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Expanding repellers in limit sets

for iterations of holomorphic functions

by

Feliks Przytycki (Warszawa)

Abstract. We prove that for Ω being an immediate basin of attraction to an attract-
ing fixed point for a rational mapping of the Riemann sphere, and for an ergodic invariant
measure µ on the boundary FrΩ, with positive Lyapunov exponent, there is an invariant
subset of FrΩ which is an expanding repeller of Hausdorff dimension arbitrarily close to
the Hausdorff dimension of µ. We also prove generalizations and a geometric coding tree
abstract version. The paper is a continuation of a paper in Fund. Math. 145 (1994) by the
author and Anna Zdunik, where the density of periodic orbits in FrΩ was proved.

1. Introduction. Let Ω be a simply connected domain in C and f be
a holomorphic map defined on a neighbourhood W of FrΩ to C. Assume
f(W ∩ Ω) ⊂ Ω, f(FrΩ) ⊂ FrΩ and FrΩ repells to the side of Ω, that

is,
⋂∞
n=0 f

−n(W ∩ Ω) = FrΩ. An important special case is where Ω is an
immediate basin of attraction of an attracting fixed point for a rational
function. This covers also the case of a component of the immediate basin
of attraction to a periodic attracting orbit, as one can consider an iterate of
f mapping the component to itself. Distances and derivatives are considered
in the Riemann spherical metric on C.

Let R : D → Ω be a Riemann mapping from the unit disc onto Ω and
let g be a holomorphic extension of R−1 ◦ f ◦ R to a neighbourhood of the
unit circle ∂D. It exists and it is expanding on ∂D (see [P2, Section 7]). We
prove the following

Theorem A. Let ν be an ergodic g-invariant probability measure on ∂D

such that for ν-a.e. ζ ∈ ∂D the radial limit R̂(ζ) := limrր1R(rζ) exists.

Assume that the measure µ := R̂∗(ν) has positive Lyapunov exponent χµ(f).
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Let ϕ : ∂D→ R be a continuous real-valued function. Then for every ε > 0
there exist a g-invariant expanding repeller Y ⊂ ∂D and C > 0 such that
for all positive integers n and all ζ ∈ Y ,

(i) − lnC + n(
T
ϕdν − ε) ≤

∑n−1
j=0 ϕ(g

j(ζ)) ≤ lnC + n(
T
ϕdν + ε).

(ii) R̂ is defined on all of Y and finite-to-one on Y . Moreover R(rζ)→

R̂(ζ) uniformly as r ր 1 for ζ ∈ Y . The set X := R̂(Y ) is an ex-
panding repeller for f contained in FrΩ. Both Y and X are Cantor
sets.

(iii) C−1 expn(χµ(f)− ε) ≤ |(f
n)′(R̂(ζ))| ≤ C expn(χµ(f) + ε).

(iv) HD(X) ≥ HD(µ)− ε.

The existence of an expanding repeller X ⊂ FrΩ satisfying (iii) for all

x ∈ X (in place of R̂(ζ)) and (iv) holds without the assumption that Ω is
simply connected.

Above, X being an expanding repeller for f means that X is compact,
f(X) ⊂ X and the map f restricted to X is open, topologically mixing
and expanding, that is, there exist C > 0 and λ > 1, called an expand-
ing constant , such that |(fn)′(x)| ≥ Cλn for every x ∈ X. The property
that f |X is open is equivalent to the existence of a neighbourhood U of X
in C, called a repelling neighbourhood , such that every forward f -trajectory
x, f(x), . . . , fn(x), . . . staying in U must be contained in X. The definition
of an expanding repeller Y ⊂ ∂D for g is similar. HD(X) denotes the Haus-
dorff dimension of the set X, and HD(µ) the Hausdorff dimension of the
measure µ which is defined as the infimum of the Hausdorff dimensions of
sets of full measure µ.

Property (iv) is a version of the fact that the hyperbolic Hausdorff di-
mension of the Julia set J(f) for a rational mapping (= supremum of the
Hausdorff dimensions of expanding repellers contained in J(f)) is equal
to the hyperbolic dynamical dimension (= supremum of the Hausdorff di-
mensions of invariant probability measures on J(f) of positive Lyapunov
exponents); see for example [PU].

Theorem A, with property (v′) below added to the conclusions, extends
the main theorem from the paper [PZ], where the density of periodic orbits
in FrΩ was proved. The idea of the proof, as in [PZ], is to apply Pesin and
Katok theories; see [HK, Suplement] for a general theory and [PU, Ch. 9] for
its adaptation in holomorphic iteration. The problem is, as in [PZ], that the
standard Katok method to produce a large hyperbolic (here expanding) set
does not guarantee that the set is in FrΩ. It does not give the set Y either.

We needed this theorem in [P3], applied to ϕ = ln |g′| and µ in the
harmonic measure class, but it is of independent interest, so we have decided
to put it in a separate paper.
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2. Additional properties. The following additional properties of suit-
ably constructed X in Theorem A will be proved:

(v) X can be arbitrarily close to the topological support suppµ in the
Hausdorff metric in the space of compact subsets of FrΩ.

(vi) For any finite families of real-valued continuous functions ϕ1, . . . , ϕk
on ∂D, ψ1, . . . , ψk′ on FrΩ, for every i = 1, . . . , k and i = 1, . . . , k

′

respectively, for all ζ ∈ Y , x ∈ X and positive integers n,

− lnC+n
( \
∂D

ϕi dν−ε
)
≤
n−1∑

j=0

ϕi(g
j(ζ)) ≤ lnC+n

( \
∂D

ϕi dν+ε
)
,

− lnC+n
( \
FrΩ

ψi dµ−ε
)
≤
n−1∑

j=0

ψi(f
j(x))≤ lnC+n

( \
FrΩ

ψi dµ+ε
)
.

(vii) For P denoting the topological pressure and htop the topological
entropy,

P(f |X , ψi) ≥ hµ(f) +
\
FrΩ

ψi dµ− ε,

P(g|Y , ϕi) ≥ hν(g) +
\
∂D

ϕi dν − ε,

in particular

(viii) htop(f |X) ≥ hµ(f)− ε and htop(g|Y ) ≥ hν(g)− ε.

(xi) HD(Y ) ≥ HD(ν)− ε.

Remark 1. Property (v) implies

(v′) If suppµ = FrΩ then X is arbitrarily close to FrΩ in the Hausdorff
metric.

The assumption suppµ = FrΩ holds for every µ = R̂∗(ν) for ν being a
g-invariant Gibbs state (measure) for a Hölder continuous potential function
on ∂D (see [PZ]). In this case ν has positive entropy, hence the existence of
the radial limit ν-a.e. holds automatically (see [PZ] and references there, in
particular [P1]). This automatically implies χµ(f) > 0, since 0 < hν(g) =
hµ(f) ≤ 2χµ(f) (Ruelle inequality).

Remark 2. The radial convergence in (ii) automatically implies the
nontangential convergence. This means the following: For every ζ ∈ ∂D,
0 < ϑ < π/2 and t > 0 define

Sϑ,t(ζ) = ζ · (1 + {x ∈ C \ {0} : π − ϑ ≤ Arg(x) ≤ π + ϑ, |x| < t}).

Such a set is called a Stolz angle. If t is irrelevant we skip it and write Sϑ.
Now (ii) can be written as
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(ii′) For every 0 < ϑ < π/2 the convergence R(z)→ R̂(ζ) is uniform for
ζ ∈ X as z → ζ and z ∈ Sϑ. The rate of convergence is exponential,
more precisely, there exists C > 0 such that for z ∈ Sϑ,r(ζ),

C−1(1− r)χµ(f)/(χν(g)−ε) ≤ dist(R(z), R̂(ζ))

≤ C(1− r)χν(g)/(χµ(f)+ε).

3. Geometric coding tree version. As in [PZ], we prove a more
general, abstract version of these results, in the language of a geometric
coding tree. We recall the definitions and notation:
Let U be an open connected subset of the Riemann sphere C. Consider

any holomorphic mapping f : U → C such that f(U) ⊃ U and f : U → f(U)
is a proper map. Define Crit(f) = {z : f ′(z) = 0}, the set of critical points
for f . Suppose that Crit(f) is finite. Consider any z ∈ f(U). Let z1, . . . , zd

be some of the f -preimages of z in U where d ≥ 2. Consider continuous

curves γj : [0, 1] → f(U), j = 1, . . . , d, joining z to zj respectively (i.e.
γj(0) = z, γj(1) = zj) such that there are no critical values for the iterates

of f in
⋃d
j=1 γ

j , i.e. γj ∩ fn(Crit(f)) = ∅ for every j and n > 0.

Let Σd := {1, . . . , d}Z
+

denote the one-sided shift space and σ the shift
to the left, i.e. σ((αn)) = (αn+1). For every sequence α = (αn)

∞
n=0 ∈ Σ

d we

define γ0(α) := γ
α0 . Suppose that for some n ≥ 0, every 0 ≤ m ≤ n, and all

α ∈ Σd, the curves γm(α) are already defined. Suppose that for 1 ≤ m ≤ n
we have f ◦ γm(α) = γm−1(σ(α)), and γm(α)(0) = γm−1(α)(1).

Define the curves γn+1(α) so that the previous equalities hold by tak-
ing suitable f -preimages of γn. For every α ∈ Σ

d and n ≥ 0 set zn(α) :=
γn(α)(1). Note that zn(α) and γn(α) depend only on (α0, . . . , αn) so some-
times we consider zn and γn as functions on blocks of symbols of length
n+ 1. Sometimes it is convenient to denote z by z−1.
The graph T (z, γ1, . . . , γd) with vertices z and zn(α) and edges γn(α) is

called a geometric coding tree with root at z. For every α ∈ Σd the subgraph
composed of z, zn(α) and γn(α) for all n ≥ 0 is called a geometric branch
and denoted by b(α).
For each j = 1, . . . , d we define f−1j on a small neighbourhood of z as

the branch of f−1 mapping z to zj . For each α ∈ Σd the branch f−1j has an

analytic continuation f−1j,α along the curve b(α). Note that by construction

f−1j,α(b(α)) = b(jα), where jα is the concatenation of the symbol j and the
sequence α. By induction, for any block w of k symbols in {1, . . . , d}, for

f−kw being the branch of f
−k mapping z to zk−1(w) and for f

−k
w,α being the

analytic continuation along b(α), we get

(1) f−kw,α(b(α)) = b(wα).
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Similar notation is used and properties hold for finite sequences α, where
for α = (α0, . . . , αn), b(α) is the path in T from z to zn(α).
For infinite α the branch b(α) is called convergent if the sequence γn(α)

is convergent to a point in clU in the Hausdorff metric. We define the
coding map z∞ : D(z∞) → clU by z∞(α) := limn→∞ zn(α) on the domain
D = D(z∞) of all α’s for which b(α) is convergent.
For each geometric branch b(α) denote by bm(α) the part of b(α) starting

from zm(α), i.e. consisting of the vertices zk(α), k ≥ m, and of the edges
γk(α), k > m.
If the map f extends holomorphically to a neighbourhood of the closure

of the limit set Λ of a geometric coding tree, Λ = z∞(D(z∞)), then Λ is
called a quasi-repeller (see [PUZ]). Note that f(Λ) ⊂ Λ and fz∞ = z∞σ.

Theorem B. Let Λ be a quasi-repeller for a geometric coding tree
T (z, γ1, . . . , γd) for a holomorphic map f : U → C. Let ν be an ergodic
σ-invariant probability measure on Σd such that for ν-a.e. α ∈ Σd the limit
z∞(α) exists. Assume that the measure µ := z∞(ν) has positive Lyapunov
exponent χµ(f). Let ϕ,ϕj , ψj be continuous real-valued functions on Σ

d or

clΛ respectively. Then all the properties (i)–(ix) hold , with R̂ : ∂D → FrΩ

replaced by z∞ : Σ
d → clΛ defined ν-a.e. and R(rζ) → R̂(ζ) replaced by

γn(α)→ z∞(α) as n→∞.

The assumption that z∞(α) exists for ν-a.e. α ∈ Σ
d, i.e. ν(D) = 1, holds

for every ν of positive entropy (compare Remark 1; see [PZ, Convergence
Theorem], where further references are given). As in the Riemann mapping
case, χµ(f) > 0 then holds automatically.
In the setting of Theorem B property (v′) also holds, with FrΩ replaced

by clΛ, which immediately follows from (v).
The assumption suppµ = clΛ holds whenever ν is a σ-invariant Gibbs

state for a Hölder continuous function on Σd (cf. Remark 1), and if addition-
ally the tree T satisfies γj ∩ cl(

⋃
n≥0 f

n(Critf)) = ∅ for all j = 1, . . . , d and

there exists a neighbourhood U j ⊂ f(U) of γj such that area(f−n(U j))→ 0,
where area denotes the standard Riemann measure on C.
For the proof see [PZ, Lemma 3], where clΛ is replaced by a formally

larger set Λ̂ := {all limit points of the sequences zn(α
n), αn ∈ Σd, n→∞}.

It is easy to see that the above conditions about the tree T hold if T is in
W∩Ω, close enough to FrΩ, as in the situation of Theorem A (see Section 5).

4. Proof of Theorem B

Step 1: Good backward branches and their number. Denote the natural
extension of the one-sided shift σ : Σd → Σd preserving a Borel probability

measure ν, i.e. the corresponding two-sided shift, by (Σ̃d, ν̃, σ̃). Denote the
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projection Σ̃d → Σd mapping α to (α0, α1, . . .) by π+. For each α ∈ Σ̃
d

denote π+(α) by α
+.

By Pesin theory (see [PZ, Lemma 1] for the version we apply) and by the
Birkhoff Ergodic Theorem applied to ϕ, for every ε > 0 we can find a set
K ⊂ Σ̃d, constants C, δ > 0 and a positive integerM such that ν̃(K) > 1−ε
and for all α ∈ K and n ≥ 0,

B(i) − lnC+n(
T
ϕdν−ε/2) ≤

∑n−1
j=0 ϕ(σ

j(α+)) ≤ lnC+n(
T
ϕdν+ε/2).

B(ii) bM (α
+) ⊂ B(z∞(α

+), δ/3).

B(iii) There exist univalent branches f−nα of f−n on B(z∞(α
+), δ) for

all n = 1, 2, . . . mapping z∞(α
+) to z∞(σ̃

−n(α)+).

In the notation accompanying property (1) these branches are the continu-
ations along b(α+) of f−n(α−n,...,α−1), i.e. the branches f

−n
(α−n,...,α−1),α+

.

Moreover

B(iv) C−1 expn(χµ(f)− ε/2) ≤ |(f
n)′(z∞(σ̃

−n(α)+))|
≤ C expn(χµ(f) + ε/2).

B(v) |(f−nα )
′(x)|/|(f−nα )

′(y)| < C for all x, y ∈ B(z∞(α
+), δ).

For −∞ ≤ r ≤ s ≤ ∞ and α ∈ Σ̃d or α ∈ Σr,s = {1, . . . , d}
{r,r+1,...,s},

we denote by Cr,s(α) the cylinder {w ∈ Σ̃
d : wj = αj for all j : r ≤ j ≤ s}.

The projection Σ̃d ∋ (. . . , αj , . . .) 7→ (αr, . . . , αs) ∈ Σr,s will be denoted by
πr,s. Note that Cr,s(α) = π

−1
r,sπr,s(α).

Choose an arbitrary cylinder CM := C0,M (β), for a fixed sequence β =
(β0, . . . , βM ) ∈ ΣM := Σ0,M , such that ν̃(CM ∩ K) ≥ ν̃(CM )/2, which is
possible provided ε ≤ 1/2.

Denote CM ∩K by K
′. For all n ≥ 0 consider Kn := σ̃−n(K ′). By the

invariance of ν̃ we have ν̃(Kn) ≥ ν̃(CM )/2 =: ξ.

By the Birkhoff Ergodic Theorem there exists N ≥ 0 such that

ν({α ∈ Kn : ∃i : 0 ≤ i ≤ N, σ̃
−i(α) ∈ K ′} ≥ ξ/2.

Therefore for every n ≥ 0 there exists N ′ with 0 ≤ N ′ ≤ N such that,
setting n′ := n+N ′, for A(n′) := {α ∈ K ′ : σ̃−n

′

(α) ∈ K ′} we have

(2) ν̃(A(n′)) ≥ ξ/2N.

For every α ∈ A(n′) we obtain bM (σ̃
−n′(α)+) ⊂ B(zM (α

+), δ/3). Indeed,
for α′ = σ−n

′

(α) we have π0,M (α
′) = β, as we have landed with α′ in CM .

The length of bM (α
′+) is at most δ/3 as α′ ∈ K.

Hence

(3) f−n
′

α (cl(B(zM (β), 2δ/3))) ⊂ B(zM (β), 2δ/3)
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for all n large enough, more precisely for n such that

(4) |(f−n
′

α )
′(x)| < 1/2 for all x ∈ B(zM (β), 2δ/3).

By B(ii)–B(iv) this holds for n ≥ (2 lnC + ln 2)/(χµ(f)− ε).

Claim. The branches f−n
′

α on B(z∞(α
+), δ) depend only on π−n′,M (α),

more precisely on π−n′,−1(α) as π0,M (α) = β has been fixed , on the common
domain B := B(zM (β), 2δ/3).

This is so since if two α’s in A(n′), say α and α′, have the same block

(α−n′ , . . . , α−1), then the branches f
−n′

α and f−n
′

α′ are continuations of the
same branch at z along curves coinciding till zM (β) and next contained in
the common domain B (see Figure 1).

Fig. 1

We shall not use this claim directly, but we put it to help the reader
understand the proof and to simplify notation later on.
By (2) we have ν̃(π−1−n′,Mπ−n′,M (A(n

′))) ≥ ξ/2N . By the Shannon–
McMillan–Breiman theorem for every η > 0 and all integers k large enough,

ν
(⋃
{C0,k(w) : w ∈ Σ0,k, ν(C0,k(w)) ≤ exp k(hν(σ) + ε/3)}

)
≥ 1− η.

Setting η = ξ/4N and k =M + n′ we get

ν̃
(⋃
{C−n′,M (w) : w ∈ A(n

′)), ν̃(C−n′,M (w))≤ exp (n
′+M)(hν(σ)+ε/3)}

)

≥ ξ/2N − ξ/4N = ξ/2N.
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Therefore for n large enough, the number of “good backward trajectories”
of length n′ can be estimated as follows:

(5) #(π−n′,−1(A(n
′))) ≥ expn′(hν(σ)− ε/2).

Step 2: The sets X, Y and IFS. Now define Y ′ ⊂ Σd as the set of one-
sided sequences which are concatenations of blocks vk belonging to Gn′ :=
π0,n′−1σ̃

−n′(A(n′)), that is,

Y ′ = {α = v0v1. . . ∈ Σd : vk = π0,n′−1σ
kn′(α) ∈ Gn′ ∀k = 0, 1, . . .},

and set

X ′ = z∞(Y
′).

Finally, define

Y =
⋃
{σj(Y ′) : j = 0, . . . , n′ − 1},

X =
⋃
{f j(X ′) : j = 0, . . . , n′ − 1} = z∞(Y ).

For each α ∈ Σd and r ≤ s denote by br,s the part of the branch b(α)
starting from zr−1(α) and ending at zs(α).

Now, to put it briefly, by (3) and (4) for every α ∈ Y ′ the length of
bkn′,(k+1)n′−1(α) is less than C2

−k for a constant C > 0. Hence zn(α) →

z∞(α) uniformly (even exponentially fast), which proves (ii) on Y
′, hence

on Y by the uniform continuity of f . By (3) and (4), X ′, and hence X, are
expanding repellers for fn

′

and f respectively.

Let us now be more precise. Let α ∈ Y ′ be a concatenation of vk =
π0,n′−1σ̃

−n′(wk), for wk ∈ A(n′), for k = 0, 1, . . . . We want to analyse b(α).
Note that by (1),

(6) b(k−1)n′,kn′−1(α) = f
−n′

v0,v1v2...vk
(. . . (f−n

′

vk−1,vk
(b0,n′−1(v

k)))).

Assume that n′ > M . Then all b(α) for α = v0v1 . . . ∈ Y ′ pass through
zM (β) since v

0 ∈ Gn′ implies that b0,n′−1(α) depending only on v
0 passes

through zM (β). (There is no reason for α to belong to A(n
′), which would

imply passing through zM (β) by definition, as in the Claim. So for the first
time in the proof we need to use n′ > M .)

Now we apply induction on k. Suppose that for every α ∈ Σ0,kn′−1 which
is a concatenation v0v1 . . . vk−1 of blocks vj in Gn′ we have bM+1,kn′−1(α)
⊂ B (see Figure 2)). Take an arbitrary v ∈ Gn′ which is the truncation of
w ∈ A(n′), more precisely v = π0,n′−1σ̃

−n′(w). Then f−n
′

v,α and f
−n′

w coincide
on B, in particular on bM,kn′−1(α), since also bM (w

+) is contained in B,
as w ∈ K, yielding a path in T joining zkn′−1(α) to z∞(w

+) and entirely
contained in B (compare the proof of Claim). Hence, by (3) applied to f−n

′

w

we get bM+1,(k+1)n′−1(vα) ⊂ B, which finishes the induction.
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Fig. 2

Therefore in (6) we can replace f−n
′

vj ,vj+1vj+2...vk
by f−n

′

wj for all j =

0, 1, . . . , k − 1, in particular these branches of f−n
′

act on branches of the
tree T in the common domain B (except b0,n′−1(v

k)).

One can view the family of branches Fv := f
−n′

v for v ∈ Gn′ as an iter-
ated function system (IFS) on B. It satisfies the so-called Strong Open Set
Condition, i.e. all Fv(B) have pairwise disjoint closures. The Claim allows
us to write v in place of w, where v is the truncation of w. These branches
also act on (extend to) b0,M (β), the line in the tree joining z to zM (v) which
need not be contained in B. So Fv need not contract it. But further iteration
contracts them exponentially since Fv(b0,M (β)) lies already in B.
The limit set is contained in cl z∞(Σ

d), since the Fv preserve the tree T .

Step 3: Proving properties (i)–(ix) in Theorem B. To prove (i) consider
an arbitrary α = v0v1 . . . ∈ Y ′ for vk = π0,n′−1σ̃

−n′(wk), where wk ∈ A(n′).
Then, for each k = 1, 2, . . . ,

(7)
kn′−1∑

j=0

ϕ(σj(α+))−
k−1∑

i=0

n′−1∑

j=0

ϕ(σj((σ̃−n
′

(wi))+)) ≤ kn′ε/2

for n large enough. This follows from the continuity of ϕ since σin
′+j(α) and

σj((σ̃−n
′

(wi))+) are very close to each other for all i and 0 ≤ j ≪ n′. This
is so because both one-sided sequences have the same beginning of length
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n′ − j. Now (i) follows from the estimate B(i) on
∑n′−1
j=0 ϕ(σj((σ̃n

′

(wi))+).
Passing from Y ′ to Y changes only the constant C in (i).

These considerations also prove (vi). Indeed, in the case of ψ one ensures
the property of K analogous to B(i), namely

−lnC + n
(\
ψ dµ− ε/2

)
≤
n−1∑

j=0

ψ(f j(z∞(α
+)))B(vi)

≤ lnC + n
(\
ψ dµ+ ε/2

)
,

following from the ν-integrability of ψ ◦ z∞ and the Birkhoff Ergodic Theo-
rem. Use also the property analogous to (7), for ψ and f in place of ϕ and σ,
which follows from the continuity of ψ and the fact that the preimages of

points in B under the same branch f jf−n
′

vi
of f−(n

′−j) are very close to each
other for 0 ≤ j ≪ n′.

The uniform (exponential) convergence in (ii) has already been proven.
The injectivity and the property of X ′ of being a Cantor set follow from
the Strong Open Set Condition of the IFS {Fv}. This implies that z∞ is
finite-to-one on Y and X is also a Cantor set.

By (5) and (i) and by the definition of pressure,

P
(
σn
′

|Y ′ ,
n′−1∑

j=0

ϕ ◦ σj
)
≥ hν(σ

n′) + n′
(\
ϕdν − ε

)
,

hence easily P(σ|Y , ϕ) ≥ hν(f) +
T
Y
ϕdν − ε, proving (vii) for P(σ|Y , ϕ).

The argument for P(f |X , ψ) is similar, using (vi) for ψ.

Note that one cannot pull back to Σd to refer to (vii) for P(σ, ψ ◦ z∞)
on Y since ψ ◦ z∞ need not be continuous on ∂D, even not defined, so we
might not have (7).

By [M], or [P1, Sec. 3] where further references are provided, we have
HD(µ) = hµ(f)/χµ(f). Consider an arbitrary ε

′ > 0 and set t′ := HD(µ)−ε′.
Then t′ = hµ(f)/χµ(f)− ε

′. By (iii) and (5),

P(f |X ,−t
′ ln |f ′|X |) ≥ htop(f |X)− t

′(χµ(f) + ε)

≥ hµ(f)− ε− (hµ(f)/χµ(f)− ε
′)(χµ(f) + ε)

≥ −ε− εhµ(f)/χµ(f) + ε
′χµ(f) + εε

′,

which is positive if

ε′ >
ε(1 + hµ(f))/χµ(f)

χµ(f) + ε
.

Hence HD(X) > t′ as HD(X) is not smaller than the first zero of the
pressure function t 7→ P(f |X ,−t ln |f

′|X |), by the Bowen theorem (see for
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example [PU]). If we choose ε small we obtain ε′ small, hence HD(X) arbi-
trarily close to HD(µ), which proves (iv).

We prove (ix) similarly.

To prove (v) consider the cylinder CM = C0,M (β) for β being the trun-
cation of a sequence α dense in supp ν andM large. The proof of Theorem B
is finished.

5. Conclusions. Theorem B easily implies Theorem A. One builds the
tree T in the basin of attraction. It is only sufficient to note that the
branches of the tree R−1(T ) converge to ∂D nontangentially, so the con-
vergence of each branch b(α) in T implies the nontangential, in particular
radial, convergence of R at limR−1(b(α)) ∈ ∂D, with the same limit. One
considers the pull-back ϕ ◦ (R−1(z))∞ : Σ

d → R, finds Y in Σd, maps it
by (R−1(z))∞ with the use of R

−1(T ) into ∂D and with the use of T to

X ⊂ FrΩ as in Theorem B. The map R̂ is finite-to-one on Y since z∞ is.
The rate of the exponential convergence in (ii) and more precisely in (ii′) in
Remark 2 follows easily from (iii), (i) applied to ϕ = ln |g′|, and the chain
rule R′(z) = (f−n)′(R(gn(z))) ·R′(gn(z)) · (gn)′(z) for z = rζ, the integer n
such that for the first time gn(z) is far from ∂D, and the appropriate branch
of f−n; for details see [P2]. See also [P3].

Remark 3. If ν is mixing, which is the case for Gibbs ν as in Remark 1,
then one can ensure that f on X is topologically mixing, that is, for any
open subsets U, V of X there exists n0 such that f

n(U) ∩ V 6= ∅ for all
n ≥ n0.

Indeed, for n large we have by mixing ν̃(σ̃−n(CM ) ∩ CM ) ∼ ν(CM )
2.

Hence, if ν(K) ≈ 1, then ν̃(A(n)) ≥ const > 0 for all n large (compare (2)).
We can repeat the previous construction by taking instead of one n′ two
different mutually prime integers.

Remark 4. Theorem A holds in the case Ω is an immediate connected
simply connected basin of attraction to a parabolic fixed point p, i.e. p ∈ FrΩ
such that f(p) = p and f ′(p) is a root of unity.

Indeed, in this case R−1 ◦ f ◦ R extends to C to yield g which is a
Blaschke product such that D (and C \ clD) is a basin of a parabolic fixed
point for g in ∂D. As in the conclusion that Theorem B implies Theorem
A, we consider the trees T and R−1(T ). All the branches of R−1(T ) con-
verge (polynomially fast, but not necessarily nontangentially), and at each
limit point ζ = (R−1(z))∞(α) for α ∈ D(z∞), in particular in Y , the ra-

dial limit R̂(ζ) coincides with z∞(α) by Lindelöf’s theorem. Hence z∞ =

R̂ ◦ (R−1(z))∞ on Y and all the maps involved are finite-to-one since z∞ is
finite-to-one on Y .
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