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Abstract. McAloon showed that if A is a nonstandard model of Ay, then some
initial segment of A is a nonstandard model of PA. Sommer and D’Aquino characterized,
in terms of the Wainer functions, the elements that can belong to such an initial segment.
The characterization used work of Ketonen and Solovay, and Paris. Here we give conditions
on a model A of TA( guaranteeing that there is an n-elementary initial segment that is a
nonstandard model of PA. We also characterize the elements that can be included.

1. Introduction. Let L be the usual language of arithmetic, with sym-
bols +, -, 0, 1, and <. Let IA( be the subsystem of Peano Arithmetic (PA)
in which induction applies only to formulas with bounded quantifiers (Ag-
formulas). A nonstandard model A of IA satisfies overspill for Ag-formulas;
ie., if ©(W,x) is Ao, then for any tuple b in A, if ¢(b,z) is satisfied by all
standard n, then it is satisfied by some nonstandard v.

By a result of Parikh [14], any Ap-definable function that is provably
total in IAq is provably bounded by a polynomial. Bennett [1] found a
Ag-formula defining in N the graph of exponentiation. Later, Paris [16]
found a Ag-formula FEy(z,y,z) defining the relation z¥ = 2z, for which
the recursive properties of exponentiation are provable in IAg. The lack
of exponentiation means that many classical results of elementary num-
ber theory are not known to be provable in IAq. In particular, it is an
open problem whether IA( proves Matijasevic’s theorem (saying that ev-
ery c.e. set is Diophantine). A positive answer to this question would have
important consequences in complexity theory. If we add to 1A the axiom
exp = (Vo > 1) (Vy) (32) Eo(z,y, 2), saying that the exponential function is
total, then the resulting theory is strong enough to prove all of the results of
elementary number theory. In particular, Matijasevic’s theorem is provable
in IAg + exp (see [6]).
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Without exponentiation, we use known sequences to show the existence
of others. Let A be a model of IAg. Let ¢(u, x,y) be a bounded formula such
that for each v and z, there is at most one y such that A = ¢(u, z,y). For a
sequence v, we say that v is determined by ¢(u,z,y) if for all z < length(v),
A E o(v]z,2z,v(z)). Let C be a sequence coded in A. If I is the set of
s < length(C') such that there exists v of length x determined by ¢(u,x,y)
with a code bounded by that for C, then there is a greatest s € I. We have
a maximal sequence J determined by ¢ such that the length of J, and the
code for J, are bounded by those for C. We shall often take ¢(u,z,y) such
that this maximal sequence is a subsequence of C.

The notion of “a-largeness” was defined by Ketonen and Solovay [8].
They connected it with the functions in the Wainer hierarchy, and they
also did some Ramsey theory. Sommer [20] developed the theory of ordinals
in 1A, and proved many facts about a-largeness in IAg + exp, including
those needed for the connections with the Wainer functions. Sommer did not
do the Ramsey theory. In a series of papers [9], [10], [2], [3], [4], [11], [22],
Kotlarski, Ratajczyk, Bigorajska, Piekart, and Weiermann gave a thorough
development of Ramsey theory for a-largeness, in the setting of PA.

There are some differences in the definitions. Sommer’s description of the
fundamental sequences looks different from Ketonen and Solovay’s, but the
definitions really are the same. Sommer’s definition of the Wainer functions
differs slightly from that of Ketonen and Solovay. Kotlarski and his collab-
orators defined their fundamental sequences in the same way as Sommer,
but they chose a different definition of a-largeness. This choice of definitions
yields clean, appealing statements for Ramsey’s theorem. We use Sommer’s
definitions [20] so that we can appeal to the development of the ordinals
that he carried out in 1Ay. We also use facts about a-largeness that Sommer
proved in Ay + exp. We give local versions of these facts, always assuming
the existence of a large sequence that bounds the other sequences we need.
We take Ketonen and Solovay’s definition of the Wainer hierarchy. At the
point where we apply Ramsey’s theorem for a-largeness, we have already
used the Wainer functions to obtain a model of PA.

In Section 2, we give background from Ramsey theory, and we define the
Wainer functions and a-largeness. In Section 3, we discuss diagonal indis-
cernibles. In Section 4, we recall McAloon’s original result and the results
of Sommer and D’Aquino. In Section 5, we say when a model A of IA( has
a nonstandard n-elementary initial segment satisfying PA. We first consider
the case where N <,, A. Our result here is based on the standard version
of Ramsey’s theorem. We then drop the assumption that N <,, A. We say
when a model of 1A has an n-elementary initial segment that is a model of
PA, and we characterize the elements that can be included in such an initial
segment. We work with a-large sets that “bound witnesses” for various sets
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of formulas, and we define some functions, related to the Wainer functions,
that produce these large sets. We close, in Section 6, with a couple of open
problems.

2. Ramsey theory and largeness

2.1. Basic Ramsey theory. We write I for the set of subsets of I of
size n. In our setting, I is a subset of some model of arithmetic, which has a
natural ordering, and we may identify sets of size n with increasing n-tuples.
A partition of I is a function F from I to a set c—we suppose that ¢ has
the form {0,1,...,c—1}. A set J C I is homogeneous for F' if F is constant
on J". Here is the standard version of Ramsey’s theorem.

THEOREM 2.1 (Standard version of Ramsey’s theorem). Let I be an in-
finite set, and let F be a partition of I into finitely many classes. Then
there is an infinite set J C I that is homogeneous for F.

The proof proceeds by induction on n. The base case, where n = 1,
is the standard pigeonhole principle, saying that if F' is a partition of an
infinite set into finitely many classes, then some class is infinite. There is an
inductive lemma, which says that for a partition F' : I (1] _ ¢, there is an
infinite set I’ C I such that for (z1,...,Zn, p41) increasing in I’, the value
of F(x1,...,%n, Tpy1) depends only on (z1,...,x,).

The next version of Ramsey’s theorem is also well-known (see [7, p. 213]).

THEOREM 2.2 (Infinite Ramsey’s theorem for PA). Let B be a model
of PA. Let I be a cofinal definable set, and let F : I — ¢ be a definable
partition of I where n is standard and ¢ € B. Then there is a cofinal
definable set J C I that is homogeneous for F.

There is a well-known finite version of Ramsey’s theorem, which we do
not use. We want a second finite version, which involves a-largeness [8].

2.2. Largeness. Recall that ¢y is the least ordinal o such that w® = «.
Each a < € can be expressed in Cantor normal form as w® -1+ - -4-wB .2y,
where a > (31 > --- > (. Sommer [20] formalized the whole theory of
ordinals below ¢ in a Ag-way, including the notion of fundamental sequence.
In particular, he provided a Cantor normal form for all those elements which
are ordinals in a model of IAy.

DEFINITION 1. To each ordinal 0 < a < €y, we assign a fundamental
sequence {a}(z) as follows.

For a = g+ 1, {a}(x) = S for all x.

For a = w1, {a}(z) = WP - z.

For oo = wP, where £ is a limit ordinal, {a}(z) = w{#®),

For a = w” - (a+1), where a # 1, {a}(r) = Wi a+ {WB}(”:)
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e For a with Cantor normal form ending in w? - a, say a = v+ w? - a,
{a}(z) =7y +{w" - a}(z).

Below we define a special sequence (wp)neo of ordinals, cofinal in the
interval below ¢g.

DEFINITION 2.
wo = 1, Wnt1 = W,

It is also convenient to have a name for a tower of n w’s, with a on top.
DEFINITION 3.
wo(a) = o, wppr () = wn (@),

We are ready to define a-largeness. We identify a set X, finite or infinite,
with the sequence of elements of X, given in increasing order.

DEFINITION 4. The set X is a-large, for a < €, if there is a sequence

C = (ap,xo, 1,1, ..., 0p_1,Tr_1, Q) such that
°* ap = q,
o o, =0,
e 1 is the first element of X,
e for 0 < ¢ < r, x; is the first element of X that is > x;_1,
o for i <7, ajy1 = {a;}(x;).

We say that C' witnesses that X is a-large.
EXAMPLE. The set {3,4,5,6} is w-large, witnessed by the sequence
C=(w,3,3,4,2,5,1,6,0).
We can easily see the following.

PROPOSITION 2.3. A set X is w-large if the cardinality of X is greater
than the least element.

In the standard setting, an infinite subset of w is a-large for all a < €.
The following is not difficult to prove.

PROPOSITION 2.4. Let A be a model of PA, and let X be a cofinal defin-
able set. Then X is a-large for all o < €.

Sommer [20] developed the notion of a-largeness in IAg + exp. Through
most of the present paper, we work in IAg, not assuming that exp is total. We
work locally, making sure that the sequences we actually need are bounded
by some known element, usually a sequence C' witnessing that some set is
a-large. Suppose J is a-large, witnessed by the sequence C. Suppose the
ordinal /3 occurs in C. Let C’ be the tail of C' that begins with 3, and let .J’
be the corresponding tail of J, consisting of the elements of J that do not
occur before 3 in C. Then C’ witnesses that J' is $-large. The sequence C’
is defined by recursion using a bounded formula. Each initial segment of C’
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is bounded by the corresponding initial segment of C' (with the same last
term).

LEMMA 2.5. Let J be a-large, witnessed by C. Suppose o has Cantor
normal form

Wy WP,

Then J = J,"---"Jy, where J; is an w’ix;-large segment of J. The elements
of Jn, come first, those in J; come last, and, in general, the elements of J;+1
come before those of J;.

Proof. We indicate what happens with the initial segment .J,,. The wit-
nessing sequence C' for J starts with ordinals of the form

ap =wihm 4+ 0,

with Cantor normal form matching that of o through the first n — 1 terms.
The last part, which we call ;, starts with the value w®»z, and decreases
to 0. The witnessing sequence C), for J,, is obtained from this initial segment
of C' by replacing each ordinal oy by v%. The sequence C), can be defined by
recursion, using a bounded formula. The initial segments of C, are bounded
by the corresponding initial segments of C. u

It is tempting to think that if X is a-large and 8 < «, then X should
be p-large. However, this need not be true. For example, suppose X is an
w-large set consisting of standard numbers, and let ¢ be nonstandard. Then,
thinking of ¢ as a finite ordinal, we have ¢ < w, but X is not c-large. The
following result of Sommer (see [20, p. 149]) says that if X is a-large, then
for each < min(X), there is a subsequence X' that is {a}(z)-large.

PROPOSITION 2.6. Suppose C' witnesses that J is a-large. If v < min(J),
then {a}(x) occurs in C.

Proof. We do not need exp here. We show by induction on the ordinals
(3 that appear in C that if 3 is followed in C' by j (where j € J), then for
all numbers x < j (not necessarily in J), {#}(z) appears in C. Everything
is bounded by C'. u

The next two lemmas are proved simultaneously.

LEMMA 2.7. Suppose C' witnesses that J is w®-large. Then there exists
J' C J with C" bounded by C witnessing that J' is a-large.

LEMMA 2.8. If J is w® - x-large, witnessed by C, then for all y < x, the
ordinal w® -y appears in C'.

Proof of Lemmas 2.7 and 2.8. We proceed by induction on ordinals ap-
pearing in the given sequence C.

CASE 1. For a = 0, the statements are trivially true.
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CASE 2. Consider o = 3+ 1, where both statements hold for 3. First, we
prove Lemma 2.7 for 5+ 1. Let x be the first term of J. The next ordinal is
wB.z. By the induction hypothesis for Lemma, 2.8, w? appears later in C.. The
part of J after this is wP-large. By the induction hypothesis for Lemma 2.8,
there is a B-large subset J'. Then x"J’ is ($+1)-large. Next, we prove Lemma
2.8 for a. We show by induction on x that for all y < x, w® -y appears in C.
The statement is clear for = 0. Supposing the statement for x, we show it
for z + 1. We have w® - (x + 1) = w® - © + w®. If this appears in C, followed
by the element z, then the next term is w® - z + w? - z. The next few terms
have the form w® - z + 7, where v < wP - z. We see the 7 parts reduce.
By Lemma 2.8 for 3, we arrive at v = 0. So, we have w® - x in C, and by
induction, we get all w® -y for all y < .

CASE 3. Let « be a limit ordinal, where both statements hold for 8 < «
appearing in C. First, we prove Lemma 2.7 for a. In C, suppose that after w®,
we have z. The next ordinal is w?, where 3 = {a}(z). Let J’ be the result
of removing z from the front of J. Then J’ is w’-large. By the induction
hypothesis, there is a subsesquence J” of J’ that is 3-large. Then x"J" is
a-large. Next, we prove Lemma 2.8 for . We show that if w® - x appears
in C', then w® - y appears for all y < z. The statement is clear for z = 0.
Supposing that it holds for x, we show it for x + 1. Let z be the first term
in J. The next ordinal is w® - +w®, where 3 = {a}(z). Let J' be the result
of removing x from the front of .J. Then J’ is w® - x 4 wP-large. Watching the
next few terms in C, we see ordinals w® - z 4 7, for v < w”, with 7 reducing
to 0. Since we have w® - x, we also have w® -y for all y < x. =

Looking at the proof above, we obtain the following further result.

LEMMA 2.9. Suppose J is w*-large, witnessed by C. Then there is an
a-large subsequence J' = (xg,1,...,2,). Moreover, there is a subsequence
of C of the form

(woz’ xO)wﬁlaxla s awﬁT71$T7 1)5

where the corresponding sequence
C' = (a,z0, 51,21, Br—1, 2, 0)
witnesses that J' is a-large.
By iterating Lemma 2.9, we obtain the following.

LEMMA 2.10. Suppose J is w,(«)-large, witnessed by C. Then there is a
subsequence J' that is a-large.

2.3. Connecting largeness with Ramsey theory. Ketonen and Solovay [8]
developed Ramsey theory for a-largeness. Their results can be formalized
in PA. We do not need anything more. Given a standard n and « < €y, we
want a standard § < €y such that if J is §-large and F : [J]™ — ¢, where
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¢ < min(J), then there is an a-large I C J such that I is homogeneous
for F'. We do not need a sharp result.

THEOREM 2.11 (Ramsey theorem for a-largeness). Suppose n > 1. For
each k there exists m such that if F : J™ — ¢, where J is wy,-large and
¢ < min(J), then there is an wy-large, or even (wi + 1)-large, homogeneous
set I C J.

Ketonen and Solovay [8] did not state Theorem 2.11. They were primarily
interested in the case where the homogeneous set I is w-large, and they
gave a pigeonhole principle for that case. However, their inductive lemma is
perfectly general. To state it, we need one more definition.

DEFINITION 5. For a@ < €p, the norm of «, denoted by |||, is defined
inductively as follows:

o] =o0.
o If v =w™my + -+ wmy, then ||af = Z§:1 m; - (|l +1).
Here is Ketonen and Solovay’s inductive lemma (see also [15]).

THEOREM 2.12 (Inductive lemma). Let n > 1 and let w < a < €.
Suppose F : JI"t1 — ¢ If J is -large, where § = w® 4w +max{c, ||o||} +3,
then there is an a-large set I C J such that for increasing tuples T,y and
Z,z in J'TY F(%,y) = F(Z,2); i.e., the value depends only on the first n
elements of the tuple.

Theorem 2.12 yields the following version of the pigeonhole principle.

PROPOSITION 2.13 (Pigeonhole principle). Let F : J — c. If J is 0-large,
where 0 = W + w3 + max{c, |||} + 3, then there is an a-large set I C J
on which F' is constant.

Proof. For x,y € J such that x < y, let G(z,y) = F(y). Theorem 2.12
yields an (a4 1)-large set I C J such that for pairs in I, the value of G
depends only on the first component. For z,y,vy’ € I, if z < y,v/, then

F(y) = G(z,y) = G(z,y) = F(y).
Let I’ be the result of removing the first element from I. Then I’ is a-large,
and F is constant on I’. =

Ketonen and Solovay’s pigeonhole principle gives a much better bound
than Proposition 2.13 in the special case. If J is w - c-large, they get an
w-large homogeneous set I.

LEMMA 2.14. Letn > 1. If J is wpya-large, with first element > c, then

e there exists J' C J that is (wpy1 + w® + ¢ + 3)-large,
o there exists J' C J that is (w“r D) +w? 4 ¢ + 3)-large.
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The proof of Lemma 2.14 uses various facts on a-largeness. Using the
lemma, we get the following relatively simple, although wasteful, version of
Theorem 2.12.

PROPOSITION 2.15 (Inductive lemma). Suppose F' : Jt ¢ where J
is Wiyo-large and min(J) > c. Then there is an wy-large I C J such that for
increasing tuples T,y and T,z in J", F(Z,y) = F(%, z). There is also one
that is (wy + 1)-large.

Similarly, we get the following simple but wasteful version of Proposi-
tion 2.13.

PROPOSITION 2.16 (Pigeonhole principle). Suppose F : J — ¢, where J
is wgo-large and min(J) > c. Then there is an wy-large I C J on which F
is constant. There is also one that is (wy + 1)-large.

By combining Propositions 2.15 and 2.16, we obtain Theorem 2.11.

2.4. Wainer functions. We define the Wainer hierarchy as Ketonen and

Solovay [8] did.

DEFINITION 6 (Wainer hierarchy). For a < €y, Fy(x) is defined as fol-
lows:

o [h(z)=a+1,

o Fop(z) = P& (@),
e for a limit ordinal o, Fy(z) = max{F,);)(v) : j < z}.

Ketonen and Solovay related the notion of a-largeness to the functions
of the Wainer hierarchy. They introduced the function

Ga(z) = py([z,y] is a-large),
and they proved the following.
THEOREM 2.17. For any o < €p,
Fo(n) <Gua(n+1), Gua(n)<Fa(n+1).

Sommer [20] proved Theorem 2.17 in IA. (Of course, Sommer used his
definitions, and Ketonen and Solovay used theirs.)

3. Diagonal indiscernibles. We use the following classification of for-
mulas.

DEFINITION 7.

e The By formulas are just the Ag-formulas.

e The ¥, 11 formulas have the form (3u) ¢, where ¢ is a B,, formula.

e The B, 1 formulas are obtained from the ¥, formulas by taking
Boolean combinations and adding bounded quantifiers.
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NoTaTION. For each n € N, B denotes the set of triples (i, %, T), where
@ is a B, formula and @ and T are the free variables of , partitioned into
two disjoint parts. We identify these triples with their codes. When we write
©(u, T), indicating a split of the variables, we are identifying the formula
with the triple (¢, %, T), which is in B! for some n.

NOTATION. We writea < b,a < b, b <@, b < @ to mean that all elements
of @ are < b, < b, > b, > b, respectively.

In results of Paris and his co-authors [15], [17]-[19], and in McAloon’s
theorem, and other more recent results, we obtain a model of PA from a
special set of indiscernibles.

DEFINITION 8. Let I be a subset of a model A. We say that I is diagonal
indiscernible for ¢ (u, )—identified with the triple (o, u,7)—if for all i < j, k
in I,

A (Va <i) [p(@, j) < (@, k).

The next lemma says how a model of PA is obtained from a set that is

diagonal indiscernible for all bounded formulas.

PROPOSITION 3.1. Let A be a model of IAqy. Suppose I has order type
w under the ordering of A, and

() fori,jel, A=i<j—i%<j,

(ii) I 4s diagonal indiscernible for all elements of BY .

If B is the downward closure of I, then B is a model of PA.

Proof. Condition (i) guarantees that B is closed under addition and mul-
tiplication, so it is a model of IAy. Condition (ii) lets us convert arbitrary
formulas into bounded formulas, using the following lemma.

*(u, )
<«

LEMMA 3.2. For each formula p(w), there is a bounded formula ¢
such that if k., is strictly increasing in I, and b < k, then AE ¢
" (,14).

Idea of proof. We illustrate in an example. Suppose

p(w) = (Vo) (Jy) 6(w, z,y),
where (@, z,y) is quantifier-free. We take ¢*(w,v,v’) to be
(Vz <) 3By <) é(u, z,y).
If b <k <i<j, where k,4,j € I, then we have
B (Vz) (3y)d(b,x,y) it Bl (Vo <4)(3y<j)ob,z,y). =

Using Lemma 3.2, we can show that B satisfies induction for all formulas.
Suppose B |= ¢(b,0) and B = (Vy) [p(b,y) — ©(b,y + 1)]. We must show

@
b)



164 P. D’Aquino and J. F. Knight

that B = ¢(b, c) for all c. Let ¢*(w, x,7) be as in Lemma 3.2, and take £, i,
increasing in I, with b, ¢ < k. Then

Bl ¢*(b,0,9) and Bl (Vy <k)[¢"(b,y,7) — ¢"(by+1,0)].
Therefore, B |= ¢*(b,c, i), so B = ¢(b,c). m

The lemma below gives existence of diagonal indiscernibles in the stan-

dard model N.

LeEMMA 3.3. If I C N is infinite, then for any formula ¢(u,T), there is
an infinite set J C I that is diagonal indiscernible for ¢(u,T). The same is
true for any finite set of formulas.

Proof. Suppose u has length m and T has length n. For any standard c,
and any infinite set S C I, we partition the increasing n-tuples in S such
that tuples b and ¥ lie in the same class provided that for all m-tuples
a<c AFE ¢@b) « ¢@b). Theorem 2.1 yields an infinite set S’ C S
such that all n-tuples in S’ lie in the same class in the partition. We iterate
this to produce a nested sequence (Si)rcw of infinite sets, where Sy = I,
and Sy, 1 is obtained as above with ¢ = k and S = Si. Now, we choose an
increasing sequence (ay)ke,, of numbers such that ag € Sp, and ag+1 € Sq,,
with a < agt1. Then J = {a; : k € w} is the desired set of diagonal
indiscernibles for ¢(u,T). =

The next lemma is similar to Lemma 3.3, except that N is replaced by
an arbitrary model of PA, and the sets of indiscernibles that we obtain are
finite.

LEMMA 3.4. Let A be a model of PA, and let I be a cofinal definable set.
For any finite r and any finite set I' of formulas (with free variables split),
there is a set J C I of size at least v that is diagonal indiscernible for all
o(u,z) el

Proof. Say the elements of I" are ¢;(u;,Z;) for 1 <1i < K. For any ¢ and
any cofinal definable set S C I, we partition the increasing n;-tuples in S
so that tuples b and ¥’ lie in the same class provided that for all m;-tuples
a <c Ak p@b) < p(@b). Theorem 2.2 yields a cofinal set S’ C S
such that all n-tuples in S’ lie in the same class in the partition. We say
that S’ is homogeneous for ¢;(u,T) over c. Let a be first in I. Applying the
procedure above K times, we get a cofinal definable set J; C I homogeneous
for all ¢;(u;, ;) over ag. Let a; be first in J; greater than ag. Applying
the procedure above K more times, we get a cofinal definable set J» C J;
homogeneous for all ¢;(u;, T;) over a;. Let ag be first in Jo greater than a;.
We continue until we have ai,...,a,. This is the desired set of diagonal
indiscernibles. =
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Lemma 3.3 is based on Theorem 2.1, while Lemma 3.4 is proved using
Theorem 2.2. Using ideas from the proof of the MacDowell-Specker theorem
(see [13]) instead of Theorem 2.2, we could obtain the following stronger
statement. (We do not actually use this result.)

PROPOSITION 3.5. Let A be a model of PA, and let I be a cofinal de-
finable set. For any finite set I' of formulas (with the free variables split),
there is a cofinal definable set J C I that is diagonal indiscernible for all
o(u,z)er.

We give one more result on existence of diagonal indiscernibles. We need
some further definitions.

DEFINITION 9. Let A be a model of PA. Let I" be a finite set of formulas
©(u, T) with the free variables split into two parts, and let a be an element
of A. Say the formulas of I" are p;(u;, T;) for 1 <i < K, where u; has length
m; and T; has length n;.

e Let n!” be the greatest n;.

e For a given I, n = n!’, and a, let F* be the partition of A" such
that tuples T and ¥ lie in the same class if for all ¢ and all m;-tuples
u; < a, for all n;-tuples Z; C T and corresponding y; C 7,

A E i(Ui, T;) < (U, ;)
Note that for a given I', there is a function g, definable in PA, such that

for all a, g(a) bounds the number of equivalence classes under the partition
Fe We may let g(a) = 2M(%), where

K
a+1 n
M(a) = . .
@-11(%) ()
NoOTATION. Let ¢! be the fixed function g described above.

PROPOSITION 3.6. Let A be a model of PA. Let I' be a finite set of
formulas with the free variables split, and let n' and g be as above. Let
r be a standard number. There is a standard number m such that if I is
(wWm + 1)-large, and fori,j € 1,

AEi<j—g @) <j,
then there is a subset of I, of size v that is diagonal indiscernible for all
elements of I.

Proof. Let n = n! and let ¢ = ¢!". Let mq,...,m, be a decreasing
sequence of standard numbers such that m,_; =1 and if J is wy,,-large and
F: JM — ¢ where min(J) > ¢, then there is a homogeneous set J' C J that
is (wm,, +1)-large. We pass from m; 1 to m; by applying Theorem 2.11. Let
m = myq, and let I be (wy,+1)-large. Let a be the first element of I. Let I; be
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the result of removing a from I. Then [; is wy,,-large. We restrict to I l[n} the
partition F'7>® described above. Then g(a) bounds the number of equivalence
classes. Let J; C I} be a homogeneous set that is (wy,, + 1)-large, and let
a1 be the first element. Let I be the result of removing a; from J;. Then
I3 is wp,-large. We restrict the partition F/: to Iz[n]. Then g(a;) bounds
the number of equivalence classes. Let Jo C Is be a homogeneous set that
is (wmy + 1)-large, and let ag be the first element. Let I3 be the result of
removing ag from Jy. Then I3 is wy,,-large. We restrict to I?En} the partition
FTa2_ Then g(az) bounds the number of equivalence classes. Let J3 C I3 be
a homogeneous set that is (wy,, + 1)-large, and let a3 be the first element.
We continue in this way until we come to J,_; that is (w + 1)-large, and we
let a,_1 and a, be the first two elements. Then {a1,...,a,} is the desired
subset of J that is diagonal indiscernible for all elements of I". »

4. Initial segments satisfying PA. Here is the original result of
McAloon [12].

THEOREM 4.1 (McAloon). Let A be a nonstandard model of IAg. Then
there is an initial segment B that is a nonstandard model of PA.

Proof. We may suppose that N is an initial substructure of A. Let b be a
nonstandard element. Let J be an infinite subset of N such that for ¢,j € J,
if i < j, then 42 < j. For any finite I" C Bg and any r, we can apply Lemma
3.3 to get an infinite set I C J that is diagonal indiscernible for the elements
of I'. There are increasing sequences of elements of I of arbitrarily large
finite length.

We have a bounded formula (b, u), with parameter b, saying that there
is an increasing sequence o of length u, with code < b, such that if i < j
in ran(o), then i? < j, and o is diagonal indiscernible for all (u,7) € Bl
such that ¢ < u. For all standard n, A |= ¢(b,n). Then by overspill, there
is some some nonstandard v such that A = (b, v). Let o be the witnessing
sequence. The restriction of o to standard terms yields a set I, ordered in
type w, that is diagonal indiscernible for all o € BDT . By Proposition 3.1,
the downward closure of I is the desired nonstandard initial segment of A
satisfying PA. u

Next, we summarize the known results saying which elements of a model
A of IAg can be included in an initial segment that is a nonstandard model
of PA. One way to characterize these elements a is to say that a lies below
an infinite set I, of order type w, such that [ is diagonal indiscernible for all
elements of Bg . A second characterization says that there are finite approx-
imations to such a set I, where these are all bounded in such a way that we
can apply overspill to get an infinite set. Sommer [20] and D’Aquino [5] gave
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a third characterization, in terms of the Wainer functions [21]. These func-
tions were used by Ketonen and Solovay [8] and Paris [15] in characterizing
the provably recursive functions of PA and I3,,.

THEOREM 4.2 (McAloon, Sommer, D’Aquino, Paris, Dimitracopoulos).
Let A be a model of IAg, and let a be a nonstandard element. Then the
following are equivalent:

(i) There is an initial segment B of A such that a € B and B is a model
of PA.

(ii) There is an infinite set I of order type w, consisting of elements
greater than a, such that if i < j in I, then A |=i? < j, and I is
diagonal indiscernible for all o(u,7) in BY .

(iii) There exist b and ¢ such that ¢ codes satisfaction of bounded formulas
by tuples < b, and for all finite r, there is a sequence I, of size r,
with a < I, < b, such that if i < j in I, then A=1i? < j, and I, is
diagonal indiscernible for the first v elements of BY .

(iv) There exists b such that for all a < €g, Fy(a) [ < b.

Remarks on proof. It seems to us natural to try to prove Theorem 4.2 by
showing (i)=-(iv)=-(iii)=(ii)=(i). However, we have not found a published
proof that proceeds in this way. We get (iii)=-(ii) by applying overspill to a
bounded formula ¥ (u, a, b, ¢) saying that there is an increasing sequence o <
b of length v with first term > a, such that for successive terms i, 5, i2 < j,
and ¢ is diagonal indiscernible for all (%, 7) < uin BY. Proposition 3.1 gives
the implication (ii)=-(i). It is not difficult to show (i)=(iv). To complete
the proof, it is enough to show (iv)=-(iii). Sommer [20] and D’Aquino [5]
showed, in a quite complicated proof, that (iv)=-(i). It is not difficult to
show (i)=-(iii), so we get the implication (iv)=>(iii). =

5. n-elementary initial segments satisfying PA. We turn to our
main results, on n-elementary initial segments. Let A and B be structures
for the language of arithmetic, where B is a substructure of A.

DEFINITION 10. Let A and B be structures for the language of arith-
metic. We say that B is an n-elementary substructure of A, and we write

B <, A, if for all B, formulas ¢(Z) and all bin B, B = ¢(b) iff A = (b).
Note that if B is an initial substructure of A, then B <; A.

The following is a version of the familiar Tarski criterion for n-elementary
substructure.

LEMMA 5.1 (Tarski criterion). Let B <o A, and let n > 0. Suppose that
for all B,_1 formulas o(Z,u), and for all b in B (appropriate to substitute
for T), if there exists d such that A = p(b,d), then there exists d’ in B such
that A = p(b,d’). Then B <,, A.



168 P. D’Aquino and J. F. Knight

Proof. Let S be the set of formulas (%) such that for b in B, B = ¢(b)
iff A |= (b). We show that S includes all B,, formulas. Clearly, S is closed
under Boolean combinations and bounded quantifiers. It is straightforward
to show by induction on k < n that all By formulas are in S. =

Our goal is to produce initial segments B of a model A of 1Ay such that
B <,, A and B satisfies full PA. Let A be a model of IAy. One way to obtain
an n-elementary initial substructure is to take the downward closure of the
set of elements definable by ¥, formulas from a set of parameters (see [7,
p. 135]). Alternatively, we may produce an n-elementary initial substructure
by taking the downward closure of a set I of order type w such that I “bounds
witnesses” for B,,_1 formulas. We give the definition below.

DEFINITION 11. Let A be a structure for the language of arithmetic and
let ¢(w,T) be a formula with the free variables separated into u and z. We
say that I bounds witnesses for p(u, ) if for all i, 7 € I such that A =i < 7,
and all @ < i in A,

A (@) (@) — (37 < ) ¢(@7).
The lemma below is an extension of Proposition 3.1.

LEMMA 5.2. Let A be a model of IAg, and let n > 0. Suppose I C A is a
set of order type w that is diagonal indiscernible for all elements of B(:)F and
bounds witnesses for all elements of BL |. Let B be the downward closure
of I. Then B is an n-elementary initial substructure of A satisfying full PA.

Proof. Since I is cofinal in B and bounds witnesses for all elements of
»_1, we can apply Lemma 5.1 to see that B <,, A. Among the bounded
formulas is u? = z, so for i,j € I, A|=1i < j — i?> < j. Since I is diagonal
indiscernible for all elements of BOT , we can apply Proposition 3.1 to see that

B is a model of PA. u

We begin by considering a model A of A such that N <,, A. For n =0,
this is automatically true. For n > 0, however, it is a nontrivial assump-
tion. We say, under this special assumption, when there is a nonstandard
n-elementary substructure satisfying full PA.

BT

LEMMA 5.3. Suppose N <,, A. If I C w is an infinite subset of N, and
B(Z,w) is By_1, then there is an infinite set J C I that bounds witnesses for
B(z,w).

Proof. Say T has length m and w has length n. We define a sequence
(jo, J1,72,---) by induction. Let jp be an arbitrary element of I. Suppose
we have determined ji. There are finitely many m-tuples @ in N such that
@ < ji. For each such @, if A = (3u)B(a@,w), then since N <,, A, there is
some b in N such that N |= 3(a, b). We choose the first such b. Let j,.1 be
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an element of I, greater than j,, and greater than all of the chosen b. Then
J = {ji : k € w} is the desired set bounding witnesses for 5(@, 7). =

THEOREM 5.4. Suppose that A is a nonstandard model of I1Ag such that
N <, A. Then the following are equivalent:

(i) There is a nonstandard initial segment B such that B <,, A and B is
a model of PA.

(ii) There exist b and ¢ such that b is nonstandard and ¢ codes satisfaction
of ¥, formulas in A by tuples T < b.

NoOTE. For n = 0, statements (i) and (ii) are simply true, by Theorem
4.1 (McAloon’s theorem). Even for larger n, we do not know of an example
in which the statements are invalid.

Proof. To prove that (i)=-(ii), suppose b is a nonstandard element of B.
There exists ¢ in B coding satisfaction in B of ¥,, formulas by tuples bounded
by b. Since B <,, A, ¢ also codes satisfaction in A. We must prove that
(ii)=-(i). We shall obtain the model B by applying Lemma 5.2. We need a set
I of order type w that is diagonal indiscernible for elements of BOT and bounds
witnesses for elements of BI ;. The outline is like that for Theorem 4.1. To
obtain the required set I, we show that there are finite approximations in
N, and then apply overspill to an appropriate bounded formula.

We get the finite approximations to I by using Lemma 5.3 together with
Lemma 3.3. We have a bounded formula v (u, b, ¢), with parameters b and c,
saying that there is a sequence o < b of length u such that o is diagonal
indiscernible for all elements of Bl bounded by u, and o bounds witnesses for
all elements of B;‘f_l bounded by u. The formula ¥ (u, b, ¢) is satisfied in .4 by
all standard n. Therefore, by overspill, it is satisfied by some nonstandard v.
Let o be a witness. Taking the restriction of ¢ to standard number inputs,
we get a set I of order type w that is diagonal indiscernible for all elements
of BI', and bounds witnesses for all elements of Bg_l. "

Now, we drop the assumption that N <, A. The following result is
analogous to Lemma 5.3. In what follows, we use it only for inspiration.

PROPOSITION 5.5. Let B be a model of PA. If I is a cofinal definable set,
and 3(u,T) is a Bp_1 formula, then there is a cofinal definable set J C I
that bounds witnesses for 3(u,T).

Proof. We have a definable function G : B — I such that

e G(0) = min([),
e G(a+1) is the first b € I such that b > G(a) and for all u < G(a),

B = (3z) f(u,z) — (3 < b) B(w,T).
Let J =ran(G). »



170 P. D’Aquino and J. F. Knight

We define a family of partial functions Fr, for finite I" C B;{_l and
a < €, such that Fr,(a) is a specific sequence C' witnessing the existence
of an a-large sequence J such that ¢ < J and J bounds witnesses for all
elements of I'. We identify ordinals with their codes.

DEFINITION 12. Let I” be a finite subset of BL_; and let a < €p. Assum-
ing that Fr,(a) is defined, it is the sequence (g, zg, a1, ..., —1,Zr—1, )
with the following properties:

® o = @,
e if @, =0, then C has length 2i + 1 (i.e., r = i),
o if a; # 0, then

(a) if i = 0, then zg is the first z > a such that for all p(u,z) € I',
(Y < a) (37) 9(@,7) — (37 < 2) p(@,7),
(b) if i > 0, then z; is the first z > z;_; such that for all ¢(u,z) € I,
(¥ < 211 (37) (5, 7) — (37 < 2) 9(3, ),
o if o, = #0 and z; = z, then a;11 = {8}(2).

We have Fr,(a) | provided that we can carry out all of these computations,
and we come to some a; = 0.

The result below is the analogue of Theorem 4.2.

THEOREM 5.6. Let A be a nonstandard model of IAg, and let n > 0.
Then the following are equivalent:

(i) there is a nonstandard n-elementary initial segment B satisfying PA,
(ii) there exists a set I, of order type w, such that I is diagonal indis-
cernible for all elements of Bg and bounds witnesses for all elements
Of Bg—la
(iii) there exist b and c such that ¢ codes satisfaction of ¥, formulas by
tuples < b, and for each finite r, there is a sequence I. of length
r, with code < b, such that I, is diagonal indiscernible for the first
r elements of Bg and bounds witnesses for the first r elements of
Bg—lv
(iv) there exist b and c such that ¢ codes satisfaction of %, formulas
by tuples < b, and for all standard ordinals o < €9 and all finite

I C BT || Fr.(0) |<b.

Note that if A is a nonstandard model of I Ag such that N is an initial seg-
ment but not an n-elementary initial segment, then for some B,,_1 formula
©(T) satisfied in A, there is no standard witness (satisfying the formula),
and any n-elementary initial segment must include such a witness. If A has
an n-elementary initial segment satisfying PA, then any B,_; formula that

is satisfied has a first witness.
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We will obtain Theorem 5.6 from the following stronger result, saying
which elements can be included in an initial segment that is n-elementary
and satisfies full PA.

THEOREM 5.7. Suppose A is a model of IAg, and let n > 0. For an
element a, the following are equivalent:

(i) a is contained in a nonstandard n-elementary initial segment B that
18 a model of PA,

(i) there is a set I, of order type w, such that a < I, and I is diagonal
indiscernible for all elements of Bg and bounds witnesses for all
elements of BL_,,

(iii) there ezist b > a and c such that ¢ codes satisfaction of ¥, formulas
by tuples < b, and for each finite r, there is a sequence I, of length
r, with code < b, such that a < I, and I, is diagonal indiscernible
for the first r elements of Bg and bounds witnesses for the first r
elements of BL_,,

(iv) there exist b and ¢ such that ¢ codes satisfaction of ¥, formulas by
tuples < b, and for all o < €y and all finite I' C BL || Fr,(a) |<b.

n—1»

Before proving Theorem 5.7, we note that if we let @ = 0 in the statement
of Theorem 5.7, then we get Theorem 5.6. With a = 0, each of the numbered
statements in Theorem 5.7 is easily seen to be equivalent to the corresponding
statement in Theorem 5.6.

Proof of Theorem 5.7. Our plan is to show (iii)=-(ii)=(i)=(iv) and then
(iv)=-(iii).

(iii)=(ii): We can write a bounded formula ¥ (u, a, b, ¢) saying that there
exists an increasing sequence o of length u such that

e a < ¢ and o has a code < b,
e o bounds witnesses for elements of Bl _; with codes < u and is diagonal
indiscernible for elements of B with codes < u.

To talk about satisfaction in a bounded way, we use the parameter c. By (iii),
¥ (u, a, b, c) is satisfied in A by all standard u. Then by overspill, it is satisfied
by some nonstandard u. Let ¢ be a witness, and let I be the sequence of
standard terms. This set satisfies (ii).

(ii)=-(i): This follows immediately from Lemma 5.2.

(i)=(iv): We work in the initial n-elementary substructure B that is a
model of PA and contains the element a. We get the fact that Fr,(a) is
defined using the ideas from Lemma 3.3 and Proposition 5.5. We can do
the calculations in B, knowing that they are the same in A. Let A(a,z) be a
computable set of formulas of bounded complexity saying Fr,(a) | < x for all
standard a < €g. Every finite subset of A(a, x) is satisfied in B. Therefore, the
whole set is satisfied in B by some element b. We have ¢ coding satisfaction
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in B of ¥, formulas by tuples < b. Satisfaction of these formulas in A is the
same.

(iv)=-(iii): Proving that (iv)=-(iii) will take several steps. Here is the
outline.

Steps in proving that (iv)=-(iii)

1. Give a bounded formula ¢(u,a,b,c) saying that there exists o < b
such that for each ordinal o with code < u, there exist Ji, Jo, C1, Co
such that

(a) Ji, J2 bound witnesses for all ¢ < u in Bl |,
(b) C; witnesses that J; is a-large,

(c) a < Jy and Jp has a code < ¥/,

(d) ¥ < Ja, and C; and C3 have codes < b.

2. Show that A = ¢(u,a,b, c) for all standard w.

3. Apply overspill to get a nonstandard u satisfying ¢(u,a, b, c). Then
we get b’ < b such that for all standard o < €, there exist Jy, Jo, Cy,
(5 such that

(a) Ji, J2 bound witnesses for all standard elements of BI
(b) C; witnesses that J; is a-large,

(¢) a < Jj and Jp has a code < ¥/,

(d) ¥ < Jy and C; and C have codes < b.

4. Suppose b/ < b, where for all standard «, there exist J and C such
that

(a) J bounds witnesses for all elements of B,
(b) C witnesses that J is a-large,
(c¢) b < J and C has a code < b.

Show that F,(b") | < b for all standard . Then by Theorem 4.2, there
is an initial segment B of A containing o’ such that B is a model of
PA.
5. Show that for each finite r, there exists a set I, of size r such that
(a) a < I, and I, has a code < ¥/,
(b) I. bounds witnesses for the first r elements of B! | and is diagonal
indiscernible for the first r elements of BJ .

We discuss the five steps in order.

STEP 1. It is not difficult to write a bounded formula ¢(u, a, b, ¢) with
the desired meaning. We use ¢ to talk about satisfaction of the formulas in
Bl ..

STEP 2. Take a standard number u. Let I" be the finite set of elements
of Bg_l with codes < u, and let a4, ..., ax be the ordinals with codes < w.
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We show that there exists b’ < b such that for each «;, there exist Jy 4, Ja,,
C1,i, C2,; with the following features:

J1,i, J2,; bound witnesses for all elements of I,
o (1;, Cy;, witness that Jy;, Jo; are a;-large,

e a < Jy;and Ji; has a code < V',

o I/ < Jy,; and Cy; has a code < b.

We may suppose a1 < --- < ag. Take the least m such that w,, > w%,
and let
a=wn(ag) + - +wn(ar) + wn + w0 4+ -+ W0
We are assuming statement (iv) (from Theorem 5.7), so there exist J and C
such that

e J bounds witnesses for all elements of I,
o (' witnesses that J is a-large,
e g < J and C has a code < b.

By Lemma 2.5, we have
J = J171A . AJLk;AJ*AJQJA e AJQ’k;,

where Jy; is w®-large, J* is wy,-large, and Ja; is wy,(a;)-large. The ele-
ments of Jq; are smaller than those of Ji ;11, those of J; ;, are smaller than
those of J*, those of J* are smaller than those of Jo 1, and those of J; are
smaller than those of Js ;1. By Lemma 2.7, since J;; is w®i-large, it has
a subsequence that is a;-large. Similarly, since Ja; is wp, ()-large, it has a
subsequence that is o;-large. There are sequences C' ;, C*, and Ca; witness-
ing the largeness of the sets Jy ;, J*, and Js;, where all of these are bounded
by C. Since J* is wy,-large, it is nonempty. We let b’ € J*. This completes
Step 2.

STEP 3. Having carried out Steps 1 and 2, we are in a position to apply
overspill as in the description of Step 3.

STEP 4. Recall that Theorem 2.17 connects the Wainer functions with
largeness. Our assumption that J bounds witnesses for all bounded formulas
simplifies both the statement and the proof of the result below.

LEMMA 5.8. Suppose C witnesses that J is a-large, where « is standard,
J bounds witnesses for all standard elements of Bg, b < J (where V' is
nonstandard) and C has a code < b. Then F,(b') | < b.

Proof. Suppose
C = (0,70, 01,71, -+ Qr—1, Jr—1, ).
Recall that if J, = (jk,Jrk+1,---,Jr) is the part of J that appears after
ay in C, then Ji is ag-large. Since « is standard and o' < jg, where b’ is
nonstandard, the code for a is < jy. We can show that for all k, the code
for a, is < ji. For kK > 0, we have a bounded formula saying how ay is
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computed from ay_1 and ji_1. Since J bounds witnesses for this formula, if
ak_1 < jg_1, it follows that oy < jg.

DEFINITION 13. For any z and any (3, we define the x-unwinding of
B to be the sequence (0o, ..., k), where 3 = [y, for i < k, 3; # 0 and
Bit1 = {Bi}(z), and B, = 0.

It follows from Proposition 2.6 that for =z < jg, the terms of the
z-unwinding of ay appear in C. Moreover, the code for the unwinding exists,
since it is defined by recursion using a bounded formula, with C' bounding
everything we need. Since the code for ay is < ji, if < ji, then the code
for the unwinding is < ji+1. To prove the lemma, we show the following.

CrLAM. For all k < r, for all x < ji, Fo,(z) |.

Proof of Claim. We proceed by induction on the ordinals in C' starting
with a,._1, which we may suppose to be 1, and working our way up to cg = a.
For all < j,_y1, Fi(x) = F¢*'(x) = 22 + 1. Suppose the Claim holds for
Qp1, 1., for all © < jriq, Fo, , (2) |. We must show that the claim holds
for ag, i.e., for all © < ji, F,, (x) |. There are two cases.

CASE 1. Suppose a4, is a successor, and let < ji. By definition,

Fou (@) = Fiy iy (@)

where {ay}(2) = ag11. We show by induction on y < z+1 that FY, , (2) |.

First, note that F! (z) |, by our inductive hypothesis (on the ordinals).

A+1
Supposing that F¥, ., (z) |, where y < z, we show that Fay,irll (z) |. Since

a1 = {og}(z), where the code for ay is < j, we have FY, () < jri1
(this is defined by a bounded formula in terms of z, y, and «). Then
Fop  (F&,..(x)) |, by our inductive hypothesis (on the ordinals). It follows
that F(x) |.

CASE 2. Suppose ay is a limit ordinal, and let « < ji. By definition,

Fo,(z) = sup Flay2)(2)-

For each z < x, {a }(2) occurs in the z-unwinding of oy, so it is «; for some
J > k. By our inductive hypothesis, Fi,;(x) |. Since Fy,(x) is defined by a
bounded formula in terms of z, z, and «4, where z, x, and the codes for «y
are all < ji, we have I (7) < jrr1. So, we get Fo, (7) | < jry1. =

We have proved the Claim, and this clearly gives the Lemma. =

Since F,(b') |< b, for all standard o < €y, we can apply Theorem 4.2 to
get an initial segment B of A such that ' € B and B is a model of PA.

STEP 5. We want to show that for each standard r, there is a set I, of
size r such that
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e a < I, and I, has a code < ¥/,
e [, bounds witnesses for the first r elements of BbT_1 and is diagonal
indiscernible for the first 7 elements of BY .

We work in the model B of PA that was obtained in Step 4. We shall
use Proposition 3.6. Let I" consist of the first r elements of Bg . Let n'" and
g’ be as described just before Proposition 3.6. Let o = Witonl (r—1)+1- 10
Step 3, we obtained an a-large sequence J such that a < J and J bounds
witnesses for the elements of I". Moreover, the code for .J is < ¥, so J is an
element of B. We need to be sure that J is still a-large when looked at in B.
Say J = (jo,j1s---,Jr—1). The sequence

C = (a)jOaalajla o -7ar—17jr—170)

witnessing that J is a-large in A is defined by recursion. In particular, the
ordinals satisfy the relation ajy1 = {a}(ji). Calculating in B, we arrive at
the same ordinals, and we see that {a,_1}(jr—1) = 0, so we find that J is
a-large in B. We are in a position to apply Proposition 3.6, and we get the
required set I,.

This completes the proof that (iv)=-(iii), which was all that remained in
the proof of Theorem 5.7. m

6. Problems

PROBLEM 1. Suppose A is a nonstandard model of IAg such that N <,
A. Must there exist b and c such that b is nonstandard, and c codes satisfac-
tion in A of ¥, formulas by tuples T < b?

PROBLEM 2. Give conditions under which a nonstandard model of 1Ay
has a nonstandard m-elementary initial segment that is a model of I3, and
say which elements can be included in such an initial segment.
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