
FUNDAMENTA

MATHEMATICAE

195 (2007)

Guessing clubs in the generalized club filter

by

Bernhard König (Toronto), Paul Larson (Oxford, OH)
and Yasuo Yoshinobu (Nagoya)

Abstract. We present principles for guessing clubs in the generalized club filter on
Pκλ. These principles are shown to be weaker than classical diamond principles but often
serve as sufficient substitutes. One application is a new construction of a λ+-Suslin-tree
using assumptions different from previous constructions. The other application partly
solves open problems regarding the cofinality of reflection points for stationary subsets
of [λ]ℵ0 .

1. Introduction. Club guessing principles have been studied intensely
in the literature, a major source being [10]. But in all of these references,
the guessing sequences anticipate clubs of ordinals. The purpose of this note
is to introduce principles that guess clubs in the generalized club filter on
Pκλ. Throughout the whole paper, the notion of a club always refers to the
club filter that is generated by the sets

Cf = {x ∈ Pκλ : x is closed under f},

where f : <ωλ → λ. Some references refer to this as “strongly club” as
opposed to “Jech clubs” which are unbounded sets that are closed under
chains of length less than κ. We generally prefer to write [λ]<κ for Pκλ. We
will also make the implicit assumption that κ and λ are regular cardinals
and usually κ ≤ λ.

Section 2 of this article contains the definition of and basic facts about
f

∗, the newly introduced principle. We show in Section 3 that the guessing
of clubs in the generalized club filter is a fairly weak assumption if the guess-
ing attempts are on ordinals of small cofinality. For example, 2λ = λ+ would
suffice to guarantee a variety of guessing principles for clubs in [λ+]<κ. In
Section 4 we give an independence result using iterated forcing to demon-
strate that even full GCH does not imply f

∗ if the guessing attempts are
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made on ordinals of maximal cofinality. The last two sections deal with ap-
plications: in Section 5, a λ+-Suslin-tree is constructed from GCH and a
club guessing principle on ordinals of maximal cofinality. This is related to
the old problem if GCH always constructs a Suslin tree on successors of
regular cardinals. Finally, in Section 6 we show that guessing on ordinals of
cofinality ω can be used to thin out stationary subsets of [ωn]ℵ0 and thereby
remove all possible reflection points with countable cofinality but preserving
stationarity of the original set. Problems regarding the cofinality of reflec-
tion points for stationary subsets of [λ]ℵ0 have frequently been asked in the
literature.

As additional guidelines for general set theory, we recommend the sources
[6] and [8]. For more information about issues related to proper forcing and
iterations, we suggest [11].

2. The principle. The following definition seems to be in the spirit of
guessing clubs in the generalized club filter on [λ]<κ.

1. Definition. Let E ⊆ λ be stationary. Then f
∗(κ, E) is the statement

that there is a sequence 〈Fδ : δ ∈ E〉 such that

(1) Fδ is club in [δ]<κ for all δ in E,
(2) for all clubs D ⊆ [λ]<κ there is a club C ⊆ λ such that for all

δ ∈ C ∩ E we have Fδ ≤∗ D.

In (2), A ≤∗ B means that there is x ∈ A of size less than κ such that
x ⊆ y ∈ A implies y ∈ B for all y.

We also say that 〈Fδ : δ ∈ E〉 is tail club guessing. Defining A ≤∗ B like
this seems to be the right notion for saying that “a tail of A is included
in B” in the context of subsets of [λ]<κ. The cardinal κ is supposed to be
clear from the context whenever we use this notation. Note that our new
statement can be viewed as a ♦∗ spin-off (1). We will show that f

∗(κ, E) is
strictly weaker than ♦∗(E). The following facts help determining the status
of f

∗(κ, E):

2. Lemma. Let E ⊆ λ be stationary.

(1) ♦∗(E) implies f
∗(κ, E) for all κ ≤ λ.

(2) f
∗(κ, E) is preserved by γ+-cc forcings for any γ < κ.

Proof. For (1), let ♦∗(E) guess all functions f : <ωλ → λ via a se-
quence 〈Sδ : δ ∈ E〉. Then each Sδ consists of fewer than λ-many functions

(1) If E ⊆ λ then ♦∗(E) means that there is a sequence 〈Sδ : δ ∈ E〉 where |Sδ| ≤ |δ|
and such that for every S ⊆ λ there is a club C ⊆ λ such that for all δ ∈ C ∩ E we have
S ∩ δ ∈ Sδ. Standard arguments show that ♦∗(λ) holds in the constructible universe if
and only if λ is not ineffable in L [1, p. 328].



Guessing clubs in the generalized club filter 179

f δ
ξ : <ωδ → δ (ξ < |δ|) that are guessing each f : <ωλ → λ club many times.

Now for each δ ∈ E find a club Fδ in [δ]<κ such that y is closed under f δ
ξ

whenever ξ ∈ y ∈ Fδ. One easily checks that this suffices.

(2) follows easily from the following fact:

2.1. Claim. If D ⊆ [λ]<κ is a club in some γ+-cc extension, then there

is a club D0 ≤∗ D in the ground model.

Proof of Claim 2.1. Let Ḋ be a name for a club in [λ]<κ in the γ+-cc
extension. Then

D0 = {x ∈ [λ]<κ :  x ∈ Ḋ}

is a club in V . Straightforward arguments will show that D0 ≤∗ D is wit-
nessed by γ.

This completes the proof of Lemma 2.

Notice finally that both principles f
∗(κ, E) and ♦∗(E) increase in logical

strength as E gets bigger.

3. Small cofinality. Let us denote the set {γ ∈ [λ, λ+) : ω ≤ cf(γ) < κ}
by S<κ

λ+ . The next theorem shows that f
∗(κ, S<κ

λ+ ) is pretty weak in logical
strength. When compared to Lemma 2(1), the assumptions needed here are
far weaker than the previous ♦∗(S<κ

λ+ ).

3. Theorem. Let κ ≤ λ. The following are equivalent (2):

(i) f
∗(κ, S<κ

λ+ ).
(ii) There is a club F ⊆ [λ+]<κ such that for every club D ⊆ [λ+]<κ

there is a club C ⊆ λ+ such that for all δ ∈ C ∩ S<κ
λ+ we have

F ∩ [δ]<κ ≤∗ D.

(iii) There is a collection of λ+-many clubs in [λ]<κ which is cofinal in

the ≥∗-ordering.

Considering (ii), it is an interesting fact that the witness for the principle
f

∗(κ, S<κ
λ+ ) can actually be taken to be a single club F in [λ+]<κ. We still

chose to formulate f
∗(κ, S<κ

λ+ ) in the way given above because it is more in
the style of classical guessing principles.

Proof of Theorem 3. It is straightforward to check that (ii) implies (i),
so we show (iii)⇒(ii). To this end, suppose that Cα (α < λ+) is a ≥∗-cofinal
collection of clubs on [λ]<κ. For each η ∈ [λ, λ+) fix a bijection gη : λ → η
and let

gη∗ : [λ]<κ → [η]<κ

(2) The global assumption that λ is regular is actually not necessary for this particular
theorem.



180 B. König et al.

be the induced bijection. If λ ≤ η < λ+ and α < λ+, then we set Cη
α =

gη∗”Cα. One checks that Cη
α (α < λ+) is ≥∗-cofinal in the clubs on [η]<κ for

each η ∈ [λ, λ+). Now fix a bijection g : [λ, λ+) × λ+ → λ+ and let

Fg(η,α) = {x ∈ [λ+]<κ : x ∩ η ∈ Cη
α}

for each (η, α) ∈ [λ, λ+)×λ+. Note that Fγ is club in [λ+]<κ for each γ < λ+.
Define

F = △
γ<λ+

Fγ = {x ∈ [λ+]<κ : ∀γ ∈ x (x ∈ Fγ)}.

Clearly, F is a club subset of [λ+]<κ. We show that this F works: let D be
any club subset of [λ+]<κ and let f : <ωλ+ → λ+ generate D. Then set

D = {η ∈ [λ, λ+) : η is closed under f}.

Note that D is a club subset of λ+. For each η ∈ D there exists an h(η)
such that Cη

h(η)
≤∗ D ∩ [η]<κ. Let D′ be the set of ordinals which are closed

under both g and h and set D′′ = S<κ
λ+ ∩ D′ ∩ limD. Note that D′′ is a

relative club subset of S<κ
λ+ . For each δ ∈ D′′ there is an increasing sequence

δi (i < cf(δ)) of elements of D converging to δ. For each i < cf(δ) pick an

xi ∈ [δi]
<κ which witnesses Cδi

h(δi)
≤∗ D ∩ [δi]

<κ, i.e. xi ⊆ y ∈ Cδi

h(δi)
implies

y ∈ D. Now let

x =
⋃

i<cf(δ)

(xi ∪ {g(δi, h(δi))}),

and note that x ∈ [δ]<κ. Whenever x ⊆ y ∈ F ∩ [δ]<κ then we infer for each

i < cf(δ) that y ∈ Fg(δi,h(δi)) and thus y ∩ δi ∈ Cδi

h(δi)
. But since xi ⊆ y ∩ δi

we deduce that y ∩ δi is in D and therefore closed under f . Then clearly, y
is closed under f . This shows that F ∩ [δ]<κ ≤∗ D witnessed by x.

Regarding (i)⇒(iii), let 〈Fδ : δ ∈ E〉 be a f
∗(κ, S<κ

λ+ )-sequence and, for
each δ ∈ S<κ

λ+ , fix an increasing ladder sequence δi (i < cf(δ)) such that
λ ≤ δ0. We may assume without restriction that all x ∈ Fδ are closed under
the bijections gδi

: λ → δi (δi ∈ x) used above. Now define a sequence of
clubs in [λ]<κ by letting

Cδ = {x ∩ λ : x ∈ Fδ}

for all δ ∈ S<κ
λ+ .

3.1. Claim. Cδ (δ ∈ S<κ
λ+ ) is ≥∗-cofinal in the clubs on [λ]<κ.

Proof of Claim 3.1. If C ⊆ [λ]<κ is club, define

D = {y ∈ [λ+]<κ : y ∩ λ ∈ C}.(3.1)

Then find δ ∈ S<κ
λ+ such that Fδ ≤∗ D witnessed by some b ∈ [δ]<κ, i.e.

∀x b ⊆ x ∈ Fδ implies x ∈ D.(3.2)
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Now set

a = {δi : i < cf(δ)} ∪
⋃

i<cf(δ)

g−1
δi

”(b ∩ δi).(3.3)

We claim that Cδ ≤∗ C is witnessed by a. So assume there is an x ∈ Fδ

such that a ⊆ x ∩ λ. Then x is closed under the relevant bijections gδi
for

all i < cf(δ), hence b ⊆ x. By (3.2), x is in D and therefore x ∩ λ ∈ C. This
suffices.

By Claim 3.1, we have found a collection of size λ+ of clubs in [λ]<κ that
is cofinal in the ≥∗-ordering. This finishes the proof of Theorem 3.

We remark that the simple cardinal arithmetic 2λ = λ+ implies that
there are λ+-many clubs in [λ]<κ, and the collection of all these generates
the club filter and is therefore cofinal in the ≥∗-ordering. It will be shown
in the next section of this article that tail club guessing principles defined
on ordinals of higher cofinality are considerably stronger than that.

As to the possible failure of f
∗(κ, S<κ

λ+ ), if λ is regular one can add
λ++-many Cohen-subsets of λ to create a model in which the equivalent
statements (i)–(iii) of Lemma 3 are false. We leave the details to the inter-
ested reader.

4. Maximal cofinality. We assume GCH throughout this section and
remember that κ and λ are always assumed to be regular. Similar to previous
notation, we denote the set {γ < λ+ : cf(γ) = λ} by Sλ

λ+ . We want to

investigate the status of f
∗(κ, Sλ

λ+): it will be shown that f
∗(κ, Sλ

λ+) does
not follow from GCH which means that it is much stronger than f

∗(κ, S<κ
λ+ )

and cannot be characterized analogously to Theorem 3.

Let 〈Fδ : δ ∈ Sλ
λ+〉 be a f

∗(κ, Sλ
λ+)-sequence. Then define a forcing QF

in the following way: conditions are functions f : <ωγ → γ, where γ < λ+

is such that for all β ∈ Sλ
λ+ ∩ (γ + 1) we have Fβ �∗ Cf , where Cf is the

club generated by f . The ordering on QF is reverse inclusion. Notice that a
straightforward argument shows that every condition in QF can be extended
to have arbitrarily large domain.

4. Lemma. QF is λ-closed and λ+-distributive.

Proof. The λ-closure should be clear, and to show λ+-distributivity, let
τ̇ be a name for a λ-sequence of ordinals, g an arbitrary condition in QF , and
M an elementary substructure of Hθ for some sufficiently large regular θ such
that |M | = λ with F , g, τ̇ ∈ M , <λM ⊆ M , and δ = M ∩ λ+ ∈ Sλ

λ+ . Fix a
sequence 〈δi : i < λ〉 such that δi ր δ and let xi (i < λ) be an enumeration
of [δ]<κ. Now build a descending sequence of conditions 〈fi : i < λ〉 of
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M ∩QF with f0 ≤ g such that for all i < λ,

(1) <ωδi ⊆ dom(fi),
(2) fi decides the value of τ̇ at i,
(3) there is xi ⊆ y ∈ Fδ such that y is not closed under fi.

This construction can be carried out, in particular since QF is λ-closed. Now
let p =

⋃
i<λ fi. Note that dom(p) = <ωδ by (1). But then p is a condition

below g by (3) and decides τ̇ by (2).

Given Lemma 4 and the remark before this lemma, it follows that a
generic filter G ⊆ QF adds a club DG ⊆ [λ+]<κ whose existence destroys
the tail club guessing properties of 〈Fδ : δ ∈ Sλ

λ+〉. The rest of the section
depends heavily on iteration lemmas from [13], so we would like to remind
the reader of some definitions from that paper.

5. Definition. If S ⊆ Sλ
λ+ is stationary then a substructure M ≺ Hθ

of size λ will be called S-good whenever M ∩ λ+ ∈ S and M is closed under
sequences of length less than λ. A λ-closed forcing notion Q is called strongly

S-complete if for all but non-stationarily many S-good structures M , every
(M,Q)-generic sequence of conditions 〈qξ : ξ < λ〉 has a lower bound in Q.

We chose not to reproduce Shelah’s notions in the most general form.
Our presentation here is basically a special case of the machinery in [13].
The same holds for future definitions.

6. Lemma. Strongly S-complete forcings are λ+-distributive and pre-

serve stationary subsets of S.

7. Remark. Let E ⊆ Sλ
λ+ be stationary. The poset QF (E) is as above

but with the weakened requirement that only for all β ∈ E∩ (γ +1) we have
Fβ �∗ Cf . Then QF (E) is again λ-closed and λ+-distributive. Moreover, if
we let S = Sλ

λ+ \ E then QF (E) is strongly S-complete.

Proof. The proof for λ-closure and λ+-distributivity is as before in Lem-
ma 4. So we only have to show that QF (E) is strongly S-complete. To this
end, let N ≺ Hθ be an S-good elementary substructure of size λ such that
δ = N ∩ λ+ ∈ S and let 〈pi : i < λ〉 be a QF (E)-generic sequence over N .
We define p∗ =

⋃
i<λ pi. Then p∗ is clearly a condition in QF (E) since S

and E are disjoint and therefore δ /∈ E.

8. Definition. Let θ be a sufficiently large regular cardinal. A contin-
uous increasing sequence (Ni : i ≤ λ) is called S-suitable if for all i ≤ λ:

(1) Ni ≺ Hθ is of size λ,
(2) (Nξ : ξ ≤ i) ∈ Ni+1 for i < λ,

and there is a club X ⊆ λ such that for all i ∈ X,

(3) Ni+1 is S-good.
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9. Definition. A forcing notion Q is really S-complete if it is

(1) λ-closed,
(2) strongly S-complete, and
(3) whenever N = (Ni : i ≤ λ) is S-suitable witnessed by the club X ⊆ λ

and r ∈ N0∩Q then INC(omplete) does not have a winning strategy

in the following game G(N, X, r) of length λ:

COM ζ0, p0 . . . ζi, pi . . .

INC q0 . . . qi . . .

where for all i < λ,

(a) ζi ∈ X and ζi < ζj for all i < j,
(b) pi ∈ Nζi+1 ∩ Q,
(c) qi = (qi(ξ) : ξ < λ) ⊆ Nζi+1 ∩ Q is Q-generic over Nζi+1,
(d) qi ∈ Nζi+2,
(e) r ≥ pi ≥ qi(0),
(f) qi(ξ) ≥ pj for all ξ < λ and i < j.

The player COM(plete) wins the play of the game iff the sequence
(pi : i < λ) has a lower bound in Q.

10. Remark.

(i) Recalling the definitions above, we see that the sequences qi played
by INC will, modulo club, always have a lower bound in Q. This is
because Q is strongly S-complete, the sequence qi is Q-generic over
Nζi+1, and Nζi+1 is S-good.

(ii) Standard arguments show that really S-complete forcings preserve
all stationary subsets of λ+.

The following theorem is one of the crucial iteration lemmas of [13] that
will be used in the proof of Theorem 13.

11. Theorem. Let 〈Pi, Q̃i : i < γ〉 be a λ-support iteration such that

for each i < γ,
Pi

“Q̃i is really S-complete.”

Then the forcing notion Pγ is really S-complete.

12. Lemma. Suppose E ⊆ Sλ
λ+ and S = Sλ

λ+ \ E are stationary. Then

QF (E) is really S-complete.

Proof. We already showed in Remark 7 that QF (E) is λ-closed and
strongly S-complete. So we are left with showing (3) of Definition 9. To this
end, let (Ni : i ≤ λ) be an S-suitable sequence witnessed by the club X ⊆ λ
and let r ∈ N0∩Q. We actually describe a winning strategy for player COM
in the game G(N, X, r).
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We have no problem unless δ = Nλ ∩λ+ ∈ E. The following argument is
similar to the proof of Lemma 4: player COM creates his strategy by fixing
an enumeration xi (i < λ) of [δ]<κ. At stage i < λ, he picks ζi ∈ X above
all ζξ’s played so far with the additional requirements that there is y ∈ Fδ

such that xi ⊆ y and

y *
⋃

ξ<i

Nζξ+1.(4.1)

Then COM extends all conditions played so far to a pi such that

pi  “y is not closed under the generic G”.(4.2)

The requirement (4.1) guarantees that this can be carried out. But now
(pi : i < λ) has a lower bound in Q since we stipulated (4.2) for unboundedly
many y’s.

13. Theorem. GCH does not imply f
∗(κ, Sλ

λ+) for any ℵ0 < κ ≤ λ.

Proof. Start with a model of GCH and fix two stationary sets E, S ⊆ Sλ
λ+

such that E∩S = ∅. Now define a λ-support iteration of length λ++. In each
step i < λ++, we force with Q̃Fi(E) to deal with a guessing sequence of the
form F i = 〈F i

δ : δ ∈ Sλ
λ+〉 that is given to us by a book-keeping device. Note

that this will destroy the guessing properties of 〈F i
δ : δ ∈ Sλ

λ+〉. Remember

also that each Q̃Fi(E) is forced to be really S-complete by Lemma 12. We
have thus defined a λ-support iteration of the form

〈Pi, Q̃Fi(E) : i < λ++〉,

so by Theorem 11 we conclude that P = Pλ++ is really S-complete. If we
consult Lemma 6 and Remark 10(ii), this is enough to make sure that P is
λ+-distributive and that all stationary subsets of λ+ are preserved. Finally,
P has the λ++-chain condition by the standard line of reasoning using the
fact that every iterand has size ≤ λ+. The λ++-chain condition ensures, as
in standard arguments, that every sequence 〈Fδ : δ ∈ Sλ

λ+〉 appears at some
initial step of the iteration, so that every potential sequence is finally taken
care of. With the properties just mentioned, it is also easy to see that P
preserves GCH. This finishes the proof.

The authors do not know if GCH is consistent with the failure of f
∗(κ, S)

for every stationary S ⊆ Sλ
λ+ since the methods presented here cannot settle

this question. It is conjectured though that the older (and more involved)
Shelah techniques of [14] can be applied to show that the above is actually
consistent.

5. Suslin trees. Let us turn to applications of the club guessing prin-
ciples presented above. We give an interesting application of f

∗-sequences
defined on the set Sλ

λ+ . The following theorem of Shelah from [10, p. 126]
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is needed, where nacc(A) is the set of all non-accumulation points of A, i.e.
the set A \ lim(A).

14. Theorem. Assume that λ is regular uncountable. There exists a

sequence (Cα : α ∈ S) such that

(1) S ⊆ Sλ
λ+ is stationary ,

(2) Cα ⊆ α is a club of order-type λ,
(3) nacc(Cα) ⊆ Sλ

λ+ ,
(4) if D ⊆ λ+ is club then there is α ∈ S such that

sup(D ∩ nacc(Cα)) = α.

The application we present is the construction of a λ+-Suslin tree from
GCH and f∗(λ, Sλ

λ+). Note that the consistency of GCH + “no ω2-Suslin
trees” is still an open question. The following construction originally raised
hopes that GCH actually does imply the existence of an ω2-Suslin tree. But
in light of Theorem 13, this old question is now more open than ever. It
should be mentioned that Jensen [7] was the first to construct a λ+-Suslin
tree in a similar fashion but using stronger square and guessing principles
in the constructible universe.

15. Theorem. If λ is regular uncountable then

2<λ = λ + 2λ = λ+ + f
∗(λ, Sλ

λ+)

implies the existence of a λ-closed λ+-Suslin tree.

Proof. Fix enumerations P(α) = {Wα
γ }γ<λ+ for all α < λ+ and then de-

fine Wα
X = {Wα

γ }γ∈X . Let (Cα : α ∈ S) be as in Theorem 14, where we enu-

merate Cα = {αξ}ξ<λ in increasing order. Furthermore, take 〈Fδ : δ ∈ Sλ
λ+〉

to be f
∗(λ, Sλ

λ+)-guessing. Remember that Fδ is club in [δ]<λ, so Fδ has a

⊆-cofinal subfamily Gδ = {Gξ
δ : ξ < λ} such that

• Gξ
δ ∈ [δ]<λ for all ξ < λ,

• the sequence (Gξ
δ : ξ < λ) is continuously (-increasing,

• αξ+1 ∈ Gξ+1
α .

Now construct a binary λ+-tree T by induction on the levels so that the
following holds for every α < λ+:

For every x ∈ T<α there is y ∈ Tα such that x <T y,(5.1)

and simultaneously carry along an enumeration of T in the usual way. To
start, let T0 = λ. Once T≤α is constructed, let every x ∈ Tα have exactly
two successors at level α + 1. If cf(α) < λ then Tα extends all branches
through T<α, and if α ∈ Sλ

λ+ \ S then choose any normal extension Tα

of size λ. If α ∈ S then for any x ∈ T<α we will construct a branch bx

through x and cofinal in T<α: first pick ξ0 < λ such that αξ0 is larger
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than the height of x, and pick xξ0 ∈ Tαξ0
above x. Now by induction on

ξ ∈ [ξ0, λ) we will construct xξ ∈ Tαξ
as follows: if xξ is constructed, then

pick xξ+1 ∈ Tαξ+1
above xξ so that the branch determined by xξ+1 intersects

with all A ∈ W
αξ+1

G
ξ+1
α

that are maximal antichains in T<αξ+1
. Note that this

is possible because αξ+1 has cofinality λ and we are diagonalizing through
fewer than λ-many antichains. If ξ < λ is a limit, then let xξ be the limit of
{xη}ξ0≤η<ξ in T<α. At the end of the day, let bx be the α-branch determined
by the sequence 〈xξ〉ξ0≤ξ<λ.

Now let Tα = {bx : x ∈ T<α} and T =
⋃

α<λ+ Tα. Note that by an easy
inductive argument, (5.1) was achieved at all levels. The following claim will
finish the proof.

15.1. Claim. T has no antichains of size λ+.

Proof of Claim 15.1. Assume that A is a maximal antichain of size λ+

and let the function f : λ+ → λ+ be defined by f(α) = γ iff A ∩ α = Wα
γ .

Then define the club

D = {δ < λ+ : A ∩ δ is a maximal antichain in T<δ and T<δ = δ}.

Now we can use both guessing sequences simultaneously to find δ ∈ S such
that

sup(D ∩ nacc(Cδ)) = δ,(5.2)

each set in a tail of Gδ is closed under f .(5.3)

If b ∈ Tδ then by construction there is x ∈ T<δ such that b = bx. In view
of (5.2) and (5.3), there is ξ < λ such that

• ht(x) < δξ+1,
• δξ+1 ∈ D,

• Gξ+1
δ is closed under f .

This means, again by construction, that bx ∩ A ∩ δξ+1 6= ∅, since

A∩ δξ+1 ∈ W
δξ+1

G
ξ+1

δ

as δξ+1 ∈ Gξ+1
δ and Gξ+1

δ is closed under f . So bx∩A 6= ∅, which shows that
A is sealed off at δ.

This completes the proof of Theorem 15.

6. Stationary reflection. We would like to shift the attention to the
following question which was asked in [2], [3], [4], and other places in the
literature. This question has been formulated in various ways, but the basic
problem reads:
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16. Question. Are the following equivalent for a regular λ?

• Every stationary E ⊆ [λ]ℵ0 reflects to a set X of size ℵ1 containing all

countable ordinals (3).
• Every stationary E ⊆ [λ]ℵ0 reflects to a set X of size ℵ1 containing all

countable ordinals with the additional property that cf(otpX) = ω1.

Using the principle f
∗(ℵ1, S

ω
λ ), we can now shed new light on this ques-

tion even though the most general case seems to be still open. Remember
that Sω

λ denotes the collection of all ω-cofinal ordinals below the cardinal λ.

17. Definition. If B ⊆ [λ]ℵ0 and x ∈ [λ]ℵ0 then we define

B(x) = {y ∈ B : x ⊆ y},

the set of all supersets of x in B. Furthermore, the union of all supersets of
x in B, i.e. ⋃

B(x) =
⋃

{y ∈ B : x ⊆ y},

is said to be the B-coverage of x.

We need the following sequence of lemmas.

18. Lemma. If B ⊆ [λ]ℵ0 then we can partition B into two sets B(0) and

B(1) such that

(1) B(0) has no (-increasing chains of length ω1,
(2) every x ∈ B(1) has uncountable B(1)-coverage.

Proof. Given B ⊆ [λ]ℵ0 , we iteratively remove all sets with countable
coverage, i.e. define

B0 = B,

Bξ+1 = {x ∈ Bξ : x has uncountable Bξ-coverage},

Bξ =
⋂

ζ<ξ

Bζ if ξ is limit.

There must be an ordinal ∞ such that B∞ = B∞+1. Then set

B(1) = B∞ and B(0) = B \ B(1).

Clearly, every member of B(1) has uncountable B(1)-coverage because B∞ =
B∞+1. On the other hand it is straightforward to check that, by construction
of the Bξ’s, B

(0) does not contain any (-increasing chains of length ω1.

19. Lemma. Suppose B ⊆ [λ]ℵ0 for some regular λ and xα (α < γ)
is a (possibly incomplete) list of members of B. For each α < γ, assume

(3) Following [3], we say for short that E reflects to X.
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that Aα is a ⊆-cofinal subset of B(xα) that does not contain any contin-

uous, increasing (-chains of length ω + 1. Define a sequence A′
α (α < γ)

inductively :

A′
α = {y ∈ Aα : ∀ξ < α ∀x ∈ A′

ξ y * x and x * y}.

Then A′ =
⋃

α<γ A
′
α is cofinal in

⋃
α<γ B(xα) and contains no continuous,

increasing (-chain of length ω + 1.

Proof. The proof is by induction on γ. To check cofinality, consider an
x ∈ B(xα) for some α < γ. Since Aα is ⊆-cofinal in B(xα), we may assume
that x ∈ Aα. Without loss of generality, x /∈ A′

α and x is not contained in
any member of

⋃
ξ<α A′

ξ. So there must be an a ∈ A′
ξ for some ξ < α such

that a ⊂ x. But note that by induction hypothesis,
⋃

ζ<α A′
ζ is ⊆-cofinal in⋃

ζ<α Aζ . Note also that Aξ ∩ B(a) is ⊆-cofinal in B(a). Thus, there must

be y ∈
⋃

ζ<α A′
ζ such that x ⊆ y.

The lack of continuous, increasing (-chains of length ω + 1 in A′ fol-
lows by construction, using the fact that no individual Aα contains such a
sequence.

20. Lemma. Assume CH and 1 ≤ n < ω. Let B ⊆ [ωn]ℵ0 be such

that every member of B has uncountable B-coverage. Then there is A ⊆ B
which is ⊆-cofinal in B but contains no continuous, increasing (-sequence

of length ω + 1.

Proof. We argue by induction on n. The following claim is crucial.

20.1. Claim. Assume that every y ∈ B(x) has B-coverage of cardinal-

ity ωn. Then there is A(x) which is ⊆-cofinal in B(x) such that A(x) does

not contain any continuous, increasing (-chains of length ω + 1.

Proof of Claim 20.1. Enumerate B(x) = {xα : α < ωn}; this uses CH.
For each α < ωn, choose yα ∈ B(xα) such that

yα *
⋃

ξ<α

yξ,

or in other words, every yα contains a brand new ordinal. Then the set
A(x) = {yα : α < ωn} contains no continuous, increasing (-chains of
length ω + 1.

So we have two cases in which we can thin out a set B(x) to a ⊆-cofinal
A(x) which contains no continuous, increasing (-chains of length ω + 1.

Case 1: If every superset of x in B has B-coverage of cardinality ωn,
this is by Claim 20.1.

Case 2: If x has B-coverage of cardinality less than ωn, this is by in-
duction hypothesis.



Guessing clubs in the generalized club filter 189

It is straightforward to check that the set of x ∈ B satisfying Case 1
or Case 2 is ⊆-cofinal in B. So we have a situation that allows us to apply
Lemma 19. This finishes the proof of Lemma 20.

21. Lemma. Assume CH and 1 ≤ n < ω. Then for every B ⊆ [ωn]ℵ0

there is an A ⊆ B such that A is ⊆-cofinal in B and A does not reflect to

any set of size ℵ1.

Proof. First partition B into two pieces as in Lemma 18. Then apply
Lemma 20 to the piece B(1) to get an A(1) ⊆ B(1). Now B(0) ∪ A(1) will do
the job.

22. Theorem. Assume CH and f
∗(ℵ1, S

ω
ωn

) for some 2 ≤ n < ω. Then

every stationary B ⊆ [ωn]ℵ0 can be refined to a stationary A ⊆ B with the

property that {x ∈ A : sup(x) = γ} does not reflect to a set of size ℵ1 for

all γ ∈ Sω
ℵn

.

Proof. Let F ⊆ [ωn]ℵ0 be as stated in Theorem 3(ii). We may assume
that every element of F has limit order type and therefore a supremum
in Sω

ℵn
. For each η ∈ Sω

ℵn
, let Fη = {x ∈ F : sup(x) = η}. If B ⊆ [ωn]ℵ0

is stationary, we may also assume that B ⊆ F . For every η ∈ Sω
ℵn

, apply
Lemma 21 to find a ⊆-cofinal Aη ⊆ B ∩Fη such that Aη does not reflect to
any set of size ℵ1. Let

A =
⋃

η∈Sω
ℵn

Aη.

It suffices to show that A is stationary, so pick a club D ⊆ [ωn]ℵ0 . We may
assume that D ⊆ F . Let D∗ be the set of x ∈ [ωn]ℵ0 containing increasing
ordinals 〈µi : i < ω〉 such that

• supi<ω µi = supx,
• D ∩ [µi]

ℵ0 is club in [µi]
ℵ0 for each i < ω,

• every element of F ∩ [µi]
ℵ0 containing x ∩ µi is in D.

It is easy to see that D∗ is club. Now pick x ∈ B ∩D∗ and let supx = η.
Then x ∈ B ∩ Fη, and thus there is y ∈ Aη containing x. By the definition
of D∗ we have y ∩ µi ∈ D for each i < ω, and therefore y ∈ D ∩A.

23. Corollary. Assume CH and 2ℵn−1 = ℵn for some 2 ≤ n < ω.

If every stationary subset of [ωn]ℵ0 reflects, then every stationary subset of

[ωn]ℵ0 reflects to a set of ordinals of uncountable order-type.

Proof. Directly from Theorems 3 and 22.

If n = 2 then we can get by without CH.

24. Corollary. Assume 2ℵ1 = ℵ2. If every stationary subset of [ω2]
ℵ0

reflects, then every stationary subset of [ω2]
ℵ0 reflects to a set of ordinals

of uncountable order-type.
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Proof. Note that if E ⊆ [ω2]
ℵ0 is stationary, we may assume that

E = {δ ∈ Sℵ0

ℵ2
: E ∩ [δ]ℵ0 is stationary in [δ]ℵ0}

is stationary. Otherwise, throw away all elements of E whose supremum is
in E to reach the conclusion of the corollary.

So given that E is stationary, we can do without Lemmas 18–21: if
E ∩ [δ]ℵ0 is stationary for some δ < ω2, it is straightforward to find an un-
bounded subset thereof which contains no continuous, increasing (-sequence
of length ω + 1. Now repeat the proof of Theorem 22.

So the outcome of this section is that the Generalized Continuum Hy-
pothesis is enough to provide a partial answer to Question 16 but we were
not able to push the method beyond ℵω. It is possible that similar arguments
can be carried out for higher cardinals but there are some problems. For in-
stance, Lemma 20 is false if we replace the cardinal ωn with ωω: assuming
that ℵω is strong limit, Shelah [12] constructs a club subset of [ωω]ℵ0 with
the property that every unbounded subset of it is stationary.

To wrap things up, let us mention a result communicated to us by Donder
which says that, in the constructible universe, a much better refinement
than Theorem 22 is possible. This is the following fact which has also been
established independently by Sakai [9].

25. Theorem. In L, for all uncountable regular λ, every stationary

B ⊆ [λ]ℵ0 can be refined to a stationary A ⊆ B such that the sup-function

on A is 1-1.

The interested reader will find that the proof of Theorem 25 is pretty
close to the usual condensation argument that ♦λ holds in L. Note that the
conclusion of Theorem 25 is stronger than the conclusion of Theorem 22
but it also requires the stronger assumption of V = L. In [9], Matsubara
and Sakai use a model of Gitik [5] to show that there can be an inaccessible
cardinal λ and a stationary B ⊆ [λ]ℵ0 such that B cannot be thinned out
to a stationary subset on which the sup-function is 1-1. But it seems to be
open whether the same can happen if λ is a successor cardinal. In other
words, the answer to the following question is not known:

26. Question. Let λ > ω1 be a successor cardinal. Is it possible to prove

in ZFC that every stationary B ⊆ [λ]ℵ0 can be thinned out to a stationary

A ⊆ B on which the sup-function is 1-1?
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