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Metric spaces nonembeddable into Banach spaces with
the Radon–Nikodým property and thick families of geodesics

by

Mikhail I. Ostrovskii (Queens, NY)

Abstract. We show that a geodesic metric space which does not admit bilipschitz
embeddings into Banach spaces with the Radon–Nikodým property does not necessarily
contain a bilipschitz image of a thick family of geodesics. This is done by showing that
no thick family of geodesics is Markov convex, and comparing this result with results
of Cheeger–Kleiner, Lee-Naor, and Li. The result contrasts with the earlier result of the
author that any Banach space without the Radon–Nikodým property contains a bilipschitz
image of a thick family of geodesics.

1. Introduction. The Radon–Nikodým property (RNP) is one of the
most important isomorphic invariants of Banach spaces. We refer to [1, 2,
3, 8, 9, 20] for systematic presentations of results on the RNP.

In the recent work on metric embeddings a substantial role is played
by existence and nonexistence of bilipschitz embeddings of metric spaces
into Banach spaces with the RNP (see [6, 7, 12]). At the seminar “Nonlin-
ear geometry of Banach spaces” (Texas A & M University, August 2009)
Bill Johnson suggested the problem of metric characterization of reflexivity
and the RNP [22, Problem 1.1]; see also [17, p. 307]. In [18] the RNP was
characterized in terms of thick families of geodesics defined in the following
way:

Definition 1.1. Let u and v be two elements in a metric space (M,dM ).
A uv-geodesic is a distance-preserving map g : [0, dM (u, v)]→M such that
g(0) = u and g(dM (u, v)) = v (where [0, dM (u, v)] is an interval of the real
line with the distance inherited from R). A family T of uv-geodesics is called
thick if there is α > 0 such that for every g ∈ T and for any finite collection of
points r1, . . . , rn ∈ [0, dM (u, v)], to be called control points, there is another
uv-geodesic g̃ ∈ T and a sequence 0 < s1 < q1 < s2 < q2 < · · · < sm < qm <
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sm+1 < dM (u, v) satisfying the conditions:

• The set {0, q1, . . . , qm, dM (u, v)} contains r1, . . . , rn.
• g(qi) = g̃(qi).
• We have

(1)

m+1∑
i=1

dM (g(si), g̃(si)) ≥ α.

The following result gives a metric characterization of the RNP.

Theorem 1.2 ([18]). A Banach space X does not have the RNP if
and only if there exists a metric space MX containing a thick family TX
of geodesics which admits a bilipschitz embedding into X.

Studying metric characterizations of the RNP, it would be much more
useful and interesting to get a characterization of all metric spaces which do
not admit bilipschitz embeddings into Banach spaces with the RNP. In view
of Theorem 1.2 it is natural to ask whether the presence of bilipschitz images
of thick families of geodesics characterizes metric spaces which do not admit
bilipschitz embeddings into spaces with the RNP. It is clear that the answer
to this question in full generality is negative: we may just consider a dense
subset of a Banach space without the RNP which does not contain any
continuous curves (e.g. the subset of all vectors with rational coordinates
in c0). So we need to restrict our attention to spaces containing sufficiently
large collections of continuous curves. Our main result is a negative answer
even in the case of geodesic metric spaces (we use the terminology of [4] on
metric spaces and of [17] on metric embeddings):

Theorem 1.3. There exist geodesic metric spaces which

• do not contain bilipschitz images of thick families of geodesics,
• do not admit bilipschitz embeddings into Banach spaces with the Ra-

don–Nikodým property.

More precisely, we prove that the Heisenberg group with its subrieman-
nian (Carnot–Carathéodory) metric (see [5, 10, 14, 16]) does not admit a
bilipschitz embedding of a thick family of geodesics. This result proves The-
orem 1.3 since it is known that the Heisenberg group does not admit a
bilipschitz embedding into a Banach space with the RNP—see [6] and [12],
where the observation made in [21] on the consequences of the differentia-
bility result of [19] was generalized to RNP targets.

Our proof is based on the notion of Markov convexity which was intro-
duced in [13], with further important progress achieved in [15].

Definition 1.4 ([13]; we use a slightly modified version of [15]). Let
{Xt}t∈Z be a Markov chain on a state space Ω. Given an integer k ≥ 0,

we denote by {X̃t(k)}t∈Z the process which equals Xt for time t ≤ k, and
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evolves independently (with respect to the same transition probabilities) for
time t > k. Fix p > 0. A metric space (X, dX) is called Markov p-convex
with constant Π if for every Markov chain {Xt}t∈Z on a state space Ω, and
every f : Ω → X,

(2)
∞∑
k=0

∑
t∈Z

E
[
dX
(
f(Xt), f(X̃t(t− 2k))

)p]
2kp

≤ Πp ·
∑
t∈Z

E
[
dX(f(Xt), f(Xt−1))p

]
.

The least constant Π for which (2) holds for all Markov chains is called
the Markov p-convexity constant of X, and is denoted Πp(X). We say that
(X, dX) is Markov p-convex if Πp(X) <∞.

Our proof of Theorem 1.3 is based on the following result:

Theorem 1.5. A metric space with a thick family of geodesics is not
Markov p-convex for any p ∈ (0,∞).

Theorem 1.5 implies that thick families of geodesics do not admit bilip-
schitz embeddings into the Heisenberg group because it is known [14, The-
orem 7.4] that the Heisenberg group is Markov convex for some p ∈ (0,∞).

Theorem 1.5 is a generalization of the result of [15, Section 3] stating that
the Laakso space (we mean the one defined in [11, p. 290]) is not Markov
p-convex for any p ∈ (0,∞). It is easy to see that the Laakso space has a
thick family of geodesics.

Remark 1.6. The Heisenberg group can be identified with R3 in such
a way that all geodesics of the Heisenberg group with its subriemannian
metric are spirals, projecting down to circles in two dimensions (see
[16, Section 1.3]). With this representation it is easy to verify that the fam-
ily of uv-geodesics, where u and v are elements of the Heisenberg group,
is never thick. It is natural to expect that one can prove Theorem 1.3 by
combining this description with some differentiability theory. I preferred to
use Markov convexity because I think that Theorem 1.5 is of independent
interest.

2. Proof of Theorem 1.5. Let (M,dM ) be a metric space containing
a thick family of geodesics. We assume that each of the geodesics in the
family has length 1 and is parameterized by the interval [0, 1].

The general idea of the proof is the same as the idea of the proof in [15]
of the fact that the Laakso space is not Markov convex. Namely, given h ∈ N
we find in the thick family of geodesics in M (a thick family is necessarily
infinite) a finite collection Gh consisting of 2h geodesics, and a collection of
finitely many points on each of them, such that there is a Markov chain on



88 M. I. Ostrovskii

this collection of points with the the left-hand side of (2) greater than or
equal to C(p)h1/p times the right-hand side of (2) without Πp.

Short description of the Markov chain. We introduce the state
space Ω as Ω = Z × Gh. Let ϕ be a positive integer (to be specified later)
and let f : Ω →M be given by

f(t, g) =


g(0) if t < 0,

g(t2−ϕ) if t ∈ {0, 1, 2, 3, . . . , 2ϕ},
g(1) if t > 2ϕ.

The Markov chain {Xt}t∈Z is defined as follows:

• Xt = (t, g) for some g ∈ Gh (so the chain Xt remembers the geodesic
which it is on).
• If Xt = (t, g) and t < 0 or t ≥ 2ϕ, then Xt+1 = (t + 1, g) with

probability 1.
• If Xt = (t, g) and t ∈ {0, 1, 2, 3, . . . , 2ϕ − 1}, then Xt+1 = (t + 1, ĝ),

where ĝ ∈ Gh and either ĝ = g or ĝ = g̃, where g̃ is any geodesic of
the family Gh which has what we call a crossing with g in the interval
[t2−ϕ, (t+ 1)2−ϕ]. The probabilities of all permissible choices of ĝ are
the same. Crossings, ϕ, and the family Gh of geodesics are defined in
such a way that a geodesic cannot have two crossings in one interval
of the form [t2−ϕ, (t+ 1)2−ϕ].

We describe the needed notion of crossing below. At this point we just
mention that each crossing of geodesics corresponds to their intersection,
but not all of the intersections of geodesics are crossings.

The description of the allowed moves from one geodesic to another in
Theorem 1.5 is substantially more complicated than in the case of the Laakso
space in [15], because the geodesics can have infinitely many points of inter-
section. Therefore to get the desired estimate we need the Markov chain to
move from one geodesic to another in a well-organized manner, because we
have lower estimates for distances between geodesics only for small sets of
pairs of points (the only available estimate of this type is (1)).

We label geodesics of Gh by binary strings of length h and sets of cross-
ings by vertices of a binary tree of depth h− 1.

Recall that a binary tree Bh of depth h is a finite graph whose vertices
are finite sequences of 0s and 1s of length at most h, including the empty
sequence denoted ∅; two vertices are joined by an edge if the correspond-
ing sequences are (θ1, . . . , θn−1) and (θ1, . . . , θn−1, θn) for some θn ∈ {0, 1}
((θ1, . . . , θn−1) can be empty).

We pick one element in the thick family of geodesics and label it by
the sequence consisting of h zeros, so we denote it g(0,...,0). We apply the



Thick families of geodesics 89

condition of Definition 1.1 to g(0,...,0) with control points 0 and 1, and get a

geodesic which we label g(1,0,...,0) and points which we denote q∅1, . . . , q
∅
m ∈

[0, 1] and s∅1, . . . s
∅
m+1 ∈ [0, 1] so that the conditions of Definition 1.1 are

satisfied. We introduce the set

R∅ = {0, q∅1, . . . , q∅m, 1}.

This is the set of common crossings of all geodesics of Gh.

In the next step we pick two geodesics g(0,1,0,...,0) and g(1,1,0,...,0) and find
two subsets R(0) and R(1) of [0, 1]. The sets R(0) and R(1) will be the sets
of common crossings of all geodesics whose labels start with 0 and with 1,
respectively.

To pick g(0,1,0,...,0) and g(1,1,0,...,0) we apply the condition of Definition 1.1
to g(0,...,0) and g(1,0,...,0), respectively, with the collection of control points
defined as the union of two subsets:

• The points q∅1, . . . , q
∅
m and s∅1, . . . , s

∅
m+1 ∈ [0, 1]. Observe that g(0) is

the same for all geodesics of the family, so we do not have to list 0
among control points. The same applies to 1.
• The points k2−γ(1), k = 1, . . . , 2γ(1), where γ(1) ∈ N is sufficiently

large. The conditions on γ(1) are the following:

1. 4m · 2−γ(1) ≤ α/10, where m is the cardinality of {q∅i }.
2. 2−γ(1) ≤ 1

4 mini(s
∅
i − q

∅
i−1).

We denote the sequences obtained by applying the condition of Defini-

tion 1.1 to g(0,...,0) by q
(0)
1 , . . . , q

(0)
m(0) ∈ [0, 1] and s

(0)
1 , . . . , s

(0)
m(0)+1 ∈ [0, 1],

and the sequences obtained by applying the condition of Definition 1.1

to g(1,0,...,0) by q
(1)
1 , . . . , q

(1)
m(1) ∈ [0, 1] and s

(1)
1 , . . . s

(1)
m(1)+1 ∈ [0, 1]. We set

R(0) = {q(0)
1 , . . . , q

(0)
m(0)}\R∅ and R(1) = {q(1)

1 , . . . , q
(1)
m(1)}\R∅. The set R(0) is

the set of crossings of all geodesics whose label starts with 0. The set R(1)

is the set of crossings of all geodesics whose label starts with 1.

At this point we give a generic description which will be used for all
further selections of geodesics and sets of crossings.

Suppose that we have already picked g(θ1,...,θn,0,...,0) and constructed all
crossing sets R(θ1,...,θk), where θ1, . . . , θk is an initial segment of θ1, . . . , θn−1,
as well as the sequences

q
(θ1,...,θn−1)
1 , . . . , q

(θ1,...,θn−1)
m(θ1,...,θn−1) ∈ [0, 1],(3)

s
(θ1,...,θn−1)
1 , . . . , s

(θ1,...,θn−1)
m(θ1,...,θn−1)+1 ∈ [0, 1].(4)

To pick the geodesic g(θ1,...,θn,1,0,...,0) we apply the conditions of Defini-
tion 1.1 to g(θ1,...,θn,0,...,0) and the collection of control points defined as the
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union of two subsets:

• All points listed in (3) and (4).
• The points k2−γ(n), k = 1, . . . , 2γ(n), where γ(n) is a sufficiently

large number. The conditions on γ(n) are

4m(θ1, . . . , θn−1) · 2−γ(n) ≤ α

10
.(5)

2−γ(n) ≤ 1

4
min

(θ1,...,θn−1)
min
i

(s
(θ1,...,θn−1)
i − q(θ1,...,θn−1)

i−1 ).(6)

We denote the resulting sequences

q
(θ1,...,θn)
1 , . . . , q

(θ1,...,θn)
m(θ1,...,θn) ∈ [0, 1],(7)

s
(θ1,...,θn)
1 , . . . , s

(θ1,...,θn)
m(θ1,...,θn)+1 ∈ [0, 1].(8)

We introduce the set

R(θ1,...,θn) = {q(θ1,...,θn)
1 , . . . , q

(θ1,...,θn)
m(θ1,...,θn)}\

n−1⋃
k=0

R(θ1,...,θk),

where by the set corresponding to k = 0 we mean R∅. The set R(θ1,...,θn) is the
set of common crossings of all geodesics whose label starts with (θ1, . . . , θn).

After we pick all geodesics for Gh and construct all the sets of crossings,
we pick the number ϕ ∈ N. The choice of ϕ should satisfy two conditions:

• 2−ϕ should be strictly less than the distance between any two cross-
ings for the same geodesic.
• Moreover

(9) 2−ϕ ≤ 1

16
dM
(
g(θ1,...,θn,0,...,0)(s

(θ1,...,θn)
i ), g(θ1,...,θn,1,0,...,0)(s

(θ1,...,θn)
i )

)
for all (θ1, . . . , θn) and 1 ≤ i ≤ m(θ1, . . . , θn) + 1 satisfying

(10) g(θ1,...,θn,0,...,0)(s
(θ1,...,θn)
i ) 6= g(θ1,...,θn,1,0,...,0)(s

(θ1,...,θn)
i ).

Now we are ready to complete the short description of the Markov chain
given at the beginning of the proof. Namely we provide more details on
the way in which the Markov chain can move from one geodesic to an-
other. If Xt = (t, g(θ1,...,θh)), and the interval [t2−ϕ, (t + 1)2−ϕ] contains a
crossing labeled by some initial segment (θ1, . . . , θd) of (θ1, . . . , θh), then
Xt+1 = (t + 1, g̃), where g̃ is any of the 2h−d geodesics whose labels have
(θ1, . . . , θd) as their initial segment, and each of these 2h−d choices has the
same probability. Observe that the choice of ϕ is such that a segment of the
form [t2−ϕ, (t+ 1)2−ϕ] cannot contain more than one crossing.

For each collection (θ1, . . . , θn), n < h, we find a subset

{s(θ1,...,θn)
i }i∈A(θ1,...,θn)
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in the set {s(θ1,...,θn)
i }m(θ1,...,θn)+1

i=1 which is sufficiently large in the sense that∑
i∈A(θ1,...,θn)

dM
(
g(θ1,...,θn,0,...,0)(s

(θ1,...,θn)
i ), g(θ1,...,θn,1,0,...,0)(s

(θ1,...,θn)
i )

)
≥ α

4
.

We require that each i ∈ A(θ1, . . . , θn) satisfies (10) and two additional
conditions needed for our estimates—see conditions (a) and (b) below.

We estimate the sum on the left-hand side of (2) from below as follows.

We assign to each point s
(θ1,...,θn)
i with i ∈ A(θ1, . . . , θn) a scale 2k (k =

k(i, (θ1, . . . , θn)) ∈ N), an interval of integers

(11) Ii,(θ1,...,θn) = [t, t+ 1, . . . , T ],

and a subset G = G(θ1,...,θn) in Gh, in such a way that no triple (scale, integer,
geodesic) is ever repeated. In the remainder of the argument we use the
following notation and terminology. If G is a subset of Gh we write Xt ∈ G
as a shorthand for the condition Xt = (t, g) with g ∈ G. If Xt = (t, g), we
say that Xt is on g.

Then the left-hand side of (2) can be estimated from below by

(12)∑
(θ1,...,θn)

i∈A(θ1,...,θn)

∑
t∈Ii,(θ1,...,θn)

E[dX(f(Xt), f(X̃t(t−2k)))p|Xt−2k ∈G]P(Xt−2k ∈G)

2kp
,

where the conditional probability is with respect to the event Xt−2k ∈
G(θ1,...,θn). Note that although this is not reflected in our notation, k also
depends on i and (θ1, . . . , θn).

Now we describe how we pick the scale 2k, the interval in (11), and the
set of geodesics G(θ1,...,θn).

(1) We pick k to be the smallest positive integer such that 2k2−ϕ exceeds

s
(θ1,...,θn)
i − q(θ1,...,θn)

i−1 (we use 0 instead of q
(θ1,...,θn)
i−1 if i = 1).

(2) We let

L = Li,(θ1,...,θn)(13)

= dM (g(θ1,...,θn,0,...,0)(s
(θ1,...,θn)
i ), g(θ1,...,θn,1,0,...,0)(s

(θ1,...,θn)
i ))

and introduce the interval (11) as the set of τ ∈ Z for which τ2−ϕ is in the

interval of length 1
4L which ends at the point s

(θ1,...,θn)
i .

The set of such τ is nonempty because, by (9), 2−ϕ < 1
16L. Furthermore,

(9) implies that 2−ϕ|I| ≥ 1
8L.

(3) We define G(θ1,...,θn) as the set of geodesics whose labels start with
(θ1, . . . , θn).
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Now we impose the second of the conditions under which a number i ∈
{1, . . . ,m(θ1, . . . , θn)+1} is included into A(θ1, . . . , θn). (Below we introduce
the third condition which we label (b).)

(a) The interval of length 1
4L+ 2k2−ϕ which ends at the point s

(θ1,...,θn)
i

does not contain any crossings belonging to
⋃n−1
k=0 R(θ1,...,θk).

Observe that under the condition (a) the conditional expectation in (12)
is at least 1

2

(
L− 2

(
1
4L
))p

= 1
2p+1L

p. The reason is that (a) implies that all

of the geodesics in G(θ1,...,θn) have q
(θ1,...,θn)
i−1 as their common crossing, the

crossing occurs “after” time t−2k if t ∈ Ii,(θ1,...,θn), and there are no crossings

which could lead outside G(θ1,...,θn) in the interval between t − 2k and t if

t ∈ Ii,(θ1,...,θn). Therefore with probability 1/2 at the crossing q
(θ1,...,θn)
i−1 the

Markov chains Xt and X̃t will “go” in different “directions”, one of them

to g(θ1,...,θn,0,...,0)(s
(θ1,...,θn)
i ), and the other to g(θ1,...,θn,1,0,...,0)(s

(θ1,...,θn)
i ). It

remains to use the triangle inequality.

Next, it is easy to verify that the probability that Xt (t = 0, 1, . . . , 2ϕ)
is on a geodesic g is 2−h if t2−ϕ is not a crossing involving g. If t2−ϕ is
a crossing of 2h−n geodesics, the probability that Xt is on one of them
is 2−n. The verification of this statement can be done by moving from 0
to 1. Therefore the probability in (12) is 2−n.

The third condition on i ∈ A(θ1, . . . , θn) is

(b) L ≥ α
2 (q

(θ1,...,θn)
i − q(θ1,...,θn)

i−1 ), where L is defined in (13).

Under the condition (b) we can estimate each of the summands in (12).

In fact, by the choice of k we have 2k2−ϕ < 2(q
(θ1,...,θn)
i −q(θ1,...,θn)

i−1 ). Therefore

L > α
4 · 2

k−ϕ and
1

2p+1L
p

2kp
>

αp

23p+1
2−pϕ.

Hence, for i satisfying (a) and (b) each term in the sum (12) is ≥
C2−n2−pϕ, where C is a constant which depends only on α and p.

Now we fix (θ1, . . . , θn) and consider the sum

(14)∑
i∈A(θ1,...,θn)

∑
t∈Ii,(θ1,...,θn)

E[dX(f(Xt), f(X̃t(t−2k)))p|Xt−2k ∈G]P(Xt−2k ∈G)

2kp
.

As we observed above, the number of terms in the sum
∑

t∈Ii,(θ1,...,θn)
is

at least 2ϕ · 18Li,(θ1,...,θn). We shall show that this implies that the sum in (14)
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is at least

(15)
2ϕ

8

∑
i∈A(θ1,...,θn)

Li,(θ1,...,θn)C2−n2−pϕ ≥ C2(1−p)ϕ2−n

8

(
α

2
− α

10

)
.

To get this we use the inequality∑
i satisfies (b)

Li,(θ1,...,θn) ≥
α

2
,

which follows from (1) by the Markov-type inequality. The condition (10) is
included in (b), but we also have to exclude i which fail to satisfy (a).

Comparing condition (a) with our definitions we see that it suffices to

require that s
(θ1,...,θn)
i is not in the interval of length 2(s

(θ1,...,θn)
i −q(θ1,...,θn)

i−1 )+
1
4L ≤ 3(s

(θ1,...,θn)
i − q

(θ1,...,θn)
i−1 ) ≤ 3 · 2−γ(n) (see (5)) following one of the

elements of
⋃n−1
k=0 R(θ1,...,θk). Hence the total length of the intervals [q

(θ1,...,θn)
i−1 ,

q
(θ1,...,θn)
i ] which have to be excluded does not exceed 4m(θ1, . . . , θn−1) ·

2−γ(n) ≤ α/10 (see (5)). It is clear that the sum of Li,(θ1,...,θn) over all
excluded in this way i also does not exceed α/10. The inequality (15) follows.

Therefore the sum (14) is ≥ 2(1−p)ϕ2−nC(α, p). Adding over (θ1, . . . , θn)
for fixed n we get ≥ 2(1−p)ϕC(α, p). Adding over n = 0, 1, . . . , h− 1 we get
≥ 2(1−p)ϕC(α, p)h. On the other hand, the sum on the right-hand side of (2)
is 2−pϕ ·2ϕ = 2(1−p)ϕ. We get Πp ≥ C(α, p)h, which is the desired inequality.

To complete the proof we need to explain why for different choices of
i and (θ1, . . . , θn) the sets of triples (scale, integer, geodesic) are disjoint.
First let us consider the case where (θ1, . . . , θn1) and (θ̃1, . . . , θ̃n2) are such
that n1 6= n2. Observe that 2k(i,(θ1,...,θn1 )) is 2-equivalent to

(16) 2ϕ(s
(θ1,...,θn1 )
i − q(θ1,...,θn1 )

i−1 ),

and 2k(j,(θ̃1,...,θ̃n2 )) is 2-equivalent to

(17) 2ϕ(s
(θ̃1,...,θ̃n2 )
j − q(θ̃1,...,θ̃n2 )

j−1 ),

and for n1 6= n2 the numbers (16) and (17) cannot be 4-equivalent—see (6)
and the description of the choice of geodesics g(θ1,...,θh).

If n1 = n2, but (θ1, . . . , θn1) is not the same as (θ̃1, . . . , θ̃n2), then the
families Gi,(θ1,...,θn1 ) and Gj,(θ̃1,...,θ̃n2 ) do not contain common geodesics.

Finally, if we consider labels i, (θ1, . . . , θn) and j, (θ1, . . . , θn), then either

k(i, (θ1, . . . , θn)) 6= k(j, (θ1, . . . , θn))

(and we are done) or

k(i, (θ1, . . . , θn)) = k(j, (θ1, . . . , θn)).
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In the latter case, as is easy to check, the intervals Ii,(θ1,...,θn) and Ij,(θ1,...,θn)

(see (2) for the definition) are disjoint.
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