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On analyti
 �ows on the torus whi
h aredisjoint from systems of probabilisti
 originbyMariusz Lema«
zyk and Magdalena Wysoki«ska (Toru«)Abstra
t. We des
ribe two methods of obtaining analyti
 �ows on the torus whi
hare disjoint from dynami
al systems indu
ed by some 
lassi
al stationary pro
esses.Introdu
tion. In [9℄ the notion of ELF-�ows has been introdu
ed. These�ows are de�ned as follows: We look at the set of time t automorphisms,
t ∈ R, of an ergodi
 �ow as Markov operators of the underlying L2-spa
e,and the �ow has the ELF property if the 
losure of this set in the weakoperator topology 
onsists of inde
omposable Markov operators. The ELF-property is automati
ally satis�ed for all mixing systems, however in theweak mixing and non-mixing 
ase it seems to be a 
ommon property ofsystems that might be 
alled of probabilisti
 origin. Indeed, already in [9℄it was remarked that Gaussian systems enjoy the ELF-property. Moreover,in the re
ent paper [3℄ it is proved that systems indu
ed by (symmetri
) α-stable pro
esses as well as Poisson suspension �ows are also examples of ELF-systems. This is still generalized in [25℄ be
ause one of the main 
onsequen
esof the developed theory of in�nitely divisible joinings for systems generatedby in�nitely divisible stationary pro
esses is that su
h systems also have theELF-property.It is rather 
lear that the �ow indu
ed by a stationary pro
ess given bya fun
tion of a 
lassi
al stationary pro
ess should also be regarded as oneof probabilisti
 origin. In other words, fa
tors of systems of probabilisti
origin are also of probabilisti
 origin (note that the ELF-property is 
losedunder taking fa
tors). Therefore if we want to exhibit systems di�erent fromELF-�ows, it is natural to require that su
h systems are disjoint (in the senseof Furstenberg [12℄) from the ELF-
lass. We re
all that disjoint systems haveno nontrivial 
ommon fa
tors.2000 Mathemati
s Subje
t Classi�
ation: 37A10, 37C10.Key words and phrases: analyti
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98 M. Lema«
zyk and M. Wysoki«skaIn the series of papers [9℄�[8℄ some 
lasses of smooth �ows on surfa
es areshown to be disjoint from ELF-�ows. However, no smooth �ow appearingin those papers was analyti
. In the present paper we will show how toobtain analyti
 �ows on the torus whi
h are disjoint from the ELF-
lass.Our �rst method is �generi
��we show that given a positive analyti
 fun
tion(whi
h is not a trigonometri
 polynomial) on the 
ir
le, for a generi
 set ofirrational rotations the resulting spe
ial �ows are disjoint from all ELF-�ows.Our analysis is similar to the one of A. Katok (see Theorem 5.7 in [15℄).The se
ond approa
h uses the a.a.
.
.p. method from [17℄. This method hasa pres
ribed set of parameters and, over ea
h irrational α belonging to a
ertain residual subset of [0, 1), it leads to a 
onstru
tion of a real-valuedstep 
o
y
le ϕ whi
h is 
ohomologous to an analyti
 zero mean 
o
y
le.Assuming additionally that ϕ ∈ L2 and ϕ + C > 0 for a 
onstant C, asshown in [9℄, in order to obtain a spe
ial �ow (under ϕ + C) disjoint fromthe ELF-
lass we need two 
onditions to be satis�ed: along a 
ertain rigiditytime (wn) for the irrational rotation by α,(A) the sequen
e of distributions ((ϕ(wn))∗)n≥1 weakly 
onverges to anon-Dira
 measure on R,(B) the sequen
e (‖ϕ(wn)‖L2)n≥1 is bounded.This is the 
ondition (B) whi
h introdu
es a new restri
tion on the set of α'sover whi
h a given a.a.
.
.p. 
an be realized. We argue however that su
h aset of α's is still residual.It should be noti
ed that the approa
h when one deals with limit dis-tributions along a rigidity sequen
e is not an original one. For example the
ondition (A) is satis�ed for analyti
 
onstru
tions of 
o
y
les over irrationalrotations in [28℄ (see also [22℄). Also, 
onvergen
e towards parti
ular distri-butions in
luding Gaussian distributions appears in [4℄. It might be expe
tedthat 
ertain modi�
ations in [28℄ should also give 
ondition (B), and there-fore should also lead to 
onstru
tions of analyti
 spe
ial �ows disjoint fromthe ELF-
lass.Our se
ond approa
h, whi
h uses the a.a.
.
.p. method, will allow usto 
onstru
t an un
ountable family {T Fε}ε∈E of �ows obtained by analyti

hanges of times for the linear �ow on R2/Z2, i.e. T Fε , ε ∈ E, is deter-mined by 



dx

dt
=

α

Fε(x, y)
,

dy

dt
=

1

Fε(x, y)
,

(1)
su
h that ea
h �ow of the family is disjoint from the ELF-
lass. In fa
t,
E = {0, 1}N and on E we 
onsider the equivalen
e relation ∼:

ε ∼ ε′ ⇔ εi = ε′i eventually.



Analyti
 �ows on the torus 99The family {T Fε}ε∈E enjoys additionally the property that T Fε is disjointfrom T Fε′ whenever ε 6∼ ε′. Note that, by the Liouville theorem, ea
h �ow
T Fε preserves a �physi
al� measure, but this measure depends on ε. By 
on-sidering the whole family of su
h �ows as non-singular �ows for the Lebesguemeasure on R2/Z2 we show that the map ε 7→ T Fε is Borel, when
e we arein the situation whi
h �rst appeared in [5℄ (see also e.g. [6℄). Consequently,by [5℄, it is impossible to solve the problem of measure-theoreti
 
lassi�
a-tion of �ows on R2/Z2 preserving a �physi
al� measure by a 
ountable setof Borel invariants (in fa
t, we prove the same result also for the spe
tral
lassi�
ation).By further modi�
ations of the a.a.
.
.p. method we will obtain weaklymixing analyti
 �ows (T f

t )t∈R su
h that for every probability Borel measure
P on R the integral Markov operator T

R
T f

t dP (t) belongs to the weak 
losureof the time t automorphisms T f
t , t ∈ R. In parti
ular, using a result of Ageev([1℄), if we denote by σ the redu
ed maximal spe
tral type of T = T f

1 , thenthe Gaussian automorphism determined by σ will have simple spe
trum andin parti
ular, 
onvolutions of the redu
ed maximal spe
tral type are pairwisesingular (see [15℄, [24℄, [27℄ for similar results on 
onvolutions). Su
h Gaussianautomorphisms are interesting be
ause they have the GAG property whileFoia³�Str til 's theorem fails for them (see [20℄).The authors would like to thank K. Fr¡
zek for useful dis
ussions on thesubje
t, and the referee for numerous remarks, 
omments, suggestions andfor 
orre
ting errors in the original version of the paper.1. Preliminaries. Throughout the paper we will identify R/Z with
[0, 1) (with addition mod 1). Ea
h fun
tion de�ned on [0, 1) will be treated asa 1-periodi
 fun
tion on R. The Lebesgue measure on [0, 1) will be denotedby µ. For the 
omplex 
ir
le {z ∈ C : |z| = 1} we will use the notation T.1.1. Continued fra
tion expansion. We will now re
all some basi
 fa
tsabout the 
ontinued fra
tion expansion of an irrational number. Ea
h α ∈
(0, 1) has a representation as a 
ontinued fra
tion

α = [0; a1, a2, . . . ],where the positive integers an are 
alled the partial quotients of α. Thisexpansion is in�nite whenever α is irrational. Put
q0 = 1, q1 = a1, qn+1 = an+1qn + qn−1,

p0 = 0, p1 = 1, pn+1 = an+1pn + pn−1.The rationals pn/qn are 
alled the 
onvergents of α and the following in-equality holds: ∣∣∣∣α − pn

qn

∣∣∣∣ <
1

qnqn+1



100 M. Lema«
zyk and M. Wysoki«skafor n ≥ 0. Moreover, we have
qn+1‖qnα‖ + qn‖qn+1α‖ = 1,where ‖v‖ = dist(v, Z) for v ∈ R. The fra
tional part of a real number vwill be denoted by {v}. Take now an irrational rotation by α on X = [0, 1),

Tx = x + α. Re
all some fa
ts (
ontained e.g. in [17℄) about the dynami
sof T . Fix n ∈ N even. Then the union of the disjoint Rokhlin towers
ζn = {[0, {qnα}), T [0, {qnα}), . . . , T qn+1−1[0, {qnα})},
ζn = {[{qn+1α}, 1), T [{qn+1α}, 1), . . . , T qn−1[{qn+1α}, 1)}
oin
ides with [0, 1). For a subsequen
e (nk) ⊂ N de�ne

Ik = [0, {a2nk+1q2nk
α}), Jk

t = T (t−1)q2nk [0, {q2nk
α})for t = 1, . . . , a2nk+1. We get

Ik =

a2nk+1⋃

t=1

Jk
t ,and for all t = 1, . . . , a2nk+1,(2) lk := |Jk

t | <
1

a2nk+1q2nk

.Then {Ik, T Ik, . . . , T
q2nk

−1Ik} is a Rokhlin tower and if we put
Σk = [0, 1) \

q2nk
−1⋃

s=0

T sIkthen Σk =
⋃

ζ2nk
∪ ⋃q2nk+1−1

r=q2nk+1−q2nk−1
T rJk

1 , hen
e(3) µ(Σk) = q2nk
‖q2nk+1α‖ + q2nk−1‖q2nk

α‖ < 2/a2nk+1.We will also need the following lemma.Lemma 1 (see e.g. [17℄). Given an in�nite in
reasing sequen
e (qn) ofnatural numbers and a positive real-valued fun
tion r = r(qn), the set
{α ∈ [0, 1) : for in�nitely many n we have |α − pn/qn| < r(qn),and pn/qn are 
onvergents of α}is residual.1.2. The 
lass of �ows with the ELF-property. Consider a measurable�ow S = (St)t∈R, that is, for ea
h t ∈ R, St is an automorphism on astandard probability Borel spa
e (X,B, µ) and the 
orresponding unitaryrepresentation of R on L2(X,B, µ) given by USt(f) = f ◦ St is (weakly)
ontinuous. Depending on the 
ontext, St may denote USt . Assume S tobe ergodi
 and take another ergodi
 �ow R = (Rt)t∈R on (Y, C, ν). Nowwe de�ne a joining of S and R as an arbitrary probability measure ̺ on
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(X × Y,B ⊗ C) whi
h is (St × Rt)t∈R-invariant and whose marginals are µand ν respe
tively. The set of all joinings between S and R will be denotedby J(S,R). In 
ase S = R we write J(S) and speak about self-joinings. Thesubset of ergodi
 joinings will be denoted by Je(S,R) (Je(S) for ergodi
self-joinings).Having a joining ̺ ∈ J(S,R) we de�ne a map Φ̺ : L2(X,B, µ) →
L2(Y, C, ν) su
h that for ea
h f ∈ L2(X,B, µ) and g ∈ L2(Y, C, ν),\

Y

Φ̺(f)g dν =
\

X×Y

f ⊗ g d̺.

Noti
e that we get a Markov operator Φ̺ : L2(X,B, µ) → L2(Y, C, ν), i.e. abounded linear operator satisfying
Φ̺1 = Φ∗

̺1 = 1 and Φ̺f ≥ 0 whenever f ≥ 0.Conversely, having a Markov operator Φ : L2(X,B, µ) → L2(Y, C, ν) we 
anobtain a unique measure on (X × Y,B ⊗ C) whose proje
tions on X and Yare equal to µ and ν respe
tively: indeed, we put
̺(A × B) =

\
B

Φ(χA) dν

for all A ∈ B and B ∈ C. Moreover, the (St × Rt)t∈R-invarian
e of ̺ isequivalent to
Φ ◦ USt = URt ◦ Φ(4)for ea
h t ∈ R. Thus we 
an identify the set of all Markov operators satisfying(4) (denoted by J (S,R)) with the set J(S,R). The set of Markov operators
orresponding to ergodi
 joinings will be denoted by J e(S,R) (su
h Markovoperators are inde
omposable, that is, they are extremal elements of the sim-plex J (S,R)). The notation J (S) and J e(S) is used for self-joinings. Notethat USt ∈ J e(S), t ∈ R. Denote by Tthe Markov operator 
orrespondingto the produ
t measure, i.e. T(f) =

T
X f dµ.Following [12℄, S and R are 
alled disjoint (in the sense of Furstenberg)if J(S,R) = {µ ⊗ ν}.Re
all also (see [13℄) that whenever the maximal spe
tral types σS and σRof the 
orresponding Koopman representations on L2

0(X,B, µ) and
L2

0(Y, C, ν) are mutually singular then S and R are disjoint.Finally, following [9℄, we say that an ergodi
 �ow S = (St)t∈R has theELF-property (brie�y, is an ELF-�ow) if {USt : t ∈ R} ⊂ J e(S) (the 
losurein the weak operator topology).1.3. Spe
ial �ows and ELF-property. Denote by P(R) the spa
e of allBorel probability measures on R. Re
all that a sequen
e (σn) of measures
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onverges weakly in P(R) to a measure σ if for ea
h fun
tion h ∈ CB(R),\
R

h dσn →
\
R

h dσ.Let (X,B, µ) be a standard probability Borel spa
e. Given a measurablefun
tion f : X → R, we denote by f∗µ the image of µ via f , i.e. f∗µ(A) =
µ(f−1(A)) for an arbitrary Borel set A in R.Note that whenever (fk), (gk) are sequen
es of real measurable fun
tionson X satisfying (fk)∗µ → σ as k → ∞ for some σ ∈ P(R) and µ{x ∈ X :
fk(x) 6= gk(x)} → 0 as k → ∞, then (gk)∗µ → σ as k → ∞.Now we re
all basi
 fa
ts 
on
erning spe
ial �ows.Let T be an ergodi
 automorphism of (X,B, µ). We will denote by λLebesgue measure on R. Assume f : X → R to be a measurable positivefun
tion with TX f dµ < ∞.We de�ne an R-a
tion, denoted by T f , on the spa
e (Xf ,Bf , µf ) where

Xf = {(x, t) ∈ X × R : 0 ≤ t < f(x)},
Bf is the restri
tion of B ⊗ B(R) and µf is the restri
tion to Xf of theprodu
t measure µ ⊗ λ of X × R. This a
tion, denoted by T f = ((T f )t)t∈R,will be 
alled the spe
ial �ow built from T and the roof fun
tion f and itis as follows. Ea
h point from Xf moves verti
ally upwards with unit speedand as soon as it rea
hes the graph of f , the point (x, f(x)) is identi�ed with
(Tx, 0) (see e.g. [2, Chapter 11℄). Put

f (k)(x) =





f(x) + f(Tx) + · · · + f(T k−1x) for k > 0,

0 for k = 0,

−(f(T kx) + · · · + f(T−1x)) for k < 0.

(5)
Only fun
tions f satisfying f ≥ c > 0 will be 
onsidered. It follows thatfor a.e. x ∈ X,

f (k)(x) ≥ ck, k ∈ N.Re
all that a sequen
e (qn) is said to be a rigidity time for the auto-morphism T if U qn

T → Id as n → ∞ in the weak (or, equivalently, strong)operator topology.We now re
all some results from [9℄ that will be needed in what follows.Proposition 1 ([9℄). Suppose that T = (Tt)t∈R is an ergodi
 �ow on
(Y, C, ν) su
h that for a sequen
e (tn) ⊂ R with tn → ∞,

Ttn →
\
R

Ts dP (s),where P ∈ P(R). Then(i) T is disjoint from all mixing �ows,
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 �ows on the torus 103(ii) T is disjoint from all weakly mixing ELF-�ows whenever P is not aDira
 measure.Proposition 2 ([9℄). Let (qn) be a rigidity sequen
e for T . Supposethat f ∈ L2(X, µ), f ≥ c > 0 and TX f(x) dµ(x) = d < ∞. Put f0 =

f − d. Moreover , suppose that the sequen
e (f
(qn)
0 ) is bounded in L2(X, µ)and (f

(qn)
0 )∗µ → P weakly in P(R). Then

(T f )dqn
→
\
R

(T f )−t dP (t).From the above propositions we obtain the following.Corollary 1 ([9℄). Under the assumptions of Proposition 2 supposeadditionally that T f is weakly mixing and that the limit measure P is not aDira
 measure. Then the spe
ial �ow T f is disjoint from all ELF-�ows.Re
all also that if (qn) is a rigidity time for T and (f
(qn)
0 )∗µ → P with

P 
ontinuous then the spe
ial �ow T f is weakly mixing (see [21℄).We will need some disjointness results 
on
erning �ows having integralMarkov operators in the weak 
losure of their time t automorphisms, t ∈ R.Lemma 2. Let T = (Tt)t∈R and S = (St)t∈R be R-a
tions on (X,B, µ)and (Y, C, ν) respe
tively. Assume additionally that T is weakly mixing and
S is ergodi
. Moreover , suppose that for a sequen
e (tn) ⊂ R with tn → ∞,

Ttn →
\
R

Tt dP (t) and Stn →
\
R

St dQ(t).If P 6= Q then the �ows T and S are disjoint in the sense of Furstenberg.Proof. Let J : L2(X,B, µ) → L2(Y, C, ν) be the Markov operator 
orre-sponding to an ergodi
 joining between T and S. Thus
J ◦ Tt = St ◦ J for all t ∈ R.(6)By taking t = tn and passing to the limits we obtain

J ◦
\
R

Tt dP (t) =
(\

R

St dQ(t)
)
◦ J.Hen
e from (6) we have\

R

J ◦ Tt dP (t) =
\
R

J ◦ Tt dQ(t).(7)
Suppose that J 6=

T. Denote by P ′ and Q′ the images via the (
ontinuous)mapping
t 7→ J ◦ Tt(8)
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zyk and M. Wysoki«skaof the measures P and Q respe
tively. We obtain\
R

J ◦ Tt dP (t) =
\

J e(S,T )

ΦdP ′(Φ),\
R

J ◦ Tt dQ(t) =
\

J e(S,T )

ΦdQ′(Φ).

In view of (7) and from the uniqueness of the ergodi
 de
omposition we have
P ′ = Q′. Now using weak mixing of T , we 
on
lude that the 
ontinuous map(8) is an inje
tion, so (by the Suslin theorem) P = Q. The result follows.Lemma 3. Under the assumptions of Lemma 2, if P 6= δ0 and Q = δ0,then the �ows T and S are spe
trally disjoint.Proof. Assume that the (redu
ed) maximal spe
tral types σUT

and σUS
of

T and S are not mutually singular. Then there exists a probability measure
σ su
h that σ ≪ σUT

and σ ≪ σUS
. We have σ = σf,UT

= σg,US
for somefun
tions f ∈ L2

0(X,B, µ) and g ∈ L2
0(Y, C, ν) and ‖f‖ = ‖g‖ = 1. From theassumptions we obtain

σ̂(tn) = 〈Ttnf, f〉 →
\
R

〈Ttf, f〉 dP (t),

σ̂(tn) = 〈Stng, g〉 →
\
R

〈Stg, g〉 dδ0(t) = ‖g‖2 = 1.A 
onvexity argument shows immediately that 〈Ttf, f〉 = 1 for P -a.e. t ∈ R.Now the equality in the S
hwarz inequality and the weak mixing of T yield
f = 0.Remark 1. Note that the proof of Corollary 5.2 from [9℄ gives rise tothe following: If for �ows T = (Tt)t∈R, S = (St)t∈R, one of whi
h is weaklymixing, we have

Ttn →
\
Tt dP (t), Stn →

\
St dQ(t)for some tn → ∞, P 6= Q and P and Q have 
ompa
t supports then T and

S are spe
trally disjoint.Indeed, otherwise, as in the proof of the above lemma, we obtain
σ̂(tn) →

\
R

〈Ttf, f〉 dP (t) =
\
R

〈Stg, g〉 dQ(t).But \
R

〈Ttf, f〉 dP (t) =
\
R

P̂ (s) dσf,UT
(s) =

\
R

P̂ (s) dσ(s)

and hen
e T
R

P̂ (s) dσ(s) =
T
R

Q̂(s) dσ(s). Moreover, we 
an repeat the samereasoning for ea
h probability measure η ≪ σ and therefore P̂ (s) = Q̂(s)for σ-a.e. s ∈ R. Sin
e P and Q have 
ompa
t supports, P̂ and Q̂ have
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 extensions to the whole 
omplex plane. Sin
e σ is 
ontinuous, P̂ = Q̂everywhere, and hen
e P = Q.Finally, noti
e that the set of integral Markov operators is 
losed underthe weak 
onvergen
e of measures: if Pn 
onverges weakly to P in P(R) then\
R

Tt dPn(t) →
\
R

Tt dP (t).(9)Indeed, we only need to 
he
k that for ea
h f, g ∈ L2(X,B, µ),
〈(\

R

Tt dPn(t)
)
f, g

〉
=
\
R

〈Ttf, g〉 dPn(t)

→
\
R

〈Ttf, g〉 dP (t) =
〈(\

R

Tt dP (t)
)
f, g

〉
,whi
h is immediate as the fun
tion R ∋ t 7→ 〈Ttf, g〉 is 
ontinuous andbounded.2. Analyti
 spe
ial �ows disjoint from the ELF-
lass2.1. Generi
 method. Let f : [0, 1) → R be a real-analyti
 fun
tion.Consider its Fourier expansion

f(x) =
∞∑

n=−∞

bne2πinx

where bn = o(A|n|) for some 0 < A < 1, n ∈ Z. We additionally require thatT
f = 0 (b0 = 0) and that #{n ∈ Z : bn 6= 0} = ∞ (so that f is not atrigonometri
 polynomial).Lemma 4. There exists an in�nite sequen
e (qn) su
h that bqn 6= 0 and

lim
n→∞

|bqn |
|bqn | + |b2qn | + · · · = 1.Proof. Choose q1 ≥ 1 and δ1 > 0 so that

|bq1 |
Aq1

≥ δ1 and |bs|
As

< δ1 for all s > q1.(10)Then
∞∑

i=2

|biq1 | <
∞∑

i=2

Aiq1δ1 = δ1A
q1

Aq1

1 − Aq1
≤ |bq1 |

Aq1

1 − Aq1
.Now 
hoose q2 > q1 and δ2 > 0 so that (10) holds with q2 instead of q1 and

δ2 instead of δ1. It follows that we 
an 
hoose an in
reasing sequen
e (qn)for whi
h ∞∑

i=2

|biqn | ≤ |bqn |
Aqn

1 − Aqn
= o(|bqn |),and the proof is 
omplete.
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onsider now a 1/q-periodi
 fun
tion fq : [0, 1) →
R given by

fq(x) = f(x) + f

(
x +

1

q

)
+ · · · + f

(
x +

q − 1

q

)
.By the Koksma inequality, fq → 0 uniformly as q → ∞, in parti
ular

(fq)∗µ → δ0 as q → ∞.Moreover,
fq(x) = q

∞∑

l=−∞

blqe
2πilqx.We will 
onsider fun
tions of the form sfq for some positive integer s.We have

sfq(x) = sq2Re(bqe
2πiqx) + sq2Re(b2qe

2πi2qx + b3qe
2πi3qx + · · · ).Sin
e bq → 0 exponentially fast, qbq → 0 as q → ∞. Hen
e qnbqn → 0, where

(qn) is the sequen
e from Lemma 4. We now sele
t a sequen
e (sn) of naturalnumbers so that
snqn|bqn | → 1 as n → ∞.(11)It follows from (11) and Lemma 4 that

snqn(|b2qn | + |b3qn | + · · · ) → 0 as n → ∞.(12)Proposition 3. The sequen
e of distributions (snfqn)∗µ 
onvergesweakly to σ, where σ is an absolutely 
ontinuous measure on [−2, 2]. Fur-thermore
‖snfqn‖C([0,1)) ≤ 3 for n ≥ n0.Proof. Sin
e |snqnbqn | → 1 as n → ∞, the sequen
e of distributions

(snqnbqne2πiqnx)∗µ tends to Lebesgue measure on T. It follows that
(2Re(snqnbqne2πiqnx))∗µ → σ̃, where σ̃ is the image of Lebesgue measurefrom T via the map z 7→ 2Re z. In view of (12),

2Re(snqnb2qne2πi2qnx + snqnb3qne2πi3qnx + · · · ) → 0 as n → ∞(13)uniformly, so the 
orresponding sequen
e of distributions 
onverges to theDira
 measure δ0. In parti
ular snfqn and 2Re(snqnbqne2πiqnx) have the samelimit distributions as their di�eren
e tends to zero in measure. Therefore
(snfqn)∗µ → σ̃. The uniform bound of snfqn is obvious from (13) and (11).In view of Lemma 1 the set of α's for whi
h |α − pn/qn| < r(qn) forin�nitely many n's, where r(qn) = o(|bqn |2) and pn/qn are the 
onvergentsof α, is residual. For an irrational α in this set, (snqn) is a rigidity time for
Tx = x + α. Moreover, for some in�nite subsequen
e (nk) we get

|snk
fqnk

(x) − f (snk
qnk

)(x)| → 0 as k → ∞(14)
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and snk

respe
tively),
sfq(x) − f (sq)(x) =

s∑

j=1

([
f(x) + f

(
x +

1

q

)
+ · · · + f

(
x +

q − 1

q

)]

− [f(x + (j − 1)qα) + f(x + (j − 1)qα + α)

+ · · · + f(x + (j − 1)qα + (q − 1)α)]

)
.Given 1 ≤ j ≤ s and 0 ≤ k ≤ q − 1, for some i ∈ {(j − 1)q, . . . , jq − 1} wehave k/q = ip/q (mod1) and then

∣∣∣∣f
(

x +
k

q

)
− f(x + iα)

∣∣∣ ≤ ‖f ′‖C([0,1)) i

∣∣∣∣
p

q
− α

∣∣∣∣ ≤ ‖f ′‖C([0,1))sqr(q).Now in view of (11),
|sfq(x) − f (sq)(x)| ≤ sq‖f ′‖C([0,1))sqr(q) = ‖f ′‖C([0,1))(sq|bq|)2

r(q)

|bq|2
→ 0as q → ∞, whi
h 
ompletes the proof of (14).Thus we have proved the following.Proposition 4. There exists a residual subset of [0, 1) su
h that when-ever an irrational α belongs to this set there exists a sequen
e (qn) (a sub-sequen
e of denominators of α) su
h that for some sequen
e (sn), (snqn) isa rigidity time for T , the sequen
e of distributions (f (snqn))∗µ tends toan absolutely 
ontinuous measure on [−2, 2] and the sequen
e of norms

(‖f (snqn)‖C([0,1))) is bounded.Take now the fun
tion f̃ = f + d for some d so that f̃ > 0. Then f̃0 = fand f̃ (with the sequen
e (snqn)n) satis�es the assumptions of Corollary 1.2.2. The a.a.
.
.p. (�almost analyti
 
o
y
le 
onstru
tion pro
edure�).First, we brie�y re
all the a.a.
.
.p. from [17℄, with a small modi�
ationfor the purpose of this paper (see Remark 2 below).The aim of an a.a.
.
.p. is to 
onstru
t a (non-trivial) 
o
y
le of the form
ϕ =

∑∞
k=1 ϕk, where ϕk's are step-
o
y
les whi
h are 
oboundaries and ϕ is
ohomologous to some analyti
 
o
y
le f .We are given a 
olle
tion of the following parameters: a sequen
e (Mk)

⊂ N and an array ((dk1, . . . , dkMk
))k≥1 with dki ∈ R su
h that for ea
h k,

Mk∑

i=1

dki = 0(15)



108 M. Lema«
zyk and M. Wysoki«skaand
Mk ≥ 2

( k−1∑

i=1

DiMi

)2(16)where Dk = max1≤i≤Mk
|dki|. Then we 
hoose a sequen
e (εk) ⊂ R+ su
hthat ∑∞

k=1

√
εk Mk < ∞, ∑∞

k=1 εk < 1 and εk < 1/D2
k for k = 1, 2, . . . . Thelast needed parameter is a real number A > 1.Having 
olle
ted the above parameters, we say that the a.a.
.
.p. is re-alized over an irrational number α = [0; a1, a2, . . . ] if there exists a stri
tlyin
reasing sequen
e (nk) ⊂ N satisfying

ANk
DkMk

a2nk+1q2nk

<
1

2k
,(17)where Nk is the degree of a real trigonometri
 polynomial

Pk(t) =

Nk∑

s=−Nk

b(k)
s e2πist

su
h that T10 Pk(t) dt = 1, Pk ≥ 0, and Pk(t) < εk for t ∈ (ηk/2, 1) (noti
e that
|b(k)

s | ≤ ‖Pk‖L1 = 1), where the ηk's satisfy 4Mkηk < εk/q2nk
. Furthermore,we require that a2nk+1 > 2 and 1/a2nk+1q2nk

< 1
2ηk.Now we 
an de�ne a 
o
y
le ϕ =

∑∞
k=1 ϕk in the following way. In theinterval Ik = [0, {a2nk+1q2nk

α}) we will 
hoose pairwise disjoint intervals
ωk1, . . . , ωkMk

of the same length λk ∈ (ηk, 2ηk) su
h that ea
h ωki 
onsistsof ek ≥ 3 (odd) 
onse
utive subintervals Jk
t . For i = 1, . . . , Mk − 1 theinterval ωk,i+1 follows ωki in the natural ordering of [0, 1) and, in general, theyare separated by a 
ertain number of 
onse
utive subintervals Jk

j . Denotingby Jk
sk,i

the 
entral subinterval in ωki de�ne
ϕk(x) =

{
dki for x ∈ Jk

sk,i
, i = 1, . . . , Mk,

0 otherwise.Sin
e Ik+1 ⊂ Jk
1 , the ϕk's have disjoint supports and ϕ =

∑∞
k=1 ϕk is wellde�ned.Remark 2. In 
omparison with [17℄ we slightly redu
ed the number of
onditions imposed on a.a.
.
.p. (for example (8) in [17℄ follows from (7)and (10) there, ‖Pk‖F = 1), however we added a new 
ondition (16). Inwhat follows we will still add some extra 
onditions on Mk and dki. It ishowever 
lear that the argument 
ontained in the proof of Proposition 1 in[17℄ persists, and the set of α's over whi
h an a.a.
.
.p. (in the sense of thepresent paper) is realized is a Gδ and dense subset of [0, 1). Re
all that theargument used in [17℄ was a simple observation that the a.a.
.
.p. 
an be
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arried out over an α = [0; a1, a2, . . . ] whenever for a subsequen
e (nk) the
a2nk+1's are su�
iently large. This also says that we 
an �nd an α for whi
hwe 
an require the a2nk+1's to have a spe
ial form (for example be multiplesof Mk, et
.)Remark 3. Assume that an a.a.
.
.p. with an array (dki) is realizedover an irrational α. We now take another a.a.
.
.p. whi
h has the samesequen
es of parameters ex
ept for an array (dki) whi
h is now (d′ki). Thenthe se
ond a.a.
.
.p. is realized over the same α provided that D′

k ≤ Dk,
k ≥ 1. In other words, to de�ne α we need the sequen
e (Dk) rather thanthe sequen
e ((dk1, . . . , dkMk

)).Moreover, the following theorem holds true.Theorem 1 ([17℄). Suppose that for an irrational α an a.a.
.
.p. is re-alized. Then there exists an analyti
 
o
y
le f : [0, 1) → R whi
h is α-
ohomologous to ϕ.Remark 4. In the proof of Theorem 1 in [17℄ an expli
it form of theanalyti
 
o
y
le f (
ohomologous to ϕ) has been given. Namely
f(t) =

∞∑

k=1

lk

Mk∑

r=1

dkrPk(t − mkrα),(18)where mkr is determined by Jk
sk,r

= TmkrJk
1 . Re
all that lk = |Jk

1 |. Thus theFourier expansion of f is given by
f(t) =

∞∑

s=−∞

( ∑

{k : |s|≤Nk}

b(k)
s lk

Mk∑

r=1

dkre
−2πismkrα

)
e2πist.(19)

This allows us to show (see the lemma below) that the analyti
 fun
tions
f obtained from the a.a.
.
.p. enjoy a universal bound whi
h depends onlyon A > 1.Lemma 5. For ea
h f given by (18), |f(t)| ≤ 2/(A − 1) for ea
h t∈ [0, 1).Proof. From (19), (2) and (17), for s 6= 0 we have

|f̂s| =
∣∣∣

∑

{k : |s|≤Nk}

lkb
(k)
s

Mk∑

r=1

dkre
−2πismkrα

∣∣∣

≤
∑

{k : |s|≤Nk}

lkMkDk
ANk

ANk
≤ 1

A|s|

∞∑

k=1

1

2k
=

1

A|s|
.

Thus
|f(t)| ≤

∞∑

s=−∞

|f̂s| ≤ 2
∞∑

s=1

1

As
=

2

A − 1
.
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.
.p.Lemma 6 ([17℄). For an arbitrary a.a.
.
.p., an arbitrary α over whi
hit is realized and for any k, the 
o
y
le ϕ is 
onstant on ea
h interval T i(Ik),
i = 1, . . . , q2nk

− 1. Moreover , if we put bk,i = ϕ|T i(Ik) then
q2nk

−1∑

i=1

bk,i = 0.Now, we will 
arry out an a.a.
.
.p., sele
ting the parameters so thatthe sequen
e of distributions (ϕ(bkq2nk
))∗µ tends to a 
ontinuous measure on

[−1, 1], where (bkq2nk
) is a 
ertain rigidity time for T .Fix an arbitrary probability 
ontinuous measure ν on [−1, 1]. We will putsome extra 
onditions on Mk, dki:

(20) |dki| ≤ 1, i = 1, . . . , Mk, k ≥ 1;

(21) M−1
k

Mk∑

i=1

δdki
→ ν weakly in P([−1, 1]) as k → ∞,in parti
ular (from (21))
Mk → ∞ as k → ∞.(22)Let α be an irrational over whi
h the a.a.
.
.p. is 
arried out. We requireadditionally that a2nk+1 is a multiple of Mk, more pre
isely

a2nk+1 = Mkbk,(23)where bk is odd, k ≥ 1.We now de�ne ϕk's by putting
sk,i = (i − 1)bk +

bk + 1

2
, i = 1, . . . , Mk,and then de�ning

ϕk(x) = dki if x ∈ Jk
sk,i

, i = 1, . . . , Mk,and 0 elsewhere (noti
e that bklk is of order
a2nk+1

Mk
· 1

a2nk+1q2nk

=
1

Mkq2nkwhile ηk is at most of order εk/Mkq2nk
, so the intervals ωk1, . . . , ωkMk

aredisjoint).Set ξj = Jk
(j−1)bk+1 ∪ · · · ∪ Jk

jbk
, j = 1, . . . , Mk (that is, ξ1, . . . , ξMk

are
onse
utive intervals of equal length bklk partitioning Ik).Consider now the union
q2nk⋃

s=1

T s−q2nk
(bk+1)/2ξj =: Uk,j , j = 1, . . . , Mk.
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ϕ

(bkq2nk
)

k (x) = dkj , x ∈ Uk,j , j = 1, . . . , Mk.(24)Re
all that Σk = [0, 1)\⋃q2nk
−1

s=0 T sIk and from (3) and (22),
µ(Σk) → 0 as k → ∞.(25)Observe that ϕ

(bkq2nk
)

k = 0 on the 
omplement of the set ⋃Mk

j=1 Uk,j whi
hhas the same measure as Σk.Consider now the sequen
e of distributions (ϕ
(bkq2nk

)

k )∗µ. We will showthat (ϕ
(bkq2nk

)

k )∗µ → ν as k → ∞. Indeed, observe that
(ϕ

(bkq2nk
)

k )∗µ =

Mk∑

j=1

µ(Uk,j)δdkj
+ µ(Σk)δ0,where µ(Uk,j) = (1 − µ(Σk))/Mk. Now using (25) and (21) we get

(ϕ
(bkq2nk

)

k )∗µ =
1 − µ(Σk)

Mk

Mk∑

j=1

δdkj
+ µ(Σk)δ0 → ν as k → ∞.So we have 
onstru
ted a 
o
y
le ϕ =

∑∞
k=1 ϕk for whi
h the sequen
eof distributions (ϕ

(bkq2nk
)

k )∗µ 
onverges weakly to ν.We will now show that
µ({x ∈ [0, 1) : ϕ

(bkq2nk
)

k (x) 6= ϕ(bkq2nk
)(x)}) → 0 as k → ∞.(26)Indeed, putting wk = bkq2nk

we get
ϕ(wk)(x) =

∞∑

i=1

ϕ
(wk)
i (x).Noti
e that the support of ∑

i≥k+1 ϕi is 
ontained in Ik+1 ⊂ Jk
1 , therefore itfollows from (2) and (22) that

µ
({

x ∈ [0, 1) :
∑

i≥k+1

ϕ
(wk)
i (x) 6= 0

})
≤ lkbkq2nk

<
bk

a2nk+1
→ 0 as k → ∞.

On the other hand, ∑k−1
i=1 ϕi is zero on Ik, whi
h 
ombined with Lemma 6implies

µ
({

x∈ [0, 1) :

k−1∑

i=1

ϕ
(wk)
i (x) 6= 0

})
≤ µ(Σk)+µ

( wk−1⋃

s=0

T sJk
a2nk+1−bk+1

)
,(27)hen
e

µ
({

x ∈ [0, 1) :

k−1∑

i=1

ϕ
(wk)
i (x) 6= 0

})
→ 0 as k → ∞.
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e proved that
(ϕ(bkq2nk

))∗µ → ν as k → ∞.Clearly
‖bkq2nk

α‖ ≤ bk

q2nk+1
≤ a2nk+1

Mk
· 1

a2nk+1q2nk

→ 0so (bkq2nk
) is a rigidity sequen
e for Tx = x + α. For all assumptions ofCorollary 1 to be satis�ed we need to 
he
k that (‖ϕ(wk)‖L2)k is bounded.Noti
e that sin
e |ϕi| ≤ 1 for ea
h i ∈ N and the ϕi's have disjointsupports, we have(28) ∥∥∥

∑

i≥k+1

ϕi

∥∥∥
∞

≤ 1.We have
ϕ(wk)(x) =

( k−1∑

i=1

ϕi

)(wk)
(x) + ϕ

(wk)
k (x) +

( ∑

i≥k+1

ϕi

)(wk)
(x).From the 
onstru
tion it follows that

|ϕ(wk)
k (x)| ≤ 1 for all x ∈ [0, 1).Taking into a

ount (28) and the fa
ts that supp(

∑
i≥k+1 ϕi) ⊂ Ik+1 andthat card({x, x + α, . . . , x + (wk − 1)α} ∩ Ik+1) ≤ 1 for all x ∈ [0, 1), we get

∥∥∥
( ∑

i≥k+1

ϕi

)(wk)∥∥∥
∞

≤ 1.

Consider (
∑k−1

i=1 ϕi)
(wk). Noti
e that be
ause of (15), given i ≥ 1 and x ∈

[0, 1), we have |ϕ(n)
i (x)| ≤ ∑Mi

j=1 |dij| ≤ DiMi for all n ≥ 0. Hen
e in view of(27), (3) and (16), we obtain
∥∥∥
( k−1∑

i=1

ϕi

)(wk)∥∥∥
L2

≤
( k−1∑

i=1

DiMi

)
·
(
µ
({

x ∈ [0, 1) :
k−1∑

i=1

ϕ
(wk)
i (x) 6= 0

}))1/2

≤
( k−1∑

i=1

DiMi

)
·
(
µ(Σk) + µ

( wk−1⋃

s=0

T sJk
a2nk+1−bk+1

))1/2

≤
( k−1∑

i=1

DiMi

)
·
(

2

a2nk+1
+

bk

a2nk+1

)1/2

≤
( k−1∑

i=1

DiMi

)√
2

Mk
≤ 1.We have obtained a zero mean 
o
y
le ϕ : [0, 1) → R with |ϕ| ≤ 1 satis-fying (ϕ(bkq2nk

))∗µ → ν, where (bkq2nk
) is a rigidity time for the rotation Tand moreover (‖ϕ(bkq2nk

)‖L2) is bounded. Moreover, from Theorem 1 su
h a
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o
y
le is 
ohomologous to some real-analyti
 fun
tion f . Sin
e Tϕdµ = 0,we have Tf dµ = 0. Let d > 0 be su
h that ϕ̃ = ϕ+d > 0 and f̃ = f +d > 0.Then Tϕ̃ dµ = d and Tf̃ dµ = d. Note that ϕ̃0 = ϕ̃ −
T
ϕ̃ = ϕ and similarly

f̃0 = f .Thus we have proved the following.Corollary 2. The spe
ial �ow T ϕ̃ built from the rotation T and theroof fun
tion ϕ̃ is disjoint from all ELF-�ows.Sin
e f̃ and ϕ̃ are 
ohomologous, T f̃ and T ϕ̃ are isomorphi
. In parti
ular
T f̃ is disjoint from an arbitrary ELF-�ow.3. Analyti
 �ows on the torus whi
h are disjoint in the senseof Furstenberg from all ELF-�ows. In Se
tion 2 we have presented twodi�erent methods to obtain a spe
ial �ow T f̃ with an analyti
 roof fun
tion f̃and over an irrational rotation T , whi
h is disjoint in the sense of Furstenbergfrom an arbitrary ELF-�ow. We will now show that whenever d > π/(A − 1)then T f̃ (f̃ = f + d) is a natural spe
ial representation of some �ow T =
(Tt)t∈R on the torus [0, 1)2 given by

Tt(x, y) = (x(t), y(t))where (x(t), y(t)) is the only solution of the system of di�erential equations




dx

dt
=

α

F (x, y)
,

dy

dt
=

1

F (x, y)
.

(29)
Here F : [0, 1)2 → R+ is analyti
 and (x(0), y(0)) = (x, y) and the fun
tion
F will be pre
isely de�ned by (30) below. Re
all �rst some fa
ts 
on
erning�ows arising from (29) (see [2, Chapter 16℄ for details).Let us assume that the fun
tion F in (29) is smooth. Noti
e that fromthe Liouville theorem, the �ow T preserves the measure F (x, y)dxdy. Fur-thermore T is ergodi
 sin
e it arises from a 
hange of time of the linear �owwhi
h is ergodi
. Moreover, the following holds.Proposition 5 ([2℄). The �ow T = (Tt)t∈R 
orresponding to the system(29) is isomorphi
 to the spe
ial �ow T h, where

h(x) =

1\
0

F (x + sα, s) ds.Conversely, having a spe
ial �ow T h, where h is smooth, we 
an �nd asmooth fun
tion F : [0, 1)2 → R+ su
h that T h is isomorphi
 to T = (Tt)t∈R
oming from (29).
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∑∞

k=−∞ ĥke
2πikx is analyti
 and T10 h dµ =

ĥ0 > (π/2)
∑

k 6=0 |ĥk|, then as shown in [2, proof of Lemma 1, p. 435℄ thefun
tion F given by
F (x, y) = ĥ0 +

∑

s6=0

2πi(sα + ls)

e2πi(sα+ls) − 1
ĥse

2πi(sx+lsy),(30)
where ls is the integer nearest to −sα, is analyti
. Observe that

∣∣∣∣
2πi(sα + ls)

e2πi(sα+ls) − 1

∣∣∣∣ ≤
π

2
(31)and hen
e

F (x, y) ≥ F̂0,0 −
∑

(k,l) 6=(0,0)

|F̂k,l| ≥ ĥ0 −
π

2

∑

s6=0

|ĥs| > 0.(32)
We end up this se
tion by the observation that there exists a universal

d (depending only on A > 1) su
h that all fun
tions f obtained from thea.a.
.
.p. (and given by (18)) satisfy
d >

π

2

∑

s6=0

|f̂s|.(33)
Indeed, from the proof of Lemma 5 it follows that whenever d > π/(A − 1)then for ea
h f given by (18) the inequality (33) holds.4. An un
ountable family of analyti
 �ows. Put E = {0, 1}N. Inthis se
tion we will 
onstru
t an un
ountable family of 
o
y
les {ϕε}ε∈E sothat for some equivalen
e relation ∼ ⊂ E × E the 
orresponding spe
ial�ows over an irrational rotation Tx = x + α are disjoint whenever ε 6∼ ε′and isomorphi
 whenever ε ∼ ε′.De�ne now a 
o
y
le ϕε in the following way. Given ε = (εi)i≥1 ∈ E put

ϕε =
∞∑

i=1

ϕ̃i,where ϕ̃i = εiϕi and for εi = 1 we 
arry out the ith step of the a.a.
.
.p. fromSubse
tion 2.2. The un
ountable family of a.a.
.
.p.'s is now realized overa 
ommon α (indeed, re
all that in view of Remark 3 we 
an repla
e someof the dki's by 0 and the a.a.
.
.p. will be realized over the same α). Usingsimilar arguments to those proving (26) we get µ({x ∈ [0, 1) : ϕ̃
(bkq2nk

)

k (x) 6=
ϕ

(bkq2nk
)

ε (x)}) → 0 as k → ∞. Therefore
(ϕ

(bkq2nk
)

ε )∗µ → ν as k → ∞, k ∈ {i : εi = 1}
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(ϕ

(bkq2nk
)

ε )∗µ → δ0 as k → ∞, k ∈ {i : εi = 0}if #{i : εi = 0} = ∞.De�ne ∼ ⊂ E × E by putting
ε ∼ ε′ whenever εi = ε′i for i large enough.Assume now that ε 6∼ ε′. So we 
an assume that the set {i ≥ 1 : εi = 1,

ε′i = 0} is in�nite. Take a positive d so that ϕ̃ε = ϕε + d > 0 and ϕ̃ε′ =
ϕε′ + d > 0. In view of Proposition 2,

(T ϕ̃ε)dbkq2nk
→
\
R

(T ϕ̃ε)−t dν(t), (T ϕ̃ε′ )dbkq2nk
→
\
R

(T ϕ̃ε′ )−t dδ0(t),when εk = 1, ε′k = 0 and k → ∞.By Lemma 3 the spe
ial �ows (T ϕ̃ε

t )t∈R and (T
ϕ̃ε′

t )t∈R are spe
trally dis-joint, hen
e they are disjoint in the sense of Furstenberg. Note that if ε ∼ ε′then ϕε and ϕε′ are 
ohomologous and hen
e the 
orresponding spe
ial �owsare isomorphi
.Remark 5. Now, the argument used to prove (33) and the fa
t that
|ϕ| ≤ 1 imply that whenever d > max (1, π/(A − 1)),

ϕε + d > 0 and d >
π

2

∑

s6=0

|(fε)
∧
s |for ea
h ε ∈ E. Noti
e that the se
ond inequality immediately implies that

fε + d > 0 for ea
h ε ∈ E.Put now f̃ε = fε +d and f̃ε′ = fε′ +d and observe that the 
orrespondingspe
ial �ows also have the property that they are isomorphi
 if ε ∼ ε′ anddisjoint (even spe
trally disjoint) if ε 6∼ ε′.Remark 6. In view of Se
tion 3 and Remark 5 for every (analyti
)fun
tion f̃ε = fε + d we obtain an analyti
 fun
tion Fε : [0, 1)2 → R+ su
hthat the spe
ial �ow T f̃ε and the �ow T Fε 
oming from (29) are isomorphi
.Remembering that the fun
tion Fε is given by (30) we dedu
e that for all
ε ∈ E,

Fε(x, y) > d − π

A − 1
> 0.(34)On the other hand, from (30) and (31) we get, for all (x, y) ∈ [0, 1)2 and forall ε ∈ E,

|Fε(x, y)| ≤ 2d.(35)From now on we �x d > max (1, π/(A − 1)).
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zyk and M. Wysoki«skaRemark 7. Observe that the family {T Fε : ε ∈ E} of analyti
 �ows on
[0, 1)2 obtained as above has the property that T Fε and T Fε′ are isomorphi
whenever ε ∼ ε′, and disjoint (in fa
t, spe
trally disjoint) for ε 6∼ ε′.5. Non-existen
e of a 
ountable set of Borel invariants in the
lass of �ows on R2/Z2. The aim of this se
tion is to show that a 
onse-quen
e of the results from the previous se
tion is that it is not possible to�nd a 
ountable 
omplete set of Borel invariants for the measure-theoreti

lassi�
ation in the 
lass of �ows 
oming from (29). Su
h �ows in general donot preserve Lebesgue measure, but they are non-singular with respe
t toit. Therefore we �rst re
all some basi
 fa
ts about topology of non-singular�ows.For a standard probability Borel spa
e (X,B, λ) (we assume that X isa 
ompa
t spa
e with a metri
 ̺) 
onsider the spa
e Ãut(X,B, λ) of allinvertible non-singular automorphisms on X, i.e. S ∈ Ãut(X,B, λ) if S isinvertible, bimeasurable and the measures λ and λS are equivalent, where
λS(A) = λ(SA) for every Borel set A ⊂ X.We now de�ne a Polish topology in Ãut(X,B, λ) (see [23℄ for details).For S ∈ Ãut(X,B, λ) de�ne

ŨSf =
dλS

dλ
f ◦ S, f ∈ L1(X,B, λ).(36)We then observe that ŨS belongs to the set Iso(L1(X, λ)) of invertible isome-tries of L1(X,B, λ). Then by the Lamperti theorem the mapÃut(X,B, λ) ∋ S 7→ ŨS ∈ Iso(L1(X, λ))(37)is inje
tive. On Iso(L1(X, λ)) we 
onsider the strong operator topology.We endow Ãut(X,B, λ) with a topology whi
h makes the map (37)a homeomorphism. This topology is metrisable with a (
omplete) metri
given by

d(S, T ) =
∞∑

n=1

2−n(‖ŨSfn − ŨT fn‖1 + ‖ŨS−1fn − ŨT−1fn‖1),where {f ′
n}n≥1 is a dense family in L1(X,B, λ) and fn = f ′

n/‖f ′
n‖.Remark 8. Assume that S preserves the measure Fdλ, where F : X →

R+ is measurable and in L1(λ). Observe that this is equivalent to
F ◦ S dλS = Fdλ.(38)Indeed, putting µ = Fdλ we have

µ(A) = µ(SA) =
\

SA

F dλ =
\
X

χA ◦ S−1 · F dλ =
\
A

F ◦ S dλS .
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 �ows on the torus 117It follows that in the 
ontinuous 
ase to show the 
onvergen
e in the metri

d it is enough to show the uniform 
onvergen
e of both: automorphisms anddensities. Indeed, assume that Fn → F > 0, Fn, F 
ontinuous and Sn → S,
S−1

n → S−1 (uniformly) and that for ea
h n ∈ N, Sn preserves the measure
Fndλ (whi
h by (38) is equivalent to the 
ondition dλSn/dλ = Fn/Fn ◦ Sn).Then Fn/Fn ◦ Sn → F/F ◦ S uniformly and hen
e d(Sn, S) → 0, as n → ∞.Put now X = [0, 1)2, B = B([0, 1)2) and let λ stand for Lebesgue measureon [0, 1)2. Denote by NF([0, 1)2, λ) the spa
e of all �ows non-singular withrespe
t to λ, that is, for ea
h �ow T = (Tt)t∈R ∈ NF([0, 1)2, λ) and all
t ∈ R, we have Tt ∈ Ãut([0, 1)2,B([0, 1)2), λ). Moreover, we require thatthe unitary representation t 7→ ˜̃

UTt given by ˜̃
UTtf =

√
dλTt/dλ · f ◦ Tt,

f ∈ L2([0, 1)2, λ), is strongly 
ontinuous. The spa
e NF([0, 1)2, λ) with themetri

D(T ,S) = sup

t∈[0,1]
d(Tt, St)be
omes a Polish spa
e (see [26℄ for the measure preserving 
ase).Consider now the subspa
e NF ′([0, 1)2, λ) ⊂ NF([0, 1)2, λ) of all �owsarising from the systems of di�erential equations of the form (29) where

F ∈ C1([0, 1)2). Denote by NFω([0, 1)2, λ) the spa
e (
ontained in
NF ′([0, 1)2, λ)) of �ows arising from (29) with F analyti
. OnNF ′([0, 1)2, λ)and NFω([0, 1)2, λ) we 
onsider the restri
tion of the metri
 D.Remark 9. Observe that ea
h element T F = (TF

t )t ∈ NF ′([0, 1)2, λ)preserves a measure equivalent to Lebesgue measure λ, namely Fdλ. Hen
eusing similar arguments to those in Remark 8 we �nd that the 
onvergen
ein this spa
e follows from the uniform 
onvergen
e of densities and time tautomorphisms. In other words, to obtain D(T Fn , T F ) → 0 as n → ∞ itsu�
es to show that TFn
t (x, y) → TF

t (x, y) uniformly with respe
t to (t, x, y),
t ∈ [−1, 1] and that Fn(x, y) → F (x, y) uniformly with respe
t to (x, y).Re
all that α de�nes the 
ommon rotation for the whole family {Fε}ε∈Eobtained in Se
tion 4. Without 
hanging the notation let us go ba
k tothe 
onstru
tion in whi
h we have obtained the family {T Fε : ε ∈ E} of(analyti
) �ows on [0, 1)2. Consider the map

E = {0, 1}N ∋ ε
Θ7−→ T Fε ∈ NFω([0, 1)2, λ).We equip E = {0, 1}N with the produ
t topology (whi
h is metrisable with,for instan
e, the produ
t metri
 dE((xn), (yn)) =

∑
k≥1 2−k|xk−yk|) so that

E be
omes a 
ompa
t topologi
al spa
e.Put
A = Θ(E) = {T Fε : ε ∈ E}.The main result of this se
tion is the following.
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zyk and M. Wysoki«skaTheorem 2. The set A ⊂ NFω([0, 1)2, λ) is a Borel subset of
NF([0, 1)2, λ). Moreover , if ϕ̃ : A → R∞ is an arbitrary Borel fun
tion su
hthat ϕ̃(T ) = ϕ̃(S) whenever T ∈ A and S ∈ A are isomorphi
, then thereexist spe
trally disjoint �ows T ′ ∈ A and S ′ ∈ A su
h that ϕ̃(T ′) = ϕ̃(S ′).From Theorem 2 we immediately get the following.Corollary 3. There does not exist a Borel map ϕ̃ : NF([0, 1)2, λ) →
R∞ whi
h is 
onstant on the (spe
tral) isomorphism 
lasses and simultane-ously takes di�erent values for (spe
trally) non-isomorphi
 arguments.In other words, it is not possible to �nd a 
ountable 
omplete set of Borelinvariants in NF([0, 1)2, λ) for the problem of (spe
tral) isomorphism.Proof of Theorem 2. It is su�
ient to show that(i) Θ is 
ontinuous (hen
e A is 
ompa
t),(ii) if ϕ̃ : A → R∞ is a Borel fun
tion 
onstant on isomorphism 
lasses,then there exist non-isomorphi
 �ows T Fε and T Fε′ su
h that ϕ̃(T Fε)

= ϕ̃(T Fε′ ).First observe that (ii) follows from the 0-1 Kolmogorov law (by 
onsid-ering properties of ϕ̃ ◦ Θ).It remains to show (i). Assume that εn → ε, as n → ∞. In view ofRemark 9, to show that D(T Fεn , T Fε) → 0 it is enough to show that
T

Fεn
t (x, y) → TFε

t (x, y)(39)uniformly with respe
t to (t, x, y), t ∈ [−1, 1] and that
Fεn(x, y) → Fε(x, y)(40)uniformly with respe
t to (x, y).To see (40) we will prove the 
ontinuity of the map

E ∋ ε 7→ Fε ∈ C([0, 1)2).This 
an be repla
ed by a stronger 
ondition that the mapping E ∋ ε 7→
F̂ε ∈ l1(Z2) is 
ontinuous. Furthermore in view of (30) and (31) it is enoughto show the 
ontinuity of the map E ∋ ε 7→ f̂ε ∈ l1(Z), and this latter
ondition is proved in mu
h the same way as Lemma 5.To prove (39) re
all that a di�erential equation on [0, 1)2 may be liftedto an equation on R2 simply by periodi
 extension. For ε ∈ E 
onsider thena di�erential equation of the form (29), that is,

dX
dt

= Γε(X ),(41)where X = (x, y), Γε : R2 → R2 and Γε(X ) = (α/Fε(X ), 1/Fε(X )).
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e Fε is analyti
, it is Lips
hitz (with a 
onstant Lε), whi
h impliesthat Γε is also Lips
hitz with the 
onstant
L̃ε =

√
α2 + 1

(d − π
A−1)2

Lε,i.e. for all (x, y) ∈ R2 and (x′, y′) ∈ R2,
‖Γε(x, y) − Γε(x

′, y′)‖R2 ≤ L̃ε‖(x, y) − (x′, y′)‖R2 .Then the equation (41) has a solution de�ned for all t ∈ R, of the form
TFε

t (x, y) = (x, y) +

t\
0

Γε(x(τ), y(τ)) dτfor ea
h (x, y) ∈ R2. Observe that for the �ows given by solutions of (41)and (29) we have
‖TFε

t (x, y) − T
Fε′

t (x, y)‖[0,1)2 ≤ ‖TFε
t (x, y) − T

Fε′

t (x, y)‖R2,(42)be
ause TFε
t = π ◦ TFε

t , where π : R2 → [0, 1)2 is the natural quotient map.Now from the Gronwall inequality it follows that(43) ‖TFε′

t (x, y)−TFε
t (x, y)‖R2 ≤

√
α2+1

(
d− π

A−1

)−2

‖Fε−Fε′‖∞eL̃ε′ .Indeed, observe that
‖TFε′

t (x, y) − TFε
t (x, y)‖R2 =

∥∥∥
t\
0

(Γε′(T
Fε′
τ (x, y)) − Γε(T

Fε
τ (x, y))) dτ

∥∥∥
R2

≤
t\
0

‖Γε′(T
Fε′
τ (x, y)) − Γε′(T

Fε
τ (x, y))‖R2 dτ

+

t\
0

‖Γε′(T
Fε
τ (x, y)) − Γε(T

Fε
τ (x, y))‖R2 dτ

≤
t\
0

L̃ε′‖TFε′

τ (x, y) − TFε
τ (x, y)‖R2 dτ + t

√
α2 + 1

∥∥∥∥
1

Fε′
− 1

Fε

∥∥∥∥
∞

≤
t\
0

L̃ε′‖TFε′
τ (x, y) − TFε

τ (x, y)‖R2 dτ +
√

α2 + 1

(
d− π

A−1

)−2

‖Fε−Fε′‖∞.Hen
e (43) follows. And from (43) we immediately get (39).6. Weak 
losure of time t automorphisms of an analyti
 �ow.In this se
tion we will 
onstru
t a weakly mixing �ow T ϕ̃ with the followingproperty:
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zyk and M. Wysoki«ska(44) for ea
h P ∈ P(R) the Markov operator T
R

T ϕ̃
t dP (t) belongs to theweak 
losure of {T ϕ̃

t : t ∈ R}.This �ow will be isomorphi
 to an analyti
 �ow on [0, 1)2. By (9) to prove(44) we only need to 
onsider P running over a dense subset of P(R), forexample measures of the form ∑Q
j=1 Bjδrj

, where rj ∈ Q, Bj ∈ Q+ and
∑Q

j=1 Bj = 1. Our goal is to 
onstru
t a �ow T ϕ̃ satisfying:(45) For ea
h M̃ ∈ N+, s ∈ N, rj ∈ Q, Aj ∈ Q+, j = 1, . . . , M̃ , Ã :=
∑M̃

j=1 Aj < 1, the Markov operator T
R

T ϕ̃
t dP (t) with

P =

M̃∑

j=1

Ajδrj
+

1 − Ã

2
(δ

s− 2

1−Ã

∑M̃
j=1 rjAj

+ δ−s)belongs to the weak 
losure of the set {T ϕ̃
t : t ∈ R}.The 
onstru
tion goes as follows. Consider the set

{
((r1, . . . , rM̃

), (A1, . . . , AM̃
), s) : rj ∈ Q, Aj ∈ Q+,

M̃∑

j=1

Aj < 1, s ∈ N, M̃ ∈ N+

}
.

Note that this set is 
ountable and denote by (Uk)k≥1 a sequen
e
Uk = ((r1k, . . . , rM̃kk

), (A1k, . . . , AM̃kk
), sk)in whi
h for ea
h element ((r1, . . . , rM̃

), (A1, . . . , AM̃
), s) of the above set wehave #{k ∈ N+ : Uk = ((r1, . . . , rM̃

), (A1, . . . , AM̃
), s)} = ∞. We need morenotation: Ajk = gjk/fjk (gjk, fjk ∈ N+), j = 1, . . . , M̃k, Ãk =

∑M̃k

j=1 Ajk,
(1 − Ãk)/2 = g

Ãk
/f

Ãk
, g

Ãk
, f

Ãk
∈ N+, m̃k = LCM(f1k, . . . , fM̃kk

, f
Ãk

),
Njk = min{m ∈ N+ : |rjk/m| < 1},

Ñk = min

{
m ∈ N+ :

∣∣∣∣
sk − 2

1−Ãk

∑M̃k

j=1 rjkAjk

m

∣∣∣∣ < 1

}
.We will now 
arry out an a.a.
.
.p. with extra 
onditions on the param-eters; namely, we require that Dk ≤ 1 (see Remark 3) and that

Mk > mk

(
N1kA1k + · · · + N

M̃kk
A

M̃kk
+

1 − Ãk

2
(Ñk + sk + 1)

)
,(46)where mk = ckm̃k, ck ∈ N, ck → ∞ and

( k−1∑

i=1

Mi

)√
2

mk
≤ const.(47)
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N1kA1k + · · · + N

M̃kk
A

M̃kk
+

1 − Ãk

2
(Ñk + sk + 1) ≥ 1,hen
e mkεk → 0 as k → ∞ (re
all that ∑∞

k=1

√
εk · Mk < ∞). As mk → ∞,we have Mk → ∞. Let α be an irrational over whi
h the a.a.
.
.p. is 
arriedout. We require additionally that a2nk+1 is a multiple of mk, more pre
isely

a2nk+1 = mkbk,where bk ≥ 1 for all k ≥ 1. Re
all that
λkMk <

εk

2q2nk

,(48)so λkMk = o(µ(Ik)). Denote by ξ1, . . . , ξmk
the 
onse
utive subintervals of

Ik of length µ(Ik)/mk. This means that any su
h subinterval 
onsists of bkintervals Jk
t . We now de�ne ϕk as follows. If εkmk > 2/3 we put arbitrary

dki a

ording to general rules for a.a.
.
.p. Assume now that εkmk ≤ 2/3.Noti
e that
λkMk ≤ 3

2
· εk

3q2nk

≤ 3

2
εkµ(Ik) ≤

1

mk
µ(Ik) = |ξi|,(49)

i = 1, . . . , mk. Given j = 1, . . . , M̃k, in ea
h interval ξ(A1k+···+Aj−1,k)mk+v,
v = 1, . . . , Ajkmk, we 
hoose Njk 
onse
utive intervals ωki so that the in-terval ⋃

ωki is pla
ed �
entrally�, i.e. in the middle of ξ(A1k+···+Aj−1,k)mk+v.In the 
entral interval Jsk
k,i

⊂ ωki we put the value rjk/Njk. Analogouslyin ea
h interval ξ
Ãkmk+v

, v = 1, . . . , (1 − Ãk)mk/2, we sele
t �
entrally� Ñk
onse
utive intervals ωki and in the 
entral subintervals we put the value
sk − 2

1−Ãk

∑M̃k

j=1 rjkAjk

Ñk

.Finally, in ea
h of ξ
(Ãk+1)mk/2+v

, v = 1, . . . , (1 − Ãk)mk/2, we sele
t �
en-trally� sk + 1 
onse
utive ωki on whi
h in the 
entral subintervals we put
−sk/(sk + 1). In order to 
omplete the a.a.
.
.p. we 
hoose ωki arbitrarilyand put dki = 0 for the remaining

i ∈
{

mk

( M̃k∑

i=1

NikAik +
1 − Ãk

2
(Ñk + sk + 1)

)
+ 1, . . . , Mk

}
,whi
h is possible by (49). Noti
e that ∑Mk

i=1 dki = 0.Now, we �x U = ((r1, . . . , rM̃
), (A1, . . . , AM̃

), s) and 
onsider only k su
hthat Uk = U . First noti
e that mkεk < 2/3 for su�
iently large su
h k.Moreover,
max(N1, . . . , NM̃

, Ñk, s + 1)λkmk

µ(Ik)
→ 0
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zyk and M. Wysoki«skaas k → ∞ with Uk = U (Ñk = Ñ) by (48). Thus
(ϕ

(bkq2nk
)

k (x))∗µ →
M̃∑

j=1

Ajδrj
+

1 − Ã

2
(δ

s− 2

1−Ã

∑M̃
j=1 rjAj

+ δ−s)as k → ∞ with Uk = U .Now using similar arguments to those showing (26) and the fa
t that
mk → ∞ as k → ∞, we obtain

µ({x ∈ [0, 1) : ϕ
(bkq2nk

)

k (x) 6= ϕ(bkq2nk
)(x)}) → 0as k → ∞. Thus

(ϕ(bkq2nk
)(x))∗µ →

M̃∑

j=1

Ajδrj
+

1 − Ã

2
(δ

s− 2

1−Ã

∑M̃
j=1 rjAj

+ δ−s)as k → ∞ with Uk = U .Obviously |ϕ(x)| ≤ 1 for x ∈ [0, 1). Take now a 
onstant d su
h that
ϕ̃ = ϕ + d > 0. Using similar arguments to those in Subse
tion 2.2 (with(47) instead of (16)) we will show that along the subsequen
e (bkq2nk

) where
k ∈ {i : Ui = U = ((r1, . . . , rM̃

), (A1, . . . , AM̃
), s)}, ‖ϕ(bkq2nk

)‖L2 < const.Indeed, the only thing to noti
e is that for all x ∈ [0, 1) and k ∈ {i : Ui =
U = ((r1, . . . , rM̃

), (A1, . . . , AM̃
), s)},

|ϕ(bkq2nk
)

k (x)|

≤ max

{
e + f : e, f ∈

{
|r1|, . . . , |rM̃

|,
∣∣∣∣s −

2

1 − Ã

M̃∑

j=1

rjAj

∣∣∣∣, |s|
}}

= const.The 
onstru
tion of T ϕ̃ is 
omplete, and by Proposition 2, (45) has beenproved.In this way we see that for ea
h k ≥ 1 there exists an in
reasing sequen
e
(q

(k)
n ) su
h that

T ϕ̃

dq
(k)
n

→
\
R

T ϕ̃
−t dPk(t),where {Pk} is a dense subset in P(R).Now in view of (9) we get (44):Corollary 4. For ea
h measure P ∈ P(R) there exists a sequen
e

(q
(P )
n ) ⊆ N su
h that

T ϕ̃

dq
(P )
n

→
\
R

T ϕ̃
−t dP (t).Assume now that d ∈ N. Then we obtain the following.
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h measure P ∈ P(Z) there exists a sequen
e
(q

(P )
n ) ⊆ N su
h that

(T ϕ̃
1 )q

(P )
n →

∞∑

j=−∞

P (j)(T ϕ̃
1 )−j .Remark 10. Re
all (see e.g. [15℄) that a �ow (St)t∈R is 
alled κ-weaklymixing (0 ≤ κ ≤ 1) if there exists a sequen
e (tn) with tn → ∞ su
h that

Stn → κ Id+(1 − κ)
\
.By taking Pn = 1

4δ−n + 1
2δ0 + 1

4δn and 
onsidering n = nk so that T ϕ̃
nk

→
T(whi
h is justi�ed by weak mixing of T ϕ̃), by Corollary 5, 1

2 Id+1
2

Tbelongsto the weak 
losure of the set {(T ϕ̃)t : t ∈ R}, i.e. T ϕ̃ is 1
2 -weakly mixing.This implies mutual singularity of 
onvolutions of maximal spe
tral type (see[15℄, [24℄, [27℄).However, using a result of O. N. Ageev (see [1℄) we 
an obtain mu
h more.If T ϕ̃ satis�es the assumptions of Corollary 5 then the maximal spe
traltype of T ϕ̃

1 , denoted by σ
T ϕ̃
1
, is a 
ontinuous measure su
h that the Gaussiansystem S determined by it has a simple spe
trum. In parti
ular, 
onvolutionsof the redu
ed maximal spe
tral type of T ϕ̃

1 are mutually singular. Sin
e T ϕ̃
1 isdisjoint from all ELF-automorphisms (see [3℄), it is disjoint from all Gaussianautomorphisms. Hen
e the Gaussian system S has the GAG property, butit 
annot satisfy the Foia³�Str til  theorem (indeed, if a system satis�es theFoia³�Str til  theorem then it is Gaussian; see [20℄ for details).
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