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Rothberger gaps in fragmented ideals
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Abstract. The Rothberger number b(I) of a definable ideal I on ω is the least car-
dinal κ such that there exists a Rothberger gap of type (ω, κ) in the quotient algebra
P(ω)/I. We investigate b(I) for a class of Fσ ideals, the fragmented ideals, and prove
that for some of these ideals, like the linear growth ideal, the Rothberger number is ℵ1,
while for others, like the polynomial growth ideal, it is above the additivity of measure.
We also show that it is consistent that there are infinitely many (even continuum many)
different Rothberger numbers associated with fragmented ideals.

1. Introduction. The investigation of gaps in the quotient Boolean
algebra P(ω)/Fin has a long and rich history. More than one hundred
years ago, Hausdorff [6, 7] constructed his celebrated (ω1, ω1)-gap. Several
decades later, Rothberger [16] produced an (ω, b)-gap where b denotes the
(un)bounding number, that is, the least size of an unbounded family in the
preorder (ωω,≤∗) defined by f ≤∗ g iff f(i) ≤ g(i) for all but finitely
many i. In fact, he proved that b is the least cardinal κ such that there are
(ω, κ)-gaps in P(ω)/Fin. It turns out that these are the only two types of
gaps that exist in ZFC. Namely, not only under the continuum hypothesis
CH, but also under appropriate forcing axioms like the proper forcing ax-
iom PFA, any gap in P(ω)/Fin is either of type (ω1, ω1) or of type (ω, b)
[19, Theorem 8.6] (1).

Much more recently, research has shifted towards gaps in more gen-
eral quotient algebras of the form P(ω)/I where I is a definable ideal on
the natural numbers. First, Mazur [12] showed that there are (ω1, ω1)-gaps
in any quotient by an Fσ ideal. Then, Todorčević [20] proved an impor-
tant general result saying that for a large class of ideals I, including the
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(1) The argument in [19] in fact shows that the conjunction of c = ℵ2 and the open
coloring axiom OCA is enough.
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Fσ ideals and the analytic P-ideals, the gap spectrum of P(ω)/I includes
the one of P(ω)/Fin, that is, every type of gap that exists in P(ω)/Fin
also exists in P(ω)/I. Essentially, every Baire embedding P(ω)/Fin →
P(ω)/I preserves (ω1, ω1)-gaps from P(ω)/Fin when I is analytic, and
it preserves all types of gaps when I is an analytic P-ideal [20, Theo-
rems 10 and 11]. Moreover, for Fσ ideals (actually for a larger class of
ideals called Mazur ideals), there exists a continuous embedding that pre-
serves all gaps [20, Theorem 12]. In particular, all quotients by Fσ ideals
or analytic P-ideals have (ω1, ω1)-gaps and (ω, b)-gaps. Todorčević also ad-
dressed the general problem of determining the gap spectrum of such quo-
tients [20, Problem 2] (see [3, Section 5] for a more detailed discussion of
this problem).

The above mentioned problem has triggered a number of interesting re-
sults. For example, Farah [4] proved that for all Fσ P-ideals I that are not
generated by a single set over Fin, there is an analytic Hausdorff gap in
P(ω)/I. As a consequence, there is an (add(N ), add(N ))-gap in such quo-
tients under the assumption add(N ) = cof(N ) where add(N ) and cof(N )
are the additivity (the smallest cardinality of a family of null sets whose
union is not null) and the cofinality of the ideal N of Lebesgue null sets, re-
spectively, and in particular, there is a (c, c)-gap under Martin’s axiom MA.
This shows that the gap spectrum of such quotients may be larger than the
one of P(ω)/Fin. More recently, Kankaanpää [11] showed that there is an
(ω, add(M))-gap in P(Q)/nwd where nwd denotes the Fσδ ideal of nowhere
dense subsets of the rational numbers Q and add(M) is the additivity of
the meager ideal M on the reals. In fact, similarly to Rothberger gaps in
P(ω)/Fin, add(M) is the least cardinal κ such that there are (ω, κ)-gaps in
this quotient.

In this paper we investigate in greater depth for which uncountable de-
finable cardinals κ there are gaps of type (ω, κ) in quotients by definable
ideals. In particular we will focus on the smallest cardinal κ for which such
gaps exist in a given quotient. Before outlining our main results, we review
some basic notions and notation concerning gaps.

Given a Boolean algebra B, A,B ⊆ B are called orthogonal if a ∧ b = 0
for all a ∈ A and b ∈ B. The pair 〈A,B〉 is a gap if there is no c ∈ B such
that a ∧ c = 0 for all a ∈ A and b ≤ c for all b ∈ B. If both A and B are
σ-directed (i.e., given C ⊆ A countable there is a ∈ A such that c ≤ a for
all c ∈ C, and similarly for B), we call 〈A,B〉 a Hausdorff gap. If, on the
other hand, one of A and B is countable, then 〈A,B〉 is a Rothberger gap.
〈A,B〉 is a linear gap of type (κ, λ) (a linear (κ, λ)-gap, for short) if A and
B are well-ordered of order type κ and λ, respectively, i.e., A = 〈aα | α < κ〉
and B = 〈bβ | β < λ〉 are both strictly increasing. Obviously, a (κ, λ)-gap



Rothberger gaps in fragmented ideals 37

is Hausdorff if both κ and λ have uncountable cofinality, and Rothberger if
one of κ and λ is ω (2).

Let I be an ideal (3) on the natural numbers ω. For A,B ⊆ ω, A ⊆I B
means that A r B belongs to I, and ∼I is the equivalence relation on
P(ω) given by A ∼I B iff A ⊆I B and B ⊆I A. Furthermore, P(ω)/I :=
P(ω)/∼I is the quotient Boolean algebra. For A ⊆ ω, let I�A := {X ∈ I |
X ⊆ A} be the restriction of the ideal I to A. Denote by Fin the ideal of
finite subsets of ω and let A ⊆∗ B iff A ⊆Fin B. Given a pointclass Γ on the
Cantor space 2ω, an ideal I is a Γ ideal if the set of characteristic functions
of elements of I belongs to Γ . The simplest non-trivial ideals are Fσ.

For an ideal I on ω we define b(I), the Rothberger number of I, as
the minimal cardinal κ such that there exists an (ω, κ)-gap in P(ω)/I.
Clearly, if b(I) exists, it is a regular uncountable cardinal. Simpler equiv-
alent ways to look at b(I) are stated in Definition 2.1 and Lemma 2.2.
Rothberger’s result mentioned above says that b(Fin) = b (and this is our
reason for using the letter b for the Rothberger number), while Todorčević’s
theorem implies that b(I) ≤ b when I is either an analytic P-ideal or an
Fσ ideal. By Solecki’s characterization [17, 18] of analytic P-ideals as ide-
als of the form Exh(ϕ) where ϕ is a lower semicontinuous submeasure on
P(ω) (see Theorem 2.3 below for details), it follows that b(I) = b for such
ideals (4).

In our work, we concentrate on a class of Fσ ideals introduced in work
of Hrušák, Rojas-Rebolledo, and Zapletal [9], namely the fragmented ideals
(see Definition 2.5). The reason for doing so is that on the one hand these
ideals are combinatorially rather simple, while on the other hand we obtain
a rich spectrum of possible values for the Rothberger number for them. An
important subclass are the gradually fragmented ideals ([9, Def. 2.1] and
Definition 2.5). Typical examples are:

• the ideal EDfin (see [8, p. 42]) whose underlying set consists of the
ordered pairs below the identity function and which is generated by
(graphs of) functions; this ideal is fragmented but not gradually frag-
mented (see also Example 2.7(3));
• the linear growth ideal IL (see [8, p. 56]) defined as follows: letting
{ai}i<ω be the interval partition of ω such that |ai| = 2i, say that

(2) By symmetry, it suffices to consider one of these two cases, and we shall always
use the notation (ω, λ)-gap for Rothberger gaps.

(3) Unless we state the contrary, our ideals are non-trivial, that is, they contain all
finite sets but do not contain ω.

(4) We include a proof of this well-known fact in Remark 2.4(7) because we could not
find a reference.
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x ∈ IL iff ∃m<ω∀i<ω(|x ∩ ai| ≤ m · (i + 1)); this ideal is fragmented
but not gradually fragmented (see also Example 2.7(4));
• the polynomial growth ideal IP (see [8, p. 56]) given by x ∈ IP iff
∃m<ω∀i<ω(|x∩ ai| ≤ (max{i, 2})m) where {ai}i<ω is the same interval
partition of ω as for IL; this ideal is gradually fragmented (see also
Example 2.7(2)).

Our main results are:

Theorem A. For a large class of fragmented, not gradually fragmented
ideals I, including EDfin and IL, we have b(I) = ℵ1, i.e., there is an (ω, ω1)-
Rothberger gap in P(ω)/I (Theorems 3.1, 3.4 and 3.6).

Theorem B.

(i) For all gradually fragmented ideals I:

• b(I) ≥ add(N ) (Corollary 4.4);
• if I is nowhere tall (see Definition 2.10), then b(I) = b (Corol-

lary 4.5);
• if I is somewhere tall (see Definition 2.10), then b(I) < b is

consistent (Theorem 6.1).

(ii) For a large class of gradually fragmented ideals I including IP ,
b(I) > add(N ) is consistent (Theorem 6.2).

(iii) There may be (simultaneously) many gradually fragmented ideals
with distinct Rothberger number (Theorem 6.3).

Theorem A provides the first examples of “absolute” Rothberger gaps
in definable quotients, that is, gaps that are not forcing destructible like
the Rothberger gaps in P(ω)/Fin or P(ω)/I for analytic P-ideals and many
other Borel ideals I. In that sense, these gaps in P(ω)/EDfin or P(ω)/IL are
similar to Hausdorff’s original gap in P(ω)/Fin. Theorem B in particular
tells us that uncountably many (consistently distinct) definable cardinals are
Rothberger numbers, and not just well-known cardinals like ℵ1, b, or add(M).

This paper is organized as follows. In Section 2 we introduce the basic
notions and results regarding ideals and forcing notions that we are going to
use throughout the text. We prove several versions of Theorem A in Section 3.
In Section 4 we introduce a forcing notion that is crucial for destroying gaps
of gradually fragmented ideals. Section 5 is devoted to the preservation
properties related to the Rothberger number of a fixed tall ideal, which are
fundamental for proving all our main consistency results in Section 6 (see
Theorem B). In Section 7 we discuss open questions related to our work.

2. Preliminaries. The following definition simplifies the notion of gaps
for ideals on ω.
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Definition 2.1. Let I be an ideal on ω, and A,B collections of subsets
of ω.

(1) The pair 〈A,B〉 is I-orthogonal if A ∩ B ∈ I for all A ∈ A and
B ∈ B.

(2) A subset C of ω separates 〈A,B〉 (with respect to I) if A ∩ C ∈ I
for all A ∈ A and B ⊆I C for all B ∈ B.

(3) The pair 〈A,B〉 is an I-gap (or a gap in P(ω)/I) if it is I-orthogonal
and no subset of ω separates it. When |A| = κ and |B| = λ, we
say that the pair is an I-(κ, λ)-gap. An I-(ω, λ)-gap is called an
I-Rothberger gap.

(4) Define b(I) as the least cardinal number λ such that there exists an
I-(ω, λ)-gap. We call this the Rothberger number of I.

To avoid inconsistencies of notation, we use the term linear (κ, λ)-gap
for gaps of type (κ, λ) (as given in the Introduction), while (κ, λ)-gap refers
to Definition 2.1. However, as justified by the following result, it does not
matter which notion of gap is used to define the Rothberger number of an
ideal.

Lemma 2.2. In the definition of b(I) as the least λ such that there exists
an I-gap 〈A,B〉 with |A| = ℵ0 and |B| = λ, the following restrictions on A
and B can be made without affecting the value of b(I).

(I) A can be either

(i) a disjoint family, even a partition of ω,
(ii) a ⊆-increasing sequence of length ω, even with union equal

to ω, or
(iii) a ⊆-increasing, (I-increasing sequence of length ω, even with

union equal to ω.

Moreover, it can be assumed that all the members of A are
I-positive.

(II) B can be either

(i) a ⊆I-increasing sequence of length λ, or
(ii) a (I increasing sequence of length λ.

Moreover, it can be assumed that all the members of B are I-positive.

Many ideals on ω can be defined in terms of submeasures. Recall that, for
a set Y , ϕ : P(Y )→ [0,∞] is a submeasure on P(Y ) if ϕ(∅) = 0, ϕ(x) <∞
for any finite x ⊆ Y , and ϕ is ⊆-increasing and finitely subadditive, that is,
ϕ(A ∪B) ≤ ϕ(A) + ϕ(B). If Y = ω, then a submeasure ϕ on P(ω) is lower
semicontinuous if ϕ(x) = limn→∞ ϕ(x ∩ n).
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Theorem 2.3. Let I be an ideal on ω.

(1) (Mazur [12]) I is Fσ iff there is a lower semicontinuous submeasure
ϕ on P(ω) such that I = Fin(ϕ) := {x ⊆ ω | ϕ(x) <∞}.

(2) (Solecki [17, 18]) I is an analytic P-ideal iff there is a lower semi-
continuous submeasure ϕ on P(ω) with I = Exh(ϕ) := {x ⊆ ω |
limn→∞ ϕ(xr n) = 0}. In particular, all analytic P-ideals are Fσδ.

Remark 2.4. (1) The Rothberger number does not exist for maximal
ideals because they have no gaps.

(2) Given X an infinite subset of ω, any I�X-gap is an I-gap. Therefore,
b(I) ≤ b(I�X).

(3) (Hadamard [5]) For any ideal I on ω, there are no I-(ω, ω)-gaps.
Therefore, if b(I) exists, it is uncountable.

(4) If b(I) exists, then it is regular.

(5) (Rothberger [16]) There exists a Fin-(ω, b)-gap. Moreover, we have
b(Fin) = b.

(6) (Todorčević [20]) If I is an analytic P-ideal or an Fσ ideal, then
b(I) ≤ b.

(7) (Folklore) If I is an analytic P-ideal, then b(I) = b. This follows
from Solecki’s characterization of analytic P-ideals (see Theorem 2.3(2))
and by an argument similar to the one for b(Fin) ≥ b. Indeed, choose a
lower semicontinuous submeasure ϕ such that I = Exh(ϕ). Now, let 〈A,B〉
be an I-orthogonal pair such that A = {An | n < ω} is a partition of ω and
|B| < b. Without loss of generality, we may assume that I is an ideal on
ω×ω and An = {n}×ω. In this notation, for x ⊆ ω×ω, x ∈ Exh(ϕ) iff for all
ε > 0 there exists an F ⊆ ω×ω finite such that ϕ(xrF ) < ε. For m < ω, we
define (An)m := {(n, k) ∈ An | k < m}. For each 0 < l < ω and B ∈ B, let
gB,l(n) be the minimal m such that ϕ((An∩B)r(An)m) < 1/(l·2n+1), which
exists because An∩B ∈ I. As {gB,l | B ∈ B, 0 < l < ω} has size < b, we can
find g ∈ ωω that dominates that set of functions. Put C :=

⋃
n<ω(An)g(n).

Clearly, An ∩ C = (An)g(n) ∈ I for every n < ω, so it remains to show that
B r C ∈ I for any B ∈ B. Let 0 < l < ω and choose N < ω such that
gB,l(n) ≤ g(n) for every n ≥ N . Let F :=

⋃
n<N (An)gB,l(n) and note that

ϕ((B r C) r F ) ≤ ϕ
(⋃
n<ω

(An ∩B r (An)gB,l(n))
)
≤
∑
n<ω

1

l · 2n+1
=

1

l
,

where the last inequality holds by the lower semicontinuity of the submea-
sure.

We introduce the following notation. The quantifiers ∀∞ and ∃∞ mean,
respectively, “for all but finitely many” and “there are infinitely many”,
where the index of the quantifier varies over a countable set. We write idω
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for the identity function from ω to ω. For f, g ∈ ωω and c < ω, we extend the
notation for operations on natural numbers to functions, that is, f · g is the
function such that (f · g)(i) = f(i) · g(i), (fg)(i) = f(i)g(i), (cf)(i) = c · f(i),
etc. We may use this notation for real valued functions as well. Also, natural
numbers may represent constant functions, that is, a natural number n may
represent the constant function from ω to {n}. This will be clear from the
context.

We define a particular case of Fσ ideals that will fit our purposes to
obtain, consistently, ideals with Rothberger number strictly below b.

Definition 2.5 ([9, Def. 2.1]).

(1) An ideal I is fragmented if there exists a partition {ai}i<ω of ω
into non-empty finite sets and, for each i < ω, a submeasure ϕi :
P(ai) → [0,∞) such that x ∈ I iff {ϕi(x ∩ ai)}i<ω is bounded (in
[0,∞)). In this case, we say that I = I〈ai, ϕi〉i<ω. Writing ϕ̄(x) =
supi<ω{ϕi(x ∩ ai)}, ϕ̄ turns out to be a lower semicontinuous sub-
measure on P(ω) with I = Fin(ϕ̄). Thus, any fragmented ideal is Fσ.

(2) A fragmented ideal I = I〈ai, ϕi〉i<ω is gradually fragmented if, for
any k < ω, there exists an m ∈ ω such that

∀l<ω∀∞i<ω∀B⊆P(ai)

[(
|B| ≤ l and ∀b∈B(ϕi(b) ≤ k)

)
⇒ ϕi

(⋃
B
)
≤ m

]
.

In this case, a function f : ω → ω witnesses the gradual fragmenta-
tion of I if, for any k < ω, f(k) satisfies the same property as m
above.

Remark 2.6. (1) |B| ≤ l can be replaced by |B| = l in the equation that
describes gradually fragmented ideals. Also, B can be restricted to pairwise
disjoint families.

(2) A dichotomy proved in [9, Thm. 2.4] implies that the gradual frag-
mentation of a fragmented ideal does not depend on the partition and the
sequence of submeasures that witness the fragmentation.

(3) If ϕ : P(Y ) → [0,∞] is a submeasure, then ϕ′(x) = dϕ(x)e (least
integer above ϕ(x) if it is < ∞, or else, it is ∞) is also a submeasure.
Therefore, if I = I〈ai, ϕi〉i<ω is a fragmented ideal, and ϕ′i : P(ai) → ω is
such that ϕ′i(x) = dϕi(x)e, then I = I〈ai, ϕ′i〉i<ω.

(4) If c is a positive real, then I〈ai, ϕi〉i<ω = I〈ai, cϕi〉i<ω.
(5) The previous facts imply that, if I is a fragmented ideal but is not

gradually fragmented, then we can find 〈ai, ϕi〉i<ω such that I = I〈ai, ϕi〉i<ω
and, for all m < ω, there exists an l < ω such that

∃∞i<ω∃B⊆P(ai)

(
|B| = l, ∀b∈B(ϕi(b) = 1) and ϕi

(⋃
B
)
> m

)
.

(6) A fragmented ideal may be trivial, e.g., choose any partition of ω
into non-empty finite sets and use the zero-measure in each piece of the
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partition. The trivial ideal clearly is gradually fragmented. A fragmented
ideal I〈ai, ϕi〉i<ω is not trivial iff ∀k<ω∃∞i<ω(ϕi(ai) > k).

Example 2.7. (1) Given a finite set Y and a real number c ≥ 2, ϕ(x) =
logc(|x|+ 1) defines a submeasure on P(Y ).

(2) Given c ∈ ωω, c ≥ 2, that converges to infinity and given any partition
P = {ai}i<ω of ω into non-empty finite sets, define Ic(P ) := I〈ai, ϕi〉i<ω
where ϕi(x) = logc(i)(|x| + 1) for x ⊆ ai. In view of Remark 2.6(3), ϕi(x)

can also be defined as the least k < ω such that |x| < c(i)k.
This ideal is gradually fragmented. Indeed, f : ω → ω, f(k) = k + 1,

witnesses the gradual fragmentation of the ideal, as

∀l<ω∀i,c(i)≥l∀B⊆P(ai)

[(
|B| ≤ l and ∀x∈B(|x| < c(i)k)

)
⇒
∣∣∣⋃B

∣∣∣ < c(i)k+1
]
.

This ideal is not trivial iff ∀k<ω∃∞i<ω(|ai| ≥ c(i)k).
The above is a generalization of the polynomial growth ideal IP , which

is Ic({ai}i<ω) where {ai}i<ω is the interval partition of ω such that |ai| = 2i

and c = max{idω, 2}.
(3) An equivalent definition of the ideal EDfin mentioned in the Introduc-

tion is given by EDfin = I〈ai, ϕi〉i<ω where {ai}i<ω is the interval partition
such that |ai| = i+ 1 and ϕi(x) = |x| for x ⊆ ai. To see that it is not grad-
ually fragmented note that, for every m < ω, l > m and i ≥ l, if B ⊆ P(ai)
is a disjoint family of size l and ∀x∈B(|x| = 1), then |

⋃
B| = l > m.

(4) Let g : ω → ωr{0} and let {ai}i<ω be a partition of ω into non-empty
finite sets. Define I = I〈ai, ϕi〉i<ω where ϕi(x) = |x|/g(i). If the ideal is
non-trivial, that is, the sequence of reals {|ai|/g(i)}i<ω is not bounded, then
I is not gradually fragmented. Indeed, for m < ω, l > m and those i such
that |ai|/g(i) ≥ l (there are infinitely many such i), whenever B ⊆ P(ai) is a
disjoint family of size l such that ∀b∈B(|b| = g(i)), then |

⋃
B|/g(i) = l > m.

It is clear that EDfin is a particular case of this ideal. Also, the linear growth
ideal IL is a particular case with {ai}i<ω the interval partition of ω such
that |ai| = 2i and g(i) = i+ 1.

(5) Let g : ω → ω r {0} and let {ai}i<ω be a partition of ω into
non-empty finite sets. Define I = I〈ai, ϕi〉i<ω where ϕi(x) = |x|1/g(i).
Then I is gradually fragmented iff ∃m<ω∀l<ω∀∞i<ω(min{l, |ai|} ≤ mg(i)). To
prove this, first note that, if such an m exists, f(k) = m · k witnesses the
gradual fragmentation of I. Indeed, for l < ω, let N < ω be such that
∀i≥N (min{l, |ai|} ≤ mg(i)) so, for i ≥ N and B ⊆ P(ai) of size ≤ l such that
all its members have size ≤ kg(i), we have |

⋃
B| ≤ (m · k)g(i).

For the other direction, assume that ∀m<ω∃l<ω∃∞i<ω(mg(i) < min{l, |ai|}).
For m < ω choose l < ω and W ⊆ ω infinite such that mg(i) < min{l, |ai|}
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for all i ∈W . Then, for any B ⊆ P(ai) of size mg(i) + 1 whose members are
singletons (such a family exists), we have |

⋃
B| > mg(i).

The following discussion about tallness for fragmented ideals will be
relevant for certain consistency results and characterizations of these ideals.
Recall that an ideal I on ω is tall if, for every X ∈ [ω]ω, there is an infinite
set in I�X. Note that the ideals of Example 2.7 are tall.

Lemma 2.8. Let I = I〈ai, ϕi〉i<ω be a fragmented ideal. The following
are equivalent:

(i) I is tall.
(ii) There exists a k such that, for every i < ω and j ∈ ai, ϕi({j}) ≤ k.

(iii) ∀m<ω∃l>m∀i<ω∀x⊆ai
(
ϕi(x) > m ⇒ ∃x′⊆x(m < ϕi(x

′) ≤ l)
)
.

(iv) The previous formula but with m = 0.
(v) The formula of (iii) with ∃m<ω instead of the universal quantifier.

Proof. To see that (i) implies (ii), assume the negation of (ii). Then we
can find W := {jk | k < ω} ⊆ ω such that ϕ̄({jk}) > k for any k < ω. Then
it is clear that I�W does not contain infinite sets.

Assume (ii) to prove (iii). Let k > 0 be as in (ii). Now, for m < ω,
l = m+ k works. For contradiction, assume that there are i < ω and x ⊆ ai
such that ϕi(x) > m and all subsets of x have submeasure not in (m,m+k].
In particular, ϕi(x) > m+k. When extracting one point of x, its submeasure
is still greater than m and, then, greater than m + k. By repeating this
process, we get ϕi(∅) > m+ k at the end, which is a contradiction.

We prove that (v) implies (i). Let m and l > m be as in (v) and assume
that W ⊆ ω is infinite. Now, for each i < ω, if ϕi(W ∩ ai) > m, then there
exists a yi ⊆ W ∩ ai with submeasure in (m, l]. If ϕi(W ∩ ai) ≤ m, put
yi = W ∩ai. Then y :=

⋃
i<ω yi ⊆W is infinite and ϕ̄(y) ≤ l, so y ∈ I�W .

Corollary 2.9. Any non-trivial tall fragmented ideal is not a P-ideal.

Proof. Let I = I〈ai, ϕi〉i<ω be a non-trivial tall fragmented ideal. Find
L ⊆ ω infinite such that {ϕi(ai)}i∈L is strictly increasing. Choose {lk}k<ω
strictly increasing by applying, recursively, Lemma 2.8(iii) and starting with
l0 = 0. Also, construct a strictly increasing sequence {Nk}k<ω of natural
numbers such that ϕi(ai) >

∑
j≤k lj + lk for all i ≥ Nk, i ∈ L. By recursion

on k, choose xki ⊆ ai for i ≥ Nk, i ∈ L, such that lk < ϕi(x
k
i ) ≤ lk+1 and

xki ∩ x
j
i = ∅ for each j < k. Indeed, for i ≥ Nk, ϕi(

⋃
j<k x

j
i ) ≤

∑
j≤k lj , so

its complement with respect to ai has submeasure greater than lk. Thus, by
Lemma 2.8(iii), there exists an xki ⊆ ai r

⋃
j<k x

j
i as required.

Put xk :=
⋃
{xki | i ≥ Nk and i ∈ L}, which is clearly in I. Now, if y ⊆ ω

is such that xk ⊆∗ y for all k < ω, we see that lk < ϕik(xkik) for some ik ∈ L
such that xkik ⊆ y. Therefore, y /∈ I.
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The following notion is relevant when characterizing the fragmented ide-
als that can, consistently, have Rothberger number strictly less than b.

Definition 2.10. An ideal I on ω is somewhere tall if there exists an
I-positive X ⊆ ω such that I�X is tall. An ideal is nowhere tall if it is not
somewhere tall.

Corollary 2.9 implies directly that any somewhere tall fragmented ideal
is not a P-ideal. On the other hand, nowhere tall fragmented ideals can
be simply characterized. For example, a fragmented ideal I = I〈ai, ϕi〉i<ω
where {|ai|}i<ω is bounded is nowhere tall. Indeed, if X ⊆ ω is I-positive,
then it is necessary that {ϕ̄({j})}j∈X is unbounded and, by Lemma 2.8, I�X
is not tall. A converse of this and the above mentioned characterization is
stated as follows.

Lemma 2.11. If I is a nowhere tall fragmented ideal on ω, then I =
I〈ai, ϕi〉i<ω where ai = {i}. Moreover, I is gradually fragmented and can
only be one of the following ideals:

(i) {x ⊆ ω | x ⊆∗ A} for some A ⊆ ω, or
(ii) the ideal generated by some infinite partition of ω into infinite sets.

Proof. Let I = I〈a′i, ϕ′i〉i<ω. By Lemma 2.8(ii), I nowhere tall means
that, for any I-positive X ⊆ ω, {ϕ̄′({j})}j∈X is unbounded. Therefore, for
any x ⊆ ω, x ∈ I iff {ϕ̄′({j})}j∈x is bounded, so I = 〈ai, ϕi〉i<ω where
ai = {i} and ϕi({i}) = dϕ̄′({i})e. Here, the identity function witnesses the
gradual fragmentation of I. Now, put Im := {i < ω | ϕi({i}) = m} for
m < ω. Note that {Im}m<ω is a partition of ω and that I is generated by
this partition. If Im is infinite for infinitely many m < ω, then we easily
get (ii). Otherwise, if there is some N < ω such that Im is finite for all
m ≥ N , then we get (i) with A :=

⋃
m<N Im.

Note that the case (i) gives us a P-ideal, so b(I) = b for such non-trivial
I by Remark 2.4(7). In the case (ii), I is not a P-ideal but we are going
to prove in Corollary 4.5 that still b(I) = b. In Section 6 we prove that
every somewhere tall ideal has, consistently, Rothberger number strictly
less than b.

In Sections 4–6, we are going to look at fragmented ideals from the forcing
point of view. Note that a fragmented ideal I = I〈ai, ϕi〉i<ω is coded by
the real 〈ai, ϕi〉i<ω, so the formula x ∈ I is clearly Fσ and expressions like
“I is gradually fragmented” and “I is tall” (see Lemma 2.8) are arithmetical
and, therefore, absolute notions.

We conclude this section with a short review of the known forcing notions
that we are going to use throughout this paper. Recall Hechler forcing D as
the poset whose conditions are ordered pairs (s, f) where s ∈ ω<ω, f ∈ ωω
and s ⊆ f . Its order is given by (t, g) ≤ (s, f) iff s ⊆ t and f ≤ g. Clearly,



Rothberger gaps in fragmented ideals 45

D adds a dominating real over the ground model, that is, a real in ωω that
is an ≤∗-upper bound of the ground model reals.

For a function h ∈ ωω, define S(ω, h) :=
∏
i<ω[ω]≤h(i), Sn(ω, h) :=∏

i<n[ω]≤h(i) and S<ω(ω, h) :=
⋃
n<ω Sn(ω, h). For x ∈ ωω and ψ : ω →

[ω]<ω, define the relation x ∈∗ ψ iff ∀∞i<ω(x(i) ∈ ψ(i)). We often refer to
functions from ω to [ω]<ω as slaloms. If h is a non-decreasing function that
converges to infinity, define LOCh, the localization forcing for h, as the poset
with conditions (s, F ) where s ∈ S<ω(ω, h) and F is a finite subset of ωω

such that |F | ≤ h(|s|). The order is given by (s′, F ′) ≤ (s, F ) iff s ⊆ s′,
F ⊆ F ′ and, for every i ∈ |s′|r |s|, {f(i) | f ∈ F} ⊆ s′(i). This forcing adds
a slalom in S(ω, h) that ∈∗-covers all the reals in ωω of the ground model.
This forcing is useful to increase add(N ) because we have

Theorem 2.12 ([1, Thm. 2.3.9], Bartoszyński’s characterization of
add(N )). If h ∈ ωω converges to infinity, then add(N ) is the least size
of a family F ⊆ ωω that cannot be ∈∗-covered by a single slalom in S(ω, h).

Recall the following strengthenings of the countable chain condition (ccc)
for posets. Let P be a forcing notion. For n < ω, a subset P ⊆ P is n-linked
if, for any F ⊆ P with |F | ≤ n, there exists a p ∈ P that extends all the
members of F . We say that P is centered if it is n-linked for all n < ω. For
an infinite cardinal number µ, say that P is µ-linked if it is equal to a union
of ≤ µ 2-linked subsets. Likewise, P is µ-centered if it is equal to a union of
≤ µ centered subsets. For µ = ℵ0, it is usual to say σ-linked and σ-centered,
respectively. Clearly, µ-centeredness implies µ-linkedness, and σ-linkedness
implies ccc. Moreover, σ-linkedness implies the Knaster condition, which
says that every uncountable subset of P has an uncountable 2-linked subset.
It is easy to verify that D is σ-centered and LOCh is σ-linked.

3. Ideals with small Rothberger number. In this section, we pre-
sent a wide class of fragmented not gradually fragmented ideals that have,
provably in ZFC, Rothberger number equal to ℵ1 (Theorem A). In fact, we
present two different arguments for this. The first (Theorem 3.1), discovered
by the first author in 2009, is based on eventually different functions and was
used originally to show b(EDfin) = ℵ1 (Example 2.7(3)); in fact it can be used
for the ideals in Example 2.7(4) as well. The second method (Theorems 3.4
and 3.6), based on independent functions, seems to apply to a larger class
of ideals (including those of Examples 2.7(3) and (4)). Still, we decided to
include the first argument since it may be useful in other contexts.

Theorem 3.1. b(EDfin) = ℵ1.

Proof. Consider 〈ai, ϕi〉i<ω as in Example 2.7(3). Construct a disjoint
family A = {An | n < ω} of subsets of ω such that, for each n < ω,
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limi→∞ |An ∩ ai| = ∞. To see that this can be done, construct, by in-
duction on n < ω, a ≤-increasing sequence 〈en〉n<ω of functions in ωω

such that en ≤ idω, en converges to infinity and en+1 − en converges to
infinity. For each i < ω, consider a bijection gi : i + 1 → ai and put
An :=

⋃
n<ω gi[[en(i), en+1(i))] and Ān :=

⋃
k≤nAk.

For each n < ω, let Nn be such that An ∩ ai 6= ∅ for every i ≥ Nn. As
limi→∞ |An ∩ ai| = ∞, there exists a pairwise eventually different family
of functions {fn,α}α<ω1 in

∏
i≥Nn(An ∩ ai), that is, if α 6= β then we have

∀∞i (fn,α(i) 6= fn,β(i)).

Construct, by induction, a ⊆EDfin
-increasing sequence B = {Bα}α<ω1

that is EDfin-orthogonal with A and such that ∀β<α∀∞n<ω(ran fn,β ⊆ Bα).
Indeed, let B0 = ∅ and Bα+1 = Bα ∪

⋃
n<ω ran fn,α. For the limit step, if

α < ω1 is limit, let Bα =
⋃
n<ω[(Bαnr Ān)∪

⋃
k<n ran fn,βk ] where {αn}n<ω

is a strictly increasing sequence converging to α and α = {βk | k < ω}
is an enumeration. Note that Bαn r Bα ⊆ Bαn ∩ Ān ∈ EDfin, Bα ∩ An ⊆⋃
k<n((Bαk ∩An) ∪ ran fn,βk) ∈ EDfin and ∀n>k(ran fn,βk ⊆ Bα).

We claim that 〈A,B〉 is an EDfin-gap. Assume the contrary, so there
exists a C that separates 〈A,B〉. By recursion on n < ω, construct a de-
creasing chain {Xn}n<ω of infinite subsets of ω and Fn ⊆ ω1 finite such that
∀α∈ω1rFn∀∞i∈Xn(fn,α(i) /∈ C). Start with X−1 = ω. Suppose that Xn has
been constructed (n ≥ −1). As C ∩An+1 ∈ EDfin, there exists an l < ω such
that ∀i<ω(|C ∩ An+1 ∩ ai| ≤ l). By recursion in j < ω choose, if possible,
Yj ⊆ ω infinite and αj ∈ ω1r{αk | k < j} such that Y0 = Xn, Yj+1 ⊆ Yj and
∀i∈Yj+1(fn+1,αj (i) ∈ C). Note that this construction must stop at l, at the
latest, that is, Yl+1 and αl cannot exist. For otherwise, as {fn+1,α}α<ω1 is a
sequence of pairwise eventually different functions, there exists an i ∈ Yl+1

such that all fn+1,αj (i) are different for j ≤ l and then, as {fn+1,αj (i) |
j ≤ l} ⊆ C ∩An+1 ∩ ai, we would have |C ∩An+1 ∩ ai| > l, which is impos-
sible. Now, once the construction stops at l0 ≤ l, Fn+1 := {αj | j < l0} and
Xn+1 := Yl0 are as required.

Let X be a pseudo-intersection of {Xn}n<ω, that is, X ⊆ ω is infinite
and X ⊆∗ Xn for all n < ω. Choose α < ω1 strictly above all the ordinals in⋃
n<ω Fn. Note that, for any n < ω, ran fn,α ⊆ Bα+1 and ∀∞i∈X(fn,α(i) /∈ C).

On the other hand, as Bα+1 ⊆EDfin
C, there exists a k < ω such that

∀i<ω(|ai ∩ Bα+1 r C| ≤ k). We can find an i ∈ X such that i ≥ Nn and
fn,α(i) /∈ C for all n ≤ k. Then {fn,α(i) | n ≤ k} ⊆ ai ∩ Bα+1 r C so, as
fn,α(i) ∈ An, it is clear that |ai ∩Bα+1 r C| > k, a contradiction.

Corollary 3.2. If I is a non-trivial ideal as defined in Example 2.7(4),
then b(I) = ℵ1.

Proof. By Remark 2.4(2), we may assume that |ai| = (i+ 1)g(i) for any
i < ω. Let {ai,j}j<i+1 be a partition of ai into sets of size g(i). Let {bi}i<ω
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be the interval partition of ω such that |bi| = i + 1 and let bi = {ki,j | j <
i + 1} be an enumeration. Define the finite-one function h : ω → ω such
that h−1[{ki,j}] = ai,j . Note that, for x ⊆ ω, x ∈ EDfin iff h−1[x] ∈ I, so
F : P(ω)/EDfin → P(ω)/I, F ([x]) = [h−1[x]], is an embedding (of Boolean
algebras).

It suffices to show that F preserves gaps. Let 〈A,B〉 be EDfin-orthogonal.
If the I-orthogonal pair 〈{h−1[A] | A ∈ A}, {h−1[B] | B ∈ A}〉 is separated
by a subset C of ω, then H(C) :=

⋃
i<ω

{
ki,j
∣∣ |C ∩ ai,j | ≥ 1

2g(i)
}

separates

〈A,B〉. Indeed, if A ∈ A then there exists an l < ω with |C ∩ h−1[A∩ bi]| =
|C∩h−1[A]∩ai| ≤ l·g(i) for all i < ω. Therefore, |H(C)∩A∩bi| ≤ 2·l for every
i < ω, so H(C) ∩A ∈ EDfin. Likewise, as ω rH(C) =

⋃
i<ω

{
ki,j
∣∣ |ai,j r C|

> 1
2g(i)

}
, B rH(C) ∈ EDfin for any B ∈ B.

We will obtain a generalization of the previous two results. But first, we
introduce the following characterization of fragmented not gradually frag-
mented ideals.

Lemma 3.3. Let I = I〈aj , ϕj〉j<ω be a fragmented not gradually frag-
mented ideal. Then there exist k < ω, a sequence 〈Ci〉i<ω of pairwise disjoint
infinite subsets of ω and a sequence {li}i<ω of natural numbers such that, for
any i < ω and j ∈ Ci, there exists a pairwise disjoint family Bj of subsets
of aj such that |Bj | = li, ∀b∈Bj (0 < ϕj(b) ≤ k) and i < ϕj(

⋃
Bj) ≤ i+ k.

Proof. As I is not gradually fragmented, there exists a k < ω such that,
for any i < ω, there is an l′i < ω and W ′i ⊆ ω infinite such that, for any
j ∈ W ′i , there exists a B′j ⊆ P(aj) of size ≤ l′i such that ∀b∈B′j (ϕj(b) ≤ k)

and ϕj(
⋃
B′j) > i. By taking complements between the members of B′j ,

it is easy to find a pairwise disjoint family B′′j ⊆ P(aj) of size ≤ l′i such
that

⋃
B′′j =

⋃
B′j and ∀b∈B′j (0 < ϕj(b) ≤ k). A similar argument to the

proof of (ii)⇒(iii) of Lemma 2.8 shows that there is a Bj ⊆ B′′j such that
i < ϕj(

⋃
Bj) ≤ i+ k.

It is clear that, for each i < ω, there exists an li ≤ l′i and W ′′i ⊆ W ′i
infinite such that |Bj | = li for all j ∈W ′′i . Finally find Ci ⊆W ′′i infinite and
pairwise disjoint.

The first part for our generalization focuses on the class of fragmented
not gradually fragmented ideals that can be characterized by uniform sub-
measures. For a finite set a, we say that a submeasure ϕ : P(a)→ [0,∞) is
uniform if it only depends on the size of the sets.

Theorem 3.4. Let I = I〈aj , ϕj〉j<ω be a fragmented not gradually frag-
mented ideal such that all the ϕj are uniform submeasures. Then b(I) = ℵ1.

Proof. Let k be as in Lemma 3.3. By multiplying all the submeasures
by 1/k (see Remark 2.6), we may assume that k = 1. Therefore, we can
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write I = I〈ai,j,k, ϕi,j,k〉i,j,k<ω, where the submeasures are uniform, in such
a way that there is a sequence {li}i<ω of natural numbers such that, for any
i < ω, there is Wi ⊆ ω × ω infinite and, for any (j, k) ∈ Wi, there exists
Bi,j,k a pairwise disjoint family of subsets of ai,j,k such that |Bi,j,k| = li,
∀b∈Bi,j,k(0 < ϕi,j,k(b) ≤ 1) and i < ϕi,j,k(

⋃
Bi,j,k) ≤ i+1. By Remark 2.4(2),

we may assume that Wi = ω×ω and ai,j,k =
⋃
Bi,j,k for all i, j, k < ω. Also,

without loss of generality, ϕi,j,k = dϕi,j,ke, so ∀b∈Bi,j,k(ϕi,j,k(b) = 1) and
ϕi,j,k(ai,j,k) = i+ 1.

Fix i, j, k < ω. For each m ≤ i+1 let si,j,k(m) be the maximal n ≤ |ai,j,k|
such that all the subsets of ai,j,k of size n have submeasure equal to m. By
uniformity, it is clear that si,j,k(m) exists and si,j,k(m) < si,j,k(m + 1) for
m ≤ i. Also, note that si,j,k(0) = 0. By induction on m ≤ i, it is easy to prove
that m · si,j,k(1) ≤ si,j,k(m). We may also assume that |ai,j,k| = si,j,k(i) + 1.

For each 0 < m < ω, i ≥ m and j, k < ω, let ni,j,k(m) and ri,j,k(m) <
si,j,k(m) be such that |ai,j,k| = si,j,k(m) · ni,j,k(m) + ri,j,k(m). Note that
m · si,j,k(1) ·ni,j,k(m) ≤ si,j,k(m) ·ni,j,k(m) ≤ |ai,j,k| ≤ li · si,j,k(1), where the
last inequality holds because |Bi,j,k| = li. Therefore, ni,j,k(m) ≤ li. Thus,
for a fixed i < ω, there is an infinite Vi ⊆ ω×ω such that, for all 0 < m ≤ i,
there is an ni(m) ≤ li such that ni,j,k(m) = ni(m) for all (j, k) ∈ Vi. Again,
by Remark 2.4(2), we may assume that Vi = ω × ω.

Fix k < ω and put

Pk =
∏{

{x ⊆ ai,j,k | |x| = si,j,k(k)}
∣∣ j < ω, i ≥ k

}
.

Say that a family F ⊆ Pk is independent if, for any finite F ⊆ F and for
all i ≥ k, there are infinitely many j’s such that either {f(i, j) | f ∈ F} is
pairwise disjoint, or its union is ai,j,k. It is easy to see that adding a Cohen
real adds a real c ∈ Pk such that, whenever F is an independent family in
the ground model, F ∪{c} is independent in the extension. Therefore, there
exists an independent family Fk ⊆ Pk of size ℵ1, say Fk = {fk,α | α < ω1}.

For k < ω let Ak :=
⋃
i,j<ω ai,j,k and, for α < ω1, let Bα :=

⋃
{fk,α(i, j) |

j, k < ω, i ≥ k}. As Ak ∩Bα =
⋃
j<ω, i≥k fk,α(i, j) and ϕi,j,k(fk,α(i, j)) = k,

we get Ak∩Bα ∈ I, that is, 〈{Ak}k<ω, {Bα}α<ω1〉 is I-orthogonal. We want
to show that it is an I-gap.

Assume that B separates 〈{Ak}k<ω, {Bα}α<ω1〉. Find Γ ⊆ ω1 uncount-
able and m < ω such that, for all α ∈ Γ , ϕ̄(Bα r B) ≤ m (here, ϕ̄(X) =
supi,j,k<ω{ϕi,j,k(X ∩ ai,j,k)}). Let k > 2m and find i ≥ k such that i+ 1− k
> 2 · ϕ̄(Ak ∩ B). Choose H ⊆ Γ of size ni(k). By independence, there
are infinitely many j’s such that {fk,α(i, j) | α ∈ H} is a disjoint fam-
ily because, in the case that its union is ai,j,k, we have ri,j,k(k) = 0 and
the family will be disjoint anyway. Work with one of these j’s. For any
α ∈ H, as ϕi,j,k(fk,α(i, j) r B) ≤ m and ϕi,j,k(fk,α(i, j)) = k, we obtain
|fk,α(i, j) r B| < 1

2 |fk,α(i, j)| = 1
2si,j,k(k). Thus, |

⋃
α∈H fk,α(i, j) r B| <
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1
2ni(k)si,j,k(k) = 1

2 |
⋃
α∈H fk,α(i, j)|, which implies that

ϕi,j,k

( ⋃
α∈H

fk,α(i, j) ∩B
)
≥ 1

2
ϕi,j,k

( ⋃
α∈H

fk,α(i, j)
)
.

But, because ri,j,k(k) < si,j,k(k), we have ϕi,j,k(
⋃
α∈H fk,α(i, j)) ≥ i+1−k >

2 · ϕi,j,k(ai,j,k ∩B), a contradiction.

Corollary 3.5. Let I be a fragmented not gradually fragmented ideal
as in Example 2.7(5). Then b(I) = ℵ1.

The second part corresponds to fragmented not gradually fragmented
ideals that can be characterized by measures.

Theorem 3.6. Let I = I〈aj , ϕj〉j<ω be a somewhere tall fragmented
ideal such that all the ϕj are measures. Then I is not gradually fragmented
and b(I) = ℵ1.

Proof. Without loss of generality, by restricting the ideal to an I-positive
set, we may assume that I is tall and that, for all j < ω and k ∈ aj ,
0 < ϕj({k}) ≤ 1. Let i < ω and Li := {j < ω | ϕj(aj) ≥ i + 1}, which is
infinite. To see that I is not gradually fragmented, we show that, for each
j ∈ Li, there exists a pairwise disjoint family Bj ⊆ P(aj) of size ≤ 2 · i such
that ∀b∈Bj (ϕj(b) ≤ 1) and ϕj(

⋃
Bj) > i.

Claim 3.7. Let x ⊆ aj be such that ϕj(x) ≥ 1. Then there exists a y ⊆ x
such that 1/2 < ϕj(y) ≤ 1.

Proof. Let y be a subset of x of maximal measure ≤ 1. If ϕj(y) ≤ 1/2,
there exists a k ∈ xr y, so since ϕj(y ∪ {k}) > 1, we get 1/2 < ϕ({k}) ≤ 1,
which contradicts the maximality of y.

Construct Bj = {bj,k | k < l} by recursion on k, where 1/2 < ϕj(bj,k)
≤ 1 (the l is defined at the end). Assume we have got bk′ for k′ < k.
If ϕj(

⋃
k′<k bj,k′) > i, then put l = k and stop the recursion. Otherwise,

ϕj(aj r
⋃
k′<k bj,k′) ≥ 1, so we get bj,k ⊆ aj r

⋃
k′<k bj,k′ by application of

the claim. If this recursion reaches 2 · i steps, then put l = 2 · i. Note that
ϕj(
⋃
Bj) =

∑
k<2·i ϕj(bj,k) > i.

As in the first part of the proof of Theorem 3.4, we may assume that I =
I〈ai,j,k, ϕi,j,k〉i,j,k<ω is given by measures and that there is a sequence {li}i<ω
of natural numbers such that, for any i, j, k < ω, there exists a pairwise
disjoint family Bi,j,k of subsets of ai,j,k such that |Bi,j,k| = li, ∀b∈Bi,j,k(0 <
ϕi,j,k(b) ≤ 1),

⋃
Bi,j,k = ai,j,k and i < ϕi,j,k(ai,j,k) ≤ i+ 1.

For i, j, k < ω, there exist ni.j,k < ω and ri,j,k ≤ k such that i + 1 =
(k + 1) · ni,j,k + ri,j,k. As (k + 1) · ni,j,k ≤ i + 1, we may assume that there
is an ni,k < ω such that ni,j,k = ni,k for all but finitely many j < ω. To see
this, construct a decreasing family {Wi,k}i,k<ω (with respect to a well order
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of ω×ω) of infinite subsets of ω such that, for any i, k < ω, there is an ni,k <
ω such that ni,j,k = ni,k for all j ∈ Wi,k. Let W be a pseudo-intersection of
{Wi,k}i,k<ω. By restricting the ideal, we may assume that W = ω (the set
corresponding to the j coordinates). Also note that, for fixed k, the sequence
{ni,k}i<ω converges to infinity because i+ 1 < (k + 1) · (ni,k + 1).

Start as in the proof of Theorem 3.4 but change “|x| = si,j,k(k)” to
“ϕi,j,k(x) ∈ (k, k + 1]” in the definition of Pk. After choosing Γ and m,
proceed as follows. Choose k > m and find i ≥ k such that ϕ̄(Ak ∩ B) <
ni,k−1. Now, for H ⊆ Γ of size ni,k−1, by independence there are infinitely
many j’s such that ni,j,k = ni,k and {fk,α(i, j) | α ∈ H} is a disjoint family.
Work with one of these j’s. As ϕi,j,k(

⋃
α∈H fk,α(i, j) r B) ≤ m · (ni,k − 1),

we have ϕi,j,k(
⋃
α∈H fk,α(i, j) ∩ B) > (ni,k − 1) · (k −m) ≥ ni,k − 1. Thus,

ϕi,j,k(B ∩ ai,j,k) > ni,k − 1, a contradiction.

Note that if I is a fragmented not gradually fragmented ideal and ω =
X ∪ Y is a disjoint union, then I�X or I�Y is not gradually fragmented.
Because of this, we can mix Theorems 3.4 and 3.6 to obtain

Corollary 3.8. Let I = I〈aj , ϕj〉j<ω be a fragmented not gradually
fragmented ideal such that, for all but finitely many j < ω, either ϕj is a
measure, or a uniform submeasure. Then b(I) = ℵ1.

To finish the section, we explain a way of how to obtain a fragmented not
gradually fragmented ideal from a fragmented ideal. Let I = I〈ai, ϕi〉i<ω
be a fragmented ideal. Now, let 〈ai,j〉i,j<ω be a partition of ω such that, for
a fixed i < ω and all j < ω, |ai,j | = |ai| and ϕi,j : P(ai,j) → [0,∞) is the
submeasure associated with 〈ai, ϕi〉, that is, if hi,j : ai,j → ai is the (unique)
strictly increasing bijection, then ϕi,j(x) = ϕi(hi,j [x]) for any x ⊆ ai,j . Let

Î be the fragmented ideal associated to 〈ai,j , ϕi,j〉i,j<ω. Roughly speaking,

Î is the ideal obtained by taking countably many copies of the ideal I.

Lemma 3.9. With the notation of the previous paragraph:

(a) if I is nowhere tall, then Î is;
(b) if I is somewhere tall, then Î is not gradually fragmented.

Proof. (a) Let X ⊆ ω be Î-positive, that is, {ϕi,j(X ∩ ai,j)}i,j<ω is an
unbounded set of non-negative reals. Then there exist W ⊆ ω infinite and a
function g : W → ω such that {ϕi,g(i)(X ∩ ai,g(i))}i∈W converges to infinity.
Put X1 =

⋃
i∈W X ∩ ai,g(i) ⊆ X and X ′1 =

⋃
i∈W (hi,g(i)[X ∩ ai,g(i)]). Clearly,

〈X1, Î�X1〉 and 〈X ′1, I�X ′1〉 are isomorphic and, as the second ideal is not
tall, neither is the first.

(b) Without loss of generality, we may assume that I is tall and non-
trivial. By Lemma 2.8, let k be such that ϕi({c}) ≤ k for all c ∈ ai and
i < ω. Now let m < ω be arbitrary. Choose an i < ω such that ϕi(ai) > m
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and let l := |ai|. Note that, for any j < ω, the family Bi,j = {{c} | c ∈ ai,j}
has size l and satisfies ∀b∈Bi,j (ϕi,j(b) ≤ k) and ϕi,j(

⋃
Bi,j) > m.

Corollary 3.10. Let I = I〈ai, ϕi〉i<ω be a somewhere tall fragmented
ideal such that, for any i < ω, either ϕi is uniform or is a measure. Then
b(Î) = ℵ1.

4. Destroying gaps of gradually fragmented ideals. In this section
we present a way to destroy Rothberger gaps for gradually fragmented ideals
by a ccc poset. Moreover, for the case of an ideal as in Example 2.7(2), we
can even find a natural cardinal invariant that is less than or equal to its
Rothberger number. As a consequence of our discussion we obtain two basic
ZFC-results: the Rothberger number of any gradually fragmented ideal is
greater than or equal to add(N ) (Corollary 4.4) and the Rothberger number
of any nowhere tall fragmented ideal is b (Corollary 4.5).

To fix some notation, for b, h ∈ ωω, let Rb :=
∏
i<ω b(i) and let

S(b, h) :=
∏
i<ω[b(i)]≤h(i). Also, for n < ω, put Sn(b, h) :=

∏
i<n[b(i)]≤h(i)

and S<ω(b, h) :=
⋃
n<ω Sn(b, h). The forcing notions and cardinal invariants

involved in the destruction of Rothberger gaps of gradually fragmented ide-
als are, respectively, parameterized versions of the localization forcings and
the cardinal invariant add(N ).

Definition 4.1 (Localization posets and cardinal invariants). Let b in
ωω be such that b > 0, and let h ∈ ωω be a non-decreasing function.

(1) Define bLoc(b, h) as the minimal size of a subset of Rb that cannot
be ∈∗-bounded by any slalom in S(b, h) (if it exists).

(2) For F ⊆ Rb, define the poset

Qh
b,F := {(s, F ) | s ∈ S<ω(b, h), F ⊆ F and |F | ≤ h(|s|)}

ordered by (s′, F ′) ≤ (s, F ) iff s ⊆ s′, F ⊆ F ′ and ∀i∈[|s|,|s′|)
(
{x(i) |

x ∈ F} ⊆ s′(i)
)
. Put Qh

b := Qh
b,Rb .

Lemma 4.2. In the notation of Definition 4.1, if h converges to in-
finity, then Qh

b,F is σ-linked and generically adds a slalom in S(b, h) that

∈∗-dominates all the reals in F . In particular, Qh
b generically adds a slalom

in S(b, h) that ∈∗-dominates all the ground model reals in Rb.

Proof. σ-linkedness is witnessed by Qs := {(t, F ) ∈ Qh
b,F | t = s and

|F | ≤ h(|s|)/2}. Convergence of h to infinity implies the density of
⋃
{Qs |

s ∈ S<ω(b, h)}. If Ġ is the Qh
b,F -name of the generic subset, then

⋃
dom Ġ

is the name of the slalom that ∈∗-dominates all the reals in F .

The Bartoszyński characterization of add(N ) (Theorem 2.12) implies
that add(N ) ≤ bLoc(b, h) when h converges to infinity.
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Theorem 4.3. Let I be a gradually fragmented ideal. Then there exists
a function b ∈ ωω and a D-name ḣ of a non-decreasing function in ωω that

converges to infinity such that the forcing D∗Qḣ
b destroys all the I-Rothberger

gaps in the ground model.

Proof. In V (the ground model), let I = I〈ai, ϕi〉i<ω be a gradually frag-
mented ideal and f ∈ ωω a function that witnesses its gradual fragmentation.
Let d ∈ ωω be a strictly increasing dominating real added generically over
V by D. In V [d], by the gradual fragmentation of I, find a non-decreasing
sequence {Nl}l<ω of natural numbers that converges to infinity and such
that

(+) ∀n≤l∀i≥Nl∀B⊆P(ai)

[(
|B| ≤ l and ∀x∈B(ϕi(x) ≤ d(n))

)
⇒ ϕi

(⋃
B
)
≤ f(d(n))

]
.

We can assume that N0 = 0. Let h : ω → ω be defined as h(i) = l when
i ∈ [Nl, Nl+1).

Back in V , let ḣ be the D-name of h and put b(i) = P(ai). Now, let

〈A,B〉 be I-orthogonal with |A| = ℵ0 and we show that D ∗ Qḣ
b adds a

subset of ω that separates 〈A,B〉; moreover, we can even find a D-name

Ḟ of a subset of Rb of size ≤ |B| such that D ∗ Qḣ
b,Ḟ adds such a subset

of ω. Put A = {An | n < ω}. Without loss of generality, we may assume
that A is a partition of ω and that, for each i < ω, ∀n>i(An ∩ ai = ∅), so
{An ∩ ai}n≤i becomes a partition of ai. For each B ∈ B, let gB ∈ ωω be
such that gB(n) = dϕ̄(B ∩An)e. Step into V [d] and, for each B ∈ B, define
xB ∈ Rb such that xB(i) =

⋃
n≤i xB(i, n) where xB(i, n) = B ∩ An ∩ ai if

ϕi(B∩An∩ai) ≤ d(n), and xB(i, n) = ∅ otherwise. Put F := {xB | B ∈ B}.
Let ψ be a slalom in S(b, h) added generically over V [d] by Qh

b,F . Now,
work in V [d][ψ]. Without loss of generality, we may assume that, for every
i < ω, we have ∀x∈ψ(i)∀n≤i(ϕi(x ∩ An) ≤ d(n)) (just take out those x of
ψ(i) that do not satisfy that property). Put C :=

⋃
i<ω

⋃
x∈ψ(i) x. This C

separates 〈A,B〉.

• C ∩An ∈ I for all n < ω, moreover, ϕi(C ∩An ∩ ai) ≤ f(d(n)) for all
i ≥ Nn. Let l < ω be such that i ∈ [Nl, Nl+1); so |ψ(i)| ≤ h(i) = l and, by
(+), as n ≤ l, C ∩An ∩ ai =

⋃
x∈ψ(i)(x ∩An) and ϕi(x ∩An) ≤ d(n) for all

x ∈ ψ(i), we deduce that ϕi(C ∩An ∩ ai) ≤ f(d(n)).

• B r C ∈ I for all B ∈ B. Note that gB ≤∗ d, so there exists an
m < ω such that, for every n ≥ m and i ≥ n, ϕi(B ∩ An ∩ ai) ≤ d(n).
Also, as xB ∈∗ ψ, we may assume (by enlarging m) that xB(i) ∈ ψ(i)
for all i ≥ m. Then B ∩ An ∩ ai ⊆ C ∩ An ∩ ai for all i ≥ n ≥ m, so
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B ∩ (
⋃
n≥mAn) ⊆ C ∩ (

⋃
n≥mAn). As An ∩B ∈ I for any n < ω, it follows

that B ⊆I C.

The previous proof also indicates that the forcing D∗LOCḣ destroys the
Rothberger gaps of the ground model for any gradually fragmented ideal I.
But, as any localization forcing LOCh′ adds a dominating real, the following
result comes as a consequence.

Corollary 4.4. If I is a gradually fragmented ideal, then add(N )
≤ b(I).

Proof. Let I = I〈ai, ϕi〉i<ω and 〈A,B〉 be I-orthogonal where A is a
partition of ω and |B| < add(N ). Let χ be a large enough regular cardinal
and M � Hχ be such that B ∪ {A,B, 〈ai, ϕi〉i<ω} ⊆M and |M | < add(N ).
As add(N ) ≤ b, there exists a real d ∈ ωω dominating M ∩ ωω. Define b, h
and F = {gB | B ∈ B} as in the proof of Theorem 4.3. Let N � Hχ be such
that M ∪ {d} ⊆ N and |N | < add(N ). As add(N ) ≤ bLoc(b, h), we can find
ψ ∈ S(b, h) that ∈∗-dominates all the reals in Rb ∩N . Like in the proof of
Theorem 4.3, we can construct C that separates 〈A,B〉.

If in the proof of Theorem 4.3 we consider a partition 〈ai〉i<ω such that
〈|ai|〉i<ω is bounded, then the resulting forcing Qh

b does not add anything
new, which means that we can destroy I-gaps in this case by just adding
dominating reals. Therefore, as a consequence of Lemma 2.11, it follows that

Corollary 4.5. If I is a nowhere tall fragmented ideal on ω, then
b(I) = b.

In the particular case of the gradually fragmented ideals in Example
2.7(2), we even get a nice lower bound for the Rothberger number for each
of these ideals.

Lemma 4.6. Let b, h ∈ ωω be functions converging to infinity such that
b ≥ 2 and h is non-decreasing. If c ∈ ωω is such that 2 ≤ c and h ≤∗ c,
and P = {ai}i<ω is a partition of ω into non-empty finite sets such that
|ai| ≤ log2 b(i) for all but finitely many i < ω, then min{bLoc(b, h), b} ≤
b(Ic(P )). This also means that the forcing D ∗ Q̇h

b destroys the Rothberger
gaps of Ic(P ).

Proof. As b′ ≤∗ b implies bLoc(b, h) ≤ bLoc(b
′, h), it is enough to assume

that b(i) = 2|ai| for all i < ω. Note that, in the proof of Theorem 4.3, any
sequence {Nl}l<ω such that c(i) ≥ l for all i ≥ Nl serves for the purposes of
that proof, so it can be defined in the ground model. In particular, choose
such a sequence with the property ∀i∈[Nl,Nl+1)(h(i) = l ≤ c(i)) for all but
finitely many l < ω. Define h′(i) = l when i ∈ [Nl, Nl+1). By the argument
of the same proof, min{bLoc(b, h

′), b} ≤ b(Ic(P )) and, as h′ =∗ h, it is clear
that bLoc(b, h

′) = bLoc(b, h).
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Remark 4.7. It is consistent that b < bLoc(b, h) for every b, h ∈ ωω such
that b > 0 and h is a non-decreasing function that converges to infinity. This
is because the forcing Qh

b has the property that, for every name ġ of a real
in ωω, there exists a real f ∈ ωω in the ground model such that  f ′ 6≤∗ ġ
for every real such that f ′ 6≤∗ f . The proof of this property is the same as
the one in [14] for the standard forcing that adds an eventually different
real.

By a book-keeping argument, if κ ≤ λ are uncountable regular cardinals
and λ<κ = λ, it is possible to perform a finite support iteration (denoted
by fsi for short) Pλ = 〈Pα, Q̇α〉α<λ alternating between suborders of D of
size < κ and posets of the form Qh

b such that, for any α < λ and Pα-

names ḃ and ḣ, there is a β ∈ (α, λ) such that Q̇β is Qḣ
ḃ
, likewise for any

Pα-name for a suborder of D of size < κ. Known results for preservation
properties in fsi (see, e.g., [2] and [13]) imply that, in the Pλ-extension,
b = κ and bLoc(b, h) = λ for any b, h as above (in the case that the cardinal
exists).

5. Preservation properties. We present some properties that help
us to keep the Rothberger number of a tall fragmented ideal small under
certain forcing extensions. Actually, we present a new cardinal invariant that
serves as upper bound for some of these Rothberger numbers, and study a
property for keeping this invariant small under generic extensions. Many
ideas involved in this are inspired by [15]. At the end of this section, we
discuss a property for keeping add(N ) small in forcing extensions.

For this section, fix I = I〈ai, ϕi〉i<ω a tall fragmented ideal, 2ā :=
{P(ai)}i<ω, L̄ := {Ln}n<ω a partition of ω into infinite sets, An :=

⋃
i∈Ln ai

and A := {An | n < ω}, which is also a partition of ω into infinite sets. Let
O(I, L̄) be the collection of all the subsets of ω that are I-orthogonal to A.
In our applications, we will have limi→∞ ϕi(ai) = ∞ (a useful assumption
for applying Theorem 5.2 and for saying something about the Rothberger
number of I), but this is not a general requirement for the results in this
section.

Definition 5.1. Let ρ ∈ ωω, ρ > 0.

(1) For ψ ∈
∏
i<ω P(P(ai)) and Y ∈ O(I, L̄), define

ψ 3′ Y iff ∀n<ω∃∞i∈Ln(ψ(i) 3 Y ∩ ai).
(2) bρ(I, L̄) is the least size of a subset Ψ of S(2ā, ρ) such that, for any

Y ∈ O(I, L̄), there exists a ψ ∈ Ψ such that ψ 3′ Y .

The reason for writing ψ 3′ Y instead of Y ∈′ ψ lies in the nature of
the problem of preserving the cardinal invariant bρ(I, L̄). This is related to
a general setting, explained e.g. in [1, Sects. 6.4, 6.5] and [13, Sect. 2], for
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preserving cardinal invariants of the form b< in generic extensions, where
< is an Fσ relation between real numbers and b< is defined as the smallest
size of a set of reals that is <-unbounded. In the case of this definition, we
are interested in < to be the relation 63′ defined on S(2ā, ρidω)×O(I, L̄), so

b< = bρ
idω

(I, L̄). The properties presented in Definitions 5.5 and 5.11 are
particular cases of one of the properties studied in the general setting.

From now on, fix E ⊆ ωω such that

(i) for any e ∈ E , e is non-decreasing, converges to infinity, e ≤ idω
and idω − e converges to infinity;

(ii) if e ∈ E , then there exists an e′ ∈ E such that e+ 1 ≤∗ e′;
(iii) if C ⊆ E is countable, there exists an e ∈ E that ≤∗-dominates all

the reals in C.
For b, ρ ∈ ωω, put S̃(b, ρ) :=

⋃
e∈E S(b, ρe). For L ⊆ ω, define S(b, ρ)�L :=

{ψ�L | ψ ∈ S(b, ρ)}, and likewise for S̃(b, ρ)�L. For m < ω, put

Pm,i(I) := {x ⊆ ai | ϕi(x) ≤ m},
S(I, L,m, ρ) := S({Pm,i(I)}i<ω, ρ)�L,

S̃(I, L,m, ρ) := S̃({Pm,i(I)}i<ω, ρ)�L.

Note that S̃(b, 1) = S(b, 1) and S̃(I, L,m, 1) = S(I, L,m, 1).

Theorem 5.2. If limi→∞ ϕi(ai)/ρ(i) =∞, then b(I) ≤ bρ(I, L̄).

Proof. We begin with two claims.

Claim 5.3. Let L ⊆ ω be infinite, A :=
⋃
i∈L ai, n < ω, f ∈ ωω, and

let {ψk}k<ω be a sequence of slaloms such that ψk ∈ S(I, L, f(k), ρ). Then
there exists a Z ∈ I�A such that

(i) ∀∞i∈L(ϕi(Z ∩ ai) > n), and
(ii) ∀k<ω∀∞i∈L∀x∈ψk(i)(x ∩ Z = ∅).
Proof. For k < ω, put mk := (k + 1) · maxj≤k{f(j)}. Let {Nk}k<ω

be a strictly increasing sequence of natural numbers such that ϕi(ai) >
n+mk ·ρ(i) for all i ≥ Nk. Now, by tallness, find l < ω as in Lemma 2.8(iii)
applied for m = n. For i ∈ L∩[Nk, Nk+1), as ϕi(

⋃
j≤k

⋃
x∈ψj(i) x) ≤ mk ·ρ(i),

air
⋃
j≤k

⋃
x∈ψj(i) x has submeasure greater than n, so, again by tallness, it

contains a zi with submeasure in (n, l]. Therefore, Z =
⋃
i∈L∩[N0,ω) zi is as

required.

Claim 5.4. Let L ⊆ ω be infinite, A :=
⋃
i∈L ai, ψ ∈ S(2ā, ρ)�L and

n < ω. Then there exists a Zψ ∈ I�A such that

(i) ∀∞i∈L(ϕi(Zψ ∩ ai) > n), and
(ii) ∀k<ω∀∞i∈L∀x∈ψ(i)(ϕi(x) ≤ k ⇒ x ∩ Zψ = ∅).
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Proof. For each k < ω put ψk(i) = {x ∈ ψ(i) | ϕi(x) ≤ k} and apply the
previous claim with f = idω.

Now, let Ψ ⊆ S(2ā, ρ) be a witness of bρ(I, L̄). For each ψ ∈ Ψ and
n < ω, let Zψ,n ∈ I�An be as in Claim 5.4 applied to Ln, An, ψ�Ln and n.
Put Zψ :=

⋃
n<ω Zψ,n, which is clearly in O(I, L̄). It is enough to prove

that the orthogonal pair 〈A, {Zψ | ψ ∈ Ψ}〉 is an I-gap. Let X ∈ O(I, L̄)
and choose ψ ∈ Ψ such that ψ 3′ X. We show that for any n < ω there
is some i < ω such that ϕi(ai ∩ Zψ r X) > n. Choose m < ω such that
ϕ̄(X ∩ An) ≤ m, that is, ϕi(X ∩ ai) ≤ m for all i ∈ Ln. By Claim 5.4,
choose a large enough i ∈ Ln such that ψ(i) 3 X ∩ ai, ϕi(Zψ ∩ ai) > n and
X ∩ ai ∩ Zψ = ∅, so ϕi(ai ∩ Zψ rX) > n.

Definition 5.5. Let ρ ∈ ωω, ρ > 0, P a poset and θ a cardinal number.
Consider the following statement:

(+<θ
P,L̄,I,ρ) for every m,n < ω and ψ̇ a P-name for a real in S̃(I, Ln,m, ρ),

there exists a non-empty Ψ ⊆ S̃(I, Ln,m, ρ) of size < θ such
that, for any ψ′′ ∈ S(2ā, ρidω), if ∀ψ′∈Ψ∃∞i∈Ln(ψ′′(i) ⊇ ψ′(i)),
then

 ∃∞i∈Ln(ψ′′(i) ⊇ ψ̇(i)).

We write (+1
P,L̄,I,ρ) for (+<2

P,L̄,I,ρ). Note that the previous property is simpler

for the case ρ = 1.

This property serves to keep the cardinal bρ
idω

(I, L̄) small in generic
extensions. From now on, fix an uncountable regular cardinal θ. We say that
Ψ ′′ ⊆ S(2ā, ρidω) is a <θ-ρ-strong covering family (with respect to I and L̄)

if, for any Ψ ⊆
⋃
m,n<ω S̃(I, Ln,m, ρ) of size < θ, there exists a ψ′′ ∈ Ψ ′′ such

that, for all n < ω and ψ ∈ Ψ such that domψ = Ln, ∃∞i∈Ln(ψ′′(i) ⊇ ψ(i)).

Lemma 5.6.

(a) bρ
idω

(I, L̄) ≤ |Ψ ′′| for any <θ-ρ-strong covering family Ψ ′′.
(b) If (+<θ

P,L̄,I,ρ) holds, then P preserves <θ-ρ-strong covering families.

(c) If 〈Pα, Q̇α〉α<θ is a fsi of non-trivial ccc posets, then it adds a <θ-ρ-
strong covering family of size θ (of Cohen reals).

(d) (+<θ
P,L̄,I,ρ) is preserved by fsi of ccc posets.

Proof. (a) Let Y ∈ O(I, L̄) and, for n < ω, put ψn ∈ S̃(I, Ln,
dϕ̄(Y ∩ An)e, ρ) where ψn(i) = {Y ∩ ai} for all i ∈ Ln. As Ψ ′′ is a <θ-
ρ-strong covering family, there exists a ψ′′ ∈ Ψ ′′ such that, for all n < ω,
∃∞i∈Ln(ψ′′(i) ⊇ ψn(i)). Therefore, ψ′′ 3′ Y .

(b) Let Ψ ′′ be a <θ-ρ-strong covering family. Let ν < θ and, for n,m < ω,

let Ψ̇n,m = {ψ̇n,m,α | α < ν} be P-names for reals in S̃(I, Ln,m, ρ). For each

n,m < ω and α < ν, let Ψ ′m,n,α ⊆ S̃(I, Ln,m, ρ) be a witness of (+<θ
P,L̄,I,ρ) for
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n, m and ψ̇n,m,α, so it has size < θ. As Ψ ′′ is a <θ-ρ-strong covering family,
there exists a ψ′′ ∈ Ψ ′′ such that ∃∞i∈Ln(ψ′′(i) ⊇ ψ′(i)) for all ψ′ ∈ Ψ ′n,m,α,

n,m < ω and all α < ν. Thus, P forces that ∃∞i∈Ln(ψ′′(i) ⊇ ψ̇n,m,α).

(c) Consider Cohen forcing C = S<ω(2ā, ρidω) ordered by end exten-
sion. If ψ̇′′ is a C-name for the Cohen generic real, it is clear that, for
any n < ω and ψ ∈ S(2ā, ρidω)�Ln, C forces that ∃∞i∈Ln(ψ̇′′(i) = ψ(i)).

Now, as 〈Pα, Q̇α〉α<θ adds Cohen reals at each limit step, we see that
{ψ̇′′α | α < θ limit} is forced by Pθ to be a <θ-ρ-strong covering family.

(d) is proved by standard argument for preservation properties in fsi (see
e.g. [1, Thm. 6.4.12.2] and [2]).

Now, we explore some conditions for a poset to have the property of
Definition 5.5.

Lemma 5.7. Let ν < θ be an infinite cardinal. If P is a ccc ν-centered
poset, then (+<θ

P,L̄,I,ρ) holds.

Proof. Let P =
⋃
α<ν Pα where each Pα is centered. Fix n,m < ω and let

ψ̇ be a P-name for a real in S̃(I, Ln,m, ρ). By ccc-ness, we can find e ∈ E such
that ψ̇ is forced to be in S(I, Ln,m, ρe). For each α < ν and i ∈ Ln, choose
a ψ′α(i) ⊆ Pm,i(I) of size ≤ ρ(i)e(i) such that ∀p∈Pα(p 1 ψ′α(i) 6= ψ̇(i)).
This is possible by the centeredness of Pα. Then ψ′α ∈ S(I, Ln,m, ρe). Put
Ψ := {ψ′α | α < ν}.

We prove that Ψ witnesses (+<θ
P,L̄,I,ρ) for ψ̇. Indeed, let ψ′′ ∈ S(2ā, ρidω)

and assume ∃∞i∈Ln(ψ′′(i) ⊇ ψ′α(i)) for any α < ν. We show that  ∃∞i∈Ln(ψ′′(i)

⊇ ψ̇(i)). Let p ∈ P and i0 ∈ ω be arbitrary, choose α < ν such that p ∈ Pα
and also find i > i0 in Ln such that ψ′′(i) ⊇ ψ′α(i). By definition of ψ′α(i),

there exists a q≤p such that qψ′α(i)= ψ̇(i) so, clearly, qψ′′(i)⊇ ψ̇(i).

We also want conditions which imply that a poset as in Definition 4.1 has
the preservation property of Definition 5.5. The following notion is useful
for this.

Definition 5.8 (Kamo and Osuga [15, Def. 5]). Let π, ρ ∈ ωω. A poset
Q is 〈π, ρ〉-linked if there is a sequence 〈Qi,j〉i<ω,j<ρ(i) of subsets of Q such
that

(a) Qi,j is π(i)-linked, and
(b) for any q ∈ Q, we have ∀∞i<ω∃j<ρ(i)(q ∈ Qi,j).
It is clear that, if π ≥∗ 2, then any 〈π, ρ〉-linked poset is σ-linked.

Lemma 5.9. Let π ∈ ωω be such that
∣∣[P(ai)]

≤ρ(i)i
∣∣ ≤ π(i) for all but

finitely many i < ω. If Q is a 〈π, ρ〉-linked poset, then (+1
Q,L̄,I,ρ) holds.
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Proof. Let 〈Qi,j〉i<ω,j<ρ(i) witness the 〈π, ρ〉-linkedness of Q. Fix n,m <

ω and let ψ̇ be a Q-name for a real in S̃(I, Ln,m, ρ). By ccc-ness, find e ∈ E
such that ψ̇ is a Q-name for a real in S(I, Ln,m, ρe). For all but finitely many

i ∈ Ln, for every j < ρ(i), as π(i) ≥
∣∣[P(ai)]

≤ρ(i)i
∣∣ and Qi,j is π(i)-linked,

there is a Yi,j ⊆ Pm,i(I) of size ≤ ρ(i)e(i) such that ∀p∈Qi,j (p 1 ψ̇(i) 6= Yi,j).
Put ψ′(i) :=

⋃
j<ρ(i) Yi,j .

There exists an e′ ∈ E such that e + 1 ≤∗ e′, so we may assume, by
changing ψ′(i) at finitely many i if necessary, that ψ′ ∈ S(I, Ln,m, ρe

′
).

Then {ψ′} witnesses (+1
Q,L̄,I,ρ) for ψ̇. Indeed, let ψ′′ ∈ S(2ā, ρidω) be such

that ∃∞i∈Ln(ψ′′(i) ⊇ ψ′(i)). For p ∈ Q and i0 ∈ ω, choose an i > i0 in Ln and
a j < ρ(i) such that ψ′′(i) ⊇ ψ′(i) and p ∈ Qi,j . Then there exists a q ≤ p

such that q  Yi,j = ψ̇(i), so clearly q  ψ′′(i) ⊇ ψ′(i) ⊇ Yi,j = ψ̇(i).

Lemma 5.10. Let b, h ∈ ωω be non-decreasing functions with b > 0 and
h converging to infinity. Let π, ρ ∈ ωω. If {mk}k<ω is a non-decreasing
sequence of natural numbers that converges to infinity and, for all but finitely
many k < ω, k · π(k) ≤ h(mk) and k · |[b(mk − 1)]≤k|mk ≤ ρ(k), then Qh

b,F
is 〈π, ρ〉-linked for any F ⊆ Rb.

Proof. Choose 1 < M < ω such that, for any k ≥ M , k · π(k) ≤ h(mk)
and k · |[b(mk−1)]≤k|mk ≤ ρ(k). Find a non-decreasing sequence {nk}k<ω of
natural numbers that converges to infinity such that, for all k ≥M , we have
nk ≤ k,mk and |Snk(b, h)| ≤ k. Let Sk := {s ∈ Smk(b, h) | ∀i∈[nk,mk)(|s(i)|
≤ k)} when k ≥M . Note that

|Sk| ≤ |Snk(b, h)| ·
∣∣∣ ∏
i∈[nk,mk)

[b(i)]≤k
∣∣∣ ≤ k · |[b(mk − 1)]≤k|mk ≤ ρ(k).

For each k ≥ M and s ∈ Sk, define Qk,s := {(t, F ) ∈ Qh
b,F | t = s and

|F | · π(k) ≤ h(mk)}. It is clear that Qk,s is π(k)-linked for all s ∈ Sk. To
conclude that Qh

b,F is 〈π, ρ〉-linked, we show that, given (t, F ) ∈ Qh
b,F , for all

but finitely many k we can extend (t, F ) to some condition in Qk,s for some
s ∈ Sk. Choose N < ω such that M, |F | ≤ N and |t| ≤ nN . Extend (t, F )
to (t′, F ) ∈ Qh

b,F with |t′| = nN . Now, for all k ≥ N , we can extend (t′, F )

to (s, F ) ∈ Qh
b,F such that s ∈ Sk because |F | ≤ k. For the same reason, we

get |F | · π(k) ≤ k · π(k) ≤ h(mk), and thus (s, F ) ∈ Qk,s.

We introduce the following property for keeping add(N ) small in forcing
extensions. This is a generalization of [10, Def. 3.3] that is useful for posets
that satisfy some linkedness as in Definition 5.8.

Definition 5.11. Let Ḡ := {gk}k<ω be a sequence of functions in ωω

that converge to infinity. Put S(ω, Ḡ) :=
⋃
k<ω S(ω, gk) and, for a forcing

notion P, define the following property:
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(+<θ
P,Ḡ) For any k < ω and any P-name ψ̇ of a real in S(ω, gk), there

exists a non-empty Ψ ⊆ S(ω, Ḡ) of size < θ such that, for every
f ∈ ωω, if ∀ψ′∈Ψ (f /∈∗ ψ′), then  f /∈∗ ψ̇.

We write (+1
P,Ḡ) for (+<2

P,Ḡ).

A family C ⊆ ωω is called <θ-∈∗-Ḡ-strongly unbounded if, for any Ψ ⊆
S(ω, Ḡ) of size < θ, there exists an f ∈ C such that f /∈∗ ψ for any ψ ∈ Ψ .

Note that, by Theorem 2.12 for h = g0, if C ⊆ ωω is <θ-∈∗-Ḡ-strongly
unbounded, then add(N ) ≤ |C|.

The following result is proved like Lemma 5.6. In fact, it is connected
with results of [10, Sect. 3] (see also [2, Subsect. 1.3]) and the proofs are the
same.

Lemma 5.12.

(a) If (+<θ
P,Ḡ) holds, then P preserves <θ-∈∗-Ḡ-strongly unbounded fami-

lies.
(b) If 〈Pα, Q̇α〉α<θ is a fsi of non-trivial ccc posets, then it adds a <θ-
∈∗-Ḡ-strongly unbounded family of size θ (of Cohen reals).

(c) (+<θ
P,Ḡ) is preserved by fsi of ccc posets.

We conclude this section by presenting some conditions saying when a
poset has the property of Definition 5.11.

Lemma 5.13. Let ν < θ be an infinite cardinal. If P is ν-centered, then
(+<θ

P,Ḡ) holds.

Proof. The argument is as in [10, Thm. 3.6] and [2, Lemma 6].

Lemma 5.14. Let π, ρ ∈ ωω be such that limk→∞ π(k) =∞ and assume
that g ∈ ωω converges to infinity. Then there is a ≤∗-increasing definable (5)
sequence Ḡ = {gk}k<ω with g0 = g and such that (+1

Q,Ḡ) holds for any 〈π, ρ〉-
linked poset Q.

Proof. This is a direct consequence of the following fact.

Claim 5.15. Let {mk}k<ω be a strictly increasing sequence of natural
numbers such that g(k) < π(mk) < π(mk+1), and let g′ ∈ ωω be such that
g′(k)≥g(k)·ρ(mk) for all but finitely many k<ω. Then, if Q is 〈π, ρ〉-linked
and ψ̇ is a Q-name for a real in S(ω, g), there exists a ψ′ ∈ S(ω, g′) such
that, for any f ∈ ωω with f /∈∗ ψ′, we have  f /∈∗ ψ̇.

Proof. Let 〈Qk,j〉k<ω,j<ρ(k) witness the linkedness of Q. For any k < ω

and j < ρ(mk), put zk,j := {l < ω | ∃q∈Qmk,j (q  l ∈ ψ̇(k))}. As Qmk,j is

π(mk)-linked and g(k) < π(mk), by linkedness it is clear that |zk,j | ≤ g(k).

(5) That is, a continuous function (π, ρ, g) 7→ Ḡ (with Borel domain) can be con-
structed.
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Put ψ′(k) :=
⋃
j<ρ(mk) zk,j , so it is clear that ψ′ ∈ S(ω, g′). Let f ∈ ωω be

such that ∃∞k<ω(f(k) /∈ ψ′(k)) and we show that  ∃∞k<ω(f(k) /∈ ψ̇(k)). For
p ∈ Q and k0 < ω, find k > k0 and j < mk such that f(k) /∈ ψ′(k) and
p ∈ Qmk,j . In particular, f(k) /∈ zk,j . By definition of zk,j , p 1 f(k) ∈ ψ̇(k),

so there is a q ≤ p such that q  f(k) /∈ ψ̇(k).

6. Consistency results. In this section, we prove all our main consis-
tency results for fragmented ideals (Theorem B). The first result says that it
is consistent that the Rothberger numbers for all somewhere tall fragmented
ideals are strictly less than b.

Theorem 6.1. Let µ ≤ κ be regular uncountable cardinals and λ a car-
dinal such that λ<κ = λ. Then there exists a ccc poset that forces b(I) ≤ µ
for any somewhere tall fragmented ideal I, add(N ) = µ, b = κ and c = λ.
In particular, this poset forces b(I) = add(N ) = µ for any somewhere tall
gradually fragmented ideal I.

Proof. We perform a fsi Pλ = 〈Pα, Q̇α〉α<λ alternating between Cohen
forcing C, subalgebras of LOCidω of size < µ and subalgebras of D of size < κ
and, by a book-keeping argument, we make sure that all those subalgebras
of the extension are used in the iteration (this is possible because λ<κ = λ).
By known techniques from [2] (see also [13, Sect. 3]), Pλ forces add(N ) = µ,
b = κ and c = λ.

In V , fix a partition L̄ = {Ln}n<ω of ω into infinite sets. Now, in Vλ,
let I = I〈ai, ϕi〉i<ω be a somewhere tall fragmented ideal and, by
Remark 2.4(2), without loss of generality, assume that it is tall and
limn→∞ ϕi(ai) = ∞. As I is represented by a real number, there exists
α < λ such that 〈ai, ϕi〉i<ω ∈ Vα. By Lemma 5.6(c), there is a <µ-1-strong
covering family Ψ ′′ of size µ in Vβ where β := α+µ (ordinal sum). By Lem-
mas 5.7 and 5.6, P[β,λ) = Pλ/Pβ (the remaining part of the iteration from β)

satisfies (+<µ
·,L̄,I,1), so this <µ-1-strong covering family Ψ ′′ is preserved in Vλ.

By Theorem 5.2, b(I) ≤ b1(I, L̄) ≤ |Ψ ′′| = µ.

The last assertion follows from Corollary 4.4.

The next result shows that, for an ideal as in Example 2.7(2), we can find
a poset that puts its Rothberger number strictly between add(N ) and b. In
particular, this holds for the polynomial growth ideal IP as well.

Theorem 6.2. Let µ ≤ ν ≤ κ be uncountable regular cardinals, λ a
cardinal such that λ<κ = λ. Let I = Ic(P ) be a gradually fragmented ideal
as in Example 2.7(2) and assume that it is non-trivial. Then there exists
a ccc poset that forces add(N ) = µ, b(I) = ν, b = κ and c = λ.
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Proof. By Remark 2.4(2), it is enough to assume that |ai| ≥ c(i)i for
every i < ω (this assumption is only used to prove b(I) ≤ ν in the forcing
extension defined below). Let h = c and let b ∈ ωω be any function such
that b(i) ≥ 2|ai| for any i < ω. By Lemma 5.10, we can find π, ρ ∈ ωω

such that π converges to infinity and Qh
b,F is 〈π, ρ〉-linked for any F ⊆ Rb.

Also, by Lemma 5.14, we find Ḡ such that (+1
P,Ḡ) holds for any 〈π, ρ〉-linked

poset P.

Perform a fsi Pλ = 〈Pα, Q̇α〉α<λ alternating between Cohen forcing C,
subalgebras of LOCidω of size < µ, Qh

b,F with |F| < ν and subalgebras
of D of size < κ. By a book-keeping argument, we make sure that all such
possible posets of the extension are used in the iteration. From the methods
of [2] (see also [13, Sect. 3]) it follows that add(N ) ≥ µ, b = κ and c = λ
in Vλ.

We prove that add(N )≤µ in Vλ. By Lemmas 5.13 and 5.12, a <µ-∈∗-Ḡ-
strongly unbounded family of size µ is added in Vµ and it is preserved in Vλ,
so add(N ) ≤ µ.

Now, in Vλ, ν ≤ bLoc(b, h) (this implies ν ≤ b(I) by Lemma 4.6). Indeed,
let F ⊆ Rb of size < ν, so there is some α < λ such that F ∈ Vα. Now, at
some point of the remaining part of the iteration, the poset Qh

b,F is used to
add a slalom ψ ∈ S(b, h) that ∈∗-dominates F .

Finally, we prove that b1(I, L̄) ≤ ν is true in Vλ (so b(I) ≤ ν by The-
orem 5.2). Indeed, by Lemmas 5.7 and 5.6, the iteration adds a <ν-1-
strong covering family of size ν in Vν that is preserved in Vλ. Therefore,
b1(I, L̄) ≤ ν.

The following result states that, no matter which (uncountable regular)
values one wants to force for add(N ) and b, it is consistent to find as many as
possible gradually fragmented ideals that have pairwise different Rothberger
numbers between add(N ) and b.

Theorem 6.3. Let µ ≤ κ be uncountable regular cardinals, δ ≤ κ an
ordinal, {νξ}ξ<δ a non-decreasing sequence of regular cardinals in [µ, κ] and
λ a cardinal such that λ<κ = λ. Then there is a sequence {Iξ}ξ<δ of tall
gradually fragmented ideals in the ground model and a ccc poset that forces
add(N ) = µ, b = κ, c = λ and b(Iξ) = νξ for all ξ < δ.

For the proof of this theorem, we use another characterization of the
bounding number b. To fix some notation, define an elementary exponenti-
ation operation σ : ω×ω → ω by σ(n, 0) = 1 and σ(n,m+1) = nσ(n,m). Let
ρ : ω → ω be such that ρ(0) = 2 and ρ(i+ 1) = σ(ρ(i), i+ 3). For a function

x ∈ ωω define, by recursion on k < ω, x[0] = x and x[k+1] = 2ρ
2·x[k]

. Now, let

Rρ := {x ∈ ωω | ∀k<ω∀∞i<ω(x[k](i) ≤ ρ(i+ 1))}.
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Lemma 6.4. Let x ∈ Rρ. Then

(a) idω ∈ Rρ.
(b) The functions 2x, xidω ·ρidω

, idω ·x and y defined as y(i) = |[x(i)]≤ρ(i)i |
are in Rρ.

(c) z ∈ Rρ where z(i) = max{x(j)}j≤i.
(d) ∀∞i<ω(i · |[x(i− 1)]≤i|i ≤ ρ(i)).

Proof. (a) It is enough to show that id
[k]
ω (i) ≤ σ(ρ(i), 2k+1) for all i < ω

and k < ω, by induction on k. The case k = 0 is clear. For the induction
step,

id[k+1]
ω (i) = 2id

[k]
ω (i)·ρ(i)2 ≤ ρ(i)σ(ρ(i),2k+1)·ρ(i)ρ(i)

≤ ρ(i)σ(ρ(i),2k+2) = σ(ρ(i), 2k + 3).

(b) This is clear because 2x ≤∗ x[1], xidω ·ρidω ≤∗ x[2], idω · x ≤∗ x[1] and
y ≤∗ x[1].

(c) LetNk be minimal such that ∀i≥Nk(x[k](i) ≤ ρ(i+1)). As the sequence

{x[k](i)}k<ω is strictly increasing for each i < ω, {Nk}k<ω is non-decreasing
and converges to infinity. Let {kj}j<ω be a strictly increasing sequence of
natural numbers such that ρ(Nkj + 1) is greater than x[j](i) for all i < Nj .

Then z[j](i) ≤ ρ(i+ 1) for all i ≥ Nkj .

(d) Note that (i + 1)|[x(i)]≤(i+1)|i+1 ≤ 2x(i)·(i+1)·2 ≤ x[1](i) for all but
finitely many i such that x(i) 6= 0. The case x(i) = 0 is straightforward.

To proceed with the proof of Theorem 6.3, we first need to see that b
is the least size of a ≤∗-unbounded family in Rρ. But we can prove a more
general result instead. Fix g,H ∈ ωω such that H is strictly increasing and
idω < H. Define RgH := {x ∈ ωω | ∀k<ω(x[k] ≤∗ g)} where x[0] = x and

x[k+1] = H ◦ x[k]. With the particular case g(i) = ρ(i+ 1) and H = 2ρ
2·idω ,

what we need is just a consequence of the following.

Lemma 6.5. Assume that RgH 6= ∅. Then b is the least size of a ≤∗-
unbounded family in RgH .

Proof. For x ∈ RgH and k < ω, let Nx
k be the minimal N < ω such

that ∀i≥N (x[k](i) ≤ g(i)). Then {Nx
k }k<ω is non-decreasing and converges

to infinity because H > idω. Consider the function H ′ of natural num-
bers such that H ′(m) is the maximal n < ω such that H(n) ≤ m. Note
that the domain of H ′ is [H(0), ω) and that H(n) ≤ m iff H ′(m) is de-
fined and n ≤ H ′(m). Also, H ′(m) < m for all m ≥ H(0). Define, for
k < ω, the function Ck on a subset of ω by C0(i) = g(i) and Ck+1(i) =
H ′(Ck(i)).
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Claim 6.6. Let x ∈ ωω and i, k < ω. Then x[k](i) ≤ g(i) iff Ck(i) exists
and x(i) ≤ Ck(i).

Proof. Fix i < ω and 0 < M < ω. Define, when possible, CMk for k < ω
such that CM0 = M and CMk+1 = H ′(CMk ). It is enough to prove by induction

on k that, for all 0 < M < ω, x[k](i) ≤ M iff CMk exists and x(i) ≤ CMk
(our claim is the particular case M = g(i)). The initial step k = 0 is trivial,
so we proceed to prove the inductive step: x[k+1](i) ≤ M is equivalent to
x[k](i) ≤ CM1 , which in turn is equivalent, by induction hypothesis, to the

existence of C
CM1
k and x(i) ≤ CC

M
1

k = CMk+1.

Note that, as there is some c ∈ RgH , the functions Ck are defined for all
but finitely many natural numbers and they converge to infinity. Indeed, by
the previous claim, ∀i≥Nc

k+M
(c(i)+M ≤ Ck(i)) for all M < ω. Now, consider

W as the set of non-decreasing functions z ∈ ωω such that ∀k<ω(z(k) ≥ N c
k).

It is clear that b is the least size of a ≤∗-unbounded family in W .

Define the function F : W → RgH such that F (z) = Fz : ω → ω,
Fz(i) = Ck(i) when i ∈ [z(k), z(k + 1)) (we do not care about the values
below z(0)). Claim 6.6 guarantees that Fz ∈ RgH . Also, let F ′ : RgH → ωω

be defined by F ′(x) = F ′x, so that F ′x(i) = Nx
i . The lemma follows from the

fact that, for any x ∈ RgH and z ∈W ,

(i) Fz ≤∗ x implies z ≤∗ F ′x, and
(ii) F ′x ≤∗ z implies x ≤∗ Fz.

To prove (i), assume that there is a k̄ < ω such that ∀i≥z(k̄)(Fz(i) ≤ x(i)).

Let k′ < ω be minimal such that z(k̄) < z(k′) and prove that z(k) ≤ Nx
k

for all k ≥ k′. For contradiction, assume that there is a minimal k ≥ k′

such that Nx
k < z(k), so there exists an i ∈ [z(k − 1), z(k)) with i ≥ Nx

k .
Then Ck−1(i) = Fz(i) ≤ x(i) and x(i) ≤ Ck(i) (by Claim 6.6). But Ck(i) =
H ′(Ck−1(i)) < Ck−1(i), a contradiction.

For (ii), assume that there is a k̄ < ω such that Nx
k ≤ z(k) for all

k ≥ k̄. If i ≥ z(k̄), we can find a k ≥ k̄ such that i ∈ [z(k), z(k + 1)), so
x(i) ≤ Ck(i) = Fz(i) because i ≥ z(k) ≥ Nx

k .

Proof of Theorem 6.3. Without loss of generality, we may assume that
b = κ in the ground model V . For ξ < δ, construct functions hξ, aξ, bξ, πξ in
ωω such that

(a) h0 = id2
ω and, for ξ > 0, hξ is non-decreasing, converges to infinity

and, for η < ξ, idω · πη ≤∗ hξ,
(b) aξ > 0 is non-decreasing, converges to infinity and hidω ·ρidω

ξ ≤∗ aξ,
(c) bξ and πξ are defined as bξ = 2aξ and πξ(i) = |[bξ(i)]≤ρ(i)i |, and
(d) ∀∞i<ω(i · |[bξ(i− 1)]≤i|i ≤ ρ(i)).
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We can construct all those functions in Rρ. To see this, fix ξ < δ and assume
that we have all these functions for η < ξ. By Lemma 6.4, idω · πη ∈ Rρ
for all η < ξ, so there exists a non-decreasing function hξ ∈ Rρ bounding

them, by Lemma 6.5. Put aξ := max{hidω ·ρidω

ξ , 1}, which is in Rρ. Clearly,

bξ, πξ ∈ Rρ and (d) is true.
For each ξ < δ, let Pξ = {aξ,i}i<ω be the interval partition of ω such

that |aξ,i| = aξ(i), define cξ(i) = max{hξ(i), 2} and let Iξ := Icξ(Pξ) (see

Example 2.7(2)). Perform a fsi P(3+δ)·λ := 〈Pα, Q̇α〉α<(3+δ)·λ such that, for
γ < λ,

(i) if α = (3 + δ) · γ, let Q̇α be a Pα-name for Cohen forcing,
(ii) if α = (3 + δ) · γ + 1, let Q̇α be a Pα-name for a subalgebra of

LOCidω of size < µ,
(iii) if α = (3 + δ) · γ + 2, let Q̇α be a Pα-name for a subalgebra of D of

size < κ,

(iv) if α = (3 + δ) · γ + 3 + ξ for ξ < δ, let Q̇α = Qhξ

bξ,Ḟα
where Ḟα is a

Pα-name of a subset of Rbξ of size < νξ.

By a book-keeping argument, we make sure that all such posets of the ex-
tension are used in the iteration. Choose L̄ = {Ln}n<ω any partition of ω
into infinite sets.

Claim 6.7. For every ξ < δ and α < (3 + δ) · λ, Pα forces (+
<νξ

Q̇α,L̄,Iξ,ρ
).

Proof. Let α = (3+δ) ·γ+ξ′′ for some γ < λ and ξ′′ < 3+δ. Step in Vα.
If ξ′′ ≤ 2, then (+<µ

Qα,L̄,I,ρ
) holds by Lemma 5.7; if ξ′′ = 3+ξ′ for some ξ′ < δ

then, if ξ′ ≤ ξ, as |Qα| < νξ′ ≤ νξ, (+
<νξ
Qα,L̄,Iξ,ρ

) holds by Lemma 5.7; if ξ < ξ′,

by (a), (d) and Lemma 5.10 (with mk = k), Qα = Qhξ′
bξ′ ,Fα

is 〈πξ, ρ〉-linked,

thus, by (c) and Lemma 5.9, (+1
Qα,L̄,Iξ,ρ

) holds.

Claim 6.8. In V , there is a sequence Ḡ = {gk}k<ω of reals in ωω that
converges to infinity such that Pα forces (+<µ

Q̇α,Ḡ
).

Proof. By Lemma 5.14, find Ḡ = {gk}k<ω such that (+1
Q,Ḡ) holds for

〈idω, ρ〉-linked posets Q. Now, step in Vα. If α = (3 + δ) · γ + ξ′ for some
ξ′ < 3 + δ, when ξ′ ≤ 2 then (+<µ

Q,Ḡ) holds by Lemma 5.13; else, if ξ′ = 3 + ξ

for some ξ < δ, the claim holds because Qα is 〈idω, ρ〉-linked (see the proof
of the previous claim).

It is known that, in V(3+δ)·λ, b = κ and c = λ. Also, add(N ) ≥ µ

because of the small subalgebras of LOCidω used in the iteration. By the
same argument as in Theorem 6.2, we get νξ ≤ bLoc(bξ, hξ) for ξ < δ, so, by
Lemma 4.6, νξ ≤ b(Iξ).
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To see add(N ) ≤ µ note that, by Claim 6.8 and Lemma 5.12, in Vµ
we add a <µ-∈∗-strongly unbounded family of size µ that is preserved in
V(3+δ)·λ, so add(N ) ≤ µ. Likewise, by Claim 6.7 and Lemma 5.6, for ξ < δ,

we add in Vνξ a <νξ-ρ-strong covering family (with respect to Iξ and L̄)

of size νξ that is preserved in V(3+δ)·λ, so bρ
idω

(Iξ, L̄) ≤ νξ. But, by Theo-

rem 5.2, as limi→∞ ϕi(aξ,i)/(ρ(i)i) = ∞ by (b), we get b(Iξ) ≤ bρ
idω

(Iξ, L̄)
≤ νξ.

To obtain (consistently) continuum many pairwise different Rothberger
numbers, it is necessary that the continuum is a weakly inaccessible cardinal.
Indeed, let {Iξ}ξ<c be a sequence of ideals such that the numbers b(Iξ) are
pairwise different. As they are continuum many and all of them are ≤ b, we
obtain c = b, so c is regular. Also, as there are c different cardinals below c,
c has to be a limit cardinal. Likewise, the existence of b different Rothberger
numbers implies that b is weakly inaccessible.

Corollary 6.9. Assume that λ is a weakly inaccessible cardinal such
that λ<λ = λ, and let µ < λ be a regular cardinal. For any collection of
pairwise different regular cardinals {νξ}ξ<λ ⊆ [µ, λ], there exist tall gradually
fragmented ideals Iξ for ξ < λ and a ccc poset that forces add(N ) = µ,
b = c = λ and b(Iξ) = νξ for any ξ < λ.

7. Questions. We have seen that b(I) ≥ add(N ) for all gradually
fragmented ideals I (Corollary 4.4) while for a large class of fragmented
not gradually fragmented ideals I we have b(I) = ℵ1 (Theorems 3.1, 3.4
and 3.6). This gives rise to the following

Conjecture 7.1 (Dichotomy conjecture, Hrušák). For fragmented ide-
als I,

• b(I) = ℵ1 if I is not gradually fragmented,
• b(I) ≥ add(N ) if I is gradually fragmented.

Even if this is not true, we do believe there is a dichotomy in the sense
that for a large class of definable ideals, one of the two alternatives in 7.1
holds, and that there is a natural combinatorial characterization saying
which way it goes.

Problem 7.2 (Dichotomy conjecture, general version).

(a) For every fragmented ideal I, either b(I) = ℵ1 or b(I) ≥ add(N ).
(b) For every Fσ ideal I, either b(I) = ℵ1 or b(I) ≥ add(N ).
(c) For every analytic ideal I, either b(I) = ℵ1 or b(I) ≥ add(N ).
(d) In (a), (b), or (c), give a combinatorial characterization of the ideals

satisfying either case of the dichotomy.
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By Theorem 6.2, for a large class of gradually fragmented ideals I, b(I) >
add(N ) is consistent, and we do not know of a ZFC example of a definable
ideal I such that b(I) = add(N ).

Question 7.3.

(a) Is there a (gradually) fragmented ideal I with b(I) = add(N )? Or is
it consistent that b(I) > add(N ) for all non-trivial gradually frag-
mented ideals?

(b) Is there an analytic ideal I such that b(I) = add(N )?

Our results can be seen as saying that there are two fundamentally dis-
tinct linear gaps in many quotients by fragmented ideals: one is of type (ω, b)
(by Todorčević’s results [20]) while the other is either of type (ω, ω1) (e.g.
in P(ω)/EDfin), or of some type (ω, b(I)) with add(N ) ≤ b(I) ≤ b (e.g.
in P(ω)/IP ). A natural question is whether there can even be a third type
of linear gap in (some of) these quotients. Notice that while there may be
linear (ω, κ)-gaps in P(ω)/Fin for several κ, all of these gaps “look similar”.
Namely, by Rothberger’s classical result [16], there is a linear (ω, κ)-gap
in P(ω)/Fin iff there is a well-ordered unbounded sequence in (ωω,≤∗) of
length κ.

Problem 7.4. Characterize those κ for which there is a linear (ω, κ)-gap
in P(ω)/EDfin (in P(ω)/IL, in P(ω)/IP ).

Choosing countably many of the ideals In = Icn(Pn) = I〈an,i, ϕn,i〉i<ω of
the proof of Theorem 6.3, letting h : ω×ω → ω be a bijection, and defining
an ideal I on ω by stipulating x ∈ I iff there is k such that ϕn,i(h

−1[x ∩
h[an,i × {n}]]) ≤ k for all n and i, one obtains a fragmented ideal such that
countably many definable cardinals, namely all the cardinals b(In), belong
to the gap spectrum of I, by Remark 2.4(2). We do not know whether one
can have more definable cardinals in the spectrum.

Question 7.5. Is there a fragmented ideal I (an Fσ ideal) such that, for
a family bf of consistently (mutually) distinct definable cardinals (uniformly)
parametrized by f ∈ ωω, there is a linear Rothberger gap of type (ω, bf ) in
P(ω)/I?

The definability assumption about the bf is arguably a bit vague, but in
view of the comment about P(ω)/Fin made above, it is necessary so as to
avoid trivialities.

In the context of Todorčević’s results about preservation of gaps by Baire
embeddings [20], it would be interesting to investigate the existence of em-
beddings F : P(ω)/J → P(ω)/I preserving gaps where J and I are frag-
mented ideals (or analytic ideals in general). Note that, in the proof of Corol-
lary 3.2, we constructed such a continuous embedding F : P(ω)/EDfin →
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P(ω)/I where I is as in Example 2.7(4), but we still do not know whether
similar embeddings can be constructed in other cases. For example, one may
ask whether (some) gradually fragmented ideals can be embedded into frag-
mented not gradually fragmented ideals like EDfin in a gap-preserving way,
or whether there can be such embeddings between the distinct ideals of the
proof of Theorem 6.3.
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