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A note on A; induction and ¥; collection
by

Neil Thapen (Oxford)

Abstract. Slaman recently proved that X, collection is provable from A,, induction
plus exponentiation, partially answering a question of Paris. We give a new version of this
proof for the case n = 1, which only requires the following very weak form of exponentia-
tion: “z¥ exists for some y sufficiently large that x is smaller than some primitive recursive
function of y”.

By A, induction, or IA,,, we mean the usual induction scheme for every
Y, formula ¢ which is equivalent in the model to a II,, formula. That is, the
scheme

Vo (¢(z) = ¢(2))] = [6(0) AV (d(z) — ¢(z + 1)) — YV ¢(z)]

for every X, formula ¢ and every II,, formula ¢ (both possibly with param-
eters). By X, collection, or BY,,, we mean the scheme

Ve <y3Jzé(z,z) —» JwVe < yIz < wo(z, 2)

for every ¥,, formula ¢ (with parameters).

It is reasonably straightforward to prove that BY,, - IA,, (over a suitable
algebraic fragment of PA). Paris posed the question [1] whether the other
direction also holds. Slaman [4] showed recently that IA,+exp - BY,,, where
exp is the axiom “Vz,y, x¥ exists”. This answers the question completely for
n > 2, since exp is provable in IA5. We improve the result for n = 1, by
replacing exp with the assumption “z¥ exists for some y such that z < p(y)”
where p can be any primitive recursive function. This is Theorem 2 below.

We will not give any more background here. See Slaman [4] for a more
complete introduction to this problem, or [3] or [2] for a general introduction
to the relevant model theory of arithmetic.
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Our proof is similar to Slaman’s, with two new ideas. The first is that we
can use a function with bounded domain but unbounded range to define a
very fast-growing function on a cut. This allows us to reduce the amount of
exponentiation needed in the proof, and show that 1A +Vz (xlogk T exists)
B¥, for any k € N (see the remark after Lemma 9). The second is to show
that this cut is closed under the primitive recursive functions. This lets us
reduce it further, to “z¥ exists for some y that is not very much smaller
than 2”, where “very much smaller” is defined in terms of primitive recursive
functions. It is still open whether it is possible to get rid of exponentiation
altogether.
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Let M be a model of TA; with a distinguished element a. We will be
considering two kinds of sequence of elements of M. The first kind is simply
the sequence of numbers in [0, a) obtained by writing a number w € M in
base a notation, and we will write the ith element of such a sequence as (w);.

The second kind is not directly coded in the model, in that it is indexed
by a cut and so has no last element. We will call it a 31 sequence, and
formally it is a 31 function w* from a 31 cut I to M. For ¢ € I we write the
ith element of the sequence as wy.

We first give a lemma due to Slaman, relating these two kinds of sequence.

LEMMA 1. Let w* be a X1 sequence of elements of [0,a), indezed by a
Y1 cut I in M. Suppose it has the extra property that its initial segments are
uniformly coded in M, which means that there is a 31 sequence s* such that,

fori €I, s} codes (via its base a expansion) the sequence wf ... w;.

7

Suppose that there is b € M with I < b and such that a® exists. Then
there ezists e < a® coding w* in M, in the sense that for alli € I, (e); = w}.

Proof. We make the additional assumption that every element of w* is
strictly less than a — 1. This can be removed easily, for example by taking
a® as the parameter in place of a.

For each i € I, let ¢; = s - a~=1 which, written out in base a, looks like

wy ... w;0...0

where there are b numerals altogether. Then ¢ is an increasing ¥; sequence,
but not necessarily strictly increasing, since some w;s might be 0. However,
we may assume that it has no greatest element, since otherwise we could use
that element as our desired number e.
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For each i € I, let df = (s} +1) - a’~*=1, which, written out in base a,

looks like

wp ... w;_q(w; +1)0...0
(here we use the assumption that each w} is less than a —1). Then dJ is a
decreasing X1 sequence.

Now define C' to be the proper ¥ cut {z : 3 € Iz < ¢} and define D
to be the ¥; upwards-closed set {xz :3i € Iz > d}}.

Clearly C and D do not intersect, and any e with C < e < D will be
such that (e); = w for all ¢ € I. But there must be some such e, since
otherwise D = M \ C, which means that C' is a Aj-definable proper cut,
which is impossible in a model of IAq. u

We now give our main theorem.

THEOREM 2. Let M be a model of IA1, and a € M. Suppose that there
is b € M such that a® exists and p(b) > a for some primitive recursive
function p. Then X1 collection holds at a in M, that is, for any Ay formula ¢,

MEVYr <adyp(r,y) — IzVe <ady < zo(x,y).

The proof takes up the rest of this note. It is by contradiction, so our as-
sumption from now on is that M is such that the theorem fails. In particular
collection fails, so we cannot bound the witnesses y for ¢ for x < a.

LEMMA 3. There is an injective function f : a — M with a Ao graph
and with range unbounded in M.

Proof. Map x < a to the number coding the pair (z,y) where y is least
such that ¢(z,y) holds. =

DEFINITION 4. Let (i, w,t) express the following:

1. w codes a sequence (w)o, ..., (w); C [0, a).

2. For all j <1, f((w);) <t.

3. f((w)o) is the least element of the range of f that is bigger than a.

4. For all j < i, f((w);41) is the least element of the range of f that is
bigger than f((w);)?.

The formula 6 is Ag, since we include the bound ¢ as a parameter. Let
I={i:3w3tl(i,w,t)}.

LEMMA 5. [ is a cut and for all i € I there is a unique w such that
It O(i,w,t).

Proof. I is clearly closed downwards. To show that it is closed under
successor, suppose ¢ € I with witnesses w and t. Since the range of f is
unbounded in M, there must be some x < a with f(z) > f((w);)?. Using

f(x) as an upper bound, A( induction is enough to find z < a such that
f(2) is the least thing bigger than f((w);)? in the range of f. Note that this
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is the only place in the proof where we use the unboundedness of the range
of f.

For uniqueness, suppose 6(i,w,t) and 6(i,w’,t'), and, without loss of
generality, that ¢ > ¢. Then, using ¢ as a bound, Ag induction is enough to
show that f((w);) = f((w);) for all j <i. So w = w', since f is injective. m

Uniqueness means that we can define a ¥; sequence w*, where for each
i € I we take w} to be (w); for the unique w such that 3t (i, w, t).

LEMMA 6. For alli € I, a® exists in M and is less than f(w?).

Proof. Let w, ¢ be such that 0(i,w,t). We use induction to show that for

all j <4, a? < f((w);). Only A¢ induction is needed, because we can bound
everything by ¢. Formally, the inductive hypothesis is

Jy <tIp <y(a® =pAf((w);) =y).
Here we are using the fact that exponentiation can be defined by a Ay
formula. The induction step follows from the definition of w. =

LEMMA 7. I < a.

Proof. Suppose not. Then a € I so there exist w,t such that 0(a,w,t).
So w codes a sequence of elements of [0,a), and they must all be distinct
because f((w);) strictly increases as j increases. Hence we have an injection
from a + 1 to a, violating the pigeonhole principle. However, a € I implies
that a®" exists in M, by Lemma 6, which means that Ag induction is enough
to carry out the standard proof of the pigeonhole principle at a (!). =

LEMMA 8. af is cofinal in M.

Proof. Suppose not. Then there exists a b such that a® exists and I < b.
Let S = {f(w}) : ¢ € I}. We first show that S is unbounded in M.
Otherwise there is some upper bound ¢ for S, but then

iel < Jw<ad(i,w,t).
Here we can use a® to bound the size of the sequence w, because I < b. But
this means that [ is a Ag-definable proper cut, which is impossible.
We can also apply Lemma 1 to get a number e such that (e); = w} for
alli e I.
Now consider the function g : i — f((e);). Restricted to I, this function

is increasing and its range .S is unbounded in M. So I can be defined as
exactly the initial segment on which ¢ is increasing. Formally,

ig 1 < I AGE <inf(e)y)=t Af(le))=tAt >t).

(*) In fact IA, by itself is enough to prove the pigeonhole principle for any coded
function.
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This is now a contradiction with A; induction, because we have ¥, def-
initions of I and of its complement, but [ is a proper cut. =

LEMMA 9. [ is closed under exponentiation.

Proof. Suppose not. Then there exists § € I with 2° > I. But then a2’

exists, by Lemma 6. This is a contradiction, since a’ is cofinal in M. =

At this point we could finish the proof by replacing the assumption “a’
exists” in Theorem 2 with “al°8" @ exists” for some k € N (where log* means
iterated log). This gives a contradiction, because if I is closed under expo-
nentiation we must have I < log® a.

We go on to prove the stronger version of the theorem by showing that
I is closed under all primitive recursive functions. We do this indirectly, by

showing that I is a model of Y.
LEMMA 10. [ =1%;.

Proof. Suppose induction fails in I for some formula Jy ¢(z,y), where ¢
is Ag. Let ¢(x, z) be the formula

Vu <z 3y < z¢(u,y) A“z is least such that Vu < xJy < z ¢(u,y)”.

Let J={j€1l:32€l(j,2)} Then Jis a 3y proper cut in I (and in M)
and 1) is the Ag graph of a function g : J — I.

The range of ¢ must be unbounded in I, for suppose there is an upper
bound s. Then j € J < 3z < s¢(j,z2), so J is a Ag proper cut, which is
impossible.

Since J is a proper cut in I, there exists § with J < 8 < I, and g € I
implies a” exists (in fact a?’ does).

Consider the function h : I — M given by i — f(w). This has range
unbounded in M, as al is cofinal in M and for all i € I we have a’ < f(w})
(by Lemma 6).

For j € J, let v; be the sequence

* *
Wg(0) -+ Wy(j)-
Then v* is a ¥ sequence, so since a” exists, by Lemma 1 there is a number

e such that for all j € J, (e); = w;(j).

Now consider the function & : j — f((e);). On J, k is the composition
h o g. The function h on [ is increasing and has range unbounded in M,
and the function g on J is increasing and has range unbounded in I. So,
restricted to J, k is increasing and has range unbounded in M. Therefore,
as in Lemma 8, we can now write the complement of J in a ¥; way:

J¢Je 330G <infle)y) =t Af(e);) =t At >1).

Hence J is a Ay proper cut in M, which is impossible. =
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To complete the proof of Theorem 2, we now use the assumption that
there is b € M such that a® exists in M and a < p(b) for some primitive
recursive function p. Since I < a and [ is closed under primitive recursive
functions, we must have I < b. But then a/ < a® and so a’ is not cofinal in
M, giving a contradiction.
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