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Abstract. We study the genus and SNT sets of connective covering spaces of familiar
finite CW-complexes, both of rationally elliptic type (e.g. quaternionic projective spaces)
and of rationally hyperbolic type (e.g. one-point union of a pair of spheres). In connection
with the latter situation, we are led to an independently interesting question in group
theory: if f is a homomorphism from Gl(ν, A) to Gl(n, A), ν < n, A = Z, resp. Zp, does
the image of f have infinite, resp. uncountably infinite, index in Gl(n, A)?

1. Introduction and statement of results. In this paper, we study
the genus sets and SNT sets of certain m-connective covering spaces X〈m〉,
following the work initiated by McGibbon and Møller ([16]), and continued
by McGibbon and Roitberg ([17]). Before stating our main results, we recall
the basic notions; in the following definitions, X and Y are assumed to be
spaces of the homotopy type of nilpotent, finite type CW-complexes.

Definition 1.

(i) Ĝ(X) is the set of homotopy types of spaces Y such that the profinite

completion Ŷ of Y is homotopy equivalent to the profinite comple-
tion X̂ of X. (Note that X̂ is canonically homotopy equivalent to
the product

∏
Xp, where Xp is the p-completion of X.)

(ii) Ĝ0(X) is the subset of Ĝ(X) for which the rationalizations X(0), Y(0)

of X, Y are homotopy equivalent.
(iii) G(X) is the subset of Ĝ0(X) for which the p-localizations X(p), Y(p)

of X, Y are homotopy equivalent for all primes p.

Thus we have the set-theoretic inclusions

G(X) ⊂ Ĝ0(X) ⊂ Ĝ(X).
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Ĝ(X) is called the completion genus of X and G(X) is called the localization

genus or Mislin genus of X.

Definition 2. SNT(X) is the set of homotopy types of spaces Y such
that the mth Postnikov approximations Pm(X), Pm(Y ) are homotopy equiv-
alent for all positive integers m.

In [30], Wilkerson proves that the completion genus set of a 1-connected,
finite CW-complex, or finite Postnikov space, is finite. (Hence the same is
true of the other two genus sets.) Wilkerson’s result is certainly not valid
for general 1-connected, finite type CW-complexes. As a simple example,
let Cα = Sr ∪α en, r > 1, be the mapping cone of a homotopy element α
in the stable range and of order a prime p > 3, and let X be the one-point
union

∨∞
i=0 ΣniCα, where n0 = 0 and ni is chosen so that ni + r > ni−1 +n.

As G(ΣniCα) has cardinality 1
2(p− 1) > 1 ([10; III, Example 1.3]), it is not

difficult to verify that G(X) is uncountably infinite.
An interesting example of an uncountably infinite Mislin genus set, due

to Rector ([23]) for the case G = S3 and to Møller ([20]) for all non-
trivial, 1-connected, compact Lie groups G, is G(BG), where BG is the
classifying space of G. Another striking, and somewhat surprising, example
of an uncountably infinite Mislin genus set is given in the paper [16] by
McGibbon and Møller. They prove that the Mislin genus set of S2n〈2n〉, the
2n-connective covering space of the 2n-dimensional sphere S2n, n > 1, is
uncountably infinite, relying on the following corollary to a remarkable the-
orem of Neisendorfer ([22]): If X and Y are finite CW-complexes which
are 11

2 -connected (i.e. π1 = 0 and π2 is finite), then the induced map
[Xp, Yp]→ [X〈m〉p, Y 〈m〉p] on homotopy sets is a bijection for all primes p
and all natural numbers m. Moreover, α ∈ [Xp, Yp] is the homotopy class of
a homotopy equivalence if and only if the same is true of α〈m〉.

We seek to extend the McGibbon–Møller result to a class of spaces
containing S2n. First observe that S2n is a simple example of what ra-
tional homotopy theorists term a rationally elliptic space ([6]), i.e., a 1-
connected, finite CW-complex with only finitely many non-zero rational
homotopy groups. Indeed, S2n is a “2-stage” rationally elliptic space, with
π2n ⊗ Q = Q = π4n−1 ⊗ Q the only non-zero rational homotopy groups.
The cohomology ring has the form H∗(S2n; Q) = Q[a]/〈a2〉, the truncated
polynomial ring with deg(a) = 2n, and the Sullivan minimal model of S2n

(0)

is (v, w : dw = v2) with deg(v) = 2n, deg(w) = 4n − 1. We will consider
more general 2-stage rationally elliptic spaces, namely spaces T for which
H∗(T ; Q) = Q[a]/〈ak〉 with deg(a) = 2n, k > 1. This rational cohomol-
ogy condition implies that T(0) has a Sullivan minimal model of the form

(v, w : dw = vk) with deg(v) = 2n, deg(w) = 2kn − 1, hence that the two
non-zero rational homotopy groups of T are π2n ⊗ Q = Q = π2kn−1 ⊗ Q.
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Examples of such T are:

(i) S2n;
(ii) Jk−1

(
S2n+1

)
, the (k − 1)-st stage of the James reduced product

construction on S2n+1, k <∞;
(iii) CP k−1, the complex projective space;
(iv) HP h−1, the quaternionic projective space;
(v) OP 2, the Cayley (or octonionic) projective plane;
(vi) any finite stage of a homology decomposition of K(Z, 2n).

(Note that (i) is a special case of both (ii) and (vi).)

Our first main result on genus may be stated as follows.

Theorem A. Let T be a 11
2-connected space as above. Then Ĝ0(T 〈m〉)

is uncountably infinite if 2n ≤ m ≤ 2nk − 2, and is trivial (the singleton

set) if m ≥ 2nk − 1.

The hypothesis that T is 11
2 -connected implies that n > 1. To see that

this hypothesis is essential, note that Theorem A does not apply to the
complex projective space CP k−1 since π2

(
CP k−1

)
is not finite; in fact,

CP k−1〈m〉 is homotopy equivalent to S2k−1〈m〉 for m ≥ 2, and the Mis-
lin genus of the latter space is easily seen to be finite.

As mentioned earlier, the conclusion of [16] is that G(S2n〈2n〉) is un-
countably infinite, n > 1. In fact, it is stated in [16; footnote], with scant

indication of proof, that G(S2n〈2n〉) = Ĝ0(S
2n〈2n〉). It is natural to won-

der whether this equality remains true for the more general situation in
Theorem A. We only offer the following partial result.

Addendum to Theorem A. For T of the form (i), (ii), (iv) or (v),

G(T 〈m〉) = Ĝ0(T 〈m〉).

The proof of the Addendum is heavily dependent on Theorem C below.

In the so-called rational dichotomy, 1-connected, finite CW-complexes
which are not rationally elliptic are termed rationally hyperbolic; such spaces
have infinitely many non-zero rational homotopy groups and their rational
homotopy groups “grow exponentially” ([6]). A simple example of such a
space is the one-point union B = Sk ∨Sl, 2 ≤ k ≤ l. Our second main result
on genus is centered on this example.

Theorem B. Let B be as above, k > 2. Then there exists an integer N0

such that for all N ≥ N0, Ĝ0(B〈N〉) is uncountably infinite.

Remark. For our choice of N0, the condition N ≥ N0 is sufficient, but
not necessary, for the conclusion of Theorem B to hold. Suitable examples
will be given at the end of §3.
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Note that the uncountability result in Theorem B is asserted for Ĝ0,
not for G. We do not settle the question of whether the Mislin genus of
B〈N〉 is uncountable for N as in Theorem B. Interestingly, it turns out that
there are examples of 1-connected, finite type CW-complexes X such that
G(X) is at most countably infinite (exactly countably infinite in many cases,

possibly even finite in some cases) and Ĝ0(X) is uncountably infinite. Basing
ourselves on some computations of Møller ([20]) and McGibbon and Møller
([14]), we will present such examples in Appendix 1.

We next turn to SNT computations. With the help of the techniques in
[14] and [15], we obtain the following results.

Theorem C. If T is as in the Addendum, then SNT(T 〈m〉) and

SNT(T 〈m〉p) are trivial for all m and all primes p.

Theorem D. In the notation of Theorem B , SNT(B〈N〉) is uncountably

infinite for all N ≥ N0.

In contrast to the situation for genus sets, the uncountability of SNT(Z)
is actually equivalent to the non-triviality of SNT(Z), provided Z is of the
homotopy type of a nilpotent, finite type CW-complex, or the P -localization
of such a space, where P is a collection of primes; see [14; Corollary 2.1].

The proofs of Theorems A, B, C and D will be carried out in the next four
sections. In the situation of Theorems B and D where k = l, our method of
proof suggests a group-theoretic question which seems to have independent
interest:

Question. Let f : Gl(ν, A) → Gl(n, A) be a homomorphism, ν < n.

Is the coset space Gl(n, A)/f(Gl(µ, A)) infinite, resp. uncountably infinite,
when A = Z, resp. A = Zp?

The case ν ≤ 2 is pertinent to Theorems B and D and differs from the
case ν > 2. We discuss this question in Appendix 2.

Theorems A, B, C and D constitute an amended and expanded version
of a portion of the first-named author’s Ph.D. dissertation [11]. Some of the
results contained in these theorems were also announced in [17] and [24].

We thank Jesper Møller for some helpful correspondence, and a number
of colleagues—Pierre de la Harpe, Michel Kervaire, Marston Conder, Fred
Cohen, Hans-Werner Henn, Martin Moskowitz and Raymond Hoobler—for
their comments on various aspects of the material in Appendix 2.

2. Proof of Theorem A and its Addendum. The proof of Theo-
rem A (and also of Theorem B in the next section) rests on a generalization
of the technique used in establishing [16; Example 4.2]. (A very brief de-
scription of this generalization was given in [17].) The starting point is the
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double coset formula of Wilkerson ([30; Theorem 3.8]), namely

(2.1) Ĝ0(W ) = (f.c)∗ Aut(W(0))\CAut((W(0))
−)/r∗ Aut(Ŵ ).

In (2.1), W is a space of the homotopy type of a 1-connected, finite type
CW-complex, and (W(0))

− is Sullivan’s formal completion of W(0), which

is homotopy equivalent to (Ŵ )(0). Furthermore CAut((W(0))
−) is the sub-

group of the full automorphism group Aut((W0)
−) (also known as the group

of homotopy classes of self-homotopy equivalences of (W(0))
−) consisting of

those automorphisms that induce Q̂-module automorphisms of the homo-
topy groups of (W(0))

−, where Q̂ = Q⊗ Ẑ, with Ẑ the profinite completion

of Z. Similarly we may define CAut((Wp)(0)), CAut(Wp) and CAut(Ŵ ),

but CAut(Wp) = Aut(Wp) and CAut(Ŵ ) = Aut(Ŵ ) by standard prop-
erties of p-completion and profinite completion for nilpotent, finite type
CW-complexes. (All occurrences of Aut((Wp)(0)) in [16] and [17] should be
replaced by CAut((Wp)(0).) The homomorphisms (f.c)∗ and r∗ are induced
by formal completion f.c and rationalization r, respectively. Analysis of
r∗ Aut(Ŵ ) is aided by noting the existence of a commutative diagram

(2.2)

Aut(Ŵ ) −−−−→
∏

Aut(Wp)y
y

CAut((Ŵ )(0)) −−−−→
∏

CAut((Wp)(0))

where the vertical arrows are induced by rationalization and the horizontal
arrows arise from the canonical homotopy equivalence Ŵ →

∏
Wp men-

tioned in §1; moreover, the top horizontal arrow is an isomorphism.
We apply the foregoing to W = T 〈m〉, beginning with the case m ≥

2nk − 1. In this case, all the homotopy groups of W are finite. Thus W(0),

and also (W(0))
−, is trivial, and it follows immediately from (2.1) that Ĝ0(W )

is trivial. In the case 2n ≤ m ≤ 2nk − 2,

(2.3)

W(0) = K(Q, 2nk − 1), so that Aut(W(0)) = Q∗;

(W(0))
− = K(Q̂, 2nk − 1), so that CAut((W(0))

−) = (Q̂)∗;

(Wp)(0) = K(Qp, 2nk − 1), so that CAut((Wp)(0)) = Q∗
p.

In (2.3), R∗ denotes the multiplicative group of units of the ring R, and
Qp = Q ⊗ Zp is the field of p-adic numbers. Thus (2.1) reduces in this
case to

(2.4) Q∗\(Q̂)∗/r∗ Aut(Ŵ ),

with Q∗ canonically embedded in (Q̂)∗. By Neisendorfer’s theorem, stated
in detail in §1, any element of Aut(Wp) is induced by a (unique) element
in Aut(Tp). But the image of [Tp, Tp] in [(Wp)(0), (Wp)(0)] = Qp is contained
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in (Zp)
k ⊂ Zp ⊂ Qp (as the image of [T, T ] in [W(0), W(0)] is contained in

Zk ⊂ Z ⊂ Q). Here, Rk denotes the set consisting of the kth powers of
elements of R; similarly, we will write (R∗)k for the group consisting of the
kth powers of elements of R∗. Thus, in light of (2.2), we see that the double
coset space in (2.4) maps surjectively to

(2.5) Q∗\(Q̂)∗/
∏

(Z∗
p)

k.

To show that the latter double coset space is uncountably infinite, it suffices
to check (see [16], [17]) that there are infinitely many primes p such that
Z∗

p/(Z∗
p)

k is non-trivial. But for p odd,

(2.6) Z∗
p
∼= Zp ⊕ Z/p− 1 (see, e.g., [26]).

Hence

(2.7) Z∗
p/(Z∗

p)
k ∼= Zp/kZp ⊕ (Z/p− 1)/k(Z/p− 1).

Now, for any k ≥ 2, there are infinitely many primes p such that p ≡ 1 mod k
by Dirichlet’s theorem (see, e.g., [26]). For such p, the second summand in
(2.7) is non-trivial, and the proof of Theorem A is completed.

To prove the Addendum to Theorem A, we study the commutative dia-
gram

(2.8)

G(W ) −−−−→ lim
←−
G(PrW )

y
y

Ĝ0(W ) −−−−→ lim
←−
Ĝ0(PrW )

where the vertical arrows are induced by the inclusions G() ⊂ Ĝ0() and the
horizontal arrows are the obvious natural maps. Since W , and therefore also
PrW , is a rational H-space, the inclusion G(PrW ) ⊂ Ĝ0(PrW ) is a bijec-
tion by a result of Belfi–Wilferson ([2; Theorem 1.1]). It follows that the
right vertical arrow in (2.8) is a bijection. To prove that the left vertical
arrow is also a bijection, it remains to prove that the two horizontal arrows
are bijections. By [14; Lemma 6.1], the top horizontal arrow is injective
provided SNT(V ) is trivial for all V in G(W ), and is surjective provided
SNT(W(p)) is trivial for all primes p; the triviality of SNT(V ) follows from
the proof of Theorem C and the triviality of SNT(Wp) follows from Theo-
rem C. Similarly, the bottom horizontal arrow is injective provided SNT(V )

is trivial for all V in Ĝ0(W ) (which again follows from the proof of Theo-
rem C) and is surjective provided SNT(Wp) is trivial for all primes p; the
latter is a consequence of a general compactness argument—see Wilkerson
([29; Corollary II]). The proof of the Addendum to Theorem A is thereby
achieved, modulo Theorem C.
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3. Proof of Theorem B. We divide the proof into two cases, as follows.

Case 1: k < l. We determine N0 and the rational homotopy structure
of both W = B〈N〉 and Wp, N ≥ N0, in preparation for applying (2.1).

The inclusions Sk → B and Sl → B give rise to elements u ∈ πk(B) and
v ∈ πl(B). Consider the Whitehead products

wr,s = v . . . v.u . . . u.v,

with r occurrences of v (r ≥ 0), followed by s occurrences of u (s > 0),
followed by a single occurrence of v. Here we use abbreviated, bracket-free
notation for Whitehead products, so that, for example,

v.u.u.v = [v, [u, [u, v]]].

Note that the wr,s are basic products in the sense of [9] provided we require
that u < v, which we do. Now let P be any positive integer for which
there are at least two distinct products wr,s, w̺,σ having degree P ; it is
readily checked that such P exist. Taking P0 to be the least such integer,
for definiteness, set

N0 = P0 − (l − 1),

and more generally,

Nt = N0 + t(l − 1), t ≥ 0.

It is clear that the products wr+t,s, w̺+t,σ, both of degree Nt+1, are distinct
for any t ≥ 0.

By the Félix–Halperin mapping theorem (see, e.g., [6]), the rational
category of W , cat0(W ), equals 1, i.e., W is a rational co-H-space. Thus
there is a rational equivalence hN from a one-point union of spheres

∨
Si

to W . Clearly, the induced map, (hN )p, from (
∨

Si)p to Wp is also a ra-
tional equivalence. For any N ≥ N0, there is a unique t > 0 such that
Nt−1 ≤ N < Nt. Since Nt is certainly less than or equal to 2N , the Hurewicz
homomorphism πNt

(W ) → HNt
(W ) is a rational isomorphism. Thus, at

least two of the spheres in the one-point union
∨

Si are of dimension Nt and
hN |S

Nt ∨ SNt may be chosen to represent the elements of πNt
(W ) mapping

to the Whitehead products wr+t,s, w̺+t,σ via the isomorphism induced by
the N -connective covering map W → B. We denote the latter elements by
zr+t,s, z̺+t,σ and their images in π′

Nt
(W ) = πNt

(W )/torsion by z′r+t,s, z′̺+t,σ.

Write
∨

Si = S1 ∨S2, where S1 is the summand consisting of all the spheres
of dimension Nt, and S2 is the complementary summand. By a result of
Bousfield and Kan ([3; Proposition VI.6.6]), the canonical map

(S1)p ∨ (S2)p → (S1 ∨ S2)p,
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while not itself a homotopy equivalence, induces a map

[(S1)p ∨ (S2)p]p → (S1 ∨ S2)p,

which is a homotopy equivalence. It will be convenient to regard the domains
of hN and (hN )p as S1 ∨ S2 and [(S1)p ∨ (S2)p]p, respectively.

Consider next the canonical homomorphisms

CAut((W(0))
−)→ CAut(πNt

((W(0))
−)),

Aut(W(0))→ Aut(πNt
(W(0))),

Aut(Ŵ )→ Aut(π′
Nt

(Ŵ )).

Denote the respective images of these homomorphisms by I, I ′ and I ′′. Also,
denote the p-components of I, resp. I ′′, by I(p), resp. I ′′(p) (see (2.2)). The
double coset space in (2.1) maps surjectively to the double coset space

(3.1) (f.c)∗I
′\I/r∗I

′′.

From the rational structure of W and Wp described above, we conclude that

(3.2)
I = CAut(πNt

((W(0))
−)) ∼= Gl(n, Q̂),

I ′ = Aut(πNt
(W(0))) ∼= Gl(n, Q),

where n ≥ 2 denotes the torsion-free rank of πNt
(W ). The isomorphisms

in (3) may be chosen to be compatible with each other, depending on the
selection of an ordered basis for the free abelian group π′

Nt
(W ).

We compute I ′′ by using Neisendorfer’s theorem in conjunction with
(2.2), as in the proof of Theorem A. Any element α ∈ Aut(Wp) is of the form
β〈N〉 for a (unique) element β in Aut(Bp). The induced homomorphism β♯

on homotopy groups is determined by

(3.3) β♯(u) = a.u, β♯(v) = d.v,

where u, v are now viewed as generators of πk(Bp) = πk(B)p, πl(Bp) =
πl(B)p qua Zp-modules, and a, d ∈ Zp. Thus,

(3.4) β♯(wr+t,s) = as.br+t+l.wr+t,s, β♯(w̺+t,σ) = aσ.b̺+t+1.w̺+t,σ,

where wr+t,s, w̺+t,σ are now viewed as elements of πNt
(Bp). Next, z′r+t,s,

z′̺+t,σ may be taken as the first two elements of an ordered basis B for
π′

Nt
(W ); viewing B as an ordered basis for the free Zp-module π′

Nt
(Wp), the

automorphism α′
♯ of π′

Nt
(Wp) induced by the automorphism α♯ of πNt

(Wp)
is represented by a matrix M = (mij) with respect to B, and it follows from
(3.4) that

(3.5) m21 = 0.
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For x in Zp, consider the matrix

Mx =




1

x 1

1

1

1

1




,

all the non-displayed entries being 0. Since Mx.M−1
y = Mx−y, it follows

from (3.5) that for x 6= y, the matrices Mx, My determine distinct elements
in the coset space I(p)/r∗I

′′(p). Therefore, this coset space, and hence also
the coset space in (3.1), is uncountably infinite. This completes the proof of
Case 1 of Theorem B.

Case 2: k = l. We continue with the notation used in Case 1 and
consider the three distinct Whitehead products w0,3, w1,2, w2,1, each of
degree 4k − 3. As in Case 1, we set

N0 = 3k − 2,

more generally,

Nt = N0 + t(k − 1), t ≥ 0,

and for Nt−1 ≤ N < Nt, t > 0, find a rational equivalence hN from a one-
point union of spheres

∨
Si to W . In Case 2, at least three of the spheres in

the one-point union
∨

Si are of dimension Nt and hN |S
Nt ∨ SNt ∨ SNt may

be chosen to represent the elements z0,2+t, z1,1+t, z1+t,1 in πNt
(W ) mapping

to w0,2+t, w1,1+t, w1+t,1. The isomorphisms of (3) in Case 1 hold also for
Case 2 except that now n ≥ 3, but the analog of (3.3) for Case 2 becomes

(3.6) β♯(u) = a.u + b.v, β♯(v) = c.u + d.v,

where a, b, c, d ∈ Zp. The elements z′0,2+t, z
′
1,1+t, z

′
1+t,1 ∈ π′

Nt
(W ) may be

taken as the first, second and last elements of an ordered basis B for π′
Nt

(W ).
Viewing B as an ordered basis of the free Zp-module π′

Nt
(Wp), we study

the matrix M = (mij) representing the automorphism α′
♯ of π′

Nt
(Wp) with

respect to B. From (3.6), computation shows that

(3.7) m11 = ∆.a2+t, mn1 = ∆.c2+t, m21 = ∆.a1+t.c,

where ∆ = a.d + (−1)kb.c. Note that for k odd, ∆ = δ, the determinant of
the automorphism β♯ of πk(Bp), hence is in Z∗

p. We claim that, as in Case 1,
the map sending x in Zp to the coset of Mx in I(p)/r∗I

′′(p) is injective.



144 H. Huang and J. Roitberg

Indeed, if Mx.M−1
y ∈ r∗I

′′(p), then (3.7) implies

1 = ∆.a2+t,

0 = ∆.c2+t, hence c = 0,(3.8)

x− y = a1+t.c, hence x = y.(3.9)

This completes the proof of Case 2 of Theorem B.

We conclude this section with some remarks regarding the proof of Case 2
of Theorem B. If we fix ordered bases for Aut(Bp) = Aut(πk(Bp)) and
Aut(π′

Nt
(Wp)) = Aut(π′

Nt
(Bp)), the homomorphism

Aut(πk(Bp))→ Aut(π′
Nt

(Wp)),

implicit in the proof of Case 2 of Theorem B, is represented by a homomor-
phism

f : Gl(2, Zp)→ Gl(n, Zp), n > 2.

Our explicit computations lead to the conclusion that the coset space
Gl(n, Zp)/f(Gl(2, Zp)) is uncountably infinite. Also, in the proof of Theo-
rem D below, a similar homomorphism

f : Gl(2, Z)→ Gl(n, Z), n > 2,

appears implicitly, with the property that the coset space Gl(n,Z)/f(Gl(2,Z))
is (countably) infinite. The question raised near the end of the introduction
asks whether the conclusions about the size of the coset spaces are valid for
general homomorphisms f .

Here are three examples of the foregoing. In contrast with the first ex-
ample, the latter two are not strict illustrations of the recipe used in the
proof of Case 2 of Theorem B, but are rather variations of that recipe. In
all three examples, we fix the ordered basis {u, v} for πk(Bp).

Example 1. Let k = 3, so that N0 = 7, and set N = 7, so that N1 = 9.
Fixing the ordered basis {z′0,3, z

′
1,2, z

′
2,1} for π′

9(Wp), we compute

f

((
a b

c d

))
= M = δ.




a2 2ab b2

ac ad + bc bd

c2 2cd d2


 ,

whose determinant is δ6.

Example 2. Let k = 3 again, but now set N = 3. Fixing the ordered
basis {z′0,2, z

′
1,1} for π′

7(Wp), we consider the homomorphism

Aut(π3(Bp))→ Aut(π′
7(Wp))

and compute

f

((
a b

c d

))
= δ.

(
a b

c d

)
,
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whose determinant is δ2. In this example, the coset space Gl(2,Zp)/f(Gl(2,Zp))
is non-trivial since the determinant homomorphism induces a surjection

Gl(2, Zp)/f(Gl(2, Zp))→ Z∗
p/(Z∗

p)
2.

The method of proof of Theorem A then shows that Ĝ0(W ) is uncountably
infinite.

Example 3. Let k = 4, so that N0 = 10, but set N = 4. Denote by
(uu)′, (uv)′, (vv)′ the canonical images in π′

7(Bp) of the Whitehead prod-
ucts uu, uv, vv. (Of course, uu and vv are not basic products.) Note that
{(uu)′, (uv)′, (vv)′} is an ordered basis for π′

7(Bp), at least for p odd. Fixing
this basis, we consider the homomorphism

Aut(π4(Bp))→ Aut(π′
7(Bp))

and compute

f

((
a b

c d

))
=




a2 2ab b2

ac ad + bc bd

c2 2cd d2


 ,

whose determinant is δ3.

The fact that in all three examples, the determinant of f
((

a b

c d

))
is of the

form δe, e > 1, is no accident. It can be shown that in the context of the
proof of Case 2 of Theorem B, the determinant of f

((
a b

c d

))
is always of this

form.

4. Proof of Theorem C. First suppose m < 2n. Then, reverting to
the notation of §2, W = T 〈m〉 = T , a finite CW-complex, and W(p) =
T 〈m〉(p) = T(p), a finite-dimensional CW-complex. It is thus clear that the
conclusion of Theorem C holds in this case.

Next suppose m > 2nk − 2. Then all the homotopy groups of W and
W(p) are finite. The conclusion of Theorem C follows in this case from [29;
Corollary II].

For the remainder of this section, we focus on the interesting range 2n ≤
m ≤ 2nk − 2, and utilize the following criterion of McGibbon and Møller
([14; Theorem 3]): If Z is the P -localization of a 1-connected, finite type,
rational H-space, where P is a collection of primes, then SNT(Z) is trivial if
and only if the image of the canonical (anti)homomorphism from Aut(Z) to
Aut(H≤µ(Z; Z(P ))) is of finite index for all µ. By the latter automorphism
group, we mean the group of graded ring automorphisms of the graded ring
obtained from H∗(Z; Z(P )) by replacing the cohomology groups in degrees
> µ by 0. This criterion applies to the situation in Theorem C since W and
W(p) are 1-connected, finite type, rational H-spaces.
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Since H i(W ; Z) is finite if i 6= 2nk − 1, and H2nk−1(W ; Z) is finitely
generated abelian with torsion-free rank 1, Aut(H≤µ(W ; Z)) is itself finite
for all µ and the criterion for triviality of SNT(W ) is satisfied, a fortiori. It
then remains to show that the image of the canonical (anti)homomorphism
from Aut(W(p)) to Aut(H2nk−1(W(p); Z(p))/torsion) = Z∗

(p) is of finite in-

dex. Equivalently, it suffices to show that the image of the canonical homo-
morphism from Aut(W(p)) to Aut(π′

2nk−1(W(p))) ∼= Aut(H2nk−1(W(p); Z)/
torsion) is of finite index, since these last two automorphism groups are
(anti)isomorphic to Aut(H2nk−1(W(p); Z(p))/torsion). Our strategy will be to
show that the image of the canonical map from Aut(Wp) to Aut(π′

2nk−1(Wp))
is sufficiently large in an appropriate sense, and then to pass from Wp to
W(p) using a local arithmetic square argument. The details follow.

Lemma 4.1. There exists a positive integer e, depending only on T , with

the following property : If d is any integer , there exists an αd in [T, T ] such

that

(4.1) (αd)♯ : π2n(T )→ π2n(T ) is multiplication by de,

and consequently ,

(4.2) (αd)♯ : π′
2nk−1(T )→ π′

2nk−1(T ) is multiplication by dE, where E = ke.

Proof. The result is clear, with e = 1, in case (i) and therefore also in
case (ii) (even if k =∞). For case (iv), a theorem of Sullivan ([27; pp. 58–59,
Remark IV]) asserts that (4.1) holds for d odd, with e = 2 (even if k =∞),
and a theorem of McGibbon ([13; Proposition 2.4]) asserts that (4.1) holds
for d even. (A classical homotopy theory calculation shows that, already for
HP 2, an αd satisfying (4.1) exists precisely when

de(de − 1) ≡ 0 mod 24.

Hence, for d = 2, we see that e ≥ 4.) Finally, for case (v), an argument
similar to the one referred to in the previous sentences shows an αd satisfying
(4.1) exists precisely when

de(de − 1) ≡ 0 mod 240.

But this congruence holds for d = 2, 3 or 5, with e = 4, and for d relatively
prime to 240, with e = 64, by the Euler–Fermat theorem.

Lemma 4.2. For any x in Zp, there exists a βx in [Tp, Tp] such that

(4.3) (βx)♯ : π2n(Tp)→ π2n(Tp) is multiplication by xe,

and consequently

(4.4) (βx)♯ : π′
2nk−1(Tp)→ π′

2nk−1(Tp) is multiplication by xE .

Moreover , if x is in Z∗
p, then any such βx actually lies in Aut(Tp).
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Proof. Let (di) be a sequence of integers converging to x in the p-adic
topology. For each di, let αdi

be as in Lemma 4.1 and let

βdi
= (αdi

)p,

the p-completion of αdi
. The homotopy set [Tp, Tp] has a natural compact,

Hausdorff topology ([27]) and so the sequence (βdi
) admits a convergent

subsequence. If βx denotes the limit of such a subsequence, then (4.3) is
readily verified for this choice of βx.

Suppose now that x is in Z∗
p. We will show that βx induces automor-

phisms on all homotopy groups, hence lies in Aut(Tp). First, from (4.3),
βx induces an automorphism on H2n(Tp), hence, a fortiori, on H2n(Tp; Z/pr)
(and H2n(Tp; Z/pr)), r > 0. From the homological structure of Tp with co-
efficients in Zpr , we see that βx induces an automorphism on Hj(Tp; Z/pr)
for all j ≥ 0 and all r > 0. It then follows from [21; Corollary 3.10] that βx

induces an automorphism on πj(Tp; Z/pr), the homotopy groups with coeffi-
cients in Z/pr, for all j ≥ 0 and all r > 0. Finally, using the functorial short
exact sequence (universal coefficient theorem; see, e.g., [21; Proposition 1.4])

0→ πj(Tp)⊗ Z/pr → πj(Tp; Z/pr)→ Tor(πj−1(Tp), Z/pr)→ 0,

in conjunction with (4.3), (4.4) and the fact that π′
j(Tp) = 0 for all j 6= 2n,

2nk−1, we conclude that βx induces automorphisms on πj(Tp) for all j ≥ 0,
as desired.

Next, let η ∈ Z∗
(p) be such that

(4.5) C(η) = xE for some x ∈ Z∗
p,

where C : Z(p) ⊂ Zp is the p-completion homomorphism, and let β = βx ∈
Aut(Tp) be as in Lemma 4.2. Clearly, β〈m〉 ∈ Aut(Wp) and, by (4.4),

(β〈m〉)♯ : π′
2nk−1(Wp)→ π′

2nk−1(Wp) is multiplication by xE .

We also have γ ∈ Aut(W(0)) (uniquely) defined by the condition that

γ♯ : π2nk−1(W(0))→ π2nk−1(W(0)) is multiplication by R(η),

where R : Z∗
(p) ⊂ Q∗ is the rationalization homomorphism. From the homo-

topy-pullback diagram
W(p) −−−−→ Wpy

y

W(0) −−−−→ (Wp)(0)

(local arithmetic square), we readily infer the existence of an ǫ in [W(p), W(p)]
whose images in Aut(Wp) and Aut(W(0)) are, respectively, β〈m〉 and γ. By
a homotopical Mayer–Vietoris argument, we see that ǫ is in Aut(W(p)) and
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that

ǫ♯ : π′
2nk−1(W(p))→ π′

2nk−1(W(p)) is multiplication by η.

We have thus shown that the canonical homomorphism from Aut(W(p)) to

Aut(π′
2nk−1(W(p))) contains (in fact equals) C−1((Z∗

p)
E). But since (Z∗

p)
E

has finite index in Z∗
p by (2.6), C−1((Z∗

p)
E) has finite index in Z∗

(p). This

completes the proof of Theorem C.

Remark. While (Z∗
p)

E has finite index in Z∗
p, it is not true that (Z∗

(p))
E

has finite index in Z∗
(p) if E > 1. In fact, Z∗

(p)/(Z∗
(p))

E is isomorphic to a

direct sum of countably many copies of Z/E; generators are provided by the
cosets determined by the primes q 6= p. As a consequence, there is no analog
of Neisendorfer’s theorem for p-localization; that is, not every element of
[W(p), W(p)] “comes from” an element of [T(p), T(p)].

5. Proof of Theorem D. We now revert to the notation of §3, writing
W for the N -connective covering B〈N〉 = (Sk ∨ Sl)〈N〉. In order to prove
Theorem D, we will utilize a criterion of McGibbon and Møller ([15; Theo-
rem 1]) dual to the criterion used in §4, namely: If Z is a 1-connected, finite
type, rational co-H-space, then SNT(Z) is trivial if and only if the image
of the canonical homomorphism from Aut(Z) to Aut(π≤µ(Z)) is of finite
index for all µ. By the latter automorphism group, we mean the group of
automorphisms of the graded Lie ring obtained from π∗(Z) by replacing the
homotopy groups in degrees > µ by 0. This criterion applies to the situation
in Theorem D since W is, as noted in §3, a 1-connected, finite type, rational
co-H-space.

We will prove Theorem D by showing that the image of the canonical
homomorphism from Aut(W ) to Aut(π≤Nt

(W )) is of infinite index. Since Nt

is certainly less than or equal to 2N−2, the Lie ring structure on π≤Nt
(W ) is

trivial and it therefore suffices to show that the image of the canonical homo-
morphism from Aut(W ) to Aut(πNt

(W )), or from Aut(W ) to Aut(π′
Nt

(W )),
is of infinite index. To that end, pick a prime p arbitrarily and consider the
commutative square

(5.1)

Aut(W ) −−−−→ Aut(π′
Nt

(W ))
y

y

Aut(Wp) −−−−→ Aut(π′
Nt

(Wp))

with vertical arrows induced by p-completion W →Wp. With respect to the
ordered bases B for π′

Nt
(W ) (or for π′

Nt
(Wp)) described in §3, Aut(π′

Nt
(W ))

and Aut(π′
Nt

(Wp)) may be identified with Gl(n, Z) and Gl(n, Zp), respec-
tively, and the right vertical arrow may be identified with the homomorphism
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from Gl(n, Z) to Gl(n, Zp) induced by p-completion Z ⊂ Zp. It follows that
an element in the image of the top horizontal arrow in (5.1) has matrix
representative M satisfying the properties derived in §3 ((3.5), (3.7)) ex-
cept that the entries of M are in Z. The computations of §3 (see especially
(3.8) in Case 2: k = l) then show that the matrices Mx of §3, x ∈ Z, de-
termine mutually distinct cosets modulo the image of Aut(W ) in Gl(n, Z).
This completes the proof of Theorem D.

Appendix 1. We describe here a family of spaces with each X in the
family having G(X) at most countably infinite and Ĝ0(X) uncountably infi-
nite. We begin with the spaces BSU(3), the classifying space of the special
unitary group SU(3), and K = K(Z, 4)×K(Z, 6). Observe that these spaces
are rationally equivalent and write R for a common rationalization. Let P
be a finite set of primes, each > 3, let Q be the set of all primes not in P ,
and choose rationalization maps

BSU(3)(P ) →R, K(Q) → R,

which we may assume to be fibrations. We then define X to be the pullback
of these two maps. Thus X is a “Zabrodsky mix” of BSU(3) and K; that is,

(A1.1) X(P ) ≃ BSU(3)(P ), X(Q) ≃ K(Q).

According to [20; Theorem 2.1], if P contains at least 2 primes, there are, up
to homotopy, exactly countably (infinitely) many nilpotent, P -local spaces
of finite type over Z(P ), {U1, U2, . . .}, satisfying

(A1.2) (Ui)(p) ≃ BSU(3)(p), i ≥ 1, j ∈ P.

Of course, if P is the singleton set {p}, there is only one Ui as in (A1.2),
namely BSU(3)(p) itself. Furthermore, up to homotopy, the only nilpotent
Q-local space of finite type over Z(Q) whose p-localization is homotopy equiv-
alent to K(p), for all p ∈ Q, is K(Q) itself.

Suppose now that Y (more accurately, the homotopy type of Y ) is in
G(X). Then

(A1.3) Y(P ) ≃ Ui0 for some i0,

by (A1.1) and (A1.2). Similarly,

(A1.4) Y(Q) ≃ K(Q).

By [10; II, Theorem 5.9], Y is homotopy equivalent to the pullback of the
rationalization maps

R(P ) : Y(P ) → Y(0), R(Q) : Y(Q) → Y(0)

induced by the rationalization map R : Y → Y(0) (assuming R(P ) and R(Q) to
be fibrations). It follows from this, together with (A1.3) and (A1.4), that Y
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is homotopy equivalent to the pullback of appropriate rationalization maps

r(P ) : Ui0 → Y(0), r(Q) : K(Q) → Y(0)

(once again assuming r(P ) and r(Q) are fibrations). In particular, the homo-
topy type of Y is completely determined by the homotopy classes of r(P )

and r(Q). But the number of choices for the homotopy classes of r(P ) and
r(Q) is countably infinite since the full homotopy sets

[Ui0 , Y(0)] ∼= H4(Ui0 ; Q)×H6(Ui0 ; Q),

[KQ, Y(0)] ∼= H4(K(Q); Q)×H6(K(Q); Q)

are clearly countably infinite. Thus G(X) is at most countably infinite, and
exactly countably infinite when P contains at least two primes.

To see that Ĝ0(X) is uncountably infinite, we use the double coset for-
mula (2.1), which in the present situation reduces to

(A1.5) Q∗ ×Q∗\(Q̂)∗ × (Q̂)∗/r∗ Aut(X̂).

By examining the computation in [14; Ex. H], we find that the p-component

of r∗ Aut(X̂) is

(A1.6) J(p) = {(x2, x3) | x ∈ Z∗
p}, provided p ∈ P.

(For p ∈ Q, the p-component of r∗ Aut(X̂) is all of Z∗
p × Z∗

p.)
We next observe that the quotient Z∗

p × Z∗
p/J(p) is uncountably infinite

if p ∈ P . In fact, by (2.6), this quotient contains a summand isomorphic to
Zp⊕Zp/{(2x, 3x) | x ∈ Zp}, which is itself isomorphic to Zp. It follows that

the double coset in (A1.5), and hence Ĝ0(X), is uncountably infinite.

Appendix 2. This appendix consists largely of speculative remarks,
which we hope to develop on a future occasion. However, we do include the
following partial answer to the Question raised in §1, whose formulation and
proof owe much to suggestions of Pierre de la Harpe.

Theorem E. Let f : Gl(ν, Z) → Gl(n, Z) be a homomorphism, ν < n.

If ker(f) is finite, then the coset space Gl(n, Z)/f(Gl(ν, Z)) is infinite.

We point out that the condition that ker(f) be finite is satisfied in the
situation considered in §5, as can be verified by making matrix computations
similar to those carried out in §3.

Proof of Theorem E. Our argument relies on the formula

(A2.1) vcd(Sl(k, Z)) =
k(k − 1)

2
,

where vcd(G) stands for the “virtual cohomological dimension” of the
group G, that is, the cohomological dimension, cd(H), of any torsion-free
subgroup H of finite index in G (provided such subgroups exist); see [25]
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or [4] for a discussion of vcd, and [4] for a proof of (A2.1). Since Sl(k, Z) is
of index 2 in Gl(k, Z), (A2.1) is also valid for Gl(k, Z).

Let then H be a torsion-free subgroup of finite index in Gl(ν, Z). By
(A2.1), we have

(A2.2) cd(H) =
ν(ν − 1)

2
.

Assume, for a contradiction, that Gl(n, Z)/f(Gl(ν, Z)) is finite, and consider
the homomorphism φ from H to f(H) induced by f . Since ker(f) is finite
and H is torsion-free, φ is an isomorphism, so that

cd(f(H)) =
ν(ν − 1)

2
.

But f(H) is of finite index in f(Gl(ν, Z)), which is, by assumption, of finite
index in Gl(n, Z). Hence, again by (A2.1),

cd(f(H)) =
n(n− 1)

2
,

and we have arrived at our contradiction.

In the case ν = 2, there are alternative approaches to proving Theorem
E based on [1], [7] or [18] rather than (A2.1).

If the assumption that ker(f) be finite is dropped, then the technique of
proof of Theorem E fails. As de la Harpe points out, there is a substantial
difference between the case ν > 2, where the conclusion of Theorem E is
probably true, and the case ν = 2, where the conclusion of Theorem E is
probably false. We will discuss only the case ν = 2 here. In that case, there
is an example of Conder (implicit in [5]) of a homomorphism from Sl(2, Z)
(actually from PSl(2, Z)) to Sl(3, Z) such that Sl(3, Z)/f(Sl(2, Z)) is finite,
and examples of Tamburini, Wilson and Gavioli ([28]) of epimorphisms from
Sl(2, Z) to Sl(n, Z), n ≥ 28; see also [8; III.39] for further discussion and ref-
erences. It therefore seems plausible that there should exist homomorphisms
from Gl(2, Z) to Gl(n, Z), for various n > 2, with Gl(n, Z)/f(Gl(2, Z)) fi-
nite, although Marston Conder has pointed out to us that the particular
homomorphism he constructs in [5] does not extend to a homomorphism
from Gl(2, Z) to Gl(n, Z).

The examples in [5] and [28] are presumably more “exotic” than the
homomorphisms which arise in §3 and §5. These latter homomorphisms
are of a rather specialized sort; for any such f , and any

(
a b

c d

)
in Gl(2, A),

A = Z or Zp, computation shows that the entries of f
((

a b

c d

))
are polynomial

functions, with coefficients in Z, of a, b, c and d. For such f , one might
expect to be able to approach the Question using the theory of algebraic
groups. However, we have been warned by experts (Moskowitz, Hoobler) to
tread carefully since: (1) the coefficient rings Z, Zp are not fields; (2) the
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traditional coset spaces are not the natural ones arising in the theory of
algebraic groups.

Finally, we make a couple of remarks about the Question when the co-
efficient ring is Zp. First, there is a version of (A2.1) in that case. Indeed,
according to Henn, classical work of Lazard ([12]) may be used to prove the
formula

(A2.3) vcd(Sl(k, Zp)) = k(k − 1),

provided we work with “continuous cohomology”. However, since Sl(k, Zp)
does not have finite index in Gl(k, Zp), it is not clear how to use (A2.3) to
derive a version of Theorem E in the case of Z replaced by Zp. Secondly,
we wonder whether there is a “differentiable” approach to the Question.
To explain, first note that for any differentiable (i.e., C∞) homomorphism
f : Gl(ν, R) → Gl(n, R), ν < n, R the reals, f(Gl(ν, R)) has Lebesgue
measure zero in Gl(n, R), by Sard’s lemma (see, e.g., [19]), from which it
easily follows that Gl(n, R)/f(Gl(ν, R)) is uncountably infinite. Now one can
also do analysis over Qp, and Zp is an open, dense subspace of Qp. We ask:
Is there a p-adic version of Sard’s lemma? If so, can we thereby deduce an
affirmative answer to the Question in case f : Gl(ν, Zp) → Gl(n, Zp) is a
differentiable homomorphism?
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