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A note on ∆1 indution and Σ1 olletionbyNeil Thapen (Oxford)
Abstrat. Slaman reently proved that Σn olletion is provable from ∆n indutionplus exponentiation, partially answering a question of Paris. We give a new version of thisproof for the ase n = 1, whih only requires the following very weak form of exponentia-tion: �xy exists for some y su�iently large that x is smaller than some primitive reursivefuntion of y�.By ∆n indution, or I∆n, we mean the usual indution sheme for every

Σn formula φ whih is equivalent in the model to a Πn formula. That is, thesheme
[∀x (φ(x) ↔ ψ(x))] → [φ(0) ∧ ∀x (φ(x) → φ(x+ 1)) → ∀xφ(x)]for every Σn formula φ and every Πn formula ψ (both possibly with param-eters). By Σn olletion, or BΣn, we mean the sheme

∀x < y ∃z φ(x, z) → ∃w ∀x < y ∃z < w φ(x, z)for every Σn formula φ (with parameters).It is reasonably straightforward to prove that BΣn ⊢ I∆n (over a suitablealgebrai fragment of PA). Paris posed the question [1℄ whether the otherdiretion also holds. Slaman [4℄ showed reently that I∆n+exp ⊢ BΣn, whereexp is the axiom �∀x, y, xy exists�. This answers the question ompletely for
n ≥ 2, sine exp is provable in I∆2. We improve the result for n = 1, byreplaing exp with the assumption �xy exists for some y suh that x < p(y)�where p an be any primitive reursive funtion. This is Theorem 2 below.We will not give any more bakground here. See Slaman [4℄ for a moreomplete introdution to this problem, or [3℄ or [2℄ for a general introdutionto the relevant model theory of arithmeti.2000 Mathematis Subjet Classi�ation: 03F30, 03H15.This work was done while visiting the Mathematial Institute of the Aademy ofSienes of the Czeh Republi. [79℄



80 N. ThapenOur proof is similar to Slaman's, with two new ideas. The �rst is that wean use a funtion with bounded domain but unbounded range to de�ne avery fast-growing funtion on a ut. This allows us to redue the amount ofexponentiation needed in the proof, and show that I∆1+∀x (xlogk x exists) ⊢
BΣ1, for any k ∈ N (see the remark after Lemma 9). The seond is to showthat this ut is losed under the primitive reursive funtions. This lets usredue it further, to �xy exists for some y that is not very muh smallerthan x�, where �very muh smaller� is de�ned in terms of primitive reursivefuntions. It is still open whether it is possible to get rid of exponentiationaltogether.Aknowledgements. This work arose from disussions with Zo�a Ada-mowiz, Andrés Cordón-Frano, Leszek Koªodziejzyk, Je� Paris, AlexWilkie and Konrad Zdanowski. I would also like to thank the organizersof the Fall Shool of the Prague logi seminar at Pe pod Sn¥ºkou.I am grateful to Leszek Koªodziejzyk for reading and ommenting on anearlier version of this note.Let M be a model of I∆1 with a distinguished element a. We will beonsidering two kinds of sequene of elements of M . The �rst kind is simplythe sequene of numbers in [0, a) obtained by writing a number w ∈ M inbase a notation, and we will write the ith element of suh a sequene as (w)i.The seond kind is not diretly oded in the model, in that it is indexedby a ut and so has no last element. We will all it a Σ1 sequene, andformally it is a Σ1 funtion w∗ from a Σ1 ut I to M . For i ∈ I we write the
ith element of the sequene as w∗

i .We �rst give a lemma due to Slaman, relating these two kinds of sequene.Lemma 1. Let w∗ be a Σ1 sequene of elements of [0, a), indexed by a
Σ1 ut I in M . Suppose it has the extra property that its initial segments areuniformly oded in M , whih means that there is a Σ1 sequene s∗ suh that ,for i ∈ I, s∗i odes (via its base a expansion) the sequene w∗

0 . . . w
∗

i .Suppose that there is b ∈ M with I < b and suh that ab exists. Thenthere exists e < ab oding w∗ in M , in the sense that for all i ∈ I, (e)i = w∗

i .Proof. We make the additional assumption that every element of w∗ isstritly less than a − 1. This an be removed easily, for example by taking
a2 as the parameter in plae of a.For eah i ∈ I, let c∗i = s∗i ·a

b−i−1, whih, written out in base a, looks like
w∗

0 . . . w
∗

i 0 . . . 0where there are b numerals altogether. Then c∗i is an inreasing Σ1 sequene,but not neessarily stritly inreasing, sine some w∗

i s might be 0. However,we may assume that it has no greatest element, sine otherwise we ould usethat element as our desired number e.



∆1 indution and Σ1 olletion 81For eah i ∈ I, let d∗i = (s∗i + 1) · ab−i−1, whih, written out in base a,looks like
w∗

0 . . . w
∗

i−1(w
∗

i + 1)0 . . . 0(here we use the assumption that eah w∗

j is less than a − 1). Then d∗i is adereasing Σ1 sequene.Now de�ne C to be the proper Σ1 ut {x : ∃i ∈ I x < c∗i } and de�ne Dto be the Σ1 upwards-losed set {x : ∃i ∈ I x > d∗i }.Clearly C and D do not interset, and any e with C < e < D will besuh that (e)i = w∗

i for all i ∈ I. But there must be some suh e, sineotherwise D = M \ C, whih means that C is a ∆1-de�nable proper ut,whih is impossible in a model of I∆1.We now give our main theorem.Theorem 2. Let M be a model of I∆1, and a ∈M . Suppose that thereis b ∈ M suh that ab exists and p(b) > a for some primitive reursivefuntion p. Then Σ1 olletion holds at a inM , that is, for any ∆0 formula φ,
M |= ∀x < a∃y φ(x, y) → ∃z ∀x < a∃y < z φ(x, y).The proof takes up the rest of this note. It is by ontradition, so our as-sumption from now on is thatM is suh that the theorem fails. In partiularolletion fails, so we annot bound the witnesses y for φ for x < a.Lemma 3. There is an injetive funtion f : a → M with a ∆0 graphand with range unbounded in M .Proof. Map x < a to the number oding the pair 〈x, y〉 where y is leastsuh that φ(x, y) holds.Definition 4. Let θ(i, w, t) express the following:1. w odes a sequene (w)0, . . . , (w)i ⊆ [0, a).2. For all j ≤ i, f((w)j) ≤ t.3. f((w)0) is the least element of the range of f that is bigger than a.4. For all j < i, f((w)j+1) is the least element of the range of f that isbigger than f((w)j)

2.The formula θ is ∆0, sine we inlude the bound t as a parameter. Let
I = {i : ∃w ∃t θ(i, w, t)}.Lemma 5. I is a ut and for all i ∈ I there is a unique w suh that
∃t θ(i, w, t).Proof. I is learly losed downwards. To show that it is losed undersuessor, suppose i ∈ I with witnesses w and t. Sine the range of f isunbounded in M , there must be some x < a with f(x) > f((w)i)

2. Using
f(x) as an upper bound, ∆0 indution is enough to �nd z < a suh that
f(z) is the least thing bigger than f((w)i)

2 in the range of f . Note that this



82 N. Thapenis the only plae in the proof where we use the unboundedness of the rangeof f .For uniqueness, suppose θ(i, w, t) and θ(i, w′, t′), and, without loss ofgenerality, that t ≥ t′. Then, using t as a bound, ∆0 indution is enough toshow that f((w)j) = f((w′)j) for all j ≤ i. So w = w′, sine f is injetive.Uniqueness means that we an de�ne a Σ1 sequene w∗, where for eah
i ∈ I we take w∗

i to be (w)i for the unique w suh that ∃t θ(i, w, t).Lemma 6. For all i ∈ I, a2i exists in M and is less than f(w∗

i ).Proof. Let w, t be suh that θ(i, w, t). We use indution to show that forall j ≤ i, a2j
< f((w)j). Only ∆0 indution is needed, beause we an boundeverything by t. Formally, the indutive hypothesis is

∃y ≤ t ∃p < y (a2j

= p ∧ f((w)j) = y).Here we are using the fat that exponentiation an be de�ned by a ∆0formula. The indution step follows from the de�nition of w.Lemma 7. I < a.Proof. Suppose not. Then a ∈ I so there exist w, t suh that θ(a,w, t).So w odes a sequene of elements of [0, a), and they must all be distintbeause f((w)j) stritly inreases as j inreases. Hene we have an injetionfrom a + 1 to a, violating the pigeonhole priniple. However, a ∈ I impliesthat a2a exists inM , by Lemma 6, whih means that ∆0 indution is enoughto arry out the standard proof of the pigeonhole priniple at a (1).Lemma 8. aI is o�nal in M .Proof. Suppose not. Then there exists a b suh that ab exists and I < b.Let S = {f(w∗

i ) : i ∈ I}. We �rst show that S is unbounded in M .Otherwise there is some upper bound t for S, but then
i ∈ I ⇔ ∃w < ab θ(i, w, t).Here we an use ab to bound the size of the sequene w, beause I < b. Butthis means that I is a ∆0-de�nable proper ut, whih is impossible.We an also apply Lemma 1 to get a number e suh that (e)i = w∗

i forall i ∈ I.Now onsider the funtion g : i 7→ f((e)i). Restrited to I, this funtionis inreasing and its range S is unbounded in M . So I an be de�ned asexatly the initial segment on whih g is inreasing. Formally,
i 6∈ I ⇔ ∃i ′ ∃t , t′ (i′ < i ∧ f((e)i′) = t′ ∧ f((e)i) = t ∧ t′ > t).

(1) In fat I∆0 by itself is enough to prove the pigeonhole priniple for any odedfuntion.



∆1 indution and Σ1 olletion 83This is now a ontradition with ∆1 indution, beause we have Σ1 def-initions of I and of its omplement, but I is a proper ut.Lemma 9. I is losed under exponentiation.Proof. Suppose not. Then there exists β ∈ I with 2β > I. But then a2βexists, by Lemma 6. This is a ontradition, sine aI is o�nal in M .At this point we ould �nish the proof by replaing the assumption �abexists� in Theorem 2 with �alogk a exists� for some k ∈ N (where logk meansiterated log). This gives a ontradition, beause if I is losed under expo-nentiation we must have I < logk a.We go on to prove the stronger version of the theorem by showing that
I is losed under all primitive reursive funtions. We do this indiretly, byshowing that I is a model of IΣ1.Lemma 10. I |= IΣ1.Proof. Suppose indution fails in I for some formula ∃y φ(x, y), where φis ∆0. Let ψ(x, z) be the formula

∀u ≤ x∃y ≤ z φ(u, y) ∧ �z is least suh that ∀u ≤ x∃y ≤ z φ(u, y)�.Let J = {j ∈ I : ∃z ∈I ψ(j, z)}. Then J is a Σ1 proper ut in I (and in M)and ψ is the ∆0 graph of a funtion g : J → I.The range of g must be unbounded in I, for suppose there is an upperbound s. Then j ∈ J ⇔ ∃z < sψ(j, z), so J is a ∆0 proper ut, whih isimpossible.Sine J is a proper ut in I, there exists β with J < β < I, and β ∈ Iimplies aβ exists (in fat a2β does).Consider the funtion h : I → M given by i 7→ f(w∗

i ). This has rangeunbounded in M , as aI is o�nal in M and for all i ∈ I we have ai < f(w∗

i )(by Lemma 6).For j ∈ J , let v∗j be the sequene
w∗

g(0) . . . w
∗

g(j).Then v∗ is a Σ1 sequene, so sine aβ exists, by Lemma 1 there is a number
e suh that for all j ∈ J , (e)j = w∗

g(j).Now onsider the funtion k : j 7→ f((e)j). On J , k is the omposition
h ◦ g. The funtion h on I is inreasing and has range unbounded in M ,and the funtion g on J is inreasing and has range unbounded in I. So,restrited to J , k is inreasing and has range unbounded in M . Therefore,as in Lemma 8, we an now write the omplement of J in a Σ1 way:

j 6∈ J ⇔ ∃j ′ ∃t , t′ (j′ < j ∧ f((e)j′) = t′ ∧ f((e)j) = t ∧ t′ > t).Hene J is a ∆1 proper ut in M , whih is impossible.



84 N. ThapenTo omplete the proof of Theorem 2, we now use the assumption thatthere is b ∈ M suh that ab exists in M and a < p(b) for some primitivereursive funtion p. Sine I < a and I is losed under primitive reursivefuntions, we must have I < b. But then aI < ab and so aI is not o�nal in
M , giving a ontradition.
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