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Abstract. In 1990, Comfort asked Question 477 in the survey book “Open Problems
in Topology”: Is there, for every (not necessarily infinite) cardinal number α ≤ 2c , a
topological group G such that Gγ is countably compact for all cardinals γ < α, but Gα is
not countably compact?

Hart and van Mill showed in 1991 that α = 2 answers this question affirmatively
under MAcountable. Recently, Tomita showed that every finite cardinal answers Comfort’s
question in the affirmative, also from MAcountable. However, the question has remained
open for infinite cardinals.

We show that the existence of 2c selective ultrafilters + 2c = 2<2
c

implies a positive
answer to Comfort’s question for every cardinal κ ≤ 2c . Thus, it is consistent that κ can
be a singular cardinal of countable cofinality. In addition, the groups obtained have no
non-trivial convergent sequences.

1. Introduction. Throughout this paper, ω∗ will denote the set of all
free ultrafilters on ω. Given a set A and a cardinal κ, [A]<κ will denote the
set of all subsets of A of size < κ and [A]κ will denote the set of all subsets
of A of size κ.

Martin’s Axiom restricted to countable posets (MAcountable) is a weaker
form of Martin’s Axiom (MA). MAcountable is equivalent to the statement
“the intersection of fewer than c dense open sets of the real line is dense”
(see [15]). MA implies MAcountable and MAcountable implies the existence of
selective ultrafilters. The reverse implications are not true.
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The reader not familiar with selective ultrafilters can replace “the exis-
tence of 2c selective ultrafilters” by MA or CH.

The study of the non-productivity of countable compactness in topolog-
ical spaces started in the 1950’s, when Terasaka [20] and Novák [17] showed
that there exists a countably compact space whose square is not pseudo-
compact. The finite and the countable cases were studied by Froĺık in the
1960’s and the infinite case by Saks in the 1970’s.

Scarborough and Stone [19] showed in 1966 that if {Xi : i ∈ I} is a
family of topological spaces then

∏
i∈I Xi is countably compact if and only

if
∏

i∈J Xi is countably compact for each J ⊆ I with |J | ≤ 22c

.
Ginsburg and Saks [13] improved the theorem above in 1975. They

showed that
∏

i∈I Xi is countably compact if and only if
∏

i∈J Xi is count-
ably compact for each J ⊆ I with |J | ≤ 2c. A natural question is whether
2c could be replaced by a smaller cardinal.

Saks [18] showed in 1979 that 2c was consistently the best possible. He
showed that if there exist 2c selective ultrafilters then there exists a count-
ably compact space X such that Xα is countably compact for every α < 2c

but X2c

is not.
Comfort and Ross [6] showed in 1966 that the product of pseudocompact

groups is pseudocompact. That motivated Comfort to ask whether countable
compactness is productive in the class of topological groups.

E. van Douwen [9] answered this question in the negative in 1980. Indeed,
he produced two countably compact groups whose product is not countably
compact from MA. His construction is divided into two parts:

(1) (MA) There exists an infinite countably compact group without non-
trivial convergent sequences inside the compact group 2c.

(2) (ZFC) A countably compact group of order 2 without non-trivial
convergent sequences contains two countably compact subgroups
whose product is not countably compact.

At the end of [9], van Douwen wrote that he was able to produce a single
countably compact group whose square is not countably compact. He wrote
he would publish this result elsewhere but he never did.

Hart and van Mill [15] showed in 1991 that there exists a countably
compact topological group whose square is not countably compact under
MAcountable. The example contains non-trivial convergent sequences as it
makes use of ω-bounded groups in the construction.

Koszmider, Tomita and Watson [16] showed in 2000 that MAcountable

implies the existence of a countably compact group without non-trivial con-
vergent sequences whose square is not countably compact.

Dikranjan and Tkachenko [8] showed in 2003 that, under MA, every
group of size c that admits a countably compact group topology also ad-
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mits a countably compact group topology without non-trivial convergent
sequences.

Recently, Garcia-Ferreira, Tomita and Watson [12] showed that the exis-
tence of a selective ultrafilter p implies the existence of an infinite p-compact
group of order 2 without non-trivial convergent sequences. In particular, the
existence of a selective ultrafilter implies the existence of an infinite count-
ably compact group of order 2 without non-trivial convergent sequences.
Applying results from [9] and [1], the authors of [12] showed that the non-
productivity of countable compactness does not depend on some form of
Martin’s Axiom.

W. W. Comfort asked in 1990 the following question in Open Problems

in Topology:

Question 1.1 ([4, Question 477]). Is there, for every (not necessarily

infinite) cardinal number α ≤ 2c, a topological group G such that Gγ is

countably compact for all cardinals γ < α, but Gα is not countably compact?

According to Comfort, the motivation for his question came from two
results:

(1) Hart and van Mill [15]: There exists a countably compact group
whose square is not countably compact from MAcountable.

(2) Ginsburg and Saks [13]: If the 2cth power of a topological space X
is countably compact then every power of X is countably compact.

In 1996, Tomita [22] showed from MAcountable that for every positive in-
teger k there exists a topological group G such that Gk is countably compact
but G2k

is not. In 1999, Tomita [23] showed from MAcountable that there is a
topological group whose square is countably compact but whose cube is not.
Recently, Tomita [25] showed that, under MAcountable, there exists for each
positive integer k a topological group H such that Hk is countably com-
pact but Hk+1 is not. Thus, each finite cardinal answers Comfort’s question
affirmatively under MAcountable.

Yang [28] showed in 1985 that the following are equivalent:

(1) there exists a space X such that Xα is countably compact for each
α < 2c but X2c

is not countably compact;
(2) for every family U ⊆ ω∗ of size less than 2c there exists p ∈ ω∗ such

that p is not Rudin–Keisler compatible with any element of U .

In 2000, in a personal communication, M. Hrušak showed that the second
statement in the equivalence above is not true in a model due to Shelah [3].
Thus, it is consistent that 2c does not answer Comfort’s question in the
affirmative.

Garcia-Ferreira and Tomita [11] showed in 2003 that Ginsburg and Saks’
theorem is consistently the best possible for the class of topological groups.
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They showed, via forcing, the existence of a family {Gξ : ξ < 2c} of topolog-
ical groups such that

∏
ξ∈A Gξ is countably compact if and only if |A| < 2c.

The groups in that example cannot be the same. Thus, they are not relevant
to Question 477.

In this note, we will show that it is consistent that each cardinal not
greater than 2c answers Comfort’s question affirmatively. The examples fol-
low from the existence of 2c selective ultrafilters and 2<2c

= 2c. In Section 2,
we will review spaces defined by p-limits and ultraproducts. In Section 3, we
will present the tools to produce countably compact groups using selective
ultrafilters. In Section 4, we will show that the existence of c selective ul-
trafilters implies that, for each positive integer n, there exists a topological
group G such that Gn is countably compact but Gn+1 is not. As a corol-
lary, we improve the forcing example from Garcia-Ferreira and Tomita [11]
about quasi M -compact groups. In Section 5, we will present a solution to
Comfort’s question for infinite cardinals.

2. Ultraproducts and spaces defined by p-limits. In 1970, Bern-
stein introduced the following concept that is very useful in the construction
of countably compact spaces in products:

Definition 2.1 ([2]). Given a free ultrafilter p ∈ ω∗ and a topological
space X, we say that a point x ∈ X is the p-limit of {xn : n ∈ ω} ⊆ X if for
every neighbourhood U of x the set {n ∈ ω : xn ∈ U} is an element of p.

For a Tikhonov space X, x is the p-limit of a sequence {xn : n ∈ ω} if
and only if βf(p) = x, where βf : βω → βX is the Čech–Stone extension of
the function f : ω → X defined by f(n) = xn for each n ∈ ω.

If x is an accumulation point of a sequence then there is an ultrafilter p
for which x is the p-limit of this sequence. This motivated introducing the
following class of spaces:

Definition 2.2 ([2]). Given a free ultrafilter p ∈ ω∗ and a topological
space X, we say that X is p-compact if every sequence in X has a p-limit.

Every p-compact space is countably compact. For a fixed ultrafilter p,
p-compactness is a productive property. The proof of productivity of p-
compactness is similar to the proof of Tikhonov’s theorem: a sequence in a
product of spaces has a p-limit if and only if every projection of the sequence
has a p-limit. It follows that every power of a p-compact space is countably
compact.

The examples that solve Comfort’s question cannot be p-compact for
any p. However, p-compactness will be used in the construction of the ex-
amples in Section 5. We will produce a larger group in which all small subsets
are contained in small p-compact groups for some ultrafilter p. Our examples
in Section 5 will be subgroups of this larger group.
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Garcia-Ferreira [10] introduced in 1993 another class of spaces that de-
pend on p-limits.

Definition 2.3 (Garcia-Ferreira). Let ∅ 6= M ⊆ ω∗. We say that a
space X is quasi M -compact if every sequence in X has a p-limit in X for
some p ∈ M .

In the definition above, M can be viewed as a set of ultrafilters that wit-
nesses the countable compactness of a space. For example, p-compactness is
equivalent to quasi {p}-compactness and countable compactness is equiva-
lent to quasi ω∗-compactness.

Garcia-Ferreira and Tomita [11] showed that it is consistent that some
countably compact groups need a large number of witnesses for their count-
able compactness. Indeed, they showed via forcing that there exists a count-
ably compact group that is not quasi M -compact for any M of size < 2c.
We will improve this example in Section 4.

The ultrapower ([c]<ω)ω/p has been applied in [12], [27] and [26] to obtain
p-compact groups with special properties. In our examples, the groups have
size κ = c or κ = 2c.

Definition 2.4. Given a cardinal κ and p ∈ ω∗, for each f ∈ ([κ]<ω)ω,
define [f ]p = {g ∈ ([κ]<ω)ω : {n ∈ ω : f(n) = g(n)} ∈ p}. Denote by
([κ]<ω)ω/p = {[f ]p : f ∈ ([κ]<ω)ω} the vector space over 2 under the opera-
tion [f ]p △[g]p := [f △ g]p, where (f △ g)(n) = f(n) \ g(n) ∪ g(n) \ f(n). If
f is the constant function {µ}, we will denote [f ]p by [~µ]p.

Lemma 2.5. Let p be an element of ω∗ and κ be an infinite cardinal.

(a) The set ([κ]<ω)ω/p under the operation △ is a vector space over the

field 2.
(b) A family {[gα]p : α ∈ I} of p-equivalence classes of ([κ]<ω)ω/p:

(i) is linearly independent if and only if for every F ∈ [I]<ω there

exists A ∈ p such that ∆({gα(n) : α ∈ F}) 6= ∅ for all n ∈ A;
(ii) generates the vector space ([κ]<ω)ω/p if and only if for every

g ∈ ([κ]<ω)ω there exist A ∈ p and F ∈ [I]<ω such that g(n) =
∆({gα(n) : α ∈ F}) for all n ∈ A.

The next theorem connects ultrapowers on p to p-compactness. The proof
for κ = c appears in [27]. The proof for κ = κω requires only relabelling c

as κ. We will omit it.

Theorem 2.6. Let κ = κω be an infinite cardinal. Let Φ : [κ]<ω → K
be a group homomorphism with K a topological group and {gα : α ∈ κ} be

a family of functions from ω into [κ]<ω. If {[gα] : α ∈ κ} ∪ {[~α] : α < κ}
generates ([κ]<ω)ω/p and {Φ(gα(n)) : n ∈ ω} has a p-limit in Φ([κ]<ω) for

each α < κ then Φ([κ]<ω) is p-compact.
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3. Selective ultrafilters. The construction of a countably compact
group topology on a group G usually involves the topology generated by a
family of group homomorphisms from G into a compact group.

The Continuum Hypothesis or some form of Martin’s Axiom are used in
[8], [14]–[16], [21]–[23] and [25] to produce group homomorphisms. A count-
ably closed forcing in a CH model was used in [7], [11], [16], [24] and [26] to
produce group homomorphisms.

In [12], group homomorphisms involving p-limits are constructed from
the existence of a single selective ultrafilter p. In [27], group homomorphisms
involving p-limits and q-limits are constructed from the existence of two
incomparable selective ultrafilters p and q. For the construction in this paper,
we need to deal with 2c selective ultrafilters.

Our goal in this section is to prove Lemma 3.7. This lemma gives some
combinatorial properties of infinitely many incomparable selective ultrafil-
ters. These properties will be used to show the existence of enough group
homomorphisms (Lemmas 4.1 and 5.1).

The reader interested mainly in the construction of countably compact
groups can skip the proofs in this section. Only the statement of Lemma 3.7
will be used in the following sections.

The definition of a selective ultrafilter is related to the Rudin–Keisler
order.

Definition 3.1. Given p, q ∈ ω∗, we say that p ≤RK q if there exists
a function f : ω → ω such that βf(q) = p, where βf is the Čech–Stone
extension of f . The pre-order ≤RK on ω∗ is called the Rudin–Keisler order.

Lemma 3.2. Two ultrafilters p and q are Rudin–Keisler equivalent if and

only if there exists a bijection f : ω → ω such that βf(p) = q.

More on selective ultrafilters can be found in [5]:

Lemma 3.3. The following are equivalent for p ∈ ω∗:

(i) p is Rudin–Keisler minimal ;
(ii) p is selective, that is, if {Pn : n ∈ ω} is a partition of ω then

either there is m ∈ ω such that Pm ∈ p or there is B ∈ p such that

|B ∩ Pn| = 1 for each n ∈ ω.

Every selective ultrafilter p is a P -point, that is, if {An : n ∈ ω} ⊆ p
then there exists A ∈ p such that A \ An is finite for each n ∈ ω.

The existence of selective ultrafilters is independent of the usual axioms
of set theory. There are 2c selective ultrafilters under CH or MA. Shelah
showed via forcing that there are models with no P -points (in particular, no
selective ultrafilters). Kunen showed that there are no selective ultrafilters
in the random real model.
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Lemmas 3.4 and 3.5 stated below give some combinatorial properties for
a selective ultrafilter and a pair of selective ultrafilters. The first lemma was
used in [12] to show the existence of a compact group without non-trivial
convergent sequence from a selective ultrafilter. The second lemma was used
in [27] to show that the Comfort order is not downward directed from the
existence of two selective ultrafilters.

Lemma 3.6 is the countable version of Lemma 3.5. The proofs of Lemmas
3.4 and 3.5 appear in [27] and are omitted. We need only the statements of
these lemmas to prove Lemma 3.6.

Lemma 3.4 ([12], [27]). Let p be a selective ultrafilter and {ak :k∈ω}∈p
be a strictly increasing sequence such that k < ak for each k ∈ ω. Then there

exists I ⊆ ω such that :

(i) {ak : k ∈ I} ∈ p;
(ii) {[k, ak] : k ∈ I} are pairwise disjoint intervals of ω.

Lemma 3.5 ([27]). Let p0 and p1 be incomparable selective ultrafilters.

Let {aj
k : k ∈ ω} ∈ pj be an increasing sequence such that k < aj

k for each

k ∈ ω and j ∈ 2. Then there exist subsets I0 and I1 of ω such that :

(i) {aj
k : k ∈ Ij} ∈ pj for each j ∈ 2;

(ii) {[k, aj
k] : j ∈ 2 and k ∈ Ij} are pairwise disjoint intervals of ω.

Lemma 3.6. Let {pj : j ∈ ω} be incomparable selective ultrafilters. Let

{aj
k : k ∈ ω} ∈ pj be an increasing sequence such that k < aj

k for each

k, j ∈ ω. Then there exists a family {Ij : j ∈ ω} of subsets of ω such that :

(i) {aj
k : k ∈ Ij} ∈ pj for each j ∈ ω;

(ii) {[k, aj
k] : j ∈ ω and k ∈ Ij} are pairwise disjoint intervals of ω.

Proof. By induction, we can construct a subset Ij,t of ω for each j, t ∈ ω
such that:

(a) Ij,t+1 ⊆ Ij,t for each t ∈ ω;

(b) {[k, aj
k] : j ≤ t and k ∈ Ij,t} are pairwise disjoint intervals of ω for

each t;
(c) {aj

k : k ∈ Ij,t} ∈ pj for each j, t ∈ ω.

From Lemma 3.5, there exists I0,0 ⊆ ω such that {a0
k : k ∈ I0,0} ∈ p0

and {[k, aj
k] : k ∈ I0,0} are pairwise disjoint.

Then conditions (a)–(c) are clearly satisfied for j, t ≤ 0. Suppose that Ij,t

has been defined for each j, t ≤ s satisfying conditions (a)–(c). Let Is+1,0 = ω
and applying Lemma 3.5 s times, define by induction Is+1,t+1 and It,s+1 for
each t ≤ s in such a way that:
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(1) It,s+1 ⊆ It,s and Is+1,t+1 ⊆ Is+1,t for each t ≤ s;
(2) {[k, at

k] : k ∈ It,s+1} ∪ {[k, as+1
k ] : k ∈ Is+1,t+1} are pairwise disjoint

intervals of ω;
(3) {at

k : k ∈ It,s+1} ∈ pt and {as+1
k : k ∈ Is+1,t+1} ∈ ps+1 for each t ≤ s.

Clearly (a)–(c) are satisfied for each j, t ≤ s + 1. Thus, Ij,t can be defined
for each j, t ∈ ω.

For each j ∈ ω, pj is a P -point. By (c), there exists Kj such that:

(d) Kj ⊆ Ij,j and Kj \ Ij,t is finite for each t ∈ ω;

(e) {aj
k : k ∈ Kj} ∈ pj .

By (d), there exists Mj ∈ ω such that

(f) Kl ⊆ Il,j ∪ Mj for each l ≤ j.

Define

(g) Ij = Kj \ max{al
k + 1 : l < j ∧ k < Mj}.

The set Kj \ Ij is finite. By (e), the set Ij satisfies (i) for each j ∈ ω.

We claim that the Ij ’s also satisfy (ii). Let j, j′, k, k′ ∈ ω with k ∈ Ij and
k′ ∈ Ij′ . If j = j′ then by (d) and (g) it follows that k, k′ ∈ Ij ⊆ Ij,j . By

(a) and (b), it follows that [k, aj
k] ∩ [k′, aj

k′ ] = ∅. Without loss of generality,
assume that j′ < j. It follows by construction that k ∈ Ij,j . If k′ ∈ Ij′,j

then, by (b), we have [k, aj
k]∩ [k′, aj′

k′ ] = ∅. If k′ 6∈ Ij′,j then, by (f), k′ ∈ Mj .

By (g), it follows that k > aj′

k′ . Therefore, [k, aj
k]∩ [k′, aj′

k′ ] = ∅ and condition
(ii) holds.

The proof of Lemma 3.7 below does not differ substantially from a proof
in [27]. In [27], Lemma 3.5 was used instead of Lemma 3.6. We give the
proof for the sake of completeness.

Lemma 3.7. Let {pj : j < ω} be incomparable selective ultrafilters, F
be a finite subset of κ, E be a countable subset of κ containing F , and

{gξ : ξ ∈ E} be a family of functions from ω into [E]<ω. If {Sj : j ∈ ω}
is a family of subsets of E such that {[gξ]pj

: ξ ∈ Sj} ∪ {[~µ]pj
: µ ∈ E}

is linearly independent in ([E]<ω)ω/pj for each j ∈ ω, then there exists an

increasing sequence {bi : i ∈ ω} ⊆ ω, a function r from ω into ω and a

sequence {Ei : i ∈ ω} of finite subsets of E such that :

(a) F ⊆ E0;
(b) E =

⋃
i∈ω Ei;

(c) Ei+1 ⊇
⋃
{gξ(bi) : ξ ∈ Ei} ∪ Ei for each i ∈ ω;

(d) {gξ(bi) : ξ ∈ Ei ∩ Sr(i)} ∪ {{µ} : µ ∈ Ei} is linearly independent for

each i ∈ ω;
(e) {bk : k ∈ r−1(j)} ∈ pj for each j ∈ ω.
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Furthermore, if {yn : n ∈ ω} ⊆ E is faithfully indexed , then Ei can be

arranged for each i ∈ ω so that

(f) {n ∈ ω : yn ∈ Ei} = 2N for some N ∈ ω.

Proof. We will first define a family {Fn : n ∈ ω} of finite subsets of E.
This family will be used to construct the family {En : n ∈ ω}. Define

(0) F0 := F

and by induction on ω, choose a finite subset Fn+1 of E such that:

(1) Fn+1 ⊇
⋃
{gβ(m) : m ≤ n, β ∈ Fn} ∪ Fn;

(2) E =
⋃

n∈ω Fn.

Let Aj
n be the set {k ∈ ω : {gξ(k) : ξ ∈ Fn ∩ Sj} ∪ {{µ} : µ ∈ Fn} is l.i.} for

each j, n ∈ ω. By hypothesis, {[gξ]pj
: ξ ∈ Sj} ∪ {[~µ]pj

: µ ∈ E} is linearly

independent. Thus, Aj
n ∈ pj for each n ∈ ω and j ∈ ω.

Selective ultrafilters are P -points, thus there exists Aj such that

(3) Aj ∈ pj and Aj \ Aj
n is finite for each j ∈ ω and n ∈ ω.

Let hj : ω → ω be an increasing function such that

(4) Aj \ Aj
n ⊆ hj(n) for each j ∈ ω.

By the selectivity of pj , there exists Bj for each j ∈ ω such that

(5) Bj ∩hj(1) = ∅, Bj ⊆ Aj , Bj ∈ pj and |[hj(n)+1, hj(n+1)]∩Bj | ≤ 1
for each j ∈ ω and n ∈ ω.

Let {aj
n : n ∈ ω} be the increasing enumeration of Bj for each j ∈ ω.

From (5), it follows that aj
n > hj(n) for each j < ω and n ∈ ω. Thus, it

follows from (4) that

(6) n < aj
n and aj

n ∈ Aj
n for each j < ω and n ∈ ω.

Therefore, the sequences {aj
n : n ∈ ω} for j ∈ ω satisfy the conditions of

Lemma 3.6. By that lemma, there exists a family {Ij : j ∈ ω} of subsets of
ω satisfying:

(7) {aj
k : k ∈ Ij} ∈ pj for each j ∈ ω;

(8) {[k, aj
k] : j ∈ ω and k ∈ Ij} are pairwise disjoint intervals of ω.

Property (2) and ω ⊆ E imply that {Ij : j ∈ ω} are pairwise disjoint. Let
{im : m ∈ ω} be the increasing enumeration of

⋃
j<ω Ij and let r : ω → ω

be such that r(m) = j if and only if im ∈ Ij . The function r is well defined
as the Ij ’s are pairwise disjoint.

Define bm := a
r(m)
im

and Em := Fim , for each m ∈ ω.
Properties (0) and (2) imply respectively that conditions (a) and (b) are

satisfied. Condition (e) follows from the definition of r and (7).
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Condition (d) is satisfied. In fact, bm = a
r(m)
im

∈ A
r(m)
im

for each m ∈ ω

by (6). By the definition of A
r(m)
im

, the family {gξ(bm) : ξ ∈ Em ∩ Sr(m)} ∪
{{µ} : µ ∈ Em} = {gξ(bm) : ξ ∈ Fim ∩ Sr(m)} ∪ {{µ} : µ ∈ Fim} is linearly
independent for each m ∈ ω.

Finally, we check condition (c). By (8), bm = a
r(m)
im

≤ im+1 − 1 and
Em = Fim ⊆ Fim+1−1 for each m ∈ ω. Thus,

Em ∪ {gξ(bm) : ξ ∈ Em}

⊆ Fim+1−1 ∪
⋃

{gξ(k) : k ≤ im+1 − 1, ξ ∈ Fim+1−1} ⊆ Fim+1
= Em+1

for each m ∈ ω. Thus, condition (c) is also satisfied and the proof is complete
for items (a)–(e).

If {yn : n ∈ ω} ⊆ E is faithfully indexed, it suffices to construct {Fi :
i ∈ ω} which in addition satisfies, for each i ∈ ω, {n ∈ ω : yn ∈ Fi} = 2N
for some N ∈ ω. The Ei’s clearly satisfy condition (f).

4. Finite powers of a countably compact group. Tomita [25] an-
swered Comfort’s question in the affirmative for each finite cardinal using
MAcountable. We will improve these results in this section using the existence
of c selective ultrafilters. This is achieved by the use of Lemma 4.1. This
lemma shows that the existence of selective ultrafilters implies the existence
of the homomorphisms necessary to obtain the examples.

We will start with the case n = 2. The example will be obtained by
embedding [c]<ω into 2c. We will first construct in Lemma 4.1 a family of
homomorphisms that separate points (condition (i)), preserve promises that
certain sequences will have pre-assigned p-limits (condition (ii)) and witness
that a pre-assigned sequence of pairs has no accumulation points (condition
(iii)).

Lemma 4.1. Let {pξ : ξ < c} be incomparable selective ultrafilters. Let

F0 and F1 be two finite subsets of c and {gξ : ξ < c} ⊆ ([c]<ω)ω be such that⋃
n∈ω gξ(n) ⊆ max{ω, ξ} and gξ is a one-to-one function for each ξ < c.

Then there is a homomorphism Φ : [c]<ω → 2 such that :

(i) Φ(F j) = 1 if j < 2 and F j 6= ∅;
(ii) {n ∈ ω : Φ(gξ(n)) = Φ({ξ})} ∈ pξ for each ξ ∈ c;
(iii) {n ∈ ω : (Φ({2n}), Φ({2n + 1})) = (Φ(F 0), Φ(F 1))} is finite.

Proof. Let F be the set F 0 ∪ F 1. There exists a countable subset E of
c such that F ∪ ω ⊆ E and gξ(n) ⊆ E for each ξ ∈ E and n ∈ ω. Apply
Lemma 3.7 to {pξ : ξ ∈ E}, F , E, {gξ : ξ ∈ E} and {{ξ} : ξ ∈ E} to obtain
{bi : i ∈ ω}, r : ω → E and {Ei : i ∈ ω} that satisfy:

(0) for each i ∈ ω, Ei ∩ ω = 2N for some N ∈ ω;
(1) F ⊆ E0;
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(2) E =
⋃

i∈ω Ei;
(3) Ei+1 ⊇

⋃
{gξ(bi) : ξ ∈ Ei} ∪ Ei for each i ∈ ω;

(4) {gr(i)(bi)} ∪ {{µ} : µ ∈ Ei} is linearly independent for each i ∈ ω;

(5) {bi : i ∈ r−1(ξ)} ∈ pξ for each ξ ∈ E.

We will first define Φ on [E]<ω. This is done by an induction of length ω.
For each j < 2, let Φ(F j) = 1 if F j 6= ∅ and extend Φ to a homomor-

phism in [E0]
<ω. Property (i) will be satisfied no matter how we extend the

homomorphism Φ.
We want to construct Φ on the subgroup [En]<ω for each n ∈ ω satisfying:

(6) Φ(gr(m)(bm)) = Φ({r(m)}) for all m < n;
(7) (Φ({2k}), Φ({2k + 1})) 6= (Φ(F0), Φ(F1)) for each m < n and 2k ∈

(Em+1 \ Em) ∩ ω.

Conditions (6) and (7) are trivially satisfied for n = 0. Suppose that
they are satisfied by n. We will show that Φ can be extended to [En+1]

<ω

so that they hold for n + 1. By (4), the set {gr(n)(bn)} ∪ {{µ} : µ ∈ En} is
linearly independent. For each 2k ∈ En+1 \ En, we can choose tk ∈ 2 such
that {gr(n)(bn)} ∪ {{2k + tk} : 2k ∈ En+1 \ En} ∪ {{µ} : µ ∈ En} is linearly
independent. Indeed, {{µ} : µ ∈ En}∪{{2k + j} : 2k + j ∈ ω∩ (En+1 \En)}
and {{µ} : µ ∈ En} ∪ {gr(n)(bn)} are linearly independent. Therefore, there
exists m ∈ ω ∩ (En+1 \ En) such that {{µ} : µ ∈ En} ∪ {{2k + j} : 2k + j ∈
(ω \ {m}) ∩ (En+1 \ En)} ∪ {gr(n)(bn)} is linearly independent.

By (3), we can extend Φ|[En]<ω to [En+1]
<ω so that Φ(gr(n)(bn)) =

Φ({r(n)}) and Φ({2k+tk}) = 1−Φ(Ftk). Therefore, (6) and (7) are satisfied
by n + 1.

Property (2) and the definition of E imply that if k ∈ ω \E0 then there
exists n ∈ ω such that 2k ∈ En+1 \ En. Property (7) implies that {k ∈ ω :
(Φ({2k}), Φ({2k + 1})) = (Φ(F 0), Φ(F 1))} ⊆ E0. Thus, any extension of the
homomorphism Φ to [c]<ω satisfies condition (iii).

We claim that Φ satisfies condition (ii) for each ξ ∈ E. Indeed, by (2),
given ξ ∈ E, there exists n ∈ ω such that ξ ∈ En+1 \ En. By (6), Φ({ξ}) =
Φ(gξ(bm)) for each m ∈ r−1({ξ})\n. It follows from r−1({ξ})\n ∈ pj that ξ
satisfies condition (ii). Conditions (i) and (iii) are satisfied by any extension
of Φ. The construction will be finished if we extend Φ|[E]<ω to [c]<ω so that
(ii) is satisfied for each ξ ∈ c \E. By induction on c \E, we will define Φ on
[E ∪ γ]<ω so that (ii) is satisfied for each γ ∈ c \ E.

Let γ < c be the least ordinal for which Φ({γ}) has not been defined
yet. By the definition of gγ , Φ|[E∪γ]<ω is already defined. Thus, the sequence
{Φ(gγ(k)) : k ∈ ω} is already determined. The set {{γ}} ∪ {{ξ} : ξ < γ}
is linearly independent. Thus, we can extend Φ to [(γ + 1) ∪ E]<ω so that
Φ({γ}) = pγ-lim{Φ(gγ(k)) : k ∈ ω}. The homomorphism Φ satisfies (ii) for
each ξ ∈ (γ + 1).
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We are ready to construct a countably compact group whose square is
not countably compact:

Example 4.2. Suppose that there exists a family {pξ : ξ < c} of incom-

parable selective ultrafilters. Then there exists a countably compact topolog-

ical group G such that G × G is not countably compact.

Proof. Let {gξ : ξ < c} be a subset of ([c]<ω)ω such that:

(1)
⋃

n∈ω gξ(n) ⊆ max{ω, ξ};
(2) gξ is one-to-one for each ξ < c and for each g ∈ ([c]<ω)ω one-to-one,

there exists µ < c such that g = gµ.

Let C = [c]<ω × [c]<ω. The set C will index the family of homomorphisms
that we need. Apply Lemma 4.1 to the sequence {gξ : ξ < c} and each pair
(F0, F1) ∈ C to obtain a homomorphim Φ(F0,F1) : [c]<ω → 2 satisfying:

(3) Φ(F0,F1)(Fj) = 1 if j < 2 and Fj 6= ∅;
(4) {n ∈ ω : Φ(F0,F1)(gξ(n)) = Φ(F0,F1)({ξ})} ∈ pξ for each ξ ∈ c;
(5) {n ∈ ω : Φ(F0,F1)({2n + j}) = Φ(F0,F1)(Fj) ∀j < 2} is finite.

Let H : [c]<ω → 2C be the diagonal map ∆(F0,F1)∈CΦ(F0,F1) defined by

π(F0,F1) ◦ H = Φ(F0,F1) for each pair (F0, F1) ∈ C, where π(F0,F1) : 2C → 2 is
the projection map to the coordinate (F0, F1).

Define G := H([c]<ω) with the subspace topology. We claim that

(6) the homomorphism H is an embedding.

Indeed, for each non-empty finite subset F of c, the pair (F, F ) is in C.
By (3), Φ(F,F )(F ) 6= 0. Therefore, H(F ) 6= 0 ∈ 2C . Moreover

(7) G is countably compact.

It suffices to show that each one-to-one sequence in G has an accumulation
point. If ξ ∈ c and (F0, F1) ∈ C then Φ(F0,F1)({ξ}) = pξ-lim{Φ(F0,F1)(gξ(n)) :
n ∈ ω} by (4). Therefore, {H(gξ(n)) : n ∈ ω} has H({ξ}) as pξ-limit for
each ξ < c. The group G is countably compact by (2).

Finally,

(8) G × G is not countably compact.

We claim that the sequence {(H({2n}),H({2n+1})) : n ∈ ω} does not have
an accumulation point in G × G. Let (a0, a1) be an arbitrary element of
G × G. There exists (F0, F1) ∈ C such that aj = H(Fj) for j < 2. It follows
from property (5) that

{n ∈ ω : π(F0,F1) ◦ H({2n + j}) = π(F0,F1)(aj), j < 2}

= {n ∈ ω : (Φ(F0,F1)({2n}), Φ(F0,F1)({2n+1})) = (Φ(F0,F1)(F0), Φ(F0,F1)(F1))}
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is finite. Therefore, (a0, a1) is not an accumulation point of the sequence
{(H({2n}),H({2n + 1})) : n ∈ ω} in G × G.

The group G is as required by (7) and (8).

Note: The group above could be chosen to be separable as well. For that,
it suffices to consider G ∩ 〈{H({n}) : n ∈ ω}〉.

We can improve the example in [25] using the technique presented here:

Example 4.3. Suppose that there exists a family {pξ : ξ < c} of incom-

parable selective ultrafilters and let n be a positive integer. Then there exists

a topological group G such that Gn is countably compact but Gn+1 is not

countably compact.

Proof. One can easily modify Lemma 3.7 to show that for a fixed inte-
ger k, for each n ∈ ω there exists N ∈ ω such that En ∩ ω = (k + 1)N ,
and use this modification to replace MAcountable in the construction in [25].
We can construct a group G generated by a linearly independent subset
{xξ : ξ < c} such that for every sequence {yi

n : i < l} of l-uples with l ≤ k
and for each finite subset A of G, if {n ∈ ω : {yi

n : i < l}∪A is l.i.} is cofinite
in ω then {yi

n : i < l} has an accumulation point Gl. Then, by a result in
[25], Gk is countably compact. At the same time, as in [25], it is possible
to make the sequence {{x(k+1)n+i : i < k} : n ∈ ω} of k + 1-uples have no

accumulation point in Gk+1.

The example below improves the quasi p-compact group obtained by
forcing in [11]:

Example 4.4. If there exist 2c incomparable selective ultrafilters then

there exists a countably compact group G such that G is not quasi M -compact

for any M ∈ [ω∗]<2c

.

We will need the following modification of Lemma 4.1.

Lemma 4.5. Let {pξ : ξ < 2c} be incomparable selective ultrafilters. Let

F0 and F1 be two finite subsets of 2c and {gξ : ξ < 2c} ⊆ ([2c]<ω)ω be

such that
⋃

n∈ω gξ(n) ⊆ max{ω, ξ} and gξ is a one-to-one function for each

ξ < 2c. Let {αn, βn : n ∈ ω} be a faithfully indexed subset of 2c. Then there

is a homomorphism Φ : [2c]<ω → 2 such that :

(i) Φ(F j) = 1 if j < 2 and F j 6= ∅;
(ii) {n ∈ ω : Φ(gξ(n)) = Φ({ξ})} ∈ pξ for each ξ ∈ 2c;
(iii) {n ∈ ω : (Φ({αn}), Φ({βn})) = (Φ(F 0), Φ(F 1))} is finite.

Proof. It is a simple modification of the proof of Lemma 4.1.

Proof of Example 4.4. Applying Lemma 4.5, it is not difficult to modify
Example 4.2 to obtain a countably compact group G of size 2c containing
sequences {yξ

n : n ∈ ω} for each ξ < 2c such that
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(∗) {(yξ
n, yµ

n) : n ∈ ω} is closed and discrete for each pair ξ < µ < 2c.

Suppose that G is quasi M -compact for some M ⊆ ω∗. For each ξ < 2c,
there exists pξ ∈ M such that the pξ-limit of the sequence {yξ

n : n ∈ ω} is
in G. From (∗), the ultrafilters pξ are pairwise distinct. Therefore, M must
have cardinality 2c.

5. Infinite powers of a countably compact group. One of the
difficulties in solving Question 477 for infinite cardinals that did not appear
in the solution for finite cardinals, is to make an infinite power not countably
compact while we add sufficiently many accumulation points for sequences
of smaller powers.

In the case of infinite products in [11], the problem of the full product not
being countably compact was solved only for the cardinal 2c. This was done
by making the square of each group not countably compact and applying
Ginsburg and Saks’ theorem [13].

We will fix a sequence in the power that will witness the non-countable
compactness of the κth power. We have to add accumulation points for
sequences in small powers. However, these added points could make us add
an accumulation point for the witness of the non-countable compactness of
the κth power.

To avoid this problem, we will first add many accumulation points for
sequences in small powers. We will then find a subgroup that keeps enough
accumulation points for sequences in small powers. At the same time, we
will keep the promise of the witness of the non-countable compactness of
the larger power.

The accumulation points that witness the countable compactness of
small powers come from p-limits with p selective. On the other hand, the
sequence in the κth power that will witness the non-countable compactness
must avoid having p-limits for every free ultrafilter. It is not a problem to
make the witness avoid p-limits for a selective ultrafilter p—we have some
control over such p-limits. However, that is not enough to ensure that the
sequence does not have accumulation points in the κth power. Because of
this, we will need that the witness is “close to being a discrete subset of β2c”.

We will consider two cases. First we will deal with the 2cth power (Ex-
ample 5.4) and later with smaller infinite powers (Example 5.6).

In Lemma 4.1, each ultrafilter pξ was used to make a sequence have a
pξ-limit. In Lemma 5.1 below, each ultrafilter pξ will be used to make a
small subgroup pξ-compact.

Lemma 5.1. Let κ = κω be an infinite cardinal and F be a non-empty

finite subset of κ and {pξ : ξ < κ} be incomparable selective ultrafilters.

Let {gξ : ξ < κ} ⊆ ([κ]<ω)ω be such that
⋃

n∈ω gξ(n) ⊆ max{ω, ξ} and
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gβ is a one-to-one function for each β < κ. Let {Aξ : ξ < κ} be pairwise

disjoint subsets of κ such that {[gβ]pξ
: β ∈ Aξ} ∪ {[~µ]pξ

: µ < κ} is linearly

independent. Then there is a homomorphism Φ : [κ]<ω → 2 such that :

(i) Φ(F ) = 1;
(ii) {n ∈ ω : Φ(gβ(n)) = Φ({β})} ∈ pξ for each ξ ∈ κ and β ∈ Aξ.

Proof. There exists a countable subset E of κ such that F ∪ ω ⊆ E and
gξ(n) ⊆ E for each ξ ∈ E and n ∈ ω. Define I = {ξ < κ : Aξ ∩ E 6= ∅}. The
set I is countable, since the Aξ’s are pairwise disjoint. Apply Lemma 3.7 to
{pξ : ξ ∈ I}, F , E, {gξ : ξ ∈ E} and {Aξ ∩ E : ξ ∈ I} to obtain {bi : i ∈ ω},
r : ω → I and {Ei : i ∈ ω} that satisfy:

(1) F ⊆ E0;
(2) E =

⋃
i∈ω Ei;

(3) Ei+1 ⊇
⋃
{gξ(bi) : ξ ∈ Ei} ∪ Ei for each i ∈ ω;

(4) {gβ(bi) : β ∈ Ar(i) ∩ Ei} ∪ {{µ} : µ ∈ Ei} is linearly independent for
each i ∈ ω;

(5) {bi : i ∈ r−1(ξ)} ∈ pξ for each ξ ∈ I.

We will first define Φ on [E]<ω. This is done by an induction of length ω.
Let Φ(F ) = 1 and extend Φ to a homomorphism in [E0]

<ω. In particular,
Φ will already satisfy condition (i).

We will construct the homomorphism Φ on the subgroup [En]<ω for each
n ∈ ω satisfying:

(6) Φ(gβ(bm)) = Φ({β}) for all β ∈ Ar(m) ∩ En and all m < n.

Condition (6) is trivially satisfied for n = 0. Suppose that it is satisfied by n.
We will show that Φ can be extended to [En+1]

<ω so that (6) is satisfied by
n + 1. By (4),

(7) {gβ(bn) : β ∈ Ar(n) ∩ En} ∪ {{µ} : µ ∈ En} is linearly independent.

By hypothesis, Φ({β}) is already defined for each β ∈ Ar(n) ∩ En. By (3)
and (7), Φ can be extended to En+1 so that Φ(gβ(bn)) = Φ({β}) for all
β ∈ Ar(n) ∩ En.

By property (2) at stage ω, we have

(8) Φ is defined on [E]<ω.

We claim that Φ satisfies condition (ii) for each ξ ∈ I and β ∈ Aξ ∩ E.
Indeed, fix ξ ∈ I and β ∈ Aξ ∩ E. By (2), there exists n ∈ ω such that
β ∈ En+1 \ En. By (6), Φ({β}) = Φ(gβ(bm)) for each m ∈ r−1({ξ}) \ n. It
follows from r−1({ξ}) \ n ∈ pξ that β satisfies condition (ii).

Condition (i) is satisfied by any extension of Φ. The construction will be
finished if we extend Φ|[E]<ω to [κ]<ω so that (ii) is satisfied for each ξ ∈ κ
and β ∈ Aξ \ E.

We will define Φ on [κ]<ω by induction on κ \ E.
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Let γ < κ be the least ordinal for which Φ({γ}) has not been defined
yet. By (8), Φ is defined on [E ∪ γ]<ω. If γ /∈ Aµ for any µ < κ, extend Φ
arbitrarily to [E∪(γ+1)]<ω. Otherwise, let ξ be the unique ordinal such that
γ ∈ Aξ. By the definition of gγ , the sequence {Φ(gγ(k)) : k ∈ ω} is already
determined. The set {γ} ∪ {{ξ} : ξ < γ} is linearly independent. Thus, we
can extend Φ to [(γ + 1)∪E]<ω so that Φ({γ}) = pξ-lim{Φ(gγ(k)) : k ∈ ω}.
The homomorphism Φ clearly satisfies condition (ii) for each ξ ∈ κ and
β ∈ Aξ ∩ (γ + 1).

Lemma 5.2 below will be applied to make the sequences in small powers
have many accumulation points.

Lemma 5.2. If there exist 2c incomparable selective ultrafilters and 2<2c

= 2c then there exist :

(1) a sequence {pξ : ξ < 2c} of pairwise incomparable selective ultrafil-

ters;
(2) a sequence {Iξ : ξ < 2c} in [2c]<2c

such that each I ∈ [2c]<2c

appears

2c times and sup Iξ < ξ for each ξ < 2c;
(3) a sequence {Aξ : ξ < 2c} in [2c]<2c

such that max{ξ, supAµ} <
minAξ for each µ < ξ < 2c;

(4) an increasing sequence {δξ : ξ ∈ 2c} in 2c;
(5) a linearly independent subset {xξ : ξ < 2c} of 22c

such that :

(6) the group generated by {xη : η ∈ Iξ ∪ Aξ} is pξ-compact for each

ξ < 2c;
(7) the sequence {xδξ+n : n ∈ ω} is closed and discrete in the group

generated by {xη : η ∈ δξ + ω}.

Proof. Enumerate 2c selective ultrafilters as {pξ : ξ < 2c} so that they
are pairwise incomparable. By the fact that 2<2c

= 2c (and consequently
that 2c is regular), there exist:

(a) a sequence {Iξ : ξ < 2c} in [2c]<2c

such that each I ∈ [2c]<2c

appears
2c times;

(b) an increasing sequence {δξ : ξ < 2c} in 2c;
(c) a sequence {Aξ : ξ < 2c} in [2c]<2c

such that Aξ has cardinality
c + |Iξ|

ω

satisfying

(d) max{ξ, supAµ} < δξ < δξ + ω < minAξ for each µ < ξ < 2c.

In (c), we can choose Aξ such that the order type of Aξ is a cardinal for
each ξ ∈ 2c. Thus, we can define, for each ξ ∈ 2c,
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(e) a family {fµ : µ ∈ Bξ} ⊆ ([Iξ ∪ Aξ]
<ω)ω with Bξ ⊆ Aξ such that⋃

n∈ω fµ(n) ⊆ µ for each µ ∈ Bξ and {[fµ]pξ
: µ ∈ Bξ} ∪ {[~α] : α ∈

Iξ ∪ Aξ} is a basis for ([Iξ ∪ Aξ]
<ω)ω/pξ.

Applying Lemma 5.1, we obtain for each F ∈ [2c]<ω \ {∅} a homomorphism
φF : [2c]<ω → 2 such that:

(i) φF (F ) 6= 0;
(ii) pξ-lim{φF (fµ(n)) : n ∈ ω} = φF ({µ}) for each ξ ∈ 2c and µ ∈ Bξ.

We can construct, for each ξ < 2c and k ∈ ω, a homomorphism φδξ ,k :
[2c]<ω → 2 such that:

(iii) φδξ ,k|[δξ+k]<ω = 0, φδξ,k({δξ + m}) = 1 for each m ≥ k;

(iv) φδξ ,k({λ}) = pµ-lim{φδξ ,k(fλ(n)) : n ∈ ω} for each λ ∈ Aµ with
minAµ ≥ δξ + ω.

It follows by (iii) that

(v) φδξ ,k({λ}) = pµ-lim{φδξ ,k(fλ(n)) : n ∈ ω} for each λ ∈ Aµ with
supAµ < δξ + ω.

It follows by (d) that

(vi) φδξ ,k({λ}) = pµ-lim{φδξ ,k(fλ(n)) : n ∈ ω} for each µ < κ and
λ ∈ Aµ.

Let B be the family of homomorphisms constructed to satisfy items (i) and
(ii) and C be the family of homomorphisms constructed to satisfy items
(iii) and (vi). Let Φ : [2c]<ω → 2B∪C be the diagonal map, that is, Φ(F ) =
{φ(F )}φ∈B∪C . We can assume that Φ is a function from [2c]<ω into 22c

, since
|B ∪ C| = 2c.

Define xη = Φ({η}) for each η ∈ 2c. The family {xη : η < 2c} is linearly
independent by (i). In view of Lemma 2.6, the group generated by {xη : η ∈
Iξ ∪ Aξ} is pξ-compact by (ii) and (vi). Thus, condition (6) is satisfied. It
follows by (iii) that for each ξ ∈ 2c and F ∈ [δξ + ω]<ω, there exists k ∈ ω
such that φξ,k(F ) = 0 and {φξ,k({δξ +n}) : n ∈ ω} converges to 1. Therefore
condition (7) is also satisfied and the proof is complete.

Lemma 5.3. Let {qµ : µ < 2c} be an enumeration of all free ultrafilters

in ω∗. Suppose that there exist 2c selective ultrafilters and 2<2c

= 2c. There

exist increasing sequences {Jµ : µ < 2c} and {Sµ : µ < 2c} in [2c]<2c

and

{xξ : ξ ∈ 2c} ⊆ 22c

linearly independent such that for each µ < 2c:

(a) Jµ ∩ Sµ = ∅;
(b) the group Hµ generated by {xη : η ∈ Jµ} is pξµ

-compact for some

selective ultrafilter pξµ
;

(c) 〈{xη : η ∈ I ∪ Jµ}〉 is not qµ-compact for any I ⊆ 2c \ Sµ.
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Proof. Apply Lemma 5.2 to obtain {pξ : ξ < 2c}, {Iξ : ξ < 2c}, {Aξ :
ξ < 2c}, {δξ : ξ ∈ 2c} and {xξ : ξ < 2c} that satisfy conditions (1)–(7) of
Lemma 5.2.

Suppose that Jξ and Sξ are already defined for each ξ < µ and satisfy
conditions (a)–(c). Define Lµ =

⋃
ξ<µ Jξ and Tµ =

⋃
ξ<µ Sξ. Then Lµ and

Tµ are disjoint. Let βµ < 2c be such that sup(Lµ ∪ Tµ) < δβµ
. By (7), the

sequence {xδβµ+n : n ∈ ω} is closed discrete in the group generated by

{xη : η < δβµ
+ ω}. Therefore, the sequence {xδβµ+n : n ∈ ω} does not have

a qξ-limit in 〈{xη : η < δβµ
+ ω}〉. Consider two cases:

I. {xδβµ+n : n ∈ ω}} has a qξ-limit in 〈{xη : η < 2c}〉. In this case, there

exists F ∈ [2c]<ω with F \ (δβµ
+ ω) 6= ∅ such that qξ-lim{xδβµ+n : n ∈ ω} =∑

λ∈F xλ. Fix θµ ∈ F \ (δβµ
+ ω). Then the sequence {xδβµ+n : n ∈ ω} does

not have a qξ-limit in the group 〈{xη : η ∈ Jξ ∪ I}〉 for any I ⊆ 2c \ {θµ}.
II. {xδβµ+n : n ∈ ω} does not have a qξ-limit in 〈{xη : η < 2c}〉. In this

case, choose any θµ ∈ 2c \ (δβµ
+ ω).

In either case, by (2) and (3), there exists ξµ < 2c such that θµ < minAξµ

and Iξµ
= Lµ ∪ [δβµ

, δβµ
+ ω). By (6), the group generated by {xη : η ∈

Lµ ∪ [δβµ
, δβµ

+ ω) ∪ Aξµ
} is pξµ

-compact.

Define Jµ = Lµ ∪ [δβµ
, δβµ

+ ω) ∪ Aξµ
and Sµ = Tµ ∪ {θµ}. Clearly Jµ

and Sµ satisfy conditions (a)–(c).

The following example shows that it is consistent that 2c answers Com-
fort’s question in the affirmative:

Example 5.4. Assume that there exist 2c selective ultrafilters and 2<2c

= 2c. There exists a topological group H such that Hα is countably compact

for each α < 2c, but H2c

is not countably compact.

Proof. Let {qξ : ξ < 2c} be an enumeration of all free ultrafilters on ω,
and {Jµ : µ < 2c}, {Sξ : ξ < 2c} and {xξ : ξ < 2c} be sequences satisfying
conditions (a)–(c) from Lemma 5.3.

Let J =
⋃

µ<2c Jµ and S =
⋃

µ<2c Sµ. Let H =
⋃

µ<2c Hµ be the group

generated by {xξ : ξ ∈ J}.

Claim 1. Hα is countably compact for each α < 2c.

Indeed, let Y = {{yβ
n : β ∈ α} : n ∈ ω} be a sequence in Hα. Since the

Hξ’s are increasing with H =
⋃

ξ<2c Hξ and 2c is regular, there exists µ < 2c

such that yβ
n is an element of Hµ for each n ∈ ω and β < α. Therefore, the

sequence Y has a pξµ
-limit in (Hµ)α ⊆ Hα. Thus, every sequence in Hα has

an accumulation point.

Claim 2. H2c

is not countably compact.
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Suppose by way of contradiction that H2c

is countably compact. By
Ginsburg and Saks’ theorem, there exists a free ultrafilter for which H is
p-compact. Thus, there exists ξ ∈ 2c such that H is qξ-compact. But, by (c),
H is not qξ-compact, since J ⊆ 2c \ S ⊆ 2c \ Sξ and J = J ∪ Jξ.

We will now start the construction of the examples to answer Comfort’s
question for each κ satisfying ω ≤ κ < 2c. In this case, we can require less
than 2<2c

= 2c.

Lemma 5.5. Let α be an infinite cardinal smaller than 2c and suppose

that 2c is a regular cardinal , there exist 2c selective ultrafilters and (2c)<αω

= 2c. Then there exist :

(1) a sequence {pξ : ξ < 2c} of pairwise incompatible selective ultrafilters;
(2) a sequence {Iξ : ξ < 2c} of all elements of [2c]<α such that each

I ∈ [2c]<α appears 2c times with sup Iξ < ξ for each ξ < 2c;
(3) a sequence {Aξ : ξ < 2c} in [2c]<αω

such that max{α, ξ} < minAξ

for each ξ < 2c;
(4) a linearly independent subset {xξ : ξ < 2c} of 22c

such that :

(a) the group generated by {xη : η ∈ Iξ ∪Aξ} is pξ-compact for each

ξ < 2c;
(b) for every A ⊆ α there exists β such that {η < α : xη(β) = 1}

= A.

Proof. Define pξ, Iξ, Aξ and {fµ : µ ∈ Aξ} such that {[fµ]pξ
: µ ∈

Aξ}∪{[{µ}]pξ
: µ ∈ Iξ ∪Aξ} is a basis for ([Iξ ∪Aξ]

<ω)ω/pξ, for each ξ ∈ 2c.
This can be done similarly to the proof of Lemma 5.2.

As in the proof of that lemma, for each F ∈ [2c]<ω \ {∅}, let ΦF : [2c]<ω

→ 2 be a homomorphism such that ΦF (F ) 6= 0 and pξ-lim{ΦF (fµ(n)) :
n ∈ ω} = ΦF ({µ}) for each ξ < 2c and µ ∈ Aξ. For each A ⊆ α, the set
{{η} : η < α} is linearly independent. Thus, we can define a homomorphism
ΨA : [α]<ω → 2 such that {η ∈ α : ΨA({η}) = 1} = A. This homomorphism
can be extended to [2c]<ω in such a way that pξ-lim{ΨA(fµ(n)) : n ∈ ω} =
ΨA({µ}) for each ξ < 2c and µ ∈ Aξ.

Then xη = {ΦF ({η}) : F ∈ [2c]<ω \ {∅}} ∪ {ΨA({η}) : A ⊆ α} for each
η ∈ 2c are as required.

Example 5.6. Assume that 2c is a regular cardinal , there exist 2c in-

comparable selective ultrafilters and (2c)<αω
= 2c. There exists a topological

group H such that Hγ is countably compact for each γ < α, but Hα is not

countably compact.

Proof. Let {pξ : ξ < 2c}, {Iξ : ξ < 2c}, {Aξ : ξ < 2c} and {xξ : ξ < 2c}
be such that (1)–(4) and (a)–(b) in Lemma 5.5 are satisfied.
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It follows by (b) that

(c) for any distinct p, q ∈ ω∗, k0, k1, l0, l1 ∈ 2 with (k0, k1) 6= (0, 0) or
(l0, l1) 6= (0, 0) and θ0, θ1, λ0, λ1 limit ordinals below α,

p- lim{k0xθ0+n + k1xθ1+n : n ∈ ω} 6= q- lim{l0xλ0+n + l1xλ1+n : n ∈ ω}.

Let {gξ : ξ < 2c} be an enumeration of all g such that dom g = F with
F ∈ [2c]<α and g(µ) : ω → [2c]<ω for all µ ∈ F . Let P be the set of all
p ∈ ω∗ such that p-lim{xθ+n : n ∈ ω} ∈ 〈{xη : η < 2c}〉 for each θ < α limit.

We will define by induction {Kξ : ξ < 2c}, {Pξ : ξ < 2c}, {Sξ : ξ < 2c},
{λξ : ξ < 2c} and {γξ : ξ < 2c} such that:

(i) Kξ ∈ [2c]<α;
(ii) γξ is the least ordinal γ < 2c such that γ /∈ {γη : η < ξ} and⋃

µ∈dom gγ∧n∈ω gγ(µ)(n) ⊆ α ∪
⋃

µ<ξ Kµ;

(iii) λξ ∈ 2c for each ξ < 2c;
(iv) pλξ

-lim{xgξ(µ)(n) : n ∈ ω} ∈ 〈{xη : η ∈ α ∪
⋃

ν≤ξ Kν}〉 for each
µ ∈ dom gξ;

(v) Pξ ⊆ ω∗ is the set of all ultrafilters p ∈ P such that p-lim{yn :
n ∈ ω} ∈ 〈{xη : η ∈ α ∪

⋃
µ<ξ Kµ}〉, where {yn : n ∈ ω} is a

sequence of the form {xβ+n : n ∈ ω} for some β < α limit or
{x{β+n,ζ+n} : n ∈ ω} with β < ζ < α limit ordinals;

(vi) for every p ∈ Pξ, there exists a limit ordinal β < α such that
the p-limit of the sequence {xβ+n : n ∈ ω} does not belong to
〈{xη : η ∈ 2c \ Sξ}〉;

(vii) |Pξ| ≤ |ξ| + α and |Sξ| ≤ |ξ| + α;
(viii) (

⋃
µ≤ξ Kµ) ∩ Sξ = α ∩ Sξ = α ∩ Kξ = ∅;

(ix) Pγ ⊆ Pξ for each γ < ξ and if ξ is a limit ordinal then Pξ =⋃
γ<ξ Pγ ;

(x) Sγ ⊆ Sξ for each γ < ξ and if ξ is a limit ordinal then Sξ =⋃
γ<ξ Sγ .

At stage 0, start with K0 = ∅. We note first that P0 = ∅. Indeed, let
F ∈ [α]<ω and β < α be limit ordinals. By (b), there exists µ < 2c such
that {η < α : xη(µ) = 1} = [β, β + ω) \ F . Then xF (µ) = 0 is not an
accumulation point of the sequence {xβ+n(µ) : n ∈ ω} or the sequence
{x{β+n,ζ+n}(µ) : n ∈ ω} for any ζ < α limit with β 6= ζ.

Define S0 = ∅. Then conditions (i)–(x) are satisfied.

Suppose by induction that {Pµ : µ < β}, {Sµ : µ < β}, {Kµ :µ<η<β},
{γµ : µ < η < β} and {λµ : µ < η < β} are defined.

If β is limit, let Pβ =
⋃

µ<β Pµ and Sβ =
⋃

µ<β Sµ. Then conditions (ix)
and (x) are satisfied.
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We claim that condition (v) is satisfied. Let p ∈ Pβ and {yn : n ∈ ω} be
as in (v). There exists F ⊆ α ∪

⋃
η<β Kη finite such that xF is the p-limit

of {yn : n ∈ ω}. Then there exists µ < β such that F ⊆ α ∪
⋃

η<µ Kη.
Therefore, p ∈ Pµ.

To check (vi), let p ∈ Pβ. Then there exists µ < β such that p ∈ Pµ+1\Pµ.
By hypothesis, (vi) is satisfied for µ + 1, thus there exists θ < α such that
p-lim{xθ+n : n ∈ ω} /∈ 〈{xη : η ∈ 2c \ Sµ+1}〉. Condition (vi) is satisfied
by β, since 2c\Sβ ⊆ 2c\Sµ+1. Conditions (i)–(iv) and (vii)–(viii) are clearly
satisfied.

If β = µ + 1, let γµ be the least ordinal γ such that

⋃

η∈dom gγ∧n∈ω

gγ(η)(n) ⊆ α ∪
⋃

ξ<µ

Kξ.

There exists λµ < 2c such that Aλµ
∩ Sµ = ∅ and 〈{xη : η ∈ α ∪

⋃
θ<µ Kθ ∪

Aλµ
}〉 is pλµ

-compact.

For each ξ ∈ dom gγµ , there exists Fξ ⊆ Aλµ
finite such that pλµ

-
lim{xgγµ(ξ)(n) : n ∈ ω} − xFξ

∈ 〈{xη : η ∈ α ∪
⋃

θ<µ Kθ}〉. Let Kµ =⋃
ξ∈dom gγµ

Fξ. Then conditions (i)–(iv) are satisfied.

Let Pβ be as in condition (v). Condition (ix) is clearly satisfied. If p ∈ Pβ

then there exists {yn : n ∈ ω} as in (v) such that ap = p-lim{yn : n ∈ ω} ∈
〈{xη : η ∈ α ∪

⋃
µ<ξ Kµ}〉. By (c), ap 6= aq for distinct p, q ∈ Pβ. Then

|Pβ| ≤ |〈{xη : η ∈ α ∪
⋃

µ<ξ Kµ}〉| ≤ |ξ|.α. Thus, the first part of (vii) is
satisfied.

We will define Sβ . Fix p ∈ Pβ \ Pµ. For each θ < α limit, there exists
a finite subset Eθ of [2c \ (α ∪

⋃
ξ<µ Kξ)]

<ω such that p-lim{xθ+n : n ∈ ω}

− xEθ
∈ 〈{xη : η ∈ α ∪

⋃
ξ<µ Kξ}〉. We claim that if θ < θ′ < α are limit

then Eθ 6= Eθ′ . Indeed, if Eθ = Eθ′ then p-lim{x{θ+n,θ′+n} : n ∈ ω} ∈
〈{xη : η ∈ α ∪

⋃
ξ<µ Kξ}〉. Thus, p ∈ Pµ, which is a contradiction. Since

|[Kµ]<ω| < α, there exists θp < α such that Eθp
6⊆ Kµ. Fix ζp ∈ Eθp

\ Kµ

for each p ∈ Pβ \ Pµ.

Define Sβ = Sµ ∪ {ζp : p ∈ Pβ \ Pµ}.

Conditions (vi) and (x) are clearly satisfied. The second part of (vii) holds
by the definition of Sβ and the first part of condition (vii). Property (viii) is
satisfied by the definition of Sβ and the fact that ζp ∈ Eθp

, Eθp
∩

⋃
γ<µ Kγ

= ∅ and ζp /∈ Kµ for each p ∈ Pβ.

Thus, the induction can be carried on up to 2c. Let H be the group
generated by {xη : η ∈ α ∪

⋃
ξ<2c Kξ}.

Claim 1. Powers of H smaller than α are countably compact.
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Let µ < α and {aη
n : η < µ ∧ n ∈ ω} ⊆ H. Since the cofinality of 2c

is bigger than µ, there exists β < 2c such that aη
n = xgγβ

(η)(n) for each

η < µ and n ∈ ω. By condition (iv), pλβ
-lim{aη

n : n ∈ ω} ∈ 〈{xθ : θ ∈
α ∪

⋃
ξ<β Kξ}〉 ⊆ H for each η < µ. Thus, Hµ is countably compact.

Claim 2. Hα is not countably compact.

We will show that {{xµ+n : µ < α limit} : n ∈ ω} does not have an
accumulation point in Hα. Indeed, if this sequence has an accumulation
point, then there exists p ∈ ω∗ such that p-lim{xµ+n : n ∈ ω} ∈ H for each
µ < α limit. Then p ∈ P and there is ξ < 2c such that p-lim{xn : n ∈ ω}
∈ 〈{xη : η ∈ α∪

⋃
µ<ξ Kµ}〉. Thus, p ∈ Pξ+1. By property (v), there is θ < α

limit such that p-lim{xθ+n : n ∈ ω} /∈ 〈{xη : η ∈ 2c \ Sξ+1}〉 ⊇ H, which is
a contradiction. Therefore, Hα is not countably compact.

Final remarks. A natural question is whether selective ultrafilters are
necessary to obtain the example in this note. Another natural question is
whether we can construct the examples using fewer selective ultrafilters. The
following questions remain open:

Question 5.7. Does the existence of c Rudin–Keisler incomparable P -

points imply the existence of countably compact topological groups whose

product is not countably compact?

Question 5.8. Does the existence of a selective ultrafilter imply the ex-

istence of a topological group G and an infinite cardinal κ such that Gλ is

countably compact for all cardinals λ < κ, but Gκ is not countably compact?
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