgly is of order

A2n;+1 ) 1 _ 1
My agng41@2n,  Midon,
while 7, is at most of order e;/Myqop,, so the intervals wgi,...,wkr, are
disjoint).
Set & = ‘](kj—l)bk+1 U---u J]’-“bk, j=1,..., M (that is, &, ..., &, are

consecutive intervals of equal length byl) partitioning Ij).

Consider now the union
Qan

U TS*Qan(bk"’l)/ng = Uk;, j=1,..., M.

s=1
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We obtain
(24) B () g weUny, j=1,..., My

Recall that 5, = [0, 1)\ %% 71, and from (3) and (22),
(25) (X)) — 0 ask— oo.

Observe that <p( Kazne) 0 on the complement of the set U 1 Uk, which

has the same measure as Y.
(bkank)
(9014; )

Consider now the sequence of distributions

that (¢ (bkq%’“))*u — v as k — oo. Indeed, observe that

. We will show

My,
br.g2n
(90;(c by = > Uk j)da,, + 1(Zk)do,
j=1
where p(Uy ;) = (1 — u(Xy))/ M. Now using (25) and (21) we get

(b ) 1 — pu(Xy) My
q2n - k
(¢4, ) o = M, Z Ody; + 1(Xk)do — v as k — oo.

j=1
So we have constructed a cocycle ¢ = »"77 ¢ for which the sequence
of distributions (ap; w4z "’“))*u converges weakly to v.

We will now show that
(26)  pu({w e [0,1): o (@) # O (@)}) - 0 as k — oo
Indeed, putting wy = brqop, we get

wk) Z (p(wk)

Notice that the support of Zizk 41 i 1s contained in Iy C J{“, therefore it
follows from (2) and (22) that

,u({x €[0,1) Z golw" }) < lkbrqan, <

i>k+1

—0 ask— oo.
a2nk+1

On the other hand, Zf:ll @; is zero on Iy, which combined with Lemma 6
implies

(27) u({xe[m):kil (@) £ 0}) < pu(Z) +M(UUT8 b1
=1 s=0

hence

({xGOl Zap(w’“ })—>0 as k — oo.
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Thus (26) follows. We hence proved that

(go(b’“q%k))*u —v ask— co.
Clearly

bk a9 1 1
1bkGan, | < <

< — 0
q2n),+1 My a2n,+192n,

so (bkqon,) is a rigidity sequence for Tx = z + «. For all assumptions of
Corollary 1 to be satisfied we need to check that (||o(*¥)| 2) is bounded.

Notice that since |¢;] < 1 for each i € N and the ¢;’s have disjoint
supports, we have

(28) | >«
+

We have

) (a (Z%)“‘”“ J e+ (X e) ).

i>k+1

From the construction it follows that
|g0,(€w’“)(x)| <1 forall zel0,1).

Taking into account (28) and the facts that supp(}_;~;.1 i) C Ix+1 and
that card({z,z + «, ..., 2 + (wp — 1)a} N I;41) < 1 for all z € [0, 1), we get

I3 )™

i>k+1

<1
oo
Consider (Zk__l ©i)(@r). Notice that because of (15), given 7 > 1 and z €

[0,1), we have |<p(n)( )| < Z ~1 |dij| < D;M; for all n > 0. Hence in view of
(27), (3) and (16), we obtain

Bl o) k-1 12
R0 = (Ean) (ol £ o)
i=1 i=1
< (ZDZMZ> (M k) +M< Ul Tsjfznkﬂ—bkﬂ))lﬂ
Zzill - 1/2
= (;D1M1> A2 41 a2nk+1>
k-1 5
§( 1DZMZ),/ st

.
Il

We have obtained a zero mean cocycle ¢ : [0,1) — R with |p| < 1 satis-
fying (go(bk”"k))*u — v, where (bgqan, ) is a rigidity time for the rotation T’
and moreover (||¢®%7)|;2) is bounded. Moreover, from Theorem 1 such a
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cocycle is cohomologous to some real-analytic function f. Since {pdp =0,
we have { f du = 0. Let d > 0 be such that ¢ = p+d > Oandf:f+d> 0.
Then {@dy = d and Sfd,u = d. Note that ¢ = ¢ — { @ = ¢ and similarly
Jfo=1T.

Thus we have proved the following.

COROLLARY 2. The special flow T% built from the rotation T and the
roof function ¢ is disjoint from all ELF-flows.

~ Since fand @ are cohomologous, T/ and T? are isomorphic. In particular
T7 is disjoint from an arbitrary ELF-flow.

3. Analytic flows on the torus which are disjoint in the sense
of Furstenberg from all ELF-flows. In Section 2 we have presented two

different methods to obtain a special flow T/ with an analytic roof function f
and over an irrational rotation 7', which is disjoint in the sense of Furstenberg
from an arbitrary ELF-flow. We will now show that whenever d > 7/(A — 1)

then T/ (f = f + d) is a natural special representation of some flow 7 =
(T})ter on the torus [0,1)? given by

Ti(w,y) = ((1), (1))
where (x(t),y(t)) is the only solution of the system of differential equations

d_:z:_ o
dt  F(z,y)’
dt ~ F(ay)

Here F : [0,1)?2 — R, is analytic and (2(0),%(0)) = (z,y) and the function
F will be precisely defined by (30) below. Recall first some facts concerning
flows arising from (29) (see [2, Chapter 16| for details).

Let us assume that the function F' in (29) is smooth. Notice that from
the Liouville theorem, the flow 7 preserves the measure F(z,y)dzdy. Fur-
thermore 7 is ergodic since it arises from a change of time of the linear flow
which is ergodic. Moreover, the following holds.

PROPOSITION 5 ([2]). The flow T = (Ti)ier corresponding to the system
(29) is isomorphic to the special flow T", where
1
h(z) = SF(QZ + sa, s) ds.
0
Conversely, having a special flow 7", where h is smooth, we can find a
smooth function F : [0,1)? — R such that 7" is isomorphic to 7 = (T})cr
coming from (29).
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Assume now that h(z) = Zﬁ_wﬁke%“m is analytic and S(l)hd,u =
ho > (m/2) 3 20 |k, then as shown in [2, proof of Lemma 1, p. 435] the
function F' given by

2 ls) =~ omi
(30) Fz,y) = o+ Z 277:11526:1—# - B e2milsz+lsy)
€

s#0

where [ is the integer nearest to —sa, is analytic. Observe that

2mi(sa + 1) T
(31) e2mi(satls) _ < 9
and hence
A~ ~ ~ 7T ~
(32) F(r,y) > Foo— ) |Fril > ho— 5 [hs| > 0.
(k,1)#(0,0) s#0

We end up this section by the observation that there exists a universal
d (depending only on A > 1) such that all functions f obtained from the
a.a.c.c.p. (and given by (18)) satisfy

(33) > 23 Il
s#0

Indeed, from the proof of Lemma 5 it follows that whenever d > 7 /(A — 1)
then for each f given by (18) the inequality (33) holds.

4. An uncountable family of analytic flows. Put £ = {0,1}". In
this section we will construct an uncountable family of cocycles {¢:}-cp so
that for some equivalence relation ~ C E x E the corresponding special
flows over an irrational rotation Tz = z + « are disjoint whenever & £ ¢’
and isomorphic whenever € ~ &’.

Define now a cocycle ¢, in the following way. Given € = (&;);>1 € E put

o0
SOE = Z 6@'7
i=1

where @; = €;p; and for €; = 1 we carry out the ith step of the a.a.c.c.p. from
Subsection 2.2. The uncountable family of a.a.c.c.p.’s is now realized over
a common « (indeed, recall that in view of Remark 3 we can replace some

of the di;’s by 0 and the a.a.c.c.p. will be realized over the same «). Using
~( kq2nk)

similar arguments to those proving (26) we get u({z € [0,1) : ¢, (@) #
%) (:01) 0 as k — oo. Therefore

(wébqunk))*u —v ask—oo, ke{ig =1}
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if #{i:e;, =1} = 00, and

(cpgbk@n’“))*u —d0) ask—oo, ke{i:g =0}

if #{i:e; =0} =o0.
Define ~ C E x E by putting

/ / .
€ ~¢& whenever ¢; =¢; for i large enough.

Assume now that € ¢ €. So we can assume that the set {i > 1: ¢, =1,
el =0} is infinite. Take a positive d so that ¢, = ¢ +d > 0 and ¢ =
Yo +d > 0. In view of Proposition 2,

(T@)dbk%nk - S (T@)_t dv(t), (T@,)dbkthnk - S (T@,)—t ddo(t),
R R
when e =1, ¢}, = 0 and k — 0.
By Lemma 3 the special flows (Egs)teR and (T, )ser are spectrally dis-
joint, hence they are disjoint in the sense of Furstenberg. Note that if € ~ &’

then ¢, and ¢, are cohomologous and hence the corresponding special flows
are isomorphic.

REMARK 5. Now, the argument used to prove (33) and the fact that
|| <1 imply that whenever d > max (1,7/(A — 1)),

T
pe+d>0 and d> > [(f)S]
s#0
for each € € E. Notice that the second inequality immediately implies that
fe +d >0 for each ¢ € E.

Put now ﬁ = f.+d and f;/ = f.+d and observe that the corresponding
special flows also have the property that they are isomorphic if € ~ ¢’ and
disjoint (even spectrally disjoint) if € # &’

REMARK 6. In view of Section 3 and Remark 5 for every (analytic)
function f. = f. + d we obtain an analytic function F. : [0,1)? — R, such

that the special flow T/ and the flow T coming from (29) are isomorphic.
Remembering that the function F; is given by (30) we deduce that for all
e€eF,

s

On the other hand, from (30) and (31) we get, for all (z,y) € [0,1)? and for
alle € E,

(35) |Fe(z,y)| < 2d.

From now on we fix d > max (1,7/(A —1)).
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REMARK 7. Observe that the family {77 : ¢ € E} of analytic flows on
[0,1)? obtained as above has the property that 7%= and 7%« are isomorphic
whenever ¢ ~ ¢/, and disjoint (in fact, spectrally disjoint) for ¢ % &'.

5. Non-existence of a countable set of Borel invariants in the
class of flows on R?/Z2. The aim of this section is to show that a conse-
quence of the results from the previous section is that it is not possible to
find a countable complete set of Borel invariants for the measure-theoretic
classification in the class of flows coming from (29). Such flows in general do
not preserve Lebesgue measure, but they are non-singular with respect to
it. Therefore we first recall some basic facts about topology of non-singular
flows.

For a standard probability Borel space (X, B,\) (we assume that X is
a compact space with a metric ) consider the space jfx\u/t(X ,B, ) of all

invertible non-singular automorphisms on X, i.e. S € Aut(X,B,\) if S is
invertible, bimeasurable and the measures A and Ag are equivalent, where
As(A) = A(SA) for every Borel set A C X.
We now define a Polish topology in Aut(X, B, ) (see [23] for details).
For S € m(X, B, \) define
(36) ﬁsf:%fos, feL'(X,B,\).

We then observe that Ug belongs to the set Iso(L' (X, A)) of invertible isome-
tries of L'(X, B, \). Then by the Lamperti theorem the map

(37) Awt(X,B,\) > S — Ug € Iso(LY(X, \))

is injective. On Iso(L'(X,\)) we consider the strong operator topology.

We endow jfk\lfc(X, B,\) with a topology which makes the map (37)
a homeomorphism. This topology is metrisable with a (complete) metric
given by

d(57 T) = ZQ_n(Hﬁan - ﬁTanl + ||(75'_1fn - ﬁT—lfnnl)’
n=1

where {f/},>1 is a dense family in L'(X, B, \) and f, = f,/|| f}]]-

REMARK 8. Assume that S preserves the measure F'd\, where F' : X —
R is measurable and in L'(\). Observe that this is equivalent to

(38) FoSd\g = FdA.
Indeed, putting u = F'd\ we have

w(A) = u(SA) = | Fdx={xa0S™' - Fdr={FoSds.
SA X A
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It follows that in the continuous case to show the convergence in the metric
d it is enough to show the uniform convergence of both: automorphisms and
densities. Indeed, assume that F,, — F > 0, F},, F' continuous and S,, — 5,
S 1 — S~1 (uniformly) and that for each n € N, S,, preserves the measure
F,dX (which by (38) is equivalent to the condition d\g,, /d\ = F,,/F, 0 S,).
Then F,,/F,, o S, — F/F o S uniformly and hence d(S,,,S) — 0, as n — oo.

Put now X = [0,1)2, B = B([0,1)?) and let ) stand for Lebesgue measure
on [0,1)2. Denote by N'F([0,1)2, \) the space of all flows non-singular with
respect to A, that is, for each flow 7 = (T});er € NF([0,1)%,)) and all
t € R, we have T} € m([O,I)Q,B([O, 1)2),\). Moreover, we require that
the unitary representation ¢ — ﬁTt given by (7th = \/dAg,/d\ - f o Ty,
f € L?([0,1)%,)), is strongly continuous. The space N'F([0,1)2, \) with the
metric

D(T,S) = sup d(T3, St)
te[0,1]
becomes a Polish space (see [26] for the measure preserving case).

Consider now the subspace N F'([0,1)%,A) ¢ NF(]0,1)2,)) of all flows
arising from the systems of differential equations of the form (29) where
F € CY([0,1)?). Denote by NF“([0,1)%,\) the space (contained in
NF'([0,1)2, X)) of flows arising from (29) with F analytic. On N F'([0,1)% \)
and N F“([0,1)2,\) we consider the restriction of the metric D.

REMARK 9. Observe that each element 75 = (Tf), € NF/([0,1)2,))
preserves a measure equivalent to Lebesgue measure )\, namely F'd\. Hence
using similar arguments to those in Remark 8 we find that the convergence
in this space follows from the uniform convergence of densities and time ¢
automorphisms. In other words, to obtain D(7t TF) — 0 asn — oo it
suffices to show that QF” (z,y) — TF (x,y) uniformly with respect to (,z,v),
t € [-1,1] and that F,(z,y) — F(x,y) uniformly with respect to (x,y).

Recall that « defines the common rotation for the whole family {F.}.cp
obtained in Section 4. Without changing the notation let us go back to
the construction in which we have obtained the family {7 : ¢ € E} of
(analytic) flows on [0, 1)2. Consider the map

E={0,11"5e:2 T e NF2([0,1)2,)).

We equip E = {0,1}" with the product topology (which is metrisable with,
for instance, the product metric dg((zn), (Yn)) = g1 27%|2k — yk|) so that
FE becomes a compact topological space.
Put
A=0(E)={T:cc E}.

The main result of this section is the following.
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THEOREM 2. The set A C NF“([0,1)2,)\) is a Borel subset of
NZF([0,1)2,X). Moreover, if & : A — R> is an arbitrary Borel function such
that (7T) = ¢(S) whenever T € A and S € A are isomorphic, then there
exist spectrally disjoint flows T' € A and S’ € A such that (T') = ¢(S').

From Theorem 2 we immediately get the following.

COROLLARY 3. There does not exist a Borel map & : NF([0,1)%,\) —
R which is constant on the (spectral) isomorphism classes and simultane-
ously takes different values for (spectrally) non-isomorphic arguments.

In other words, it is not possible to find a countable complete set of Borel
invariants in N F([0,1)2, \) for the problem of (spectral) isomorphism.

Proof of Theorem 2. 1t is sufficient to show that

(i) © is continuous (hence A is compact),
(i) if ¢ : A — R* is a Borel function constant on isomorphism classes,
then there exist non-isomorphic flows 7= and 7 < such that $(7 %)
(T F.,
=(77).

First observe that (ii) follows from the 0-1 Kolmogorov law (by consid-
ering properties of ¢ o O).

It remains to show (i). Assume that ¢, — ¢, as n — oo. In view of
Remark 9, to show that D(7F=n T¢) — 0 it is enough to show that

FEn €

(39) T, (wy) — T (2,y)
uniformly with respect to (¢,z,y), t € [-1,1] and that
(40) I, (z,y) — Fe(z,y)

uniformly with respect to (z,y).
To see (40) we will prove the continuity of the map

Esew F.€C(0,1)?).

This can be replaced by a stronger condition that the mapping £ > ¢ —
F. € 11(Z?) is continuous. Furthermore in view of (30) and (31) it is enough
to show the continuity of the map E > ¢ — f. € IY(Z), and this latter
condition is proved in much the same way as Lemma 5.

To prove (39) recall that a differential equation on [0,1)? may be lifted
to an equation on R? simply by periodic extension. For ¢ € E consider then
a differential equation of the form (29), that is,

(a1) =L,

where X = (z,y), I+ : R? - R? and I.(X) = (o/ F.(X), 1/F.(X)).
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Since F; is analytic, it is Lipschitz (with a constant L.), which implies
that 7 is also Lipschitz with the constant

a?+1
(d— 55)
i.e. for all (x,y) € R? and (2/,y') € R,

ITe(z,y) — Te(@, ) lr2 < Lell(2,9) = (2, 4) 122
Then the equation (41) has a solution defined for all ¢ € R, of the form
¢

T (2,y) = (2,) + | Te(z(), y(r)) dr
0

for each (z,y) € R?. Observe that for the flows given by solutions of (41)
and (29) we have

F leal —EF
(42) T () = T (@ 9) oy < T () = T, (2,9) g2,

because EFE =To Tff, where 7 : R? — [0,1)? is the natural quotient map.
Now from the Gronwall inequality it follows that

—2
—F_, sl i L.
(43) T (x,y) = T1= (2, y)llpe < \/012+1<d— _1) | = Furlloe™".

f/s = st

A
Indeed, observe that

ITE (o) = TF (@, 9)lle = || § (T (T (2,9) = (T (2,9))) dr|
0

t
_F/ p—
< VI (T (2,y)) = T (TE (2, 9)) |z2 dr
0

RQ

+ VI (T (2, ) = To(TE (2,y) g2 dr

0
t
< JEolITE (av) ~ T )l dr + /P51
O 1>
t~ F -2
< VLT (0) - T (o)t Vel +1 (1= 2 )R- Pl
0

Hence (43) follows. And from (43) we immediately get (39). m

6. Weak closure of time ¢ automorphisms of an analytic flow.
In this section we will construct a weakly mixing flow T with the following
property:



120 M. Lemanczyk and M. Wysokiriska

(44)  for each P € P(R) the Markov operator {p Tf dP(t) belongs to the
weak closure of {T}” : t € R}.

This flow will be isomorphic to an analytic flow on [0,1)2. By (9) to prove
(44) we only need to consider P running over a dense subset of P(R), for

example measures of the form E?:l B;d,;, where r; € Q, B; € Q4 and
Z]Q:l Bj = 1. Our goal is to construct a flow T satisfying:

(45)  For each M e Ny, seNr; €eQ A € Qy, j = 1,...,M, A :=
Zj]\/il Aj <1, the Markov operator {, Tf dP(t) with

- 1- A
P = ;Ajfsrj + 5 (5S_ﬁ2§\7le Y +0_g)
belongs to the weak closure of the set {TtSZ : t € R}

The construction goes as follows. Consider the set

{((rl,...,rﬂ),(Al,...,AM),S) 1, €Q, Aj € Qy,
M —_—
> A <1,seN,MeN+}.
j=1
Note that this set is countable and denote by (Uy)r>1 a sequence

Uk = ((le, cee ’rﬂkk)’ (Alk; ey Aﬂkk)’ Sk)
-y Agz), 8) of the above set we
), s)} = oo. We need more

in which for each element ((r1,...,75), (A1,
have #{k S N+ U = ((7’1, e ’TM)’ (Al, .. ’A]Tj

notation: Ajx = gj/fir (gjk: fir € Ny), j = 1., My, A, = Y15 Ay,

(1_2{19)/2 = g;{k/f;{k’ g;{k7 fAvk € Ny, my = LCM(flkvafj\Zkkvavk)a
Nji, = min{m € N : |rjp/m| < 1},
< 1}.

We will now carry out an a.a.c.c.p. with extra conditions on the param-
eters; namely, we require that Dy < 1 (see Remark 3) and that

)

2 My g
Sk -4, Zj:l TikAjk

m

Nk:min{mENJr:

1— Ay~

where my = cpmy, ¢ €N, ¢, — 0o and

(47) (kz::l MZ) \/mzk < const.
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Observe that

1— A, ~
NipAre +---+ Ny A+ B(Ng+ s, +1) > 1,

hence mye, — 0 as k — oo (recall that > 72| \/Ef - My < 00). As my, — 00,
we have M — oo. Let a be an irrational over which the a.a.c.c.p. is carried
out. We require additionally that ag,, +1 is a multiple of my, more precisely
a2n,+1 = Myby,

where by, > 1 for all k£ > 1. Recall that

€
(48) My < —2—

Q2nk
so A My, = o(u(Ix)). Denote by &1, ...,&n, the consecutive subintervals of
Iy, of length p(Ix)/my. This means that any such subinterval consists of by
intervals th. We now define ¢y as follows. If exymy > 2/3 we put arbitrary

dy; according to general rules for a.a.c.c.p. Assume now that exmy < 2/3.
Notice that

3 Ek 3 1
49 MMy, < = < —egpu(ly) < — u(ly) = &,
(49) WMes 55 =53 14 k)_mkﬂ( k) = [&il
1t =1,...,mg. Given j = 1,.. .,Mk, in each interval €(A1k+“'+Aj—1 )M tvs
v =1,...,Ajpmy, we choose Nj; consecutive intervals wy; so that the in-

terval |Jwy; is placed “centrally”, i.e. in the middle of E(Arptt A 1 ) mpto-
In the central interval Jsg, C wy; we put the value rj;/Nj;. Analogously

in each interval £ ; ,o=1,...,(1— gk)mk/2, we select “centrally” N,
EMg+v
consecutive intervals wy; and in the central subintervals we put the value

2 M,
Sk = Tx 2og=1 TikAjh
Ni
Finally, in each of § 7 1), o, v =1,..., (1 — Ag)my/2, we select “cen-

trally” si + 1 consecutive wy; on which in the central subintervals we put
—5k/(sk + 1). In order to complete the a.a.c.c.p. we choose wy; arbitrarily
and put di; = 0 for the remaining

Mk e

1-A, ~

ZE{mk<E N A + 5 k(Nk-l-Sk—l-l))—i-l,...,Mk},
=1

which is possible by (49). Notice that Zf\i"l dk; = 0.

Now, we fix U = ((r1,...,737), (A1, ..., A3;), s) and consider only k such
that Uy = U. First notice that myep < 2/3 for sufficiently large such k.
Moreover, ~
maX(Nl, e ’NM’ Ni,s+ 1))\kmk

w(ly)

—
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as k — oo with U, = U (N; = N) by (48). Thus

brgan
(o= () — 3 Ay, +
j=1
as k — oo with U, = U.

Now using similar arguments to those showing (26) and the fact that
mp — 00 as k — 00, we obtain

n({z € 0,1) : @\ (2) # bren) (z)}) — 0

as k — oo. Thus

1-A
— (0 W7 O
2 ( s—2g XiliridA; +0-s)

(@R () — Y Ay, +
j=1
as k — oo with U, = U.

Obviously |¢(x)| < 1 for € [0,1). Take now a constant d such that
© = ¢ +d > 0. Using similar arguments to those in Subsection 2.2 (with
(47) instead of (16)) we will show that along the subsequence (big2n, ) where
keli:U=U=((r,...,rq7), (A1, .., A37),9)}, |pPR2n) || 12 < const.
Indeed, the only thing to notice is that for all x € [0,1) and k € {i : U; =
U= ((7‘1, ce ,7’]\7[), (Al, ey AJ\N/[), 8)},

o (@)

1—A

2<5

. + (5_8
s=125 Yti i A )

M
2
Ol
)3

< max{e+f:e,f€ {|r1],...,\r1\7|, s

1o}

The construction of 7% is complete, and by Proposition 2, (45) has been
proved.
In this way we see that for each k£ > 1 there exists an increasing sequence

(qék)) such that

= const.

— | 1%, dP(t
R

where { P} is a dense subset in P(R).

Now in view of (9) we get (44):

COROLLARY 4. For each measure P € P(R) there exists a sequence
(q,(f)) C N such that

T%

™ | 7%, dP(t).

R
Assume now that d € N. Then we obtain the following.
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COROLLARY 5. For each measure P € P(Z) there exists a sequence
(q,g )) C N such that

510 (P) N
(TH)™ — Y PONTE).
j=—o00
REMARK 10. Recall (see e.g. [15]) that a flow (S¢)ier is called k-weakly
mizing (0 < k < 1) if there exists a sequence (t,) with ¢, — oo such that

St,, — /-@Id—f—(l—/i)s.

By taking P, = %5,71 + %50 + %&L and considering n = ny so that Tfk —
(which is justified by weak mixing of T'?), by Corollary 5, %Id —i—% { belongs
to the weak closure of the set {(T%), : t € R}, i.e. T® is 3-weakly mixing.

This implies mutual singularity of convolutions of maximal spectral type (see
[15], [24], [27]).

However, using a result of O. N. Ageev (see [1]) we can obtain much more.
If T¥ satisfies the assumptions of Corollary 5 then the maximal spectral

type of Tf , denoted by 0.z, is a continuous measure such that the Gaussian
1

system S determined by it has a simple spectrum. In particular, convolutions
of the reduced maximal spectral type of T} ? are mutually singular. Since T} {p is
disjoint from all ELF-automorphisms (see [3]), it is disjoint from all Gaussian
automorphisms. Hence the Gaussian system S has the GAG property, but
it cannot satisfy the Foiag—Stratila theorem (indeed, if a system satisfies the
Foiag-Stratild theorem then it is Gaussian; see [20] for details).
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