Expanding repellers in limit sets for iterations of holomorphic functions

by
Feliks Przytycki (Warszawa)

Abstract

We prove that for Ω being an immediate basin of attraction to an attracting fixed point for a rational mapping of the Riemann sphere, and for an ergodic invariant measure μ on the boundary $\mathrm{Fr} \Omega$, with positive Lyapunov exponent, there is an invariant subset of $\operatorname{Fr} \Omega$ which is an expanding repeller of Hausdorff dimension arbitrarily close to the Hausdorff dimension of μ. We also prove generalizations and a geometric coding tree abstract version. The paper is a continuation of a paper in Fund. Math. 145 (1994) by the author and Anna Zdunik, where the density of periodic orbits in $\mathrm{Fr} \Omega$ was proved.

1. Introduction. Let Ω be a simply connected domain in $\overline{\mathbb{C}}$ and f be a holomorphic map defined on a neighbourhood W of $\operatorname{Fr} \Omega$ to $\overline{\mathbb{C}}$. Assume $f(W \cap \Omega) \subset \Omega, f(\operatorname{Fr} \Omega) \subset \operatorname{Fr} \Omega$ and $\operatorname{Fr} \Omega$ repells to the side of Ω, that is, $\bigcap_{n=0}^{\infty} f^{-n}(W \cap \bar{\Omega})=\operatorname{Fr} \Omega$. An important special case is where Ω is an immediate basin of attraction of an attracting fixed point for a rational function. This covers also the case of a component of the immediate basin of attraction to a periodic attracting orbit, as one can consider an iterate of f mapping the component to itself. Distances and derivatives are considered in the Riemann spherical metric on $\overline{\mathbb{C}}$.

Let $R: \mathbb{D} \rightarrow \Omega$ be a Riemann mapping from the unit disc onto Ω and let g be a holomorphic extension of $R^{-1} \circ f \circ R$ to a neighbourhood of the unit circle $\partial \mathbb{D}$. It exists and it is expanding on $\partial \mathbb{D}$ (see [P2, Section 7]). We prove the following

Theorem A. Let ν be an ergodic g-invariant probability measure on $\partial \mathbb{D}$ such that for ν-a.e. $\zeta \in \partial \mathbb{D}$ the radial limit $\widehat{R}(\zeta):=\lim _{r \nearrow 1} R(r \zeta)$ exists. Assume that the measure $\mu:=\widehat{R}_{*}(\nu)$ has positive Lyapunov exponent $\chi_{\mu}(f)$.

[^0]Let $\varphi: \partial \mathbb{D} \rightarrow \mathbb{R}$ be a continuous real-valued function. Then for every $\varepsilon>0$ there exist a g-invariant expanding repeller $Y \subset \partial \mathbb{D}$ and $C>0$ such that for all positive integers n and all $\zeta \in Y$,
(i) $-\ln C+n\left(\int \varphi d \nu-\varepsilon\right) \leq \sum_{j=0}^{n-1} \varphi\left(g^{j}(\zeta)\right) \leq \ln C+n\left(\int \varphi d \nu+\varepsilon\right)$.
(ii) \widehat{R} is defined on all of Y and finite-to-one on Y. Moreover $R(r \zeta) \rightarrow$ $\widehat{R}(\zeta)$ uniformly as $r \nearrow 1$ for $\zeta \in Y$. The set $X:=\widehat{R}(Y)$ is an expanding repeller for f contained in $\mathrm{Fr} \Omega$. Both Y and X are Cantor sets.
(iii) $C^{-1} \exp n\left(\chi_{\mu}(f)-\varepsilon\right) \leq\left|\left(f^{n}\right)^{\prime}(\widehat{R}(\zeta))\right| \leq C \exp n\left(\chi_{\mu}(f)+\varepsilon\right)$.
(iv) $\mathrm{HD}(X) \geq \mathrm{HD}(\mu)-\varepsilon$.

The existence of an expanding repeller $X \subset \operatorname{Fr} \Omega$ satisfying (iii) for all $x \in X$ (in place of $\widehat{R}(\zeta))$ and (iv) holds without the assumption that Ω is simply connected.

Above, X being an expanding repeller for f means that X is compact, $f(X) \subset X$ and the map f restricted to X is open, topologically mixing and expanding, that is, there exist $C>0$ and $\lambda>1$, called an expanding constant, such that $\left|\left(f^{n}\right)^{\prime}(x)\right| \geq C \lambda^{n}$ for every $x \in X$. The property that $\left.f\right|_{X}$ is open is equivalent to the existence of a neighbourhood U of X in \mathbb{C}, called a repelling neighbourhood, such that every forward f-trajectory $x, f(x), \ldots, f^{n}(x), \ldots$ staying in U must be contained in X. The definition of an expanding repeller $Y \subset \partial \mathbb{D}$ for g is similar. $\operatorname{HD}(X)$ denotes the Hausdorff dimension of the set X, and $\operatorname{HD}(\mu)$ the Hausdorff dimension of the measure μ which is defined as the infimum of the Hausdorff dimensions of sets of full measure μ.

Property (iv) is a version of the fact that the hyperbolic Hausdorff dimension of the Julia set $J(f)$ for a rational mapping ($=$ supremum of the Hausdorff dimensions of expanding repellers contained in $J(f)$) is equal to the hyperbolic dynamical dimension ($=$ supremum of the Hausdorff dimensions of invariant probability measures on $J(f)$ of positive Lyapunov exponents); see for example [PU].

Theorem A, with property (v^{\prime}) below added to the conclusions, extends the main theorem from the paper [PZ], where the density of periodic orbits in $\operatorname{Fr} \Omega$ was proved. The idea of the proof, as in [PZ], is to apply Pesin and Katok theories; see [HK, Suplement] for a general theory and [PU, Ch. 9] for its adaptation in holomorphic iteration. The problem is, as in [PZ], that the standard Katok method to produce a large hyperbolic (here expanding) set does not guarantee that the set is in $\mathrm{Fr} \Omega$. It does not give the set Y either.

We needed this theorem in [P3], applied to $\varphi=\ln \left|g^{\prime}\right|$ and μ in the harmonic measure class, but it is of independent interest, so we have decided to put it in a separate paper.
2. Additional properties. The following additional properties of suitably constructed X in Theorem A will be proved:
(v) X can be arbitrarily close to the topological support supp μ in the Hausdorff metric in the space of compact subsets of $\operatorname{Fr} \Omega$.
(vi) For any finite families of real-valued continuous functions $\varphi_{1}, \ldots, \varphi_{k}$ on $\partial \mathbb{D}, \psi_{1}, \ldots, \psi_{k^{\prime}}$ on $\operatorname{Fr} \Omega$, for every $i=1, \ldots, k$ and $i=1, \ldots, k^{\prime}$ respectively, for all $\zeta \in Y, x \in X$ and positive integers n,

$$
\begin{aligned}
&-\ln C+n\left(\int_{\partial \mathbb{D}} \varphi_{i} d \nu-\varepsilon\right) \leq \sum_{j=0}^{n-1} \varphi_{i}\left(g^{j}(\zeta)\right) \leq \ln C+n\left(\int_{\partial \mathbb{D}} \varphi_{i} d \nu+\varepsilon\right) \\
&-\ln C+n\left(\int_{\operatorname{Fr} \Omega} \psi_{i} d \mu-\varepsilon\right) \leq \sum_{j=0}^{n-1} \psi_{i}\left(f^{j}(x)\right) \leq \ln C+n\left(\int_{\operatorname{Fr} \Omega} \psi_{i} d \mu+\varepsilon\right)
\end{aligned}
$$

(vii) For P denoting the topological pressure and $\mathrm{h}_{\text {top }}$ the topological entropy,

$$
\begin{aligned}
& \mathrm{P}\left(\left.f\right|_{X}, \psi_{i}\right) \geq \mathrm{h}_{\mu}(f)+\int_{\operatorname{Fr} \Omega} \psi_{i} d \mu-\varepsilon \\
& \mathrm{P}\left(\left.g\right|_{Y}, \varphi_{i}\right) \geq \mathrm{h}_{\nu}(g)+\int_{\partial \mathbb{D}} \varphi_{i} d \nu-\varepsilon
\end{aligned}
$$

in particular
(viii) $\mathrm{h}_{\text {top }}\left(\left.f\right|_{X}\right) \geq \mathrm{h}_{\mu}(f)-\varepsilon$ and $\mathrm{h}_{\text {top }}\left(\left.g\right|_{Y}\right) \geq \mathrm{h}_{\nu}(g)-\varepsilon$.
(xi) $\mathrm{HD}(Y) \geq \mathrm{HD}(\nu)-\varepsilon$.

Remark 1. Property (v) implies
$\left(\mathrm{v}^{\prime}\right)$ If $\operatorname{supp} \mu=\operatorname{Fr} \Omega$ then X is arbitrarily close to $\operatorname{Fr} \Omega$ in the Hausdorff metric.

The assumption supp $\mu=\operatorname{Fr} \Omega$ holds for every $\mu=\widehat{R}_{*}(\nu)$ for ν being a g-invariant Gibbs state (measure) for a Hölder continuous potential function on $\partial \mathbb{D}$ (see [PZ]). In this case ν has positive entropy, hence the existence of the radial limit ν-a.e. holds automatically (see [PZ] and references there, in particular [P1]). This automatically implies $\chi_{\mu}(f)>0$, since $0<\mathrm{h}_{\nu}(g)=$ $\mathrm{h}_{\mu}(f) \leq 2 \chi_{\mu}(f)$ (Ruelle inequality).

REMARK 2. The radial convergence in (ii) automatically implies the nontangential convergence. This means the following: For every $\zeta \in \partial \mathbb{D}$, $0<\vartheta<\pi / 2$ and $t>0$ define

$$
S_{\vartheta, t}(\zeta)=\zeta \cdot(1+\{x \in \mathbb{C} \backslash\{0\}: \pi-\vartheta \leq \operatorname{Arg}(x) \leq \pi+\vartheta,|x|<t\})
$$

Such a set is called a Stolz angle. If t is irrelevant we skip it and write S_{ϑ}. Now (ii) can be written as
(ii') For every $0<\vartheta<\pi / 2$ the convergence $R(z) \rightarrow \widehat{R}(\zeta)$ is uniform for $\zeta \in X$ as $z \rightarrow \zeta$ and $z \in S_{\vartheta}$. The rate of convergence is exponential, more precisely, there exists $C>0$ such that for $z \in S_{\vartheta, r}(\zeta)$,

$$
\begin{aligned}
C^{-1}(1-r)^{\chi_{\mu}(f) /\left(\chi_{\nu}(g)-\varepsilon\right)} & \leq \operatorname{dist}(R(z), \widehat{R}(\zeta)) \\
& \leq C(1-r)^{\chi_{\nu}(g) /\left(\chi_{\mu}(f)+\varepsilon\right)}
\end{aligned}
$$

3. Geometric coding tree version. As in [PZ], we prove a more general, abstract version of these results, in the language of a geometric coding tree. We recall the definitions and notation:

Let U be an open connected subset of the Riemann sphere $\overline{\mathbb{C}}$. Consider any holomorphic mapping $f: U \rightarrow \overline{\mathbb{C}}$ such that $f(U) \supset U$ and $f: U \rightarrow f(U)$ is a proper map. Define $\operatorname{Crit}(f)=\left\{z: f^{\prime}(z)=0\right\}$, the set of critical points for f. Suppose that $\operatorname{Crit}(f)$ is finite. Consider any $z \in f(U)$. Let z^{1}, \ldots, z^{d} be some of the f-preimages of z in U where $d \geq 2$. Consider continuous curves $\gamma^{j}:[0,1] \rightarrow f(U), j=1, \ldots, d$, joining z to z^{j} respectively (i.e. $\gamma^{j}(0)=z, \gamma^{j}(1)=z^{j}$) such that there are no critical values for the iterates of f in $\bigcup_{j=1}^{d} \gamma^{j}$, i.e. $\gamma^{j} \cap f^{n}(\operatorname{Crit}(f))=\emptyset$ for every j and $n>0$.

Let $\Sigma^{d}:=\{1, \ldots, d\}^{\mathbb{Z}^{+}}$denote the one-sided shift space and σ the shift to the left, i.e. $\sigma\left(\left(\alpha_{n}\right)\right)=\left(\alpha_{n+1}\right)$. For every sequence $\alpha=\left(\alpha_{n}\right)_{n=0}^{\infty} \in \Sigma^{d}$ we define $\gamma_{0}(\alpha):=\gamma^{\alpha_{0}}$. Suppose that for some $n \geq 0$, every $0 \leq m \leq n$, and all $\alpha \in \Sigma^{d}$, the curves $\gamma_{m}(\alpha)$ are already defined. Suppose that for $1 \leq m \leq n$ we have $f \circ \gamma_{m}(\alpha)=\gamma_{m-1}(\sigma(\alpha))$, and $\gamma_{m}(\alpha)(0)=\gamma_{m-1}(\alpha)(1)$.

Define the curves $\gamma_{n+1}(\alpha)$ so that the previous equalities hold by taking suitable f-preimages of γ_{n}. For every $\alpha \in \Sigma^{d}$ and $n \geq 0$ set $z_{n}(\alpha):=$ $\gamma_{n}(\alpha)(1)$. Note that $z_{n}(\alpha)$ and $\gamma_{n}(\alpha)$ depend only on $\left(\alpha_{0}, \ldots, \alpha_{n}\right)$ so sometimes we consider z_{n} and γ_{n} as functions on blocks of symbols of length $n+1$. Sometimes it is convenient to denote z by z_{-1}.

The graph $\mathcal{T}\left(z, \gamma^{1}, \ldots, \gamma^{d}\right)$ with vertices z and $z_{n}(\alpha)$ and edges $\gamma_{n}(\alpha)$ is called a geometric coding tree with root at z. For every $\alpha \in \Sigma^{d}$ the subgraph composed of $z, z_{n}(\alpha)$ and $\gamma_{n}(\alpha)$ for all $n \geq 0$ is called a geometric branch and denoted by $b(\alpha)$.

For each $j=1, \ldots, d$ we define f_{j}^{-1} on a small neighbourhood of z as the branch of f^{-1} mapping z to z^{j}. For each $\alpha \in \Sigma^{d}$ the branch f_{j}^{-1} has an analytic continuation $f_{j, \alpha}^{-1}$ along the curve $b(\alpha)$. Note that by construction $f_{j, \alpha}^{-1}(b(\alpha))=b(j \alpha)$, where $j \alpha$ is the concatenation of the symbol j and the sequence α. By induction, for any block w of k symbols in $\{1, \ldots, d\}$, for f_{w}^{-k} being the branch of f^{-k} mapping z to $z_{k-1}(w)$ and for $f_{w, \alpha}^{-k}$ being the analytic continuation along $b(\alpha)$, we get

$$
\begin{equation*}
f_{w, \alpha}^{-k}(b(\alpha))=b(w \alpha) \tag{1}
\end{equation*}
$$

Similar notation is used and properties hold for finite sequences α, where for $\alpha=\left(\alpha_{0}, \ldots, \alpha_{n}\right), b(\alpha)$ is the path in \mathcal{T} from z to $z_{n}(\alpha)$.

For infinite α the branch $b(\alpha)$ is called convergent if the sequence $\gamma_{n}(\alpha)$ is convergent to a point in $\mathrm{cl} U$ in the Hausdorff metric. We define the coding map $z_{\infty}: \mathcal{D}\left(z_{\infty}\right) \rightarrow \operatorname{cl} U$ by $z_{\infty}(\alpha):=\lim _{n \rightarrow \infty} z_{n}(\alpha)$ on the domain $\mathcal{D}=\mathcal{D}\left(z_{\infty}\right)$ of all α 's for which $b(\alpha)$ is convergent.

For each geometric branch $b(\alpha)$ denote by $b_{m}(\alpha)$ the part of $b(\alpha)$ starting from $z_{m}(\alpha)$, i.e. consisting of the vertices $z_{k}(\alpha), k \geq m$, and of the edges $\gamma_{k}(\alpha), k>m$.

If the map f extends holomorphically to a neighbourhood of the closure of the limit set Λ of a geometric coding tree, $\Lambda=z_{\infty}\left(\mathcal{D}\left(z_{\infty}\right)\right)$, then Λ is called a quasi-repeller (see [PUZ]). Note that $f(\Lambda) \subset \Lambda$ and $f z_{\infty}=z_{\infty} \sigma$.

Theorem B. Let Λ be a quasi-repeller for a geometric coding tree $\mathcal{T}\left(z, \gamma^{1}, \ldots, \gamma^{d}\right)$ for a holomorphic map $f: U \rightarrow \overline{\mathbb{C}}$. Let ν be an ergodic σ-invariant probability measure on Σ^{d} such that for ν-a.e. $\alpha \in \Sigma^{d}$ the limit $z_{\infty}(\alpha)$ exists. Assume that the measure $\mu:=z_{\infty}(\nu)$ has positive Lyapunov exponent $\chi_{\mu}(f)$. Let $\varphi, \varphi_{j}, \psi_{j}$ be continuous real-valued functions on Σ^{d} or $\mathrm{cl} \Lambda$ respectively. Then all the properties (i)-(ix) hold, with $\widehat{R}: \partial \mathbb{D} \rightarrow \operatorname{Fr} \Omega$ replaced by $z_{\infty}: \Sigma^{d} \rightarrow \operatorname{cl} \Lambda$ defined ν-a.e. and $R(r \zeta) \rightarrow \widehat{R}(\zeta)$ replaced by $\gamma_{n}(\alpha) \rightarrow z_{\infty}(\alpha)$ as $n \rightarrow \infty$.

The assumption that $z_{\infty}(\alpha)$ exists for ν-a.e. $\alpha \in \Sigma^{d}$, i.e. $\nu(\mathcal{D})=1$, holds for every ν of positive entropy (compare Remark 1; see [PZ, Convergence Theorem], where further references are given). As in the Riemann mapping case, $\chi_{\mu}(f)>0$ then holds automatically.

In the setting of Theorem B property (v^{\prime}) also holds, with Fr Ω replaced by $\operatorname{cl} \Lambda$, which immediately follows from (v).

The assumption $\operatorname{supp} \mu=\operatorname{cl} \Lambda$ holds whenever ν is a σ-invariant Gibbs state for a Hölder continuous function on Σ^{d} (cf. Remark 1), and if additionally the tree \mathcal{T} satisfies $\gamma^{j} \cap \operatorname{cl}\left(\bigcup_{n \geq 0} f^{n}(\operatorname{Crit} f)\right)=\emptyset$ for all $j=1, \ldots, d$ and there exists a neighbourhood $U^{j} \subset f(U)$ of γ^{j} such that area $\left(f^{-n}\left(U^{j}\right)\right) \rightarrow 0$, where area denotes the standard Riemann measure on $\overline{\mathbb{C}}$.

For the proof see [PZ, Lemma 3], where $\mathrm{cl} \Lambda$ is replaced by a formally larger set $\widehat{\Lambda}:=\left\{\right.$ all limit points of the sequences $\left.z_{n}\left(\alpha^{n}\right), \alpha^{n} \in \Sigma^{d}, n \rightarrow \infty\right\}$. It is easy to see that the above conditions about the tree \mathcal{T} hold if \mathcal{T} is in $W \cap \Omega$, close enough to $\operatorname{Fr} \Omega$, as in the situation of Theorem A (see Section 5).

4. Proof of Theorem B

Step 1: Good backward branches and their number. Denote the natural extension of the one-sided shift $\sigma: \Sigma^{d} \rightarrow \Sigma^{d}$ preserving a Borel probability measure ν, i.e. the corresponding two-sided shift, by $\left(\widetilde{\Sigma}^{d}, \widetilde{\nu}, \widetilde{\sigma}\right)$. Denote the
projection $\widetilde{\Sigma}^{d} \rightarrow \Sigma^{d}$ mapping α to $\left(\alpha_{0}, \alpha_{1}, \ldots\right)$ by π_{+}. For each $\alpha \in \widetilde{\Sigma}^{d}$ denote $\pi_{+}(\alpha)$ by α^{+}.

By Pesin theory (see [PZ, Lemma 1] for the version we apply) and by the Birkhoff Ergodic Theorem applied to φ, for every $\varepsilon>0$ we can find a set $K \subset \widetilde{\Sigma}^{d}$, constants $C, \delta>0$ and a positive integer M such that $\widetilde{\nu}(K)>1-\varepsilon$ and for all $\alpha \in K$ and $n \geq 0$,

$$
\mathrm{B}(\mathrm{i})-\ln C+n\left(\int \varphi d \nu-\varepsilon / 2\right) \leq \sum_{j=0}^{n-1} \varphi\left(\sigma^{j}\left(\alpha^{+}\right)\right) \leq \ln C+n\left(\int \varphi d \nu+\varepsilon / 2\right) .
$$

$\mathrm{B}(\mathrm{ii}) b_{M}\left(\alpha^{+}\right) \subset B\left(z_{\infty}\left(\alpha^{+}\right), \delta / 3\right)$.
$\mathrm{B}\left(\right.$ iii) There exist univalent branches f_{α}^{-n} of f^{-n} on $B\left(z_{\infty}\left(\alpha^{+}\right), \delta\right)$ for all $n=1,2, \ldots$ mapping $z_{\infty}\left(\alpha^{+}\right)$to $z_{\infty}\left(\tilde{\sigma}^{-n}(\alpha)^{+}\right)$.

In the notation accompanying property (1) these branches are the continuations along $b\left(\alpha^{+}\right)$of $f_{\left(\alpha_{-n}, \ldots, \alpha_{-1}\right)}^{-n}$, i.e. the branches $f_{\left(\alpha_{-n}, \ldots, \alpha_{-1}\right), \alpha^{+}}^{-n}$.

Moreover

$$
\begin{aligned}
\mathrm{B}(\mathrm{iv}) C^{-1} \exp n\left(\chi_{\mu}(f)-\varepsilon / 2\right) & \leq\left|\left(f^{n}\right)^{\prime}\left(z_{\infty}\left(\tilde{\sigma}^{-n}(\alpha)^{+}\right)\right)\right| \\
& \leq C \exp n\left(\chi_{\mu}(f)+\varepsilon / 2\right) \\
\mathrm{B}(\mathrm{v})\left|\left(f_{\alpha}^{-n}\right)^{\prime}(x)\right| /\left|\left(f_{\alpha}^{-n}\right)^{\prime}(y)\right| & <C \text { for all } x, y \in B\left(z_{\infty}\left(\alpha^{+}\right), \delta\right) .
\end{aligned}
$$

For $-\infty \leq r \leq s \leq \infty$ and $\alpha \in \widetilde{\Sigma}^{d}$ or $\alpha \in \Sigma_{r, s}=\{1, \ldots, d\}^{\{r, r+1, \ldots, s\}}$, we denote by $C_{r, s}(\alpha)$ the cylinder $\left\{w \in \widetilde{\Sigma}^{d}: w_{j}=\alpha_{j}\right.$ for all $\left.j: r \leq j \leq s\right\}$. The projection $\widetilde{\Sigma}^{d} \ni\left(\ldots, \alpha_{j}, \ldots\right) \mapsto\left(\alpha_{r}, \ldots, \alpha_{s}\right) \in \Sigma_{r, s}$ will be denoted by $\pi_{r, s}$. Note that $C_{r, s}(\alpha)=\pi_{r, s}^{-1} \pi_{r, s}(\alpha)$.

Choose an arbitrary cylinder $C_{M}:=C_{0, M}(\beta)$, for a fixed sequence $\beta=$ $\left(\beta_{0}, \ldots, \beta_{M}\right) \in \Sigma_{M}:=\Sigma_{0, M}$, such that $\widetilde{\nu}\left(C_{M} \cap K\right) \geq \widetilde{\nu}\left(C_{M}\right) / 2$, which is possible provided $\varepsilon \leq 1 / 2$.

Denote $C_{M} \cap K$ by K^{\prime}. For all $n \geq 0$ consider $K_{n}:=\widetilde{\sigma}^{-n}\left(K^{\prime}\right)$. By the invariance of $\widetilde{\nu}$ we have $\widetilde{\nu}\left(K_{n}\right) \geq \widetilde{\nu}\left(C_{M}\right) / 2=: \xi$.

By the Birkhoff Ergodic Theorem there exists $N \geq 0$ such that

$$
\nu\left(\left\{\alpha \in K_{n}: \exists i: 0 \leq i \leq N, \widetilde{\sigma}^{-i}(\alpha) \in K^{\prime}\right\} \geq \xi / 2\right.
$$

Therefore for every $n \geq 0$ there exists N^{\prime} with $0 \leq N^{\prime} \leq N$ such that, setting $n^{\prime}:=n+N^{\prime}$, for $A\left(n^{\prime}\right):=\left\{\alpha \in K^{\prime}: \widetilde{\sigma}^{-n^{\prime}}(\alpha) \in K^{\prime}\right\}$ we have

$$
\begin{equation*}
\widetilde{\nu}\left(A\left(n^{\prime}\right)\right) \geq \xi / 2 N \tag{2}
\end{equation*}
$$

For every $\alpha \in A\left(n^{\prime}\right)$ we obtain $b_{M}\left(\widetilde{\sigma}^{-n^{\prime}}(\alpha)^{+}\right) \subset B\left(z_{M}\left(\alpha^{+}\right), \delta / 3\right)$. Indeed, for $\alpha^{\prime}=\sigma^{-n^{\prime}}(\alpha)$ we have $\pi_{0, M}\left(\alpha^{\prime}\right)=\beta$, as we have landed with α^{\prime} in C_{M}. The length of $b_{M}\left(\alpha^{\prime+}\right)$ is at most $\delta / 3$ as $\alpha^{\prime} \in K$.

Hence

$$
\begin{equation*}
f_{\alpha}^{-n^{\prime}}\left(\operatorname{cl}\left(B\left(z_{M}(\beta), 2 \delta / 3\right)\right)\right) \subset B\left(z_{M}(\beta), 2 \delta / 3\right) \tag{3}
\end{equation*}
$$

for all n large enough, more precisely for n such that

$$
\begin{equation*}
\left|\left(f_{\alpha}^{-n^{\prime}}\right)^{\prime}(x)\right|<1 / 2 \quad \text { for all } x \in B\left(z_{M}(\beta), 2 \delta / 3\right) \tag{4}
\end{equation*}
$$

By $\mathrm{B}(\mathrm{ii})-\mathrm{B}(\mathrm{iv})$ this holds for $n \geq(2 \ln C+\ln 2) /\left(\chi_{\mu}(f)-\varepsilon\right)$.
Claim. The branches $f_{\alpha}^{-n^{\prime}}$ on $B\left(z_{\infty}\left(\alpha^{+}\right), \delta\right)$ depend only on $\pi_{-n^{\prime}, M}(\alpha)$, more precisely on $\pi_{-n^{\prime},-1}(\alpha)$ as $\pi_{0, M}(\alpha)=\beta$ has been fixed, on the common domain $B:=B\left(z_{M}(\beta), 2 \delta / 3\right)$.

This is so since if two α 's in $A\left(n^{\prime}\right)$, say α and α^{\prime}, have the same block $\left(\alpha_{-n^{\prime}}, \ldots, \alpha_{-1}\right)$, then the branches $f_{\alpha}^{-n^{\prime}}$ and $f_{\alpha^{\prime}}^{-n^{\prime}}$ are continuations of the same branch at z along curves coinciding till $z_{M}(\beta)$ and next contained in the common domain B (see Figure 1).

Fig. 1
We shall not use this claim directly, but we put it to help the reader understand the proof and to simplify notation later on.

By (2) we have $\widetilde{\nu}\left(\pi_{-n^{\prime}, M}^{-1} \pi_{-n^{\prime}, M}\left(A\left(n^{\prime}\right)\right)\right) \geq \xi / 2 N$. By the Shannon-McMillan-Breiman theorem for every $\eta>0$ and all integers k large enough,

$$
\nu\left(\bigcup\left\{C_{0, k}(w): w \in \Sigma_{0, k}, \nu\left(C_{0, k}(w)\right) \leq \exp k\left(\mathrm{~h}_{\nu}(\sigma)+\varepsilon / 3\right)\right\}\right) \geq 1-\eta
$$

Setting $\eta=\xi / 4 N$ and $k=M+n^{\prime}$ we get

$$
\begin{array}{r}
\left.\widetilde{\nu}\left(\bigcup\left\{C_{-n^{\prime}, M}(w): w \in A\left(n^{\prime}\right)\right), \widetilde{\nu}\left(C_{-n^{\prime}, M}(w)\right) \leq \exp \left(n^{\prime}+M\right)\left(\mathrm{h}_{\nu}(\sigma)+\varepsilon / 3\right)\right\}\right) \\
\geq \xi / 2 N-\xi / 4 N=\xi / 2 N
\end{array}
$$

Therefore for n large enough, the number of "good backward trajectories" of length n^{\prime} can be estimated as follows:

$$
\begin{equation*}
\#\left(\pi_{-n^{\prime},-1}\left(A\left(n^{\prime}\right)\right)\right) \geq \exp n^{\prime}\left(\mathrm{h}_{\nu}(\sigma)-\varepsilon / 2\right) . \tag{5}
\end{equation*}
$$

Step 2: The sets X, Y and IFS. Now define $Y^{\prime} \subset \Sigma^{d}$ as the set of onesided sequences which are concatenations of blocks v^{k} belonging to $G_{n^{\prime}}:=$ $\pi_{0, n^{\prime}-1} \widetilde{\sigma}^{-n^{\prime}}\left(A\left(n^{\prime}\right)\right)$, that is,

$$
Y^{\prime}=\left\{\alpha=v^{0} v^{1} \ldots \in \Sigma^{d}: v^{k}=\pi_{0, n^{\prime}-1} \sigma^{k n^{\prime}}(\alpha) \in G_{n^{\prime}} \forall k=0,1, \ldots\right\},
$$

and set

$$
X^{\prime}=z_{\infty}\left(Y^{\prime}\right)
$$

Finally, define

$$
\begin{aligned}
& Y=\bigcup\left\{\sigma^{j}\left(Y^{\prime}\right): j=0, \ldots, n^{\prime}-1\right\}, \\
& X=\bigcup\left\{f^{j}\left(X^{\prime}\right): j=0, \ldots, n^{\prime}-1\right\}=z_{\infty}(Y) .
\end{aligned}
$$

For each $\alpha \in \Sigma^{d}$ and $r \leq s$ denote by $b_{r, s}$ the part of the branch $b(\alpha)$ starting from $z_{r-1}(\alpha)$ and ending at $z_{s}(\alpha)$.

Now, to put it briefly, by (3) and (4) for every $\alpha \in Y^{\prime}$ the length of $b_{k n^{\prime}(k+1) n^{\prime}-1}(\alpha)$ is less than $C 2^{-k}$ for a constant $C>0$. Hence $z_{n}(\alpha) \rightarrow$ $z_{\infty}(\alpha)$ uniformly (even exponentially fast), which proves (ii) on Y^{\prime}, hence on Y by the uniform continuity of f. By (3) and (4), X^{\prime}, and hence X, are expanding repellers for $f^{n^{\prime}}$ and f respectively.

Let us now be more precise. Let $\alpha \in Y^{\prime}$ be a concatenation of $v^{k}=$ $\pi_{0, n^{\prime}-1} \widetilde{\sigma}^{-n^{\prime}}\left(w^{k}\right)$, for $w^{k} \in A\left(n^{\prime}\right)$, for $k=0,1, \ldots$. We want to analyse $b(\alpha)$. Note that by (1),

$$
\begin{equation*}
b_{(k-1) n^{\prime}, k n^{\prime}-1}(\alpha)=f_{v^{0}, v^{1} v^{2} \ldots v^{k}}^{-n^{\prime}}\left(\ldots\left(f_{v^{k-1}, v^{k}}^{-n^{\prime}}\left(b_{0, n^{\prime}-1}\left(v^{k}\right)\right)\right)\right) . \tag{6}
\end{equation*}
$$

Assume that $n^{\prime}>M$. Then all $b(\alpha)$ for $\alpha=v^{0} v^{1} \ldots \in Y^{\prime}$ pass through $z_{M}(\beta)$ since $v^{0} \in G_{n^{\prime}}$ implies that $b_{0, n^{\prime}-1}(\alpha)$ depending only on v^{0} passes through $z_{M}(\beta)$. (There is no reason for α to belong to $A\left(n^{\prime}\right)$, which would imply passing through $z_{M}(\beta)$ by definition, as in the Claim. So for the first time in the proof we need to use $n^{\prime}>M$.)

Now we apply induction on k. Suppose that for every $\alpha \in \Sigma_{0, k n^{\prime}-1}$ which is a concatenation $v^{0} v^{1} \ldots v^{k-1}$ of blocks v^{j} in $G_{n^{\prime}}$ we have $b_{M+1, k n^{\prime}-1}(\alpha)$ $\subset B$ (see Figure 2)). Take an arbitrary $v \in G_{n^{\prime}}$ which is the truncation of $w \in A\left(n^{\prime}\right)$, more precisely $v=\pi_{0, n^{\prime}-1} \widetilde{\sigma}^{-n^{\prime}}(w)$. Then $f_{v, \alpha}^{-n^{\prime}}$ and $f_{w}^{-n^{\prime}}$ coincide on B, in particular on $b_{M, k n^{\prime}-1}(\alpha)$, since also $b_{M}\left(w^{+}\right)$is contained in B, as $w \in K$, yielding a path in \mathcal{T} joining $z_{k n^{\prime}-1}(\alpha)$ to $z_{\infty}\left(w^{+}\right)$and entirely contained in B (compare the proof of Claim). Hence, by (3) applied to $f_{w}^{-n^{\prime}}$ we get $b_{M+1,(k+1) n^{\prime}-1}(v \alpha) \subset B$, which finishes the induction.

Fig. 2
Therefore in (6) we can replace $f_{v^{j}, v^{j+1} v^{j+2} \ldots v^{k}}^{-n^{\prime}}$ by $f_{w^{j}}^{-n^{\prime}}$ for all $j=$ $0,1, \ldots, k-1$, in particular these branches of $f^{-n^{\prime}}$ act on branches of the tree \mathcal{T} in the common domain B (except $b_{0, n^{\prime}-1}\left(v^{k}\right)$).

One can view the family of branches $F_{v}:=f_{v}^{-n^{\prime}}$ for $v \in G_{n^{\prime}}$ as an iterated function system (IFS) on B. It satisfies the so-called Strong Open Set Condition, i.e. all $F_{v}(B)$ have pairwise disjoint closures. The Claim allows us to write v in place of w, where v is the truncation of w. These branches also act on (extend to) $b_{0, M}(\beta)$, the line in the tree joining z to $z_{M}(v)$ which need not be contained in B. So F_{v} need not contract it. But further iteration contracts them exponentially since $F_{v}\left(b_{0, M}(\beta)\right)$ lies already in B.

The limit set is contained in $\mathrm{cl} z_{\infty}\left(\Sigma^{d}\right)$, since the F_{v} preserve the tree \mathcal{T}.
Step 3: Proving properties (i)-(ix) in Theorem B. To prove (i) consider an arbitrary $\alpha=v^{0} v^{1} \ldots \in Y^{\prime}$ for $v^{k}=\pi_{0, n^{\prime}-1} \widetilde{\sigma}^{-n^{\prime}}\left(w^{k}\right)$, where $w^{k} \in A\left(n^{\prime}\right)$. Then, for each $k=1,2, \ldots$,

$$
\begin{equation*}
\sum_{j=0}^{k n^{\prime}-1} \varphi\left(\sigma^{j}\left(\alpha^{+}\right)\right)-\sum_{i=0}^{k-1} \sum_{j=0}^{n^{\prime}-1} \varphi\left(\sigma^{j}\left(\left(\widetilde{\sigma}^{-n^{\prime}}\left(w^{i}\right)\right)^{+}\right)\right) \leq k n^{\prime} \varepsilon / 2 \tag{7}
\end{equation*}
$$

for n large enough. This follows from the continuity of φ since $\sigma^{i n^{\prime}+j}(\alpha)$ and $\sigma^{j}\left(\left(\widetilde{\sigma}^{-n^{\prime}}\left(w^{i}\right)\right)^{+}\right)$are very close to each other for all i and $0 \leq j \ll n^{\prime}$. This is so because both one-sided sequences have the same beginning of length
$n^{\prime}-j$. Now (i) follows from the estimate $\mathrm{B}(\mathrm{i})$ on $\sum_{j=0}^{n^{\prime}-1} \varphi\left(\sigma^{j}\left(\left(\widetilde{\sigma}^{n^{\prime}}\left(w^{i}\right)\right)^{+}\right)\right.$. Passing from Y^{\prime} to Y changes only the constant C in (i).

These considerations also prove (vi). Indeed, in the case of ψ one ensures the property of K analogous to $\mathrm{B}(\mathrm{i})$, namely

$$
\begin{aligned}
\mathrm{B}(\mathrm{vi}) \quad-\ln C+n\left(\int \psi d \mu-\varepsilon / 2\right) & \leq \sum_{j=0}^{n-1} \psi\left(f^{j}\left(z_{\infty}\left(\alpha^{+}\right)\right)\right) \\
& \leq \ln C+n\left(\int \psi d \mu+\varepsilon / 2\right)
\end{aligned}
$$

following from the ν-integrability of $\psi \circ z_{\infty}$ and the Birkhoff Ergodic Theorem. Use also the property analogous to (7), for ψ and f in place of φ and σ, which follows from the continuity of ψ and the fact that the preimages of points in B under the same branch $f^{j} f_{v^{i}}^{-n^{\prime}}$ of $f^{-\left(n^{\prime}-j\right)}$ are very close to each other for $0 \leq j \ll n^{\prime}$.

The uniform (exponential) convergence in (ii) has already been proven. The injectivity and the property of X^{\prime} of being a Cantor set follow from the Strong Open Set Condition of the IFS $\left\{F_{v}\right\}$. This implies that z_{∞} is finite-to-one on Y and X is also a Cantor set.

By (5) and (i) and by the definition of pressure,

$$
\mathrm{P}\left(\left.\sigma^{n^{\prime}}\right|_{Y^{\prime}}, \sum_{j=0}^{n^{\prime}-1} \varphi \circ \sigma^{j}\right) \geq \mathrm{h}_{\nu}\left(\sigma^{n^{\prime}}\right)+n^{\prime}\left(\int \varphi d \nu-\varepsilon\right)
$$

hence easily $\mathrm{P}\left(\left.\sigma\right|_{Y}, \varphi\right) \geq \mathrm{h}_{\nu}(f)+\int_{Y} \varphi d \nu-\varepsilon$, proving (vii) for $\mathrm{P}\left(\left.\sigma\right|_{Y}, \varphi\right)$. The argument for $\mathrm{P}\left(\left.f\right|_{X}, \psi\right)$ is similar, using (vi) for ψ.

Note that one cannot pull back to Σ^{d} to refer to (vii) for $\mathrm{P}\left(\sigma, \psi \circ z_{\infty}\right)$ on Y since $\psi \circ z_{\infty}$ need not be continuous on $\partial \mathbb{D}$, even not defined, so we might not have (7).

By [M], or [P1, Sec. 3] where further references are provided, we have $\mathrm{HD}(\mu)=\mathrm{h}_{\mu}(f) / \chi_{\mu}(f)$. Consider an arbitrary $\varepsilon^{\prime}>0$ and set $t^{\prime}:=\mathrm{HD}(\mu)-\varepsilon^{\prime}$. Then $t^{\prime}=\mathrm{h}_{\mu}(f) / \chi_{\mu}(f)-\varepsilon^{\prime}$. By (iii) and (5),

$$
\begin{aligned}
\mathrm{P}\left(\left.f\right|_{X},-t^{\prime} \ln \left|f^{\prime}\right|_{X} \mid\right) & \geq \mathrm{h}_{\mathrm{top}}\left(\left.f\right|_{X}\right)-t^{\prime}\left(\chi_{\mu}(f)+\varepsilon\right) \\
& \geq \mathrm{h}_{\mu}(f)-\varepsilon-\left(\mathrm{h}_{\mu}(f) / \chi_{\mu}(f)-\varepsilon^{\prime}\right)\left(\chi_{\mu}(f)+\varepsilon\right) \\
& \geq-\varepsilon-\varepsilon \mathrm{h}_{\mu}(f) / \chi_{\mu}(f)+\varepsilon^{\prime} \chi_{\mu}(f)+\varepsilon \varepsilon^{\prime}
\end{aligned}
$$

which is positive if

$$
\varepsilon^{\prime}>\frac{\varepsilon\left(1+\mathrm{h}_{\mu}(f)\right) / \chi_{\mu}(f)}{\chi_{\mu}(f)+\varepsilon}
$$

Hence $\operatorname{HD}(X)>t^{\prime}$ as $\operatorname{HD}(X)$ is not smaller than the first zero of the pressure function $t \mapsto \mathrm{P}\left(\left.f\right|_{X},-t \ln \left|f^{\prime}\right|_{X} \mid\right)$, by the Bowen theorem (see for
example [PU]). If we choose ε small we obtain ε^{\prime} small, hence $\mathrm{HD}(X)$ arbitrarily close to $\mathrm{HD}(\mu)$, which proves (iv).

We prove (ix) similarly.
To prove (v) consider the cylinder $C_{M}=C_{0, M}(\beta)$ for β being the truncation of a sequence α dense in $\operatorname{supp} \nu$ and M large. The proof of Theorem B is finished.
5. Conclusions. Theorem B easily implies Theorem A. One builds the tree \mathcal{T} in the basin of attraction. It is only sufficient to note that the branches of the tree $R^{-1}(\mathcal{T})$ converge to $\partial \mathbb{D}$ nontangentially, so the convergence of each branch $b(\alpha)$ in \mathcal{T} implies the nontangential, in particular radial, convergence of R at $\lim R^{-1}(b(\alpha)) \in \partial \mathbb{D}$, with the same limit. One considers the pull-back $\varphi \circ\left(R^{-1}(z)\right)_{\infty}: \Sigma^{d} \rightarrow \mathbb{R}$, finds Y in Σ^{d}, maps it by $\left(R^{-1}(z)\right)_{\infty}$ with the use of $R^{-1}(\mathcal{T})$ into $\partial \mathbb{D}$ and with the use of \mathcal{T} to $X \subset \operatorname{Fr} \Omega$ as in Theorem B. The map \widehat{R} is finite-to-one on Y since z_{∞} is. The rate of the exponential convergence in (ii) and more precisely in (ii') in Remark 2 follows easily from (iii), (i) applied to $\varphi=\ln \left|g^{\prime}\right|$, and the chain rule $R^{\prime}(z)=\left(f^{-n}\right)^{\prime}\left(R\left(g^{n}(z)\right)\right) \cdot R^{\prime}\left(g^{n}(z)\right) \cdot\left(g^{n}\right)^{\prime}(z)$ for $z=r \zeta$, the integer n such that for the first time $g^{n}(z)$ is far from $\partial \mathbb{D}$, and the appropriate branch of f^{-n}; for details see [P2]. See also [P3].

Remark 3. If ν is mixing, which is the case for Gibbs ν as in Remark 1, then one can ensure that f on X is topologically mixing, that is, for any open subsets U, V of X there exists n_{0} such that $f^{n}(U) \cap V \neq \emptyset$ for all $n \geq n_{0}$.

Indeed, for n large we have by mixing $\widetilde{\nu}\left(\widetilde{\sigma}^{-n}\left(C_{M}\right) \cap C_{M}\right) \sim \nu\left(C_{M}\right)^{2}$. Hence, if $\nu(K) \approx 1$, then $\widetilde{\nu}(A(n)) \geq$ const >0 for all n large (compare (2)). We can repeat the previous construction by taking instead of one n^{\prime} two different mutually prime integers.

Remark 4. Theorem A holds in the case Ω is an immediate connected simply connected basin of attraction to a parabolic fixed point p, i.e. $p \in \operatorname{Fr} \Omega$ such that $f(p)=p$ and $f^{\prime}(p)$ is a root of unity.

Indeed, in this case $R^{-1} \circ f \circ R$ extends to $\overline{\mathbb{C}}$ to yield g which is a Blaschke product such that \mathbb{D} (and $\overline{\mathbb{C}} \backslash \mathrm{cl} \mathbb{D})$ is a basin of a parabolic fixed point for g in $\partial \mathbb{D}$. As in the conclusion that Theorem B implies Theorem A, we consider the trees \mathcal{T} and $R^{-1}(\mathcal{T})$. All the branches of $R^{-1}(\mathcal{T})$ converge (polynomially fast, but not necessarily nontangentially), and at each limit point $\zeta=\left(R^{-1}(z)\right)_{\infty}(\alpha)$ for $\alpha \in \mathcal{D}\left(z_{\infty}\right)$, in particular in Y, the radial limit $\widehat{R}(\zeta)$ coincides with $z_{\infty}(\alpha)$ by Lindelöf's theorem. Hence $z_{\infty}=$ $\widehat{R} \circ\left(R^{-1}(z)\right)_{\infty}$ on Y and all the maps involved are finite-to-one since z_{∞} is finite-to-one on Y.

References

[HK] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, with supplement by A. Katok and L. Mendoza, Cambridge Univ. Press, 1995.
[M] R. Mañé, The Hausdorff dimension of invariant probabilities of rational maps, in: Dynamical Systems (Valparaiso, 1986), Lecture Notes in Math. 1331, Springer, 1988, 86-117.
[P1] F. Przytycki, Hausdorff dimension of harmonic measure on the boundary of an attractive basin for a holomorphic map, Invent. Math. 80 (1985), 161-179.
[P2] —, Riemann map and holomorphic dynamics, ibid. 85 (1986), 439-455.
[P3] -, An improvement of J. Rivera-Letelier result on weak hyperbolicity on periodic orbits for polynomials, submitted; http://www.impan.gov.pl/~feliksp.
[PS] F. Przytycki and J. Skrzypczak, Convergence and pre-images of limit points for coding trees for iterations of holomorphic maps, Math. Ann. 290 (1991), 425-440.
[PU] F. Przytycki and M. Urbański, Fractals in the Plane, Ergodic Theory Methods, Cambridge Univ. Press, to appear; http://www.math.unt.edu/~urbanski and http://www.impan.gov.pl/~feliksp.
[PUZ] F. Przytycki, M. Urbański and A. Zdunik, Harmonic, Gibbs and Hausdorff measures for holomorphic maps, Part 1, Ann. of Math. 130 (1989), 1-40; Part 2, Studia Math. 97 (1991), 189-225.
[PZ] F. Przytycki and A. Zdunik, Density of periodic sources in the boundary of a basin of attraction for iteration of holomorphic maps: geometric coding trees technique, Fund. Math. 145 (1994), 65-77.

Institute of Mathematics
Polish Academy of Sciences
Śniadeckich 8
00-956 Warszawa, Poland
E-mail: feliksp@impan.gov.pl

[^0]: 2000 Mathematics Subject Classification: Primary 37F15; Secondary 37F35, 37D25.
 Key words and phrases: boundary of basin of attraction, iteration of rational map, Hausdorff dimension, hyperbolic dimension, coding tree, Pesin theory, Katok theory.

 Supported by Polish KBN grant 2P03A 03425.

