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Strong initial segments of models of I∆0byPaola D'Aquino (Caserta) and Julia F. Knight (Notre Dame, IN)
Abstra
t. M
Aloon showed that if A is a nonstandard model of I∆0, then someinitial segment of A is a nonstandard model of PA. Sommer and D'Aquino 
hara
terized,in terms of the Wainer fun
tions, the elements that 
an belong to su
h an initial segment.The 
hara
terization used work of Ketonen and Solovay, and Paris. Here we give 
onditionson a model A of I∆0 guaranteeing that there is an n-elementary initial segment that is anonstandard model of PA. We also 
hara
terize the elements that 
an be in
luded.1. Introdu
tion. Let L be the usual language of arithmeti
, with sym-bols +, ·, 0, 1, and ≤. Let I∆0 be the subsystem of Peano Arithmeti
 (PA)in whi
h indu
tion applies only to formulas with bounded quanti�ers (∆0-formulas). A nonstandard model A of I∆0 satis�es overspill for ∆0-formulas;i.e., if ϕ(u, x) is ∆0, then for any tuple b̄ in A, if ϕ(b̄, x) is satis�ed by allstandard n, then it is satis�ed by some nonstandard ν.By a result of Parikh [14℄, any ∆0-de�nable fun
tion that is provablytotal in I∆0 is provably bounded by a polynomial. Bennett [1℄ found a

∆0-formula de�ning in N the graph of exponentiation. Later, Paris [16℄found a ∆0-formula E0(x, y, z) de�ning the relation xy = z, for whi
hthe re
ursive properties of exponentiation are provable in I∆0. The la
kof exponentiation means that many 
lassi
al results of elementary num-ber theory are not known to be provable in I∆0. In parti
ular, it is anopen problem whether I∆0 proves Matijasevi
's theorem (saying that ev-ery 
.e. set is Diophantine). A positive answer to this question would haveimportant 
onsequen
es in 
omplexity theory. If we add to I∆0 the axiom
exp = (∀x > 1) (∀y) (∃z)E0(x, y, z), saying that the exponential fun
tion istotal, then the resulting theory is strong enough to prove all of the results ofelementary number theory. In parti
ular, Matijasevi
's theorem is provablein I∆0 + exp (see [6℄).2000 Mathemati
s Subje
t Classi�
ation: 03H15, 03C62.Key words and phrases: nonstandard model, Peano arithmeti
, Ramsey theory, large-ness. [155℄ 
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156 P. D'Aquino and J. F. KnightWithout exponentiation, we use known sequen
es to show the existen
eof others. Let A be a model of I∆0. Let ϕ(u, x, y) be a bounded formula su
hthat for ea
h u and x, there is at most one y su
h that A |= ϕ(u, x, y). For asequen
e v, we say that v is determined by ϕ(u, x, y) if for all z < length(v),
A |= ϕ(v↾z, z, v(z)). Let C be a sequen
e 
oded in A. If I is the set of
s ≤ length(C) su
h that there exists v of length x determined by ϕ(u, x, y)with a 
ode bounded by that for C, then there is a greatest s ∈ I. We havea maximal sequen
e J determined by ϕ su
h that the length of J , and the
ode for J , are bounded by those for C. We shall often take ϕ(u, x, y) su
hthat this maximal sequen
e is a subsequen
e of C.The notion of �α-largeness� was de�ned by Ketonen and Solovay [8℄.They 
onne
ted it with the fun
tions in the Wainer hierar
hy, and theyalso did some Ramsey theory. Sommer [20℄ developed the theory of ordinalsin I∆0, and proved many fa
ts about α-largeness in I∆0 + exp, in
ludingthose needed for the 
onne
tions with the Wainer fun
tions. Sommer did notdo the Ramsey theory. In a series of papers [9℄, [10℄, [2℄, [3℄, [4℄, [11℄, [22℄,Kotlarski, Rataj
zyk, Bigorajska, Piekart, and Weiermann gave a thoroughdevelopment of Ramsey theory for α-largeness, in the setting of PA.There are some di�eren
es in the de�nitions. Sommer's des
ription of thefundamental sequen
es looks di�erent from Ketonen and Solovay's, but thede�nitions really are the same. Sommer's de�nition of the Wainer fun
tionsdi�ers slightly from that of Ketonen and Solovay. Kotlarski and his 
ollab-orators de�ned their fundamental sequen
es in the same way as Sommer,but they 
hose a di�erent de�nition of α-largeness. This 
hoi
e of de�nitionsyields 
lean, appealing statements for Ramsey's theorem. We use Sommer'sde�nitions [20℄ so that we 
an appeal to the development of the ordinalsthat he 
arried out in I∆0. We also use fa
ts about α-largeness that Sommerproved in I∆0 + exp. We give lo
al versions of these fa
ts, always assumingthe existen
e of a large sequen
e that bounds the other sequen
es we need.We take Ketonen and Solovay's de�nition of the Wainer hierar
hy. At thepoint where we apply Ramsey's theorem for α-largeness, we have alreadyused the Wainer fun
tions to obtain a model of PA.In Se
tion 2, we give ba
kground from Ramsey theory, and we de�ne theWainer fun
tions and α-largeness. In Se
tion 3, we dis
uss diagonal indis-
ernibles. In Se
tion 4, we re
all M
Aloon's original result and the resultsof Sommer and D'Aquino. In Se
tion 5, we say when a model A of I∆0 hasa nonstandard n-elementary initial segment satisfying PA. We �rst 
onsiderthe 
ase where N ≤n A. Our result here is based on the standard versionof Ramsey's theorem. We then drop the assumption that N ≤n A. We saywhen a model of I∆0 has an n-elementary initial segment that is a model ofPA, and we 
hara
terize the elements that 
an be in
luded in su
h an initialsegment. We work with α-large sets that �bound witnesses� for various sets



Strong initial segments of models of I∆0 157of formulas, and we de�ne some fun
tions, related to the Wainer fun
tions,that produ
e these large sets. We 
lose, in Se
tion 6, with a 
ouple of openproblems.2. Ramsey theory and largeness2.1. Basi
 Ramsey theory. We write I [n] for the set of subsets of I ofsize n. In our setting, I is a subset of some model of arithmeti
, whi
h has anatural ordering, and we may identify sets of size n with in
reasing n-tuples.A partition of I [n] is a fun
tion F from I [n] to a set c�we suppose that c hasthe form {0, 1, . . . , c− 1}. A set J ⊆ I is homogeneous for F if F is 
onstanton J [n]. Here is the standard version of Ramsey's theorem.Theorem 2.1 (Standard version of Ramsey's theorem). Let I be an in-�nite set , and let F be a partition of I [n] into �nitely many 
lasses. Thenthere is an in�nite set J ⊆ I that is homogeneous for F .The proof pro
eeds by indu
tion on n. The base 
ase, where n = 1,is the standard pigeonhole prin
iple, saying that if F is a partition of anin�nite set into �nitely many 
lasses, then some 
lass is in�nite. There is anindu
tive lemma, whi
h says that for a partition F : I [n+1] → c, there is anin�nite set I ′ ⊆ I su
h that for (x1, . . . , xn, xn+1) in
reasing in I ′, the valueof F (x1, . . . , xn, xn+1) depends only on (x1, . . . , xn).The next version of Ramsey's theorem is also well-known (see [7, p. 213℄).Theorem 2.2 (In�nite Ramsey's theorem for PA). Let B be a modelof PA. Let I be a 
o�nal de�nable set , and let F : I [n] → c be a de�nablepartition of I [n], where n is standard and c ∈ B. Then there is a 
o�nalde�nable set J ⊆ I that is homogeneous for F .There is a well-known �nite version of Ramsey's theorem, whi
h we donot use. We want a se
ond �nite version, whi
h involves α-largeness [8℄.2.2. Largeness. Re
all that ǫ0 is the least ordinal α su
h that ωα = α.Ea
h α < ǫ0 
an be expressed in Cantor normal form as ωβ1 ·x1+· · ·+ωβk ·xk,where α > β1 > · · · > βk. Sommer [20℄ formalized the whole theory ofordinals below ǫ0 in a ∆0-way, in
luding the notion of fundamental sequen
e.In parti
ular, he provided a Cantor normal form for all those elements whi
hare ordinals in a model of I∆0.Definition 1. To ea
h ordinal 0 < α < ǫ0, we assign a fundamentalsequen
e {α}(x) as follows.
• For α = β + 1, {α}(x) = β for all x.
• For α = ωβ+1, {α}(x) = ωβ · x.
• For α = ωβ, where β is a limit ordinal, {α}(x) = ω{β}(x).
• For α = ωβ · (a+ 1), where a 6= 1, {α}(x) = ωβ · a+ {ωβ}(x).
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• For α with Cantor normal form ending in ωβ · a, say α = γ + ωβ · a,
{α}(x) = γ + {ωβ · a}(x).Below we de�ne a spe
ial sequen
e (ωn)n∈ω of ordinals, 
o�nal in theinterval below ǫ0.Definition 2.

ω0 = 1, ωn+1 = ωωn .It is also 
onvenient to have a name for a tower of n ω's, with α on top.Definition 3.
ω0(α) = α, ωn+1(α) = ωωn(α).We are ready to de�ne α-largeness. We identify a set X, �nite or in�nite,with the sequen
e of elements of X, given in in
reasing order.Definition 4. The set X is α-large, for α < ǫ0, if there is a sequen
e

C = (α0, x0, α1, x1, . . . , αr−1, xr−1, αr) su
h that
• α0 = α,
• αr = 0,
• x0 is the �rst element of X,
• for 0 < i < r, xi is the �rst element of X that is > xi−1,
• for i < r, αi+1 = {αi}(xi).We say that C witnesses that X is α-large.
Example. The set {3, 4, 5, 6} is ω-large, witnessed by the sequen
e

C = (ω, 3, 3, 4, 2, 5, 1, 6, 0).We 
an easily see the following.Proposition 2.3. A set X is ω-large if the 
ardinality of X is greaterthan the least element.In the standard setting, an in�nite subset of ω is α-large for all α < ǫ0.The following is not di�
ult to prove.Proposition 2.4. Let A be a model of PA, and let X be a 
o�nal de�n-able set. Then X is α-large for all α < ǫ0.Sommer [20℄ developed the notion of α-largeness in I∆0 + exp. Throughmost of the present paper, we work in I∆0, not assuming that exp is total. Wework lo
ally, making sure that the sequen
es we a
tually need are boundedby some known element, usually a sequen
e C witnessing that some set is
α-large. Suppose J is α-large, witnessed by the sequen
e C. Suppose theordinal β o

urs in C. Let C ′ be the tail of C that begins with β, and let J ′be the 
orresponding tail of J , 
onsisting of the elements of J that do noto

ur before β in C. Then C ′ witnesses that J ′ is β-large. The sequen
e C ′is de�ned by re
ursion using a bounded formula. Ea
h initial segment of C ′



Strong initial segments of models of I∆0 159is bounded by the 
orresponding initial segment of C (with the same lastterm).Lemma 2.5. Let J be α-large, witnessed by C. Suppose α has Cantornormal form
ωβ1x1 + · · · + ωβnxn.Then J = Jnˆ · · ·ˆJ1, where Ji is an ωβixi-large segment of J . The elementsof Jn 
ome �rst , those in J1 
ome last , and , in general , the elements of Ji+1
ome before those of Ji.Proof. We indi
ate what happens with the initial segment Jn. The wit-nessing sequen
e C for J starts with ordinals of the form

αk = ωβ1x1 + · · · + ωβn−1xn−1 + γk,with Cantor normal form mat
hing that of α through the �rst n− 1 terms.The last part, whi
h we 
all γk, starts with the value ωβnxn and de
reasesto 0. The witnessing sequen
e Cn for Jn is obtained from this initial segmentof C by repla
ing ea
h ordinal αk by γk. The sequen
e Cn 
an be de�ned byre
ursion, using a bounded formula. The initial segments of Cn are boundedby the 
orresponding initial segments of C.It is tempting to think that if X is α-large and β < α, then X shouldbe β-large. However, this need not be true. For example, suppose X is an
ω-large set 
onsisting of standard numbers, and let c be nonstandard. Then,thinking of c as a �nite ordinal, we have c < ω, but X is not c-large. Thefollowing result of Sommer (see [20, p. 149℄) says that if X is α-large, thenfor ea
h x ≤ min(X), there is a subsequen
e X ′ that is {α}(x)-large.Proposition 2.6. Suppose C witnesses that J is α-large. If x ≤ min(J),then {α}(x) o

urs in C.Proof. We do not need exp here. We show by indu
tion on the ordinals
β that appear in C that if β is followed in C by j (where j ∈ J), then forall numbers x ≤ j (not ne
essarily in J), {β}(x) appears in C. Everythingis bounded by C.The next two lemmas are proved simultaneously.Lemma 2.7. Suppose C witnesses that J is ωα-large. Then there exists
J ′ ⊆ J with C ′ bounded by C witnessing that J ′ is α-large.Lemma 2.8. If J is ωα · x-large, witnessed by C, then for all y < x, theordinal ωα · y appears in C.Proof of Lemmas 2.7 and 2.8. We pro
eed by indu
tion on ordinals ap-pearing in the given sequen
e C.
Case 1. For α = 0, the statements are trivially true.
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Case 2. Consider α = β+1, where both statements hold for β. First, weprove Lemma 2.7 for β + 1. Let x be the �rst term of J . The next ordinal is

ωβ ·x. By the indu
tion hypothesis for Lemma 2.8, ωβ appears later in C. Thepart of J after this is ωβ-large. By the indu
tion hypothesis for Lemma 2.8,there is a β-large subset J ′. Then x Ĵ ′ is (β+1)-large. Next, we prove Lemma2.8 for α. We show by indu
tion on x that for all y ≤ x, ωα · y appears in C.The statement is 
lear for x = 0. Supposing the statement for x, we show itfor x+ 1. We have ωα · (x+ 1) = ωα · x+ ωα. If this appears in C, followedby the element z, then the next term is ωα · x+ ωβ · z. The next few termshave the form ωα · x + γ, where γ < ωβ · z. We see the γ parts redu
e.By Lemma 2.8 for β, we arrive at γ = 0. So, we have ωα · x in C, and byindu
tion, we get all ωα · y for all y < x.
Case 3. Let α be a limit ordinal, where both statements hold for β < αappearing in C. First, we prove Lemma 2.7 for α. In C, suppose that after ωα,we have x. The next ordinal is ωβ, where β = {α}(x). Let J ′ be the resultof removing x from the front of J . Then J ′ is ωβ-large. By the indu
tionhypothesis, there is a subsesquen
e J ′′ of J ′ that is β-large. Then x Ĵ ′′ is

α-large. Next, we prove Lemma 2.8 for α. We show that if ωα · x appearsin C, then ωα · y appears for all y < x. The statement is 
lear for x = 0.Supposing that it holds for x, we show it for x + 1. Let z be the �rst termin J . The next ordinal is ωα ·x+ωβ, where β = {α}(z). Let J ′ be the resultof removing x from the front of J . Then J ′ is ωα ·x+ωβ-large. Wat
hing thenext few terms in C, we see ordinals ωα · x+ γ, for γ < ωβ, with γ redu
ingto 0. Sin
e we have ωα · x, we also have ωα · y for all y < x.Looking at the proof above, we obtain the following further result.Lemma 2.9. Suppose J is ωα-large, witnessed by C. Then there is an
α-large subsequen
e J ′ = (x0, x1, . . . , xr). Moreover , there is a subsequen
eof C of the form

(ωα, x0, ω
β1 , x1, . . . , ω

βr−1xr, 1),where the 
orresponding sequen
e
C ′ = (α, x0, β1, x1, . . . , βr−1, xr, 0)witnesses that J ′ is α-large.By iterating Lemma 2.9, we obtain the following.Lemma 2.10. Suppose J is ωn(α)-large, witnessed by C. Then there is asubsequen
e J ′ that is α-large.2.3. Conne
ting largeness with Ramsey theory. Ketonen and Solovay [8℄developed Ramsey theory for α-largeness. Their results 
an be formalizedin PA. We do not need anything more. Given a standard n and α < ǫ0, wewant a standard β < ǫ0 su
h that if J is β-large and F : [J ]n → c, where
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c ≤ min(J), then there is an α-large I ⊆ J su
h that I is homogeneousfor F . We do not need a sharp result.Theorem 2.11 (Ramsey theorem for α-largeness). Suppose n ≥ 1. Forea
h k there exists m su
h that if F : J [n] → c, where J is ωm-large and
c ≤ min(J), then there is an ωk-large, or even (ωk + 1)-large, homogeneousset I ⊆ J .Ketonen and Solovay [8℄ did not state Theorem 2.11. They were primarilyinterested in the 
ase where the homogeneous set I is ω-large, and theygave a pigeonhole prin
iple for that 
ase. However, their indu
tive lemma isperfe
tly general. To state it, we need one more de�nition.Definition 5. For α < ǫ0, the norm of α, denoted by ‖α‖, is de�nedindu
tively as follows:

• ‖0‖ = 0.
• If α = ωα1m1 + · · · + ωαkmk, then ‖α‖ =

∑k
j=1mj · (‖αj‖ + 1).Here is Ketonen and Solovay's indu
tive lemma (see also [15℄).Theorem 2.12 (Indu
tive lemma). Let n ≥ 1 and let ω ≤ α < ǫ0.Suppose F : J [n+1] → c. If J is θ-large, where θ = ωα+ω3+max{c, ‖α‖}+3,then there is an α-large set I ⊆ J su
h that for in
reasing tuples x, y and

x, z in Jn+1, F (x, y) = F (x, z); i.e., the value depends only on the �rst nelements of the tuple.Theorem 2.12 yields the following version of the pigeonhole prin
iple.Proposition 2.13 (Pigeonhole prin
iple). Let F : J → c. If J is θ-large,where θ = ωα+1 + ω3 + max{c, ‖α‖} + 3, then there is an α-large set I ⊆ Jon whi
h F is 
onstant.Proof. For x, y ∈ J su
h that x < y, let G(x, y) = F (y). Theorem 2.12yields an (α + 1)-large set I ⊆ J su
h that for pairs in I, the value of Gdepends only on the �rst 
omponent. For x, y, y′ ∈ I, if x < y, y′, then
F (y) = G(x, y) = G(x, y′) = F (y′).Let I ′ be the result of removing the �rst element from I. Then I ′ is α-large,and F is 
onstant on I ′.Ketonen and Solovay's pigeonhole prin
iple gives a mu
h better boundthan Proposition 2.13 in the spe
ial 
ase. If J is ω · c-large, they get an

ω-large homogeneous set I.Lemma 2.14. Let n ≥ 1. If J is ωn+2-large, with �rst element ≥ c, then
• there exists J ′ ⊆ J that is (ωn+1 + ω3 + c+ 3)-large,
• there exists J ′ ⊆ J that is (ω(ωn+1) + ω3 + c+ 3)-large.



162 P. D'Aquino and J. F. KnightThe proof of Lemma 2.14 uses various fa
ts on α-largeness. Using thelemma, we get the following relatively simple, although wasteful, version ofTheorem 2.12.Proposition 2.15 (Indu
tive lemma). Suppose F : J [n+1] → c, where Jis ωk+2-large and min(J) ≥ c. Then there is an ωk-large I ⊆ J su
h that forin
reasing tuples x, y and x, z in Jn+1, F (x, y) = F (x, z). There is also onethat is (ωk + 1)-large.Similarly, we get the following simple but wasteful version of Proposi-tion 2.13.Proposition 2.16 (Pigeonhole prin
iple). Suppose F : J → c, where Jis ωk+2-large and min(J) ≥ c. Then there is an ωk-large I ⊆ J on whi
h Fis 
onstant. There is also one that is (ωk + 1)-large.By 
ombining Propositions 2.15 and 2.16, we obtain Theorem 2.11.2.4. Wainer fun
tions. We de�ne the Wainer hierar
hy as Ketonen andSolovay [8℄ did.Definition 6 (Wainer hierar
hy). For α < ǫ0, Fα(x) is de�ned as fol-lows:
• F0(x) = x+ 1,
• Fα+1(x) = F

(x+1)
α (x),

• for a limit ordinal α, Fα(x) = max{F{α}(j)(x) : j ≤ x}.Ketonen and Solovay related the notion of α-largeness to the fun
tionsof the Wainer hierar
hy. They introdu
ed the fun
tion
Gα(x) = µy([x, y] is α-large),and they proved the following.Theorem 2.17. For any α < ǫ0,

Fα(n) ≤ Gωα(n+ 1), Gωα(n) ≤ Fα(n+ 1).Sommer [20℄ proved Theorem 2.17 in I∆0. (Of 
ourse, Sommer used hisde�nitions, and Ketonen and Solovay used theirs.)3. Diagonal indis
ernibles. We use the following 
lassi�
ation of for-mulas.Definition 7.
• The B0 formulas are just the ∆0-formulas.
• The Σn+1 formulas have the form (∃u)ϕ, where ϕ is a Bn formula.
• The Bn+1 formulas are obtained from the Σn+1 formulas by takingBoolean 
ombinations and adding bounded quanti�ers.
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Notation. For ea
h n ∈ N, BT

n denotes the set of triples (ϕ, u, x), where
ϕ is a Bn formula and u and x are the free variables of ϕ, partitioned intotwo disjoint parts. We identify these triples with their 
odes. When we write
ϕ(u, x), indi
ating a split of the variables, we are identifying the formulawith the triple (ϕ, u, x), whi
h is in BT

n for some n.
Notation. We write a ≤ b, a < b, b ≤ a, b < a to mean that all elementsof a are ≤ b, < b, ≥ b, > b, respe
tively.In results of Paris and his 
o-authors [15℄, [17℄�[19℄, and in M
Aloon'stheorem, and other more re
ent results, we obtain a model of PA from aspe
ial set of indis
ernibles.Definition 8. Let I be a subset of a model A. We say that I is diagonalindis
ernible for ϕ(u, x)�identi�ed with the triple (ϕ, u, x)�if for all i < j, kin I,

A |= (∀u ≤ i) [ϕ(u, j) ↔ ϕ(u, k)].The next lemma says how a model of PA is obtained from a set that isdiagonal indis
ernible for all bounded formulas.Proposition 3.1. Let A be a model of I∆0. Suppose I has order type
ω under the ordering of A, and(i) for i, j ∈ I, A |= i < j → i2 < j,(ii) I is diagonal indis
ernible for all elements of BT

0 .If B is the downward 
losure of I, then B is a model of PA.Proof. Condition (i) guarantees that B is 
losed under addition and mul-tipli
ation, so it is a model of I∆0. Condition (ii) lets us 
onvert arbitraryformulas into bounded formulas, using the following lemma.Lemma 3.2. For ea
h formula ϕ(u), there is a bounded formula ϕ∗(u, v)su
h that if k, i is stri
tly in
reasing in I, and b ≤ k, then A |= ϕ(b) ↔
ϕ∗(b, i).Idea of proof. We illustrate in an example. Suppose

ϕ(u) = (∀x) (∃y) δ(u, x, y),where δ(u, x, y) is quanti�er-free. We take ϕ∗(u, v, v′) to be
(∀x ≤ v) (∃y ≤ v′) δ(u, x, y).If b ≤ k < i < j, where k, i, j ∈ I, then we have

B |= (∀x) (∃y) δ(b, x, y) i� B |= (∀x ≤ i) (∃y ≤ j) δ(b, x, y).Using Lemma 3.2, we 
an show that B satis�es indu
tion for all formulas.Suppose B |= ϕ(b, 0) and B |= (∀y) [ϕ(b, y) → ϕ(b, y + 1)]. We must show



164 P. D'Aquino and J. F. Knightthat B |= ϕ(b, c) for all c. Let ϕ∗(u, x, v) be as in Lemma 3.2, and take k, i,in
reasing in I, with b, c ≤ k. Then
B |= ϕ∗(b, 0, i) and B |= (∀y < k) [ϕ∗(b, y, i) → ϕ∗(b, y + 1, i)].Therefore, B |= ϕ∗(b, c, i), so B |= ϕ(b, c).The lemma below gives existen
e of diagonal indis
ernibles in the stan-dard model N.Lemma 3.3. If I ⊆ N is in�nite, then for any formula ϕ(u, x), there isan in�nite set J ⊆ I that is diagonal indis
ernible for ϕ(u, x). The same istrue for any �nite set of formulas.Proof. Suppose u has length m and x has length n. For any standard c,and any in�nite set S ⊆ I, we partition the in
reasing n-tuples in S su
hthat tuples b and b′ lie in the same 
lass provided that for all m-tuples

a ≤ c, A |= ϕ(a, b) ↔ ϕ(a, b′). Theorem 2.1 yields an in�nite set S′ ⊆ Ssu
h that all n-tuples in S′ lie in the same 
lass in the partition. We iteratethis to produ
e a nested sequen
e (Sk)k∈ω of in�nite sets, where S0 = I,and Sk+1 is obtained as above with c = k and S = Sk. Now, we 
hoose anin
reasing sequen
e (ak)k∈ω of numbers su
h that a0 ∈ S0, and ak+1 ∈ Sak
,with ak < ak+1. Then J = {ak : k ∈ ω} is the desired set of diagonalindis
ernibles for ϕ(u, x).The next lemma is similar to Lemma 3.3, ex
ept that N is repla
ed byan arbitrary model of PA, and the sets of indis
ernibles that we obtain are�nite.Lemma 3.4. Let A be a model of PA, and let I be a 
o�nal de�nable set.For any �nite r and any �nite set Γ of formulas (with free variables split),there is a set J ⊆ I of size at least r that is diagonal indis
ernible for all

ϕ(u, x) ∈ Γ .Proof. Say the elements of Γ are ϕi(ui, xi) for 1 ≤ i ≤ K. For any c andany 
o�nal de�nable set S ⊆ I, we partition the in
reasing ni-tuples in Sso that tuples b and b′ lie in the same 
lass provided that for all mi-tuples
a ≤ c, A |= ϕ(a, b) ↔ ϕ(a, b′). Theorem 2.2 yields a 
o�nal set S′ ⊆ Ssu
h that all n-tuples in S′ lie in the same 
lass in the partition. We saythat S′ is homogeneous for ϕi(u, x) over c. Let a be �rst in I. Applying thepro
edure above K times, we get a 
o�nal de�nable set J1 ⊆ I homogeneousfor all ϕi(ui, xi) over a0. Let a1 be �rst in J1 greater than a0. Applyingthe pro
edure above K more times, we get a 
o�nal de�nable set J2 ⊆ J1homogeneous for all ϕi(ui, xi) over a1. Let a2 be �rst in J2 greater than a1.We 
ontinue until we have a1, . . . , ar. This is the desired set of diagonalindis
ernibles.



Strong initial segments of models of I∆0 165Lemma 3.3 is based on Theorem 2.1, while Lemma 3.4 is proved usingTheorem 2.2. Using ideas from the proof of the Ma
Dowell�Spe
ker theorem(see [13℄) instead of Theorem 2.2, we 
ould obtain the following strongerstatement. (We do not a
tually use this result.)Proposition 3.5. Let A be a model of PA, and let I be a 
o�nal de-�nable set. For any �nite set Γ of formulas (with the free variables split),there is a 
o�nal de�nable set J ⊆ I that is diagonal indis
ernible for all
ϕ(u, x) ∈ Γ .We give one more result on existen
e of diagonal indis
ernibles. We needsome further de�nitions.Definition 9. Let A be a model of PA. Let Γ be a �nite set of formulas
ϕ(u, x) with the free variables split into two parts, and let a be an elementof A. Say the formulas of Γ are ϕi(ui, xi) for 1 ≤ i ≤ K, where ui has length
mi and xi has length ni.

• Let nΓ be the greatest ni.
• For a given Γ , n = nΓ , and a, let FΓ,a be the partition of A[n] su
hthat tuples x and y lie in the same 
lass if for all i and all mi-tuples
ui ≤ a, for all ni-tuples xi ⊆ x and 
orresponding yi ⊆ y,

A |= ϕi(ui, xi) ↔ ϕi(ui, yi).Note that for a given Γ , there is a fun
tion g, de�nable in PA, su
h thatfor all a, g(a) bounds the number of equivalen
e 
lasses under the partition
FΓ,a. We may let g(a) = 2M(a), where

M(a) =
K
∏

i=1

(

a+ 1

mi

)

·

(

n

ni

)

.

Notation. Let gΓ be the �xed fun
tion g des
ribed above.Proposition 3.6. Let A be a model of PA. Let Γ be a �nite set offormulas with the free variables split , and let nΓ and gΓ be as above. Let
r be a standard number. There is a standard number m su
h that if I is
(ωm + 1)-large, and for i, j ∈ I,

A |= i < j → gΓ (i) < j,then there is a subset of Ir of size r that is diagonal indis
ernible for allelements of Γ .Proof. Let n = nΓ and let g = gΓ . Let m1, . . . ,mr be a de
reasingsequen
e of standard numbers su
h that mr−1 = 1 and if J is ωmi
-large and

F : J [n] → c, where min(J) ≥ c, then there is a homogeneous set J ′ ⊆ J thatis (ωmi+1
+1)-large. We pass frommi+1 to mi by applying Theorem 2.11. Let

m = m1, and let I be (ωm+1)-large. Let a be the �rst element of I. Let I1 be
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-large. We restri
t to I [n]

1 thepartition FΓ,a des
ribed above. Then g(a) bounds the number of equivalen
e
lasses. Let J1 ⊆ I1 be a homogeneous set that is (ωm2
+ 1)-large, and let

a1 be the �rst element. Let I2 be the result of removing a1 from J1. Then
I2 is ωm2

-large. We restri
t the partition FΓ,a1 to I [n]
2 . Then g(a1) boundsthe number of equivalen
e 
lasses. Let J2 ⊆ I2 be a homogeneous set thatis (ωm3

+ 1)-large, and let a2 be the �rst element. Let I3 be the result ofremoving a2 from J2. Then I3 is ωm3
-large. We restri
t to I [n]

3 the partition
FΓ,a2 . Then g(a2) bounds the number of equivalen
e 
lasses. Let J3 ⊆ I3 bea homogeneous set that is (ωm4

+ 1)-large, and let a3 be the �rst element.We 
ontinue in this way until we 
ome to Jr−1 that is (ω+ 1)-large, and welet ar−1 and ar be the �rst two elements. Then {a1, . . . , ar} is the desiredsubset of J that is diagonal indis
ernible for all elements of Γ .4. Initial segments satisfying PA. Here is the original result ofM
Aloon [12℄.Theorem 4.1 (M
Aloon). Let A be a nonstandard model of I∆0. Thenthere is an initial segment B that is a nonstandard model of PA.Proof. We may suppose that N is an initial substru
ture of A. Let b be anonstandard element. Let J be an in�nite subset of N su
h that for i, j ∈ J ,if i < j, then i2 < j. For any �nite Γ ⊆ BT
0 and any r, we 
an apply Lemma3.3 to get an in�nite set I ⊆ J that is diagonal indis
ernible for the elementsof Γ . There are in
reasing sequen
es of elements of I of arbitrarily large�nite length.We have a bounded formula ψ(b, u), with parameter b, saying that thereis an in
reasing sequen
e σ of length u, with 
ode ≤ b, su
h that if i < jin ran(σ), then i2 < j, and σ is diagonal indis
ernible for all ϕ(u, x) ∈ BT

0su
h that ϕ ≤ u. For all standard n, A |= ψ(b, n). Then by overspill, thereis some some nonstandard ν su
h that A |= ψ(b, ν). Let σ be the witnessingsequen
e. The restri
tion of σ to standard terms yields a set I, ordered intype ω, that is diagonal indis
ernible for all σ ∈ BT
0 . By Proposition 3.1,the downward 
losure of I is the desired nonstandard initial segment of Asatisfying PA.Next, we summarize the known results saying whi
h elements of a model

A of I∆0 
an be in
luded in an initial segment that is a nonstandard modelof PA. One way to 
hara
terize these elements a is to say that a lies belowan in�nite set I, of order type ω, su
h that I is diagonal indis
ernible for allelements of BT
0 . A se
ond 
hara
terization says that there are �nite approx-imations to su
h a set I, where these are all bounded in su
h a way that we
an apply overspill to get an in�nite set. Sommer [20℄ and D'Aquino [5℄ gave
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hara
terization, in terms of the Wainer fun
tions [21℄. These fun
-tions were used by Ketonen and Solovay [8℄ and Paris [15℄ in 
hara
terizingthe provably re
ursive fun
tions of PA and IΣn.Theorem 4.2 (M
Aloon, Sommer, D'Aquino, Paris, Dimitra
opoulos).Let A be a model of I∆0, and let a be a nonstandard element. Then thefollowing are equivalent :(i) There is an initial segment B of A su
h that a ∈ B and B is a modelof PA.(ii) There is an in�nite set I of order type ω, 
onsisting of elementsgreater than a, su
h that if i < j in I, then A |= i2 < j, and I isdiagonal indis
ernible for all ϕ(u, x) in BT
0 .(iii) There exist b and c su
h that c 
odes satisfa
tion of bounded formulasby tuples ≤ b, and for all �nite r, there is a sequen
e Ir of size r,with a < Ir < b, su
h that if i < j in Ir, then A |= i2 < j, and Ir isdiagonal indis
ernible for the �rst r elements of BT

0 .(iv) There exists b su
h that for all α < ǫ0, Fα(a) ↓< b.Remarks on proof. It seems to us natural to try to prove Theorem 4.2 byshowing (i)⇒(iv)⇒(iii)⇒(ii)⇒(i). However, we have not found a publishedproof that pro
eeds in this way. We get (iii)⇒(ii) by applying overspill to abounded formula ψ(u, a, b, c) saying that there is an in
reasing sequen
e σ <
b of length u with �rst term > a, su
h that for su

essive terms i, j, i2 < j,and σ is diagonal indis
ernible for all ϕ(u, x) ≤ u in BT

0 . Proposition 3.1 givesthe impli
ation (ii)⇒(i). It is not di�
ult to show (i)⇒(iv). To 
ompletethe proof, it is enough to show (iv)⇒(iii). Sommer [20℄ and D'Aquino [5℄showed, in a quite 
ompli
ated proof, that (iv)⇒(i). It is not di�
ult toshow (i)⇒(iii), so we get the impli
ation (iv)⇒(iii).5. n-elementary initial segments satisfying PA. We turn to ourmain results, on n-elementary initial segments. Let A and B be stru
turesfor the language of arithmeti
, where B is a substru
ture of A.Definition 10. Let A and B be stru
tures for the language of arith-meti
. We say that B is an n-elementary substru
ture of A, and we write
B ≤n A, if for all Bn formulas ϕ(x) and all b in B, B |= ϕ(b) i� A |= ϕ(b).Note that if B is an initial substru
ture of A, then B ≤0 A.The following is a version of the familiar Tarski 
riterion for n-elementarysubstru
ture.Lemma 5.1 (Tarski 
riterion). Let B ≤0 A, and let n > 0. Suppose thatfor all Bn−1 formulas ϕ(x, u), and for all b in B (appropriate to substitutefor x), if there exists d su
h that A |= ϕ(b, d), then there exists d ′ in B su
hthat A |= ϕ(b, d ′). Then B ≤n A.
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h that for b in B, B |= ϕ(b)i� A |= ϕ(b). We show that S in
ludes all Bn formulas. Clearly, S is 
losedunder Boolean 
ombinations and bounded quanti�ers. It is straightforwardto show by indu
tion on k ≤ n that all Bk formulas are in S.Our goal is to produ
e initial segments B of a model A of I∆0 su
h that
B ≤n A and B satis�es full PA. Let A be a model of I∆0. One way to obtainan n-elementary initial substru
ture is to take the downward 
losure of theset of elements de�nable by Σn formulas from a set of parameters (see [7,p. 135℄). Alternatively, we may produ
e an n-elementary initial substru
tureby taking the downward 
losure of a set I of order type ω su
h that I �boundswitnesses� for Bn−1 formulas. We give the de�nition below.Definition 11. Let A be a stru
ture for the language of arithmeti
 andlet ϕ(u, x) be a formula with the free variables separated into u and x. Wesay that I bounds witnesses for ϕ(u, x) if for all i, j ∈ I su
h that A |= i < j,and all a ≤ i in A,

A |= (∃x)ϕ(a, x) → (∃x < j)ϕ(a, x).The lemma below is an extension of Proposition 3.1.Lemma 5.2. Let A be a model of I∆0, and let n > 0. Suppose I ⊆ A is aset of order type ω that is diagonal indis
ernible for all elements of BT
0 andbounds witnesses for all elements of BT

n−1. Let B be the downward 
losureof I. Then B is an n-elementary initial substru
ture of A satisfying full PA.Proof. Sin
e I is 
o�nal in B and bounds witnesses for all elements of
BT

n−1, we 
an apply Lemma 5.1 to see that B ≤n A. Among the boundedformulas is u2 = x, so for i, j ∈ I, A |= i < j → i2 < j. Sin
e I is diagonalindis
ernible for all elements of BT
0 , we 
an apply Proposition 3.1 to see that

B is a model of PA.We begin by 
onsidering a model A of I∆0 su
h that N ≤n A. For n = 0,this is automati
ally true. For n > 0, however, it is a nontrivial assump-tion. We say, under this spe
ial assumption, when there is a nonstandard
n-elementary substru
ture satisfying full PA.Lemma 5.3. Suppose N ≤n A. If I ⊆ ω is an in�nite subset of N, and
β(x, u) is Bn−1, then there is an in�nite set J ⊆ I that bounds witnesses for
β(x, u).Proof. Say x has length m and u has length n. We de�ne a sequen
e
(j0, j1, j2, . . .) by indu
tion. Let j0 be an arbitrary element of I. Supposewe have determined jk. There are �nitely many m-tuples a in N su
h that
a ≤ jk. For ea
h su
h a, if A |= (∃u)β(a, u), then sin
e N ≤n A, there issome b in N su
h that N |= β(a, b). We 
hoose the �rst su
h b. Let jn+1 be
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hosen b. Then
J = {jk : k ∈ ω} is the desired set bounding witnesses for β(u, x).Theorem 5.4. Suppose that A is a nonstandard model of I∆0 su
h that
N ≤n A. Then the following are equivalent :(i) There is a nonstandard initial segment B su
h that B ≤n A and B isa model of PA.(ii) There exist b and c su
h that b is nonstandard and c 
odes satisfa
tionof Σn formulas in A by tuples x ≤ b.
Note. For n = 0, statements (i) and (ii) are simply true, by Theorem4.1 (M
Aloon's theorem). Even for larger n, we do not know of an examplein whi
h the statements are invalid.Proof. To prove that (i)⇒(ii), suppose b is a nonstandard element of B.There exists c in B 
oding satisfa
tion in B of Σn formulas by tuples boundedby b. Sin
e B ≤n A, c also 
odes satisfa
tion in A. We must prove that

(ii)⇒(i). We shall obtain the model B by applying Lemma 5.2. We need a set
I of order type ω that is diagonal indis
ernible for elements of BT

0 and boundswitnesses for elements of BT
n−1. The outline is like that for Theorem 4.1. Toobtain the required set I, we show that there are �nite approximations in

N, and then apply overspill to an appropriate bounded formula.We get the �nite approximations to I by using Lemma 5.3 together withLemma 3.3. We have a bounded formula ψ(u, b, c), with parameters b and c,saying that there is a sequen
e σ ≤ b of length u su
h that σ is diagonalindis
ernible for all elements of BT
0 bounded by u, and σ bounds witnesses forall elements of BT

n−1 bounded by u. The formula ψ(u, b, c) is satis�ed in A byall standard n. Therefore, by overspill, it is satis�ed by some nonstandard ν.Let σ be a witness. Taking the restri
tion of σ to standard number inputs,we get a set I of order type ω that is diagonal indis
ernible for all elementsof BT
0 , and bounds witnesses for all elements of BT

n−1.Now, we drop the assumption that N ≤n A. The following result isanalogous to Lemma 5.3. In what follows, we use it only for inspiration.Proposition 5.5. Let B be a model of PA. If I is a 
o�nal de�nable set ,and β(u, x) is a Bn−1 formula, then there is a 
o�nal de�nable set J ⊆ Ithat bounds witnesses for β(u, x).Proof. We have a de�nable fun
tion G : B → I su
h that
• G(0) = min(I),
• G(a+ 1) is the �rst b ∈ I su
h that b > G(a) and for all u ≤ G(a),

B |= (∃x̄)β(u, x) → (∃x̄ < b)β(u, x).Let J = ran(G).
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tions FΓ,α, for �nite Γ ⊆ BT
n−1 and

α < ǫ0, su
h that FΓ,α(a) is a spe
i�
 sequen
e C witnessing the existen
eof an α-large sequen
e J su
h that a < J and J bounds witnesses for allelements of Γ . We identify ordinals with their 
odes.Definition 12. Let Γ be a �nite subset of BT
n−1 and let α < ǫ0. Assum-ing that FΓ,α(a) is de�ned, it is the sequen
e (α0, x0, α1, . . . , αr−1, xr−1, αr)with the following properties:

• α0 = α,
• if αi = 0, then C has length 2i+ 1 (i.e., r = i),
• if αi 6= 0, then(a) if i = 0, then x0 is the �rst z > a su
h that for all ϕ(u, x) ∈ Γ ,

(∀u ≤ a) (∃x)ϕ(u, x) → (∃x < z)ϕ(u, x),(b) if i > 0, then xi is the �rst z > xi−1 su
h that for all ϕ(u, x) ∈ Γ ,
(∀u ≤ xi−1) (∃x)ϕ(u, x) → (∃x < z)ϕ(u, x),

• if αi = β 6= 0 and xi = z, then αi+1 = {β}(z).We have FΓ,α(a) ↓ provided that we 
an 
arry out all of these 
omputations,and we 
ome to some αi = 0.The result below is the analogue of Theorem 4.2.Theorem 5.6. Let A be a nonstandard model of I∆0, and let n > 0.Then the following are equivalent :(i) there is a nonstandard n-elementary initial segment B satisfying PA,(ii) there exists a set I, of order type ω, su
h that I is diagonal indis-
ernible for all elements of BT
0 and bounds witnesses for all elementsof BT

n−1,(iii) there exist b and c su
h that c 
odes satisfa
tion of Σn formulas bytuples ≤ b, and for ea
h �nite r, there is a sequen
e Ir of length
r, with 
ode < b, su
h that Ir is diagonal indis
ernible for the �rst
r elements of BT

0 and bounds witnesses for the �rst r elements of
BT

n−1,(iv) there exist b and c su
h that c 
odes satisfa
tion of Σn formulasby tuples ≤ b, and for all standard ordinals α < ǫ0 and all �nite
Γ ⊆ BT

n−1, FΓ,α(0) ↓< b.Note that if A is a nonstandard model of I∆0 su
h that N is an initial seg-ment but not an n-elementary initial segment, then for some Bn−1 formula
ϕ(x) satis�ed in A, there is no standard witness (satisfying the formula),and any n-elementary initial segment must in
lude su
h a witness. If A hasan n-elementary initial segment satisfying PA, then any Bn−1 formula thatis satis�ed has a �rst witness.
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h elements 
an be in
luded in an initial segment that is n-elementaryand satis�es full PA.Theorem 5.7. Suppose A is a model of I∆0, and let n > 0. For anelement a, the following are equivalent :(i) a is 
ontained in a nonstandard n-elementary initial segment B thatis a model of PA,(ii) there is a set I, of order type ω, su
h that a < I, and I is diagonalindis
ernible for all elements of BT
0 and bounds witnesses for allelements of BT

n−1,(iii) there exist b > a and c su
h that c 
odes satisfa
tion of Σn formulasby tuples ≤ b, and for ea
h �nite r, there is a sequen
e Ir of length
r, with 
ode < b, su
h that a < Ir, and Ir is diagonal indis
erniblefor the �rst r elements of BT

0 and bounds witnesses for the �rst relements of BT
n−1,(iv) there exist b and c su
h that c 
odes satisfa
tion of Σn formulas bytuples ≤ b, and for all α < ǫ0 and all �nite Γ ⊆ BT

n−1, FΓ,α(a) ↓< b.Before proving Theorem 5.7, we note that if we let a = 0 in the statementof Theorem 5.7, then we get Theorem 5.6. With a = 0, ea
h of the numberedstatements in Theorem 5.7 is easily seen to be equivalent to the 
orrespondingstatement in Theorem 5.6.Proof of Theorem 5.7. Our plan is to show (iii)⇒(ii)⇒(i)⇒(iv) and then
(iv)⇒(iii).

(iii)⇒(ii): We 
an write a bounded formula ψ(u, a, b, c) saying that thereexists an in
reasing sequen
e σ of length u su
h that
• a < σ and σ has a 
ode < b,
• σ bounds witnesses for elements of BT

n−1 with 
odes < u and is diagonalindis
ernible for elements of BT
0 with 
odes < u.To talk about satisfa
tion in a bounded way, we use the parameter c. By (iii),

ψ(u, a, b, c) is satis�ed in A by all standard u. Then by overspill, it is satis�edby some nonstandard u. Let σ be a witness, and let I be the sequen
e ofstandard terms. This set satis�es (ii).
(ii)⇒(i): This follows immediately from Lemma 5.2.
(i)⇒(iv): We work in the initial n-elementary substru
ture B that is amodel of PA and 
ontains the element a. We get the fa
t that FΓ,α(a) isde�ned using the ideas from Lemma 3.3 and Proposition 5.5. We 
an dothe 
al
ulations in B, knowing that they are the same in A. Let Λ(a, x) be a
omputable set of formulas of bounded 
omplexity saying FΓ,α(a) ↓< x for allstandard α < ǫ0. Every �nite subset of Λ(a, x) is satis�ed in B. Therefore, thewhole set is satis�ed in B by some element b. We have c 
oding satisfa
tion
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tion of these formulas in A is thesame.
(iv)⇒(iii): Proving that (iv)⇒(iii) will take several steps. Here is theoutline.Steps in proving that (iv)⇒(iii)1. Give a bounded formula ϕ(u, a, b, c) saying that there exists b′ < bsu
h that for ea
h ordinal α with 
ode ≤ u, there exist J1, J2, C1, C2su
h that(a) J1, J2 bound witnesses for all ϕ ≤ u in BT

n−1,(b) Ci witnesses that Ji is α-large,(
) a < J1 and J1 has a 
ode < b′,(d) b′ < J2, and C1 and C2 have 
odes < b.2. Show that A |= ϕ(u, a, b, c) for all standard u.3. Apply overspill to get a nonstandard u satisfying ϕ(u, a, b, c). Thenwe get b′ < b su
h that for all standard α < ǫ0, there exist J1, J2, C1,
C2 su
h that(a) J1, J2 bound witnesses for all standard elements of BT

n−1,(b) Ci witnesses that Ji is α-large,(
) a < J1 and J1 has a 
ode < b′,(d) b′ < J2 and C1 and C2 have 
odes < b.4. Suppose b′ < b, where for all standard α, there exist J and C su
hthat(a) J bounds witnesses for all elements of BT
0 ,(b) C witnesses that J is α-large,(
) b′ < J and C has a 
ode < b.Show that Fα(b′) ↓< b for all standard α. Then by Theorem 4.2, thereis an initial segment B of A 
ontaining b′ su
h that B is a model ofPA.5. Show that for ea
h �nite r, there exists a set Ir of size r su
h that(a) a < Ir and Ir has a 
ode < b′,(b) Ir bounds witnesses for the �rst r elements of BT

n−1 and is diagonalindis
ernible for the �rst r elements of BT
0 .We dis
uss the �ve steps in order.

Step 1. It is not di�
ult to write a bounded formula ϕ(u, a, b, c) withthe desired meaning. We use c to talk about satisfa
tion of the formulas in
BT

n−1.
Step 2. Take a standard number u. Let Γ be the �nite set of elementsof BT
n−1 with 
odes ≤ u, and let α1, . . . , αk be the ordinals with 
odes ≤ u.



Strong initial segments of models of I∆0 173We show that there exists b′ < b su
h that for ea
h αi, there exist J1,i, J2,i,
C1,i, C2,i with the following features:

• J1,i, J2,i bound witnesses for all elements of Γ ,
• C1,i, C2,i, witness that J1,i, J2,i are αi-large,
• a < J1,i and J1,i has a 
ode < b′,
• b′ < J2,i and C2,i has a 
ode < b.We may suppose α1 < · · · < αk. Take the least m su
h that ωm > ωαk ,and let

α = ωm(αk) + · · · + ωm(α1) + ωm + ωαk + · · · + ωα1 .We are assuming statement (iv) (from Theorem 5.7), so there exist J and Csu
h that
• J bounds witnesses for all elements of Γ ,
• C witnesses that J is α-large,
• a < J and C has a 
ode < b.By Lemma 2.5, we have

J = J1,1ˆ. . . Ĵ1,k Ĵ
∗ˆJ2,1ˆ. . .ˆJ2,k,where J1,i is ωαi-large, J∗ is ωm-large, and J2,i is ωm(αi)-large. The ele-ments of J1,i are smaller than those of J1,i+1, those of J1,k are smaller thanthose of J∗, those of J∗ are smaller than those of J2,1, and those of J2,i aresmaller than those of J2,i+1. By Lemma 2.7, sin
e J1,i is ωαi-large, it hasa subsequen
e that is αi-large. Similarly, sin
e J2,i is ωm(αi)-large, it has asubsequen
e that is αi-large. There are sequen
es C1,i, C∗, and C2,i witness-ing the largeness of the sets J1,i, J∗, and J2,i, where all of these are boundedby C. Sin
e J∗ is ωm-large, it is nonempty. We let b′ ∈ J∗. This 
ompletesStep 2.

Step 3. Having 
arried out Steps 1 and 2, we are in a position to applyoverspill as in the des
ription of Step 3.
Step 4. Re
all that Theorem 2.17 
onne
ts the Wainer fun
tions withlargeness. Our assumption that J bounds witnesses for all bounded formulassimpli�es both the statement and the proof of the result below.Lemma 5.8. Suppose C witnesses that J is α-large, where α is standard ,

J bounds witnesses for all standard elements of BT
0 , b′ < J (where b′ isnonstandard) and C has a 
ode < b. Then Fα(b′) ↓< b.Proof. Suppose

C = (α0, j0, α1, j1, . . . , αr−1, jr−1, αr).Re
all that if Jk = (jk, jk+1, . . . , jr) is the part of J that appears after
αk in C, then Jk is αk-large. Sin
e α is standard and b′ < j0, where b′ isnonstandard, the 
ode for α is < j0. We 
an show that for all k, the 
odefor αk is < jk. For k > 0, we have a bounded formula saying how αk is
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omputed from αk−1 and jk−1. Sin
e J bounds witnesses for this formula, if
αk−1 < jk−1, it follows that αk < jk.Definition 13. For any x and any β, we de�ne the x-unwinding of
β to be the sequen
e (β0, . . . , βk), where β = β0, for i < k, βi 6= 0 and
βi+1 = {βi}(x), and βk = 0.It follows from Proposition 2.6 that for x ≤ jk, the terms of the
x-unwinding of αk appear in C. Moreover, the 
ode for the unwinding exists,sin
e it is de�ned by re
ursion using a bounded formula, with C boundingeverything we need. Sin
e the 
ode for αk is < jk, if x ≤ jk, then the 
odefor the unwinding is < jk+1. To prove the lemma, we show the following.
Claim. For all k < r, for all x ≤ jk, Fαk

(x) ↓.Proof of Claim. We pro
eed by indu
tion on the ordinals in C startingwith αr−1, whi
h we may suppose to be 1, and working our way up to α0 = α.For all x ≤ jr−1, F1(x) = F x+1
0 (x) = 2x + 1. Suppose the Claim holds for

αk+1, i.e., for all x ≤ jk+1, Fαk+1
(x) ↓. We must show that the 
laim holdsfor αk, i.e., for all x ≤ jk, Fαk

(x) ↓. There are two 
ases.
Case 1. Suppose αk is a su

essor, and let x ≤ jk. By de�nition,

Fαk
(x) = F x+1

{αk}(x)(x),where {αk}(x) = αk+1. We show by indu
tion on y ≤ x+1 that F y
αk+1

(x) ↓.First, note that F 1
αk+1

(x) ↓, by our indu
tive hypothesis (on the ordinals).Supposing that F y
αk+1

(x) ↓, where y ≤ x, we show that F y+1
αk+1

(x) ↓. Sin
e
αk+1 = {αk}(x), where the 
ode for αk is ≤ jk, we have F y

αk+1
(x) < jk+1(this is de�ned by a bounded formula in terms of x, y, and αk). Then

Fαk+1
(F y

αk+1
(x)) ↓, by our indu
tive hypothesis (on the ordinals). It followsthat Fα(x) ↓.

Case 2. Suppose αk is a limit ordinal, and let x ≤ jk. By de�nition,
Fαk

(x) = sup
z≤x

F{αk}(z)(x).For ea
h z ≤ x, {αk}(z) o

urs in the z-unwinding of αk, so it is αj for some
j > k. By our indu
tive hypothesis, Fαj

(x) ↓. Sin
e Fαj
(x) is de�ned by abounded formula in terms of z, x, and αk, where z, x, and the 
odes for αkare all ≤ jk, we have Fαj

(x) < jk+1. So, we get Fαk
(x) ↓< jk+1.We have proved the Claim, and this 
learly gives the Lemma.Sin
e Fα(b′) ↓< b, for all standard α < ǫ0, we 
an apply Theorem 4.2 toget an initial segment B of A su
h that b′ ∈ B and B is a model of PA.

Step 5. We want to show that for ea
h standard r, there is a set Ir ofsize r su
h that
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• a < Ir and Ir has a 
ode < b′,
• Ir bounds witnesses for the �rst r elements of BT

b−1 and is diagonalindis
ernible for the �rst r elements of BT
0 .We work in the model B of PA that was obtained in Step 4. We shalluse Proposition 3.6. Let Γ 
onsist of the �rst r elements of BT

0 . Let nΓ and
gΓ be as des
ribed just before Proposition 3.6. Let α = ω1+2nΓ (r−1)+1. InStep 3, we obtained an α-large sequen
e J su
h that a < J and J boundswitnesses for the elements of Γ . Moreover, the 
ode for J is < b′, so J is anelement of B. We need to be sure that J is still α-large when looked at in B.Say J = (j0, j1, . . . , jr−1). The sequen
e

C = (α, j0, α1, j1, . . . , αr−1, jr−1, 0)witnessing that J is α-large in A is de�ned by re
ursion. In parti
ular, theordinals satisfy the relation αk+1 = {αk}(jk). Cal
ulating in B, we arrive atthe same ordinals, and we see that {αr−1}(jr−1) = 0, so we �nd that J is
α-large in B. We are in a position to apply Proposition 3.6, and we get therequired set Ir.This 
ompletes the proof that (iv)⇒(iii), whi
h was all that remained inthe proof of Theorem 5.7.6. ProblemsProblem 1. Suppose A is a nonstandard model of I∆0 su
h that N ≤n

A. Must there exist b and c su
h that b is nonstandard , and c 
odes satisfa
-tion in A of Σn formulas by tuples x ≤ b?Problem 2. Give 
onditions under whi
h a nonstandard model of I∆0has a nonstandard m-elementary initial segment that is a model of IΣn, andsay whi
h elements 
an be in
luded in su
h an initial segment.A
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