Expanding repellers in limit sets for iterations of holomorphic functions

 $\mathbf{b}\mathbf{y}$

Feliks Przytycki (Warszawa)

Abstract. We prove that for Ω being an immediate basin of attraction to an attracting fixed point for a rational mapping of the Riemann sphere, and for an ergodic invariant measure μ on the boundary Fr Ω , with positive Lyapunov exponent, there is an invariant subset of Fr Ω which is an expanding repeller of Hausdorff dimension arbitrarily close to the Hausdorff dimension of μ . We also prove generalizations and a geometric coding tree abstract version. The paper is a continuation of a paper in Fund. Math. 145 (1994) by the author and Anna Zdunik, where the density of periodic orbits in Fr Ω was proved.

1. Introduction. Let Ω be a simply connected domain in $\overline{\mathbb{C}}$ and f be a holomorphic map defined on a neighbourhood W of Fr Ω to $\overline{\mathbb{C}}$. Assume $f(W \cap \Omega) \subset \Omega$, $f(\operatorname{Fr} \Omega) \subset \operatorname{Fr} \Omega$ and Fr Ω repells to the side of Ω , that is, $\bigcap_{n=0}^{\infty} f^{-n}(W \cap \overline{\Omega}) = \operatorname{Fr} \Omega$. An important special case is where Ω is an immediate basin of attraction of an attracting fixed point for a rational function. This covers also the case of a component of the immediate basin of attracting orbit, as one can consider an iterate of f mapping the component to itself. Distances and derivatives are considered in the Riemann spherical metric on $\overline{\mathbb{C}}$.

Let $R : \mathbb{D} \to \Omega$ be a Riemann mapping from the unit disc onto Ω and let g be a holomorphic extension of $R^{-1} \circ f \circ R$ to a neighbourhood of the unit circle $\partial \mathbb{D}$. It exists and it is expanding on $\partial \mathbb{D}$ (see [P2, Section 7]). We prove the following

THEOREM A. Let ν be an ergodic g-invariant probability measure on $\partial \mathbb{D}$ such that for ν -a.e. $\zeta \in \partial \mathbb{D}$ the radial limit $\widehat{R}(\zeta) := \lim_{r \nearrow 1} R(r\zeta)$ exists. Assume that the measure $\mu := \widehat{R}_*(\nu)$ has positive Lyapunov exponent $\chi_{\mu}(f)$.

Supported by Polish KBN grant 2P03A 03425.

²⁰⁰⁰ Mathematics Subject Classification: Primary 37F15; Secondary 37F35, 37D25.

Key words and phrases: boundary of basin of attraction, iteration of rational map, Hausdorff dimension, hyperbolic dimension, coding tree, Pesin theory, Katok theory.

Let $\varphi : \partial \mathbb{D} \to \mathbb{R}$ be a continuous real-valued function. Then for every $\varepsilon > 0$ there exist a g-invariant expanding repeller $Y \subset \partial \mathbb{D}$ and C > 0 such that for all positive integers n and all $\zeta \in Y$,

- (i) $-\ln C + n(\int \varphi \, d\nu \varepsilon) \le \sum_{j=0}^{n-1} \varphi(g^j(\zeta)) \le \ln C + n(\int \varphi \, d\nu + \varepsilon).$
- (ii) R̂ is defined on all of Y and finite-to-one on Y. Moreover R(rζ) → R̂(ζ) uniformly as r ∧ 1 for ζ ∈ Y. The set X := R̂(Y) is an expanding repeller for f contained in Fr Ω. Both Y and X are Cantor sets.
- (iii) $C^{-1} \exp n(\chi_{\mu}(f) \varepsilon) \le |(f^n)'(\widehat{R}(\zeta))| \le C \exp n(\chi_{\mu}(f) + \varepsilon).$
- (iv) $HD(X) \ge HD(\mu) \varepsilon$.

The existence of an expanding repeller $X \subset \operatorname{Fr} \Omega$ satisfying (iii) for all $x \in X$ (in place of $\widehat{R}(\zeta)$) and (iv) holds without the assumption that Ω is simply connected.

Above, X being an expanding repeller for f means that X is compact, $f(X) \subset X$ and the map f restricted to X is open, topologically mixing and expanding, that is, there exist C > 0 and $\lambda > 1$, called an expanding constant, such that $|(f^n)'(x)| \geq C\lambda^n$ for every $x \in X$. The property that $f|_X$ is open is equivalent to the existence of a neighbourhood U of X in \mathbb{C} , called a repelling neighbourhood, such that every forward f-trajectory $x, f(x), \ldots, f^n(x), \ldots$ staying in U must be contained in X. The definition of an expanding repeller $Y \subset \partial \mathbb{D}$ for g is similar. HD(X) denotes the Hausdorff dimension of the set X, and HD(μ) the Hausdorff dimension of the measure μ which is defined as the infimum of the Hausdorff dimensions of sets of full measure μ .

Property (iv) is a version of the fact that the hyperbolic Hausdorff dimension of the Julia set J(f) for a rational mapping (= supremum of the Hausdorff dimensions of expanding repellers contained in J(f)) is equal to the hyperbolic dynamical dimension (= supremum of the Hausdorff dimensions of invariant probability measures on J(f) of positive Lyapunov exponents); see for example [PU].

Theorem A, with property (v') below added to the conclusions, extends the main theorem from the paper [PZ], where the density of periodic orbits in Fr Ω was proved. The idea of the proof, as in [PZ], is to apply Pesin and Katok theories; see [HK, Suplement] for a general theory and [PU, Ch. 9] for its adaptation in holomorphic iteration. The problem is, as in [PZ], that the standard Katok method to produce a large hyperbolic (here expanding) set does not guarantee that the set is in Fr Ω . It does not give the set Y either.

We needed this theorem in [P3], applied to $\varphi = \ln |g'|$ and μ in the harmonic measure class, but it is of independent interest, so we have decided to put it in a separate paper.

2. Additional properties. The following additional properties of suitably constructed X in Theorem A will be proved:

- (v) X can be arbitrarily close to the topological support supp μ in the Hausdorff metric in the space of compact subsets of Fr Ω .
- (vi) For any finite families of real-valued continuous functions $\varphi_1, \ldots, \varphi_k$ on $\partial \mathbb{D}$, $\psi_1, \ldots, \psi_{k'}$ on Fr Ω , for every $i = 1, \ldots, k$ and $i = 1, \ldots, k'$ respectively, for all $\zeta \in Y$, $x \in X$ and positive integers n,

$$-\ln C + n\Big(\int_{\partial \mathbb{D}} \varphi_i \, d\nu - \varepsilon\Big) \le \sum_{j=0}^{n-1} \varphi_i(g^j(\zeta)) \le \ln C + n\Big(\int_{\partial \mathbb{D}} \varphi_i \, d\nu + \varepsilon\Big),$$

$$-\ln C + n\Big(\int_{\operatorname{Fr}\Omega} \psi_i \, d\mu - \varepsilon\Big) \le \sum_{j=0}^{n-1} \psi_i(f^j(x)) \le \ln C + n\Big(\int_{\operatorname{Fr}\Omega} \psi_i \, d\mu + \varepsilon\Big).$$

(vii) For P denoting the topological pressure and h_{top} the topological entropy,

$$P(f|_X, \psi_i) \ge h_{\mu}(f) + \int_{\operatorname{Fr} \Omega} \psi_i \, d\mu - \varepsilon,$$
$$P(g|_Y, \varphi_i) \ge h_{\nu}(g) + \int_{\partial \mathbb{D}} \varphi_i \, d\nu - \varepsilon,$$

in particular

- (viii) $h_{top}(f|_X) \ge h_{\mu}(f) \varepsilon$ and $h_{top}(g|_Y) \ge h_{\nu}(g) \varepsilon$.
 - (xi) $HD(Y) \ge HD(\nu) \varepsilon$.

REMARK 1. Property (v) implies

(v') If supp $\mu = \operatorname{Fr} \Omega$ then X is arbitrarily close to $\operatorname{Fr} \Omega$ in the Hausdorff metric.

The assumption $\operatorname{supp} \mu = \operatorname{Fr} \Omega$ holds for every $\mu = \widehat{R}_*(\nu)$ for ν being a *g*-invariant Gibbs state (measure) for a Hölder continuous potential function on $\partial \mathbb{D}$ (see [PZ]). In this case ν has positive entropy, hence the existence of the radial limit ν -a.e. holds automatically (see [PZ] and references there, in particular [P1]). This automatically implies $\chi_{\mu}(f) > 0$, since $0 < h_{\nu}(g) = h_{\mu}(f) \leq 2\chi_{\mu}(f)$ (Ruelle inequality).

REMARK 2. The radial convergence in (ii) automatically implies the nontangential convergence. This means the following: For every $\zeta \in \partial \mathbb{D}$, $0 < \vartheta < \pi/2$ and t > 0 define

$$S_{\vartheta,t}(\zeta) = \zeta \cdot (1 + \{ x \in \mathbb{C} \setminus \{ 0 \} : \pi - \vartheta \le \operatorname{Arg}(x) \le \pi + \vartheta, \, |x| < t \}).$$

Such a set is called a *Stolz angle*. If t is irrelevant we skip it and write S_{ϑ} . Now (ii) can be written as (ii') For every $0 < \vartheta < \pi/2$ the convergence $R(z) \to \widehat{R}(\zeta)$ is uniform for $\zeta \in X$ as $z \to \zeta$ and $z \in S_\vartheta$. The rate of convergence is exponential, more precisely, there exists C > 0 such that for $z \in S_{\vartheta,r}(\zeta)$,

$$C^{-1}(1-r)^{\chi_{\mu}(f)/(\chi_{\nu}(g)-\varepsilon)} \leq \operatorname{dist}(R(z),\widehat{R}(\zeta))$$

$$< C(1-r)^{\chi_{\nu}(g)/(\chi_{\mu}(f)+\varepsilon)}$$

3. Geometric coding tree version. As in [PZ], we prove a more general, abstract version of these results, in the language of a geometric coding tree. We recall the definitions and notation:

Let U be an open connected subset of the Riemann sphere $\overline{\mathbb{C}}$. Consider any holomorphic mapping $f: U \to \overline{\mathbb{C}}$ such that $f(U) \supset U$ and $f: U \to f(U)$ is a proper map. Define $\operatorname{Crit}(f) = \{z: f'(z) = 0\}$, the set of *critical points* for f. Suppose that $\operatorname{Crit}(f)$ is finite. Consider any $z \in f(U)$. Let z^1, \ldots, z^d be some of the f-preimages of z in U where $d \geq 2$. Consider continuous curves $\gamma^j: [0,1] \to f(U), j = 1, \ldots, d$, joining z to z^j respectively (i.e. $\gamma^j(0) = z, \gamma^j(1) = z^j$) such that there are no critical values for the iterates of f in $\bigcup_{i=1}^d \gamma^j$, i.e. $\gamma^j \cap f^n(\operatorname{Crit}(f)) = \emptyset$ for every j and n > 0.

Let $\Sigma^d := \{1, \ldots, d\}^{\mathbb{Z}^+}$ denote the one-sided shift space and σ the shift to the left, i.e. $\sigma((\alpha_n)) = (\alpha_{n+1})$. For every sequence $\alpha = (\alpha_n)_{n=0}^{\infty} \in \Sigma^d$ we define $\gamma_0(\alpha) := \gamma^{\alpha_0}$. Suppose that for some $n \ge 0$, every $0 \le m \le n$, and all $\alpha \in \Sigma^d$, the curves $\gamma_m(\alpha)$ are already defined. Suppose that for $1 \le m \le n$ we have $f \circ \gamma_m(\alpha) = \gamma_{m-1}(\sigma(\alpha))$, and $\gamma_m(\alpha)(0) = \gamma_{m-1}(\alpha)(1)$.

Define the curves $\gamma_{n+1}(\alpha)$ so that the previous equalities hold by taking suitable *f*-preimages of γ_n . For every $\alpha \in \Sigma^d$ and $n \ge 0$ set $z_n(\alpha) := \gamma_n(\alpha)(1)$. Note that $z_n(\alpha)$ and $\gamma_n(\alpha)$ depend only on $(\alpha_0, \ldots, \alpha_n)$ so sometimes we consider z_n and γ_n as functions on blocks of symbols of length n+1. Sometimes it is convenient to denote z by z_{-1} .

The graph $\mathcal{T}(z, \gamma^1, \ldots, \gamma^d)$ with vertices z and $z_n(\alpha)$ and edges $\gamma_n(\alpha)$ is called a *geometric coding tree* with root at z. For every $\alpha \in \Sigma^d$ the subgraph composed of $z, z_n(\alpha)$ and $\gamma_n(\alpha)$ for all $n \geq 0$ is called a *geometric branch* and denoted by $b(\alpha)$.

For each $j = 1, \ldots, d$ we define f_j^{-1} on a small neighbourhood of z as the branch of f^{-1} mapping z to z^j . For each $\alpha \in \Sigma^d$ the branch f_j^{-1} has an analytic continuation $f_{j,\alpha}^{-1}$ along the curve $b(\alpha)$. Note that by construction $f_{j,\alpha}^{-1}(b(\alpha)) = b(j\alpha)$, where $j\alpha$ is the concatenation of the symbol j and the sequence α . By induction, for any block w of k symbols in $\{1, \ldots, d\}$, for f_w^{-k} being the branch of f^{-k} mapping z to $z_{k-1}(w)$ and for $f_{w,\alpha}^{-k}$ being the analytic continuation along $b(\alpha)$, we get

(1)
$$f_{w,\alpha}^{-k}(b(\alpha)) = b(w\alpha).$$

Similar notation is used and properties hold for finite sequences α , where for $\alpha = (\alpha_0, \ldots, \alpha_n)$, $b(\alpha)$ is the path in \mathcal{T} from z to $z_n(\alpha)$.

For infinite α the branch $b(\alpha)$ is called *convergent* if the sequence $\gamma_n(\alpha)$ is convergent to a point in $\operatorname{cl} U$ in the Hausdorff metric. We define the *coding map* $z_{\infty} : \mathcal{D}(z_{\infty}) \to \operatorname{cl} U$ by $z_{\infty}(\alpha) := \lim_{n \to \infty} z_n(\alpha)$ on the domain $\mathcal{D} = \mathcal{D}(z_{\infty})$ of all α 's for which $b(\alpha)$ is convergent.

For each geometric branch $b(\alpha)$ denote by $b_m(\alpha)$ the part of $b(\alpha)$ starting from $z_m(\alpha)$, i.e. consisting of the vertices $z_k(\alpha)$, $k \ge m$, and of the edges $\gamma_k(\alpha)$, k > m.

If the map f extends holomorphically to a neighbourhood of the closure of the limit set Λ of a geometric coding tree, $\Lambda = z_{\infty}(\mathcal{D}(z_{\infty}))$, then Λ is called a *quasi-repeller* (see [PUZ]). Note that $f(\Lambda) \subset \Lambda$ and $fz_{\infty} = z_{\infty}\sigma$.

THEOREM B. Let Λ be a quasi-repeller for a geometric coding tree $\mathcal{T}(z,\gamma^1,\ldots,\gamma^d)$ for a holomorphic map $f: U \to \overline{\mathbb{C}}$. Let ν be an ergodic σ -invariant probability measure on Σ^d such that for ν -a.e. $\alpha \in \Sigma^d$ the limit $z_{\infty}(\alpha)$ exists. Assume that the measure $\mu := z_{\infty}(\nu)$ has positive Lyapunov exponent $\chi_{\mu}(f)$. Let $\varphi, \varphi_j, \psi_j$ be continuous real-valued functions on Σ^d or $\mathrm{cl} \Lambda$ respectively. Then all the properties (i)–(ix) hold, with $\widehat{R} : \partial \mathbb{D} \to \mathrm{Fr} \Omega$ replaced by $z_{\infty} : \Sigma^d \to \mathrm{cl} \Lambda$ defined ν -a.e. and $R(r\zeta) \to \widehat{R}(\zeta)$ replaced by $\gamma_n(\alpha) \to z_{\infty}(\alpha)$ as $n \to \infty$.

The assumption that $z_{\infty}(\alpha)$ exists for ν -a.e. $\alpha \in \Sigma^d$, i.e. $\nu(\mathcal{D}) = 1$, holds for every ν of positive entropy (compare Remark 1; see [PZ, Convergence Theorem], where further references are given). As in the Riemann mapping case, $\chi_{\mu}(f) > 0$ then holds automatically.

In the setting of Theorem B property (v') also holds, with Fr Ω replaced by cl Λ , which immediately follows from (v).

The assumption $\operatorname{supp} \mu = \operatorname{cl} \Lambda$ holds whenever ν is a σ -invariant Gibbs state for a Hölder continuous function on Σ^d (cf. Remark 1), and if additionally the tree \mathcal{T} satisfies $\gamma^j \cap \operatorname{cl}(\bigcup_{n\geq 0} f^n(\operatorname{Crit} f)) = \emptyset$ for all $j = 1, \ldots, d$ and there exists a neighbourhood $U^j \subset f(U)$ of γ^j such that $\operatorname{area}(f^{-n}(U^j)) \to 0$, where area denotes the standard Riemann measure on $\overline{\mathbb{C}}$.

For the proof see [PZ, Lemma 3], where $\operatorname{cl} \Lambda$ is replaced by a formally larger set $\widehat{\Lambda} := \{ \text{all limit points of the sequences } z_n(\alpha^n), \alpha^n \in \Sigma^d, n \to \infty \}$. It is easy to see that the above conditions about the tree \mathcal{T} hold if \mathcal{T} is in $W \cap \Omega$, close enough to Fr Ω , as in the situation of Theorem A (see Section 5).

4. Proof of Theorem B

STEP 1: Good backward branches and their number. Denote the natural extension of the one-sided shift $\sigma : \Sigma^d \to \Sigma^d$ preserving a Borel probability measure ν , i.e. the corresponding two-sided shift, by $(\tilde{\Sigma}^d, \tilde{\nu}, \tilde{\sigma})$. Denote the

projection $\widetilde{\Sigma}^d \to \Sigma^d$ mapping α to $(\alpha_0, \alpha_1, \ldots)$ by π_+ . For each $\alpha \in \widetilde{\Sigma}^d$ denote $\pi_+(\alpha)$ by α^+ .

By Pesin theory (see [PZ, Lemma 1] for the version we apply) and by the Birkhoff Ergodic Theorem applied to φ , for every $\varepsilon > 0$ we can find a set $K \subset \widetilde{\Sigma}^d$, constants $C, \delta > 0$ and a positive integer M such that $\widetilde{\nu}(K) > 1 - \varepsilon$ and for all $\alpha \in K$ and $n \geq 0$,

- B(i) $-\ln C + n(\int \varphi \, d\nu \varepsilon/2) \le \sum_{j=0}^{n-1} \varphi(\sigma^j(\alpha^+)) \le \ln C + n(\int \varphi \, d\nu + \varepsilon/2).$ B(ii) $b_M(\alpha^+) \subset B(z_{\infty}(\alpha^+), \delta/3).$
- B(iii) There exist univalent branches f_{α}^{-n} of f^{-n} on $B(z_{\infty}(\alpha^{+}), \delta)$ for all $n = 1, 2, \ldots$ mapping $z_{\infty}(\alpha^{+})$ to $z_{\infty}(\tilde{\sigma}^{-n}(\alpha)^{+})$.

In the notation accompanying property (1) these branches are the continuations along $b(\alpha^+)$ of $f_{(\alpha_{-n},...,\alpha_{-1})}^{-n}$, i.e. the branches $f_{(\alpha_{-n},...,\alpha_{-1}),\alpha^+}^{-n}$.

Moreover

$$\begin{aligned} \mathbf{B}(\mathrm{iv}) \ C^{-1} \exp n(\chi_{\mu}(f) - \varepsilon/2) &\leq |(f^n)'(z_{\infty}(\widetilde{\sigma}^{-n}(\alpha)^+))| \\ &\leq C \exp n(\chi_{\mu}(f) + \varepsilon/2). \end{aligned}$$

B(v)
$$|(f_{\alpha}^{-n})'(x)|/|(f_{\alpha}^{-n})'(y)| < C$$
 for all $x, y \in B(z_{\infty}(\alpha^{+}), \delta)$.

For $-\infty \leq r \leq s \leq \infty$ and $\alpha \in \widetilde{\Sigma}^d$ or $\alpha \in \Sigma_{r,s} = \{1, \ldots, d\}^{\{r,r+1,\ldots,s\}}$, we denote by $C_{r,s}(\alpha)$ the cylinder $\{w \in \widetilde{\Sigma}^d : w_j = \alpha_j \text{ for all } j : r \leq j \leq s\}$. The projection $\widetilde{\Sigma}^d \ni (\ldots, \alpha_j, \ldots) \mapsto (\alpha_r, \ldots, \alpha_s) \in \Sigma_{r,s}$ will be denoted by $\pi_{r,s}$. Note that $C_{r,s}(\alpha) = \pi_{r,s}^{-1} \pi_{r,s}(\alpha)$.

Choose an arbitrary cylinder $C_M := C_{0,M}(\beta)$, for a fixed sequence $\beta = (\beta_0, \ldots, \beta_M) \in \Sigma_M := \Sigma_{0,M}$, such that $\tilde{\nu}(C_M \cap K) \geq \tilde{\nu}(C_M)/2$, which is possible provided $\varepsilon \leq 1/2$.

Denote $C_M \cap K$ by K'. For all $n \ge 0$ consider $K_n := \tilde{\sigma}^{-n}(K')$. By the invariance of $\tilde{\nu}$ we have $\tilde{\nu}(K_n) \ge \tilde{\nu}(C_M)/2 =: \xi$.

By the Birkhoff Ergodic Theorem there exists $N \ge 0$ such that

$$\nu(\{\alpha \in K_n : \exists i : 0 \le i \le N, \, \widetilde{\sigma}^{-i}(\alpha) \in K'\} \ge \xi/2.$$

Therefore for every $n \ge 0$ there exists N' with $0 \le N' \le N$ such that, setting n' := n + N', for $A(n') := \{\alpha \in K' : \tilde{\sigma}^{-n'}(\alpha) \in K'\}$ we have

(2)
$$\widetilde{\nu}(A(n')) \ge \xi/2N.$$

For every $\alpha \in A(n')$ we obtain $b_M(\tilde{\sigma}^{-n'}(\alpha)^+) \subset B(z_M(\alpha^+), \delta/3)$. Indeed, for $\alpha' = \sigma^{-n'}(\alpha)$ we have $\pi_{0,M}(\alpha') = \beta$, as we have landed with α' in C_M . The length of $b_M(\alpha'^+)$ is at most $\delta/3$ as $\alpha' \in K$.

Hence

(3)
$$f_{\alpha}^{-n'}(\operatorname{cl}(B(z_M(\beta), 2\delta/3))) \subset B(z_M(\beta), 2\delta/3)$$

for all n large enough, more precisely for n such that

(4) $|(f_{\alpha}^{-n'})'(x)| < 1/2$ for all $x \in B(z_M(\beta), 2\delta/3).$

By B(ii)–B(iv) this holds for $n \ge (2 \ln C + \ln 2)/(\chi_{\mu}(f) - \varepsilon)$.

CLAIM. The branches $f_{\alpha}^{-n'}$ on $B(z_{\infty}(\alpha^+), \delta)$ depend only on $\pi_{-n',M}(\alpha)$, more precisely on $\pi_{-n',-1}(\alpha)$ as $\pi_{0,M}(\alpha) = \beta$ has been fixed, on the common domain $B := B(z_M(\beta), 2\delta/3)$.

This is so since if two α 's in A(n'), say α and α' , have the same block $(\alpha_{-n'}, \ldots, \alpha_{-1})$, then the branches $f_{\alpha}^{-n'}$ and $f_{\alpha'}^{-n'}$ are continuations of the same branch at z along curves coinciding till $z_M(\beta)$ and next contained in the common domain B (see Figure 1).

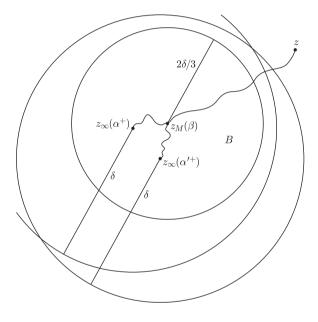


Fig. 1

We shall not use this claim directly, but we put it to help the reader understand the proof and to simplify notation later on.

By (2) we have $\widetilde{\nu}(\pi_{-n',M}^{-1}\pi_{-n',M}(A(n'))) \geq \xi/2N$. By the Shannon-McMillan-Breiman theorem for every $\eta > 0$ and all integers k large enough,

$$\nu\left(\bigcup\{C_{0,k}(w): w \in \Sigma_{0,k}, \nu(C_{0,k}(w)) \le \exp k(h_{\nu}(\sigma) + \varepsilon/3)\}\right) \ge 1 - \eta.$$

Setting $\eta = \xi/4N$ and $k = M + n'$ we get

$$\widetilde{\nu}\left(\bigcup\{C_{-n',M}(w): w \in A(n')), \, \widetilde{\nu}(C_{-n',M}(w)) \le \exp\left(n'+M\right)(h_{\nu}(\sigma)+\varepsilon/3)\}\right)$$
$$\ge \xi/2N - \xi/4N = \xi/2N.$$

Therefore for n large enough, the number of "good backward trajectories" of length n' can be estimated as follows:

(5)
$$\#(\pi_{-n',-1}(A(n'))) \ge \exp n'(\mathbf{h}_{\nu}(\sigma) - \varepsilon/2).$$

STEP 2: The sets X, Y and IFS. Now define $Y' \subset \Sigma^d$ as the set of onesided sequences which are concatenations of blocks v^k belonging to $G_{n'} := \pi_{0,n'-1} \tilde{\sigma}^{-n'}(A(n'))$, that is,

 $Y' = \{ \alpha = v^0 v^1 \dots \in \Sigma^d : v^k = \pi_{0,n'-1} \sigma^{kn'}(\alpha) \in G_{n'} \ \forall k = 0, 1, \dots \},\$

and set

$$X' = z_{\infty}(Y').$$

Finally, define

$$Y = \bigcup \{ \sigma^{j}(Y') : j = 0, \dots, n' - 1 \},\$$

$$X = \bigcup \{ f^{j}(X') : j = 0, \dots, n' - 1 \} = z_{\infty}(Y).$$

For each $\alpha \in \Sigma^d$ and $r \leq s$ denote by $b_{r,s}$ the part of the branch $b(\alpha)$ starting from $z_{r-1}(\alpha)$ and ending at $z_s(\alpha)$.

Now, to put it briefly, by (3) and (4) for every $\alpha \in Y'$ the length of $b_{kn',(k+1)n'-1}(\alpha)$ is less than $C2^{-k}$ for a constant C > 0. Hence $z_n(\alpha) \to z_{\infty}(\alpha)$ uniformly (even exponentially fast), which proves (ii) on Y', hence on Y by the uniform continuity of f. By (3) and (4), X', and hence X, are expanding repellers for $f^{n'}$ and f respectively.

Let us now be more precise. Let $\alpha \in Y'$ be a concatenation of $v^k = \pi_{0,n'-1} \tilde{\sigma}^{-n'}(w^k)$, for $w^k \in A(n')$, for $k = 0, 1, \ldots$ We want to analyse $b(\alpha)$. Note that by (1),

(6)
$$b_{(k-1)n',kn'-1}(\alpha) = f_{v^0,v^1v^2\dots v^k}^{-n'}(\dots(f_{v^{k-1},v^k}^{-n'}(b_{0,n'-1}(v^k)))).$$

Assume that n' > M. Then all $b(\alpha)$ for $\alpha = v^0 v^1 \dots \in Y'$ pass through $z_M(\beta)$ since $v^0 \in G_{n'}$ implies that $b_{0,n'-1}(\alpha)$ depending only on v^0 passes through $z_M(\beta)$. (There is no reason for α to belong to A(n'), which would imply passing through $z_M(\beta)$ by definition, as in the Claim. So for the first time in the proof we need to use n' > M.)

Now we apply induction on k. Suppose that for every $\alpha \in \Sigma_{0,kn'-1}$ which is a concatenation $v^0v^1 \dots v^{k-1}$ of blocks v^j in $G_{n'}$ we have $b_{M+1,kn'-1}(\alpha) \subset B$ (see Figure 2)). Take an arbitrary $v \in G_{n'}$ which is the truncation of $w \in A(n')$, more precisely $v = \pi_{0,n'-1} \tilde{\sigma}^{-n'}(w)$. Then $f_{v,\alpha}^{-n'}$ and $f_w^{-n'}$ coincide on B, in particular on $b_{M,kn'-1}(\alpha)$, since also $b_M(w^+)$ is contained in B, as $w \in K$, yielding a path in \mathcal{T} joining $z_{kn'-1}(\alpha)$ to $z_{\infty}(w^+)$ and entirely contained in B (compare the proof of Claim). Hence, by (3) applied to $f_w^{-n'}$ we get $b_{M+1,(k+1)n'-1}(v\alpha) \subset B$, which finishes the induction.

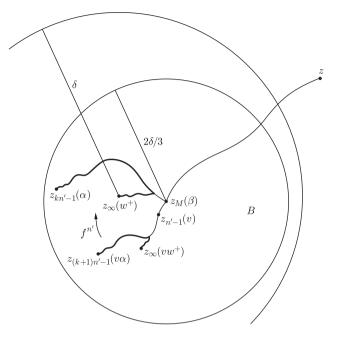


Fig. 2

Therefore in (6) we can replace $f_{v^j,v^{j+1}v^{j+2}...v^k}^{-n'}$ by $f_{w^j}^{-n'}$ for all j = 0, 1, ..., k-1, in particular these branches of $f^{-n'}$ act on branches of the tree \mathcal{T} in the common domain B (except $b_{0,n'-1}(v^k)$).

One can view the family of branches $F_v := f_v^{-n'}$ for $v \in G_{n'}$ as an iterated function system (IFS) on B. It satisfies the so-called Strong Open Set Condition, i.e. all $F_v(B)$ have pairwise disjoint closures. The Claim allows us to write v in place of w, where v is the truncation of w. These branches also act on (extend to) $b_{0,M}(\beta)$, the line in the tree joining z to $z_M(v)$ which need not be contained in B. So F_v need not contract it. But further iteration contracts them exponentially since $F_v(b_{0,M}(\beta))$ lies already in B.

The limit set is contained in $\operatorname{cl} z_{\infty}(\Sigma^d)$, since the F_v preserve the tree \mathcal{T} .

STEP 3: Proving properties (i)–(ix) in Theorem B. To prove (i) consider an arbitrary $\alpha = v^0 v^1 \dots \in Y'$ for $v^k = \pi_{0,n'-1} \tilde{\sigma}^{-n'}(w^k)$, where $w^k \in A(n')$. Then, for each $k = 1, 2, \dots$,

(7)
$$\sum_{j=0}^{kn'-1} \varphi(\sigma^{j}(\alpha^{+})) - \sum_{i=0}^{k-1} \sum_{j=0}^{n'-1} \varphi(\sigma^{j}((\tilde{\sigma}^{-n'}(w^{i}))^{+})) \le kn'\varepsilon/2$$

for *n* large enough. This follows from the continuity of φ since $\sigma^{in'+j}(\alpha)$ and $\sigma^j((\widetilde{\sigma}^{-n'}(w^i))^+)$ are very close to each other for all *i* and $0 \leq j \ll n'$. This is so because both one-sided sequences have the same beginning of length

n' - j. Now (i) follows from the estimate B(i) on $\sum_{j=0}^{n'-1} \varphi(\sigma^j((\tilde{\sigma}^{n'}(w^i))^+))$. Passing from Y' to Y changes only the constant C in (i).

These considerations also prove (vi). Indeed, in the case of ψ one ensures the property of K analogous to B(i), namely

B(vi)
$$-\ln C + n\left(\int \psi \, d\mu - \varepsilon/2\right) \leq \sum_{j=0}^{n-1} \psi(f^j(z_\infty(\alpha^+)))$$

 $\leq \ln C + n\left(\int \psi \, d\mu + \varepsilon/2\right),$

following from the ν -integrability of $\psi \circ z_{\infty}$ and the Birkhoff Ergodic Theorem. Use also the property analogous to (7), for ψ and f in place of φ and σ , which follows from the continuity of ψ and the fact that the preimages of points in B under the same branch $f^j f_{v^i}^{-n'}$ of $f^{-(n'-j)}$ are very close to each other for $0 \leq j \ll n'$.

The uniform (exponential) convergence in (ii) has already been proven. The injectivity and the property of X' of being a Cantor set follow from the Strong Open Set Condition of the IFS $\{F_v\}$. This implies that z_{∞} is finite-to-one on Y and X is also a Cantor set.

By (5) and (i) and by the definition of pressure,

$$\mathbf{P}\Big(\sigma^{n'}|_{Y'}, \sum_{j=0}^{n'-1} \varphi \circ \sigma^j\Big) \ge \mathbf{h}_{\nu}(\sigma^{n'}) + n'\Big(\int \varphi \, d\nu - \varepsilon\Big),$$

hence easily $P(\sigma|_Y, \varphi) \ge h_{\nu}(f) + \int_Y \varphi \, d\nu - \varepsilon$, proving (vii) for $P(\sigma|_Y, \varphi)$. The argument for $P(f|_X, \psi)$ is similar, using (vi) for ψ .

Note that one cannot pull back to Σ^d to refer to (vii) for $P(\sigma, \psi \circ z_{\infty})$ on Y since $\psi \circ z_{\infty}$ need not be continuous on $\partial \mathbb{D}$, even not defined, so we might not have (7).

By [M], or [P1, Sec. 3] where further references are provided, we have $HD(\mu) = h_{\mu}(f)/\chi_{\mu}(f)$. Consider an arbitrary $\varepsilon' > 0$ and set $t' := HD(\mu) - \varepsilon'$. Then $t' = h_{\mu}(f)/\chi_{\mu}(f) - \varepsilon'$. By (iii) and (5),

$$P(f|_X, -t' \ln |f'|_X|) \ge h_{top}(f|_X) - t'(\chi_{\mu}(f) + \varepsilon)$$

$$\ge h_{\mu}(f) - \varepsilon - (h_{\mu}(f)/\chi_{\mu}(f) - \varepsilon')(\chi_{\mu}(f) + \varepsilon)$$

$$\ge -\varepsilon - \varepsilon h_{\mu}(f)/\chi_{\mu}(f) + \varepsilon'\chi_{\mu}(f) + \varepsilon\varepsilon',$$

which is positive if

$$\varepsilon' > \frac{\varepsilon(1 + h_{\mu}(f))/\chi_{\mu}(f)}{\chi_{\mu}(f) + \varepsilon}.$$

Hence HD(X) > t' as HD(X) is not smaller than the first zero of the pressure function $t \mapsto P(f|_X, -t \ln |f'|_X|)$, by the Bowen theorem (see for

example [PU]). If we choose ε small we obtain ε' small, hence HD(X) arbitrarily close to HD(μ), which proves (iv).

We prove (ix) similarly.

To prove (v) consider the cylinder $C_M = C_{0,M}(\beta)$ for β being the truncation of a sequence α dense in supp ν and M large. The proof of Theorem B is finished.

5. Conclusions. Theorem B easily implies Theorem A. One builds the tree \mathcal{T} in the basin of attraction. It is only sufficient to note that the branches of the tree $R^{-1}(\mathcal{T})$ converge to $\partial \mathbb{D}$ nontangentially, so the convergence of each branch $b(\alpha)$ in \mathcal{T} implies the nontangential, in particular radial, convergence of R at $\lim R^{-1}(b(\alpha)) \in \partial \mathbb{D}$, with the same limit. One considers the pull-back $\varphi \circ (R^{-1}(z))_{\infty} : \Sigma^d \to \mathbb{R}$, finds Y in Σ^d , maps it by $(R^{-1}(z))_{\infty}$ with the use of $R^{-1}(\mathcal{T})$ into $\partial \mathbb{D}$ and with the use of \mathcal{T} to $X \subset \operatorname{Fr} \Omega$ as in Theorem B. The map \widehat{R} is finite-to-one on Y since z_{∞} is. The rate of the exponential convergence in (ii) and more precisely in (ii') in Remark 2 follows easily from (iii), (i) applied to $\varphi = \ln |g'|$, and the chain rule $R'(z) = (f^{-n})'(R(g^n(z))) \cdot R'(g^n(z)) \cdot (g^n)'(z)$ for $z = r\zeta$, the integer n such that for the first time $g^n(z)$ is far from $\partial \mathbb{D}$, and the appropriate branch of f^{-n} ; for details see [P2]. See also [P3].

REMARK 3. If ν is mixing, which is the case for Gibbs ν as in Remark 1, then one can ensure that f on X is topologically mixing, that is, for any open subsets U, V of X there exists n_0 such that $f^n(U) \cap V \neq \emptyset$ for all $n \geq n_0$.

Indeed, for *n* large we have by mixing $\tilde{\nu}(\tilde{\sigma}^{-n}(C_M) \cap C_M) \sim \nu(C_M)^2$. Hence, if $\nu(K) \approx 1$, then $\tilde{\nu}(A(n)) \geq \text{const} > 0$ for all *n* large (compare (2)). We can repeat the previous construction by taking instead of one *n'* two different mutually prime integers.

REMARK 4. Theorem A holds in the case Ω is an immediate connected simply connected basin of attraction to a parabolic fixed point p, i.e. $p \in \operatorname{Fr} \Omega$ such that f(p) = p and f'(p) is a root of unity.

Indeed, in this case $R^{-1} \circ f \circ R$ extends to $\overline{\mathbb{C}}$ to yield g which is a Blaschke product such that \mathbb{D} (and $\overline{\mathbb{C}} \setminus \operatorname{cl} \mathbb{D}$) is a basin of a parabolic fixed point for g in $\partial \mathbb{D}$. As in the conclusion that Theorem B implies Theorem A, we consider the trees \mathcal{T} and $R^{-1}(\mathcal{T})$. All the branches of $R^{-1}(\mathcal{T})$ converge (polynomially fast, but not necessarily nontangentially), and at each limit point $\zeta = (R^{-1}(z))_{\infty}(\alpha)$ for $\alpha \in \mathcal{D}(z_{\infty})$, in particular in Y, the radial limit $\widehat{R}(\zeta)$ coincides with $z_{\infty}(\alpha)$ by Lindelöf's theorem. Hence $z_{\infty} = \widehat{R} \circ (R^{-1}(z))_{\infty}$ on Y and all the maps involved are finite-to-one since z_{∞} is finite-to-one on Y.

F. Przytycki

References

- [HK] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, with supplement by A. Katok and L. Mendoza, Cambridge Univ. Press, 1995.
- [M] R. Mañé, The Hausdorff dimension of invariant probabilities of rational maps, in: Dynamical Systems (Valparaiso, 1986), Lecture Notes in Math. 1331, Springer, 1988, 86–117.
- [P1] F. Przytycki, Hausdorff dimension of harmonic measure on the boundary of an attractive basin for a holomorphic map, Invent. Math. 80 (1985), 161–179.
- [P2] —, Riemann map and holomorphic dynamics, ibid. 85 (1986), 439–455.
- [P3] —, An improvement of J. Rivera-Letelier result on weak hyperbolicity on periodic orbits for polynomials, submitted; http://www.impan.gov.pl/~feliksp.
- [PS] F. Przytycki and J. Skrzypczak, Convergence and pre-images of limit points for coding trees for iterations of holomorphic maps, Math. Ann. 290 (1991), 425–440.
- [PU] F. Przytycki and M. Urbański, Fractals in the Plane, Ergodic Theory Methods, Cambridge Univ. Press, to appear; http://www.math.unt.edu/~urbanski and http://www.impan.gov.pl/~feliksp.
- [PUZ] F. Przytycki, M. Urbański and A. Zdunik, Harmonic, Gibbs and Hausdorff measures for holomorphic maps, Part 1, Ann. of Math. 130 (1989), 1-40; Part 2, Studia Math. 97 (1991), 189–225.
- [PZ] F. Przytycki and A. Zdunik, Density of periodic sources in the boundary of a basin of attraction for iteration of holomorphic maps: geometric coding trees technique, Fund. Math. 145 (1994), 65–77.

Institute of Mathematics Polish Academy of Sciences Śniadeckich 8 00-956 Warszawa, Poland E-mail: feliksp@impan.gov.pl

Received 7 February 2005