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The complexity of the set of squares in the

homeomorphism group of the circle
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Paul Gartside and Bojana Pejić (Pittsburgh, PA)

Abstract. The set of squares in the group of autohomeomorphisms of the circle is
complete analytic, and hence analytic but not Borel.

1. Introduction. Polish groups are topological groups which are sepa-
rable and completely metrizable. They are ubiquitous: Lie groups, separa-
ble Banach spaces, automorphism groups of first order structures (such as
groups, fields, graphs etc.), and autohomeomorphism groups of manifolds,
among others, are examples of Polish groups.

The key to unlocking a variety of problems in the theory of Polish groups
is to determine which sets in a Polish group are definable both algebraically
and topologically. By “algebraically definable” we mean sets such as the
commutators, conjugacy classes, or the squares. In the context of Polish
groups, “topologically definable” means being a Borel set. Intuitively a Borel
set is one that can be defined from the open sets in countably many steps
(a formal definition follows).

It is known that the set of squares {f2 = f ◦ f | f ∈ H(I)} in the auto-
homeomorphism group H(I) of the closed unit interval I is Borel. Indeed,
it is clopen, as it is equal to the set of all order-preserving autohomeomor-
phisms of I (see [4]). Remarkably, we show that if the endpoints of the unit
interval are identified to form the circle, S1, then the set of squares in its
autohomeomorphism group H(S1) is (analytic but) not Borel. In fact, it is
complete analytic.

The result that the squares in H(I) are Borel is in contrast to the sit-
uation in the space C(I, I) of all continuous maps from the unit interval
into itself. By studying the properties of the set of points where a function
is locally constant, Humke & Laczkovich showed in [6] that the squares in
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C(I, I) are (analytic but) not Borel. Later Beleznay improved this result
by showing in [1] that the squares are complete analytic. Of course, auto-
homeomorphisms are nowhere locally constant. Instead, in proving that the
squares in H(S1) are complete analytic, we focus on the structure of the set
of fixed points.

Part of our interest in the topological definability of squares in Polish
groups comes from Mackey’s theorem [9] which says that a Polish group
admits a unique Polish group topology provided there is a countable point-
separating collection of subsets which are Borel in every Polish group topol-
ogy on the group. The most plausible candidates for the elements of the
collection are algebraically defined sets. For example centralizers, {x ∈ G |
xcx−1c−1 = 1} = w−1{1} where w(x) = xcx−1c−1, are necessarily closed
(hence Borel) in every (Polish) group topology. In a compact group, forward
images such as the squares, which we denote by G2 = {g2 | g ∈ G} = w(G)
where w(x) = x2, and conjugacy classes are also necessarily closed. So one
might anticipate that squares, commutators and so on would also be Borel
in any Polish group. Indeed, in a general Polish group all conjugacy classes
are Borel, and in an Abelian Polish group the squares are Borel. (These
observations follow from the fact [10] that all orbits of a Polish group act-
ing continuously on a Polish space are Borel: apply this to the conjugation
action and the action g.x = 2g + x, respectively.) But the example of the
squares in the autohomeomorphism group of the circle dispels this hope. See
[3] for further discussion of these topics.

The authors are grateful to one referee for bringing to their attention
the following connections with ergodic theory. It was an old question of
Halmos [5] whether each, say, weakly mixing transformation is a square of
a transformation. This was answered in the negative by Chacon [2]. On the
other hand, King has shown that the generic transformation has roots of all
orders (see [8]).

Notation. We give definitions and some facts about Borel, analytic and
complete analytic sets: all of these can be found in [7], which is our main
reference for descriptive set theory. Let X be a Polish (separable, completely
metrizable) space. The set of Borel sets, B(X), is the smallest family of
subsets of X that contains the open sets and is closed under countable
unions and taking complements. The Borel sets ramify into a hierarchy. In
the first level are the open sets and the closed sets, in the second level the
Gδ’s (countable intersections of open sets) and Fσ’s (countable unions of
closed sets), and in the third level the Fσδ’s and Gδσ’s. A subset A of X is
analytic if it is the continuous image of a Polish space or, equivalently, of any
Borel subset of a Polish space. Borel sets are analytic, but not vice versa.
An analytic set B of a Polish space Y is complete if for any Polish space
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X and any analytic set A in X there is a continuous function F : X → Y
such that F−1(B) = A. Such a function is called a continuous reduction of
A to B.

If X is any set and a1, . . . , an are distinct elements of X, (a1 a2 · · · an)
denotes the permutation of X that maps ai to ai+1 for i = 1, . . . , n− 1 and
an to a1, leaving the other elements of X fixed. We call such a permutation a
finite cycle or, more specifically, an n-cycle. Similarly, for a sequence (ai)i∈Z

of distinct elements of X, (· · · a−1 a0 a1 a2 · · · ) denotes the permutation
of X that maps each ai to ai+1 and leaves the other elements of X fixed.
Such a permutation is called an infinite cycle. Any permutation of X can
be represented by an unordered formal composition of disjoint cycles in a
unique way. We say that a permutation f “contains” a cycle σ if σ appears
in the unique disjoint cycle representation of f .

2. Circular squares. Let H(S1) be the group of autohomeomorphisms
of the unit circle S1. Equipped with the topology of uniform convergence,
it is a Polish group. We will show that the set

H(S1)2 = {f2 = f ◦ f | f ∈ H(S1)}

of squares in H(S1) is complete analytic, and hence not Borel.

A standard technique for showing completeness of an analytic set is to
reduce an already known complete analytic set to the given set. Beleznay [1]
showed that the set LO2 of linear orders of type I + I (a precise definition
follows) is complete analytic. To show that H(S1)2 is complete, we construct
in Lemma 2.3 a continuous reduction F of LO2 to H(S1)2. Since LO2 is
complete, an arbitrary analytic set A can be reduced to it via a continuous
map. Composing this reduction map with F gives a continuous reduction of
A to H(S1)2. This proves that H(S1)2 is complete.

We first give in Lemma 2.2 a necessary and sufficient condition for a
homeomorphism of S1 of a certain type to be a square. Then we use this
characterization to construct a continuous reduction of LO2 to H(S1)2 in
Lemma 2.3.

We start by giving some definitions and notation. First, we recall the
definition of the set LO2, as given in [1]. Let α ∈ 2N×N code the relation R
on N the following way:

(n,m) ∈ R if and only if α(n,m) = 1.

Then LO is defined to be the set of those codes α ∈ 2N×N that code a linear
order. LO is a Gδ subset of the Polish space 2N×N, and thus a Polish space
itself. For codes from LO we write n <α m instead of α(n,m) = 1. The set
LO2 is the collection of codes from LO which code a linear order of the form
I + I:
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LO2 = {α ∈ LO | ∃f ∈ 2N, g ∈ N
N such that g : N → N is a bijection and:

∀n,m ∈ N, f(n) = 0 and f(m) = 1 imply n <α m;

∀n ∈ N, f(n) = 0 if and only if f(g(n)) = 1; ∀n ∈ N, g(g(n)) = n;

∀n,m ∈ N, f(n) = f(m) = 0 imply that n <α m iff g(n)<α g(m)}.

In other words, f determines two classes of N such that every element of
f−1({0}) is α-less than every element of f−1({1}), and g gives an α-order-
preserving bijection of these two classes. As mentioned previously, LO2 is a
complete analytic set.

While we visualize the topological space S1 as the unit circle, formally
we consider S1 to be the quotient space obtained from the unit interval I
by identifying its endpoints 0 and 1. For distinct points x1, . . . , xn (n ≥ 3)
in S1 we write x1 < · · · < xn (< x1) if, when traveling anticlockwise along
the circle S1 starting from x1, we reach points x2, x3, . . . , xn in that order
(before reaching x1 again). For x, y ∈ S1 we define the open interval (x, y) =
{z |x < z < y}. In the obvious way we also define “≤” and the closed and
semi-closed intervals in S1.

Let H(S1)+ denote the set of order-preserving homeomorphisms of S1:

H(S1)+ = {f ∈ H(S1) | ∀x, y, z ∈ S1, x < y < z ⇒ f(x) < f(y) < f(z)}.

Similarly, let H(S1)− be the collection of order-reversing homeomorphisms
of S1. Clearly H(S1)+ is a subgroup of H(S1) of index 2, with H(S1)− as
its other coset.

For f ∈H(S1)+ and a, b ∈ S1 defineD(f↾[a, b]) = {x ∈ [a, b] | f2(x) 6= x}.
Finally, we define a collection M of a special kind of homeomorphisms

of S1:

M = {f ∈ H(S1)+ | f(0) = 1/2, f(1/2) = 1 = 0,

∀x ∈ (0, 1/2), 0 < x ≤ f2(x) < 1/2 and

∀x ∈ (1/2, 1), 1/2 < x ≤ f2(x) < 1}.

Lemma 2.1. Let f ∈ M. Suppose 0 < a < a′ < c < c′ < 1/2 < b < b′ <
d < d′ < 1 are points in S1 such that f contains (a b)(c d)(a′ b′)(c′ d′) in its

disjoint cycle representation and for all x ∈ (a, a′) ∪ (b, b′) ∪ (c, c′) ∪ (d, d′),
f2(x) 6= x. Let A = [a, a′]∪ [b, b′]∪ [c, c′]∪ [d, d′]. Then there exists an order-

preserving homeomorphism g of A such that g contains (a c b d)(a′ c′ b′ d′)
and f↾A = g2.

Proof. Fix an arbitrary point a0,0 ∈ (a, a′) and for n ∈ Z, let an,0 =
f2n(a0,0) ∈ (a, a′), and bn,0 = f2n+1(a0,0) ∈ (b, b′). For r ∈ (0, 1) and
n ∈ Z, let a0,r = a0,0 + r(a1,0 − a0,0), an,r = f2n(a0,r) ∈ (a, a′), and bn,r =
f2n+1(a0,r) ∈ (b, b′). Starting with an arbitrary point c0,0 in (c, c′), construct
analogous sequences (cn,r) and (dn,r) in (c, c′) and (d, d′) respectively. It is
not hard to show that the following statements hold for the sequence (an,r):
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(i) a < · · · < a−1,0 < a0,0 < a1,0 < a2,0 < · · · < a′.
(ii) an,0 → a as n→ −∞ and an,0 → a′ as n→ ∞.
(iii) a < an,r < am,s < a′ if and only if n+ r < m+ s.
(iv) For all x ∈ (a, a′), there are n ∈ Z and r ∈ [0, 1) such that x = an,r.

The analogous statements hold for the sequences (bn,r), (cn,r) and (dn,r).
The disjoint cycle decomposition of f↾A is then

(a b)(c d)(a′ b′)(c′ d′)·
∏

r∈[0,1)

(· · · a0,r b0,r a1,r b1,r · · · )(· · · c0,r d0,r c1,r d1,r · · · ).

It is clear from the construction that every cycle in this composition is a
cycle of f↾A. But (iv) also implies that every cycle of f↾A is included in this
representation. Define g to be the permutation of A given by the following
disjoint cycle representation:

(a c b d)(a′ c′ b′ d′) ·
∏

r∈[0,1)

(· · · a0,r c0,r b0,r d0,r a1,r c1,r b1,r d1,r · · · ).

Then clearly g2 = f↾A. That g is order-preserving follows from (iii). The
inverse images under g of the open intervals in S1 are open intervals because
g is an order-preserving bijection. Thus g is continuous.

Lemma 2.2 (Characterization of squares in M). For a homeomorphism

f ∈ M the following are equivalent :

(i) f ∈ H(S1)2.
(ii) There exist c ∈ (0, 1/2) and an order-preserving homeomorphism

φ : [0, c] → [c, 1/2] such that φ(D(f↾[0, c])) = D(f↾[c, 1/2]).

Proof. Suppose that f ∈ H(S1)2 and let g ∈ H(S1) be such that f = g2.
Note that g(0) 6= 0, otherwise f(0) = g2(0) = 0. Also, g(0) 6= 1/2, for
otherwise f(1/2) = f(g(0)) = g3(0) = g(f(0)) = g(1/2) = g(g(0)) = f(0) =
1/2. We claim that g ∈ H(S1)+. Suppose, for a contradiction, g ∈ H(S1)−. If
0 < g(0) < 1/2 < 0, then applying g to each of these points reverses the order
of their images, i.e., g(0) > 1/2 > g(1/2) > g(0). In particular, g(1/2) ∈
(0, 1/2). Now applying g again, we find 1/2 < g(1/2) < 0 < 1/2. However,
this gives g(1/2) ∈ (1/2, 1), a contradiction! The case 0 < 1/2 < g(0) < 0
yields a contradiction in a similar way. So g must indeed be order-preserving.
Now, either g(0) ∈ (0, 1/2) or g−1(0) ∈ (0, 1/2). In case g(0) ∈ (0, 1/2), let
c = g(0) and let φ = g↾[0, c]. Then φ is an order-preserving homeomorphism
of [0, c] with [c, 1/2] and for x ∈ [c, 1/2] we have

x ∈ φ(D(f↾[0, c])) ⇔ g−1(x) ∈ D(f↾[0, c]) ⇔ f2(g−1(x)) 6= g−1(x)

⇔ g3(x) 6= g−1(x) ⇔ g4(x) 6= x ⇔ f2(x) 6= x

⇔ x ∈ D(f↾[c, 1/2]),
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so φ(D(f↾[0, c])) = D(f↾[c, 1/2]). In case g−1(0) ∈ (0, 1/2), the proof is
similar, only with c = g−1(0) and φ = g−1↾[0, c].

Conversely, suppose that (ii) holds. Let C = {x ∈ [0, c] | f2(x) = x}.
Note that 0, c ∈ C. Define gC on A = C ∪ φ(C) ∪ f(C) ∪ f(φ(C)) by the
following disjoint cycle representation:

∏

x∈C

(xφ(x) f(x) f(φ(x))).

Then gC is an order-preserving homeomorphism of A and g2
C = f↾A. The

set D(f↾[0, c]) consists of disjoint open intervals. Let D be a component of
D(f↾[0, c]). Let gD be the order-preserving homeomorphism of B = D ∪

φ(D) ∪ f(D) ∪ f(φ(D)) such that f↾B = g2
D, constructed in Lemma 2.1.

Define

g =
⋃

{gD |D is a component of D(f↾[0, c])} ∪ gC .

It is not hard to check that then g is a well-defined order-preserving hom-
eomorphism of S1 with f = g2.

Lemma 2.3. There is a continuous function F : LO → M such that

F (α) ∈ H(S1)2 if and only if α ∈ LO2.

Proof. Fix α ∈ LO. We want to define F (α) ∈ M. We start by construct-
ing a discrete collection of open intervals {(pn, qn) | n ∈ N} with endpoints
in (0, 1/2) and with the following properties:

(a) The order of {pn | n ∈ N} is isomorphic to the order coded by α;
(b) inf{pn | n ∈ N} = 0 if and only if the order has no smallest element;
(c) sup{qn | n ∈ N} = 1/2 if and only if the order has no largest element;
(d) For any x /∈

⋃

n∈N
(pn, qn), sup{qn | qn ≤ x} = inf{pn | pn ≥ x} if

and only if there is no biggest qn below x and no smallest pn above x;
(e) |qn − pn| < 1/n.

To do this, we follow the construction of Beleznay in [1]. Let O = {(am, bm) |
m ∈ N} be an enumeration of the rational open subintervals with end-
points in (0, 1/2). Choose a pairwise disjoint subsystem of O as follows. Let
(s1, t1) = (a1, b1), t0 = 0 and s0 = 1/2. Assume that we have already chosen
(sk, tk) for k = 1, . . . , n − 1 such that if k <α l then tk < sl (i.e., (sk, tk)
precedes (sl, tl)). Let i be the α-biggest among 1, . . . , n − 1 that is α-less
than n, if such an i exists. Otherwise let i = 0. Let j be the α-smallest
among 1, . . . , n−1 that is α-bigger than n, and if no such j exists, let j = 0.
By the choice of sk, tk for k = 0, 1, . . . , n−1, we see that ti < sj . Let (sn, tn)
be the first (am, bm) which

(i) is strictly inside (ti, sj),
(ii) contains (ti + sj)/2, and
(iii) |bm − am| < 1/n.
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It is clear that this process can be continued and yields a pairwise disjoint
system of intervals {(sn, tn) | n ∈ N} such that the order of {sn | n ∈ N}
is isomorphic to the order coded by α. We now let (pn, qn) be the middle
third of the interval (sn, tn). The collection {(pn, qn) | n ∈ N} constructed
this way has all of the aforementioned properties: (b), (c), (d) are ensured
by (ii), and (e) is implied by (iii).

Let U =
⋃

n∈N
(pn, qn). We now define F (α) as follows: for t ∈ S1 =

[0, 1]/∼, let

F (α)(t) =







































1/2 + t if t ∈ [0, 1/2) \ U,

1/2 + t+
qn − pn

π
sin

(

π

qn − pn
(t− pn)

)

if t ∈ (pn, qn),

−1/2 + t if t ∈ [1/2, 1) \ (1/2 + U),

−1/2 + t+
qn − pn

π
sin

(

π

qn − pn
(t− 1/2 − pn)

)

if t ∈ 1/2 + (pn, qn).

If we visualize S1 as the unit circle, then F (α) acts on the points outside
U and 1/2 + U as the rotation by π, while each point in U and 1/2 + U is
rotated by “a little over” π. More precisely, a point t in (pn, qn) is taken to
a point in 1/2+ (pn, qn) between the point 1/2+ t diametrically opposite to
t and 1/2 + qn. Similarly, a point t in 1/2 + (pn, qn) is taken to a point in
(pn, qn) between its diametrically opposite point −1/2 + t and qn. It is easy
to see that F (α) ∈ M.

We show that F : LO → M is continuous. For α ∈ LO let {(pα
n, q

α
n) |

n ∈ N} be the discrete collection of open intervals constructed from α. Fix
α ∈ LO. We show that F is continuous at α. Specifically, we prove that for
all ε > 0, there is an open neighborhood Nα of α such that for all β ∈ Nα,
d(F (α), F (β)) < ε.

Let ε > 0. Let nε = ⌈1/ε⌉. Then, by (e), for all β ∈ LO, n ≥ nε ⇒

|qβ
n − pβ

n| < ε. Let

Nα = {β ∈ LO | β and α agree on the order of 1, . . . , nε − 1}.

This is a basic open neighborhood of α. If β ∈ Nα, then the intervals (pα
n, q

α
n)

and (pβ
n, q

β
n) coincide for n < nε, so F (α) and F (β) may differ only on the

set
A =

⋃

n≥nε

(pα
n, q

α
n) ∪

⋃

n≥nε

(pβ
n, q

β
n).

Thus,

d(F (α), F (β)) = sup{|F (α)(t) − F (β)(t)| | t ∈ S1}

= sup{|F (α)(t) − F (β)(t)| | t ∈ A}.

If t ∈ A, then t ∈ (pα
n, q

α
n) for some n ≥ nε, or t ∈ (pβ

m, q
β
m) for some m ≥ ε,
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or both. If t belongs to (pα
n, q

α
n) and no other component of A, then

|F (α)(t) − F (β)(t)| ≤ |qα
n − pα

n| < ε.

Similarly, if t belongs to (pβ
m, q

β
m) only, then

|F (α)(t) − F (β)(t)| ≤ |qβ
m − pβ

m| < ε.

Finally, if t ∈ (pα
n, q

α
n) ∩ (pβ

m, q
β
m), then

|F (α)(t) − F (β)(t)| ≤ max(|qα
n − pα

n|, |q
β
m − pβ

m|) < ε.

Thus, d(F (α), F (β)) < ε. This proves the continuity of F .
We now turn to proving F (α) ∈ H(S1)2 ⇔ α ∈ LO2.
Suppose F (α) ∈ H(S1)2. Then by Lemma 2.2, there exist c ∈ (0, 1/2)

and an order-preserving homeomorphism φ : [0, c] → [c, 1/2] such that

φ(D(F (α)↾[0, c])) = D(F (α)↾[c, 1/2]).

Then c /∈U , for otherwise c∈D(F (α)↾[0, c]), and so φ(c)∈D(F (α)↾[c, 1/2]),
which further implies that φ(c) ∈ U ∪ (1/2 + U). But φ(c) = 1/2 /∈ U ∪
(1/2 + U).

Since D(F (α)↾[0, 1/2]) = U , we find that

φ
(

⋃

pn∈(0,c)

(pn, qn)
)

=
⋃

pn∈(c,1/2)

(pn, qn).

Since φ is a homeomorphism, if pn ∈ (0, c), then φ((pn, qn)) is equal to
(pm, qm) for some m with pm ∈ (c, 1/2). This further means that for pn ∈
(0, c), φ(pn) = pm for some pm ∈ (c, 1/2).

Let J = {n | pn ∈ (0, c)} and K = {n | pn ∈ (c, 1/2)}. Then, in (0, 1/2),
every element of J precedes every element of K and ψ : J → K defined by

ψ(n) is the unique m such that φ(pn) = pm

is an order-preserving bijection between J and K. Thus, the order of {pn |
n ∈ N} is of the form I+I. Since this order is isomorphic to the order coded
by α, we see that α ∈ LO2.

Conversely, suppose α ∈ LO2. According to Lemma 2.2, we need to find
c ∈ (0, 1/2) and an order-preserving homeomorphism φ : [0, c] → [c, 1/2]
with the property φ(D(F (α)↾[0, c])) = D(F (α)↾[c, 1/2]).

Write N as the disjoint union of sets J and K such that each element
of J is α-less than each element of K and there is an α-order-preserving
bijection τ : J ↔ K. Let c1 = sup{qn | n ∈ J} and c2 = inf{pn | n ∈ K}.
If J has no biggest element, let c = c1. If K has no smallest element, let
c = c2. (This definition of c is not ambiguous, since in the case that both
J has no biggest element and K has no smallest element, c1 = c2 by (d).)
Otherwise, let c = (c1 + c2)/2. Notice that if J has a biggest element then
c1 < c, and if K has a smallest element then c < c2.
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Define φ(pn)=pτ(n) and φ(qn)=qτ(n). Then φ is strictly order-preserving
on the set A = {pn, qn | n ∈ J}.

Extend φ to the closure of A as follows. First note that if x ∈ A, then
either x = sup{qn | qn ≤ x} or x = inf{pn | pn ≥ x} (or both). In case
x = sup{qn | qn ≤ x}, define φ(x) = sup{qτ(n) | qn ≤ x}. In case x = inf{pn |
pn ≥ x}, define φ(x) = inf{pτ(n) | pn ≥ x}. This is well-defined (non-
ambiguous): Suppose x = sup{qn | qn ≤ x} = inf{pn | pn ≥ x}. We need to
show that y := sup{qτ(n) | qn ≤ x} and z := inf{pτ(n) | pn ≥ x} are equal.
Note that y=sup{qm | qm ≤ y}=sup{qm | qm≤z} and z=inf{pm | pm≥z}.
By property (d), there is no biggest qn below x and there is no smallest pn

above x. Since τ is an order-preserving bijection, it follows that there is no
biggest qm below y, and thus no biggest qm below z, and also, there is no
smallest pm above z. This, by (d) again, implies sup{qm | qm ≤ z} = inf{pm |
pm ≥ z}, i.e., y = z. Clearly φ is continuous and order-preserving on A.

Note that

inf A = 0 ⇔ J has no smallest element (by (b))
⇔ K has no smallest element
⇔ inf τ(A) = c (by the definition of c),

supA = c ⇔ J has no biggest element (definition of c)
⇔ K has no biggest element
⇔ inf τ(A) = 1/2 (by (c)).

Next we define φ(0) = c and φ(c) = 1/2. By the above remarks, φ is well-
defined (i.e., if φ has already been defined at 0 and/or c, this new definition
agrees with the previous one) and φ is order-preserving and continuous on
A ∪ {0, c}.

The complement of A ∪ {0, c} in [0, c] is a disjoint union of open inter-
vals. We define φ to be linear on each of these to get an order-preserving
homeomorphism of [0, c] and [c, 1/2].

Of course,

φ(D(F (α)↾[0, c])) = φ
(

⋃

n∈J

(pn, qn)
)

=
⋃

m∈K

(pm, qm) = D(F (α)↾[c, 1/2]).

Theorem 2.4. H(S1)2 is a complete analytic set.

Proof. The set H(S1)2 is obviously analytic, since f 7→ f ◦ f is contin-
uous. Lemma 2.3 gives a continuous reduction of LO2, a complete analytic
set, to H(S1)2. Hence H(S1)2 is complete.
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