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More on extending automorphisms of
models of Peano Arithmetic

by

Roman Kossak (New York) and Henryk Kotlarski (Warszawa)

Abstract. Continuing the earlier research [Fund. Math. 129 (1988) and 149 (1996)]
we give some information about extending automorphisms of models of PA to cofinal
extensions.

In recent work on automorphisms of recursively saturated models of
PA two themes stand out. One is the classification of conjugacy classes
of single automorphisms, the other is the classification of subgroups of the
automorphism group. Many results in both areas depend on information on
how automorphisms of a recursively saturated model can be extended from
the model to an elementary extension.

LetM be a countable model of Peano Arithmetic, PA, and let N be its
cofinal extension. If f is an automorphism of M, g is an automorphism of
N and f ⊆ g, then for each a ∈ N , there is b ∈ N such that f(M∩ a) =
M∩b. This b is, of course, g(a). Here and elsewhere in the paper we identify
elements of models of PA with the sets they code. If for each a ∈ N , there is
b ∈ N such that f(M∩a) =M∩b, we say that f sends coded sets to coded
sets. Thus, if f has an extension to an automorphism of N , then both f and
f−1 send coded sets to coded ones. We showed in [9] that if M and N are
countable and recursively saturated, N is an end elementary extension of
M, M 6= inf{(a)n : n < ω} for all a ∈ N , and f is an automorphism of M
such that f and f−1 send coded sets to coded ones, then f can be extended
to an automorphism of M. In [10] we showed that the restriction on the
type of end extension in the above result is essential. This, more or less,
settles the problem of extending automorphisms of recursively saturated
models to elementary end extensions. In [10] we considered extendability of
automorphisms to cofinal extensions. This is a harder problem.
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In the introductory Section 1 we give examples of automorphisms that
do not extend to cofinal extensions, and we include two observations con-
cerning extendability of automorphisms to simple cofinal extensions. Our
main result appears in Section 2. We say that the extension M≺cof N has
the automorphism extension property if every automorphism f of M such
that f and f−1 send coded sets to coded ones can be extended to an auto-
morphism of N . We defined some other properties of cofinal extensions and
showed that one of them implies the automorphism extension property. Here
we give a shorter proof that a weaker property, which we call the description
property (also defined in [10]), implies the automorphism extension prop-
erty. In Section 3 we discuss some restrictions on the possible isomorphism
types of structures of the form (N ,M) whereM is recursively saturated and
M ≺cof N . In Section 4 we consider a more refined extendibility question:
Suppose M and N are countable and recursively saturated, M ≺ N and
f is an automorphism of M which can be extended to an automorphism
of N ; can f be extended to an automorphism g such that g moves all points
in N \M? We give an answer to this question in the case when N is an
elementary end extension of M. The result generalizes a theorem from [8],
which is a special case for f = id.

1. Automorphisms that do not extend. It is easy to see that if f is
a nontrivial automorphism of a modelM, thenM has a cofinal extension to
which f does not extend. Here is the argument: Suppose a < f(a). We can
assume that for all n ∈ N, exp(n, a) < f(a), where exp(n, x) is 2x iterated
n times. If a is not like that already we can consider a′ = F (a) instead,
where F (x) is a definable function such that for all nonstandard a and all
Σ1 definable h(x, y), and all x < a, M |= F (a) > h(x, a) (see [14] for the
construction of such an F ). If a is as above, then let I be a cut ofM which
is closed under exponentiation and such that a ∈ I < f(a). By a result of
Smoryński [17] there exists N � M such that I is in the greatest common
initial segment of M and N . Then f cannot be extended to N . If g were
such an extension, then for any b ∈ N \ M such that b < f(a), we have
g−1(b) < a and g−1(b) /∈M , which is impossible.

The argument above shows how to kill a single automorphism. Now we
will show how to kill continuum many. To do this we will use Schmerl’s
indiscernibles. Jim Schmerl proved in [15] that every countable recursively
saturated model M is generated by a set X of (order) indiscernibles. The
set X can be chosen to be of any countable order type, as long as it has no
last element. Moreover, if Y ⊆ X has no last element, then the submodel of
M generated by Y , which we denote by Hull(Y ), is isomorphic to M. See
Section 5.5 in [13] for the proof of this result.
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Theorem 1. Let M be a countable recursively saturated model of PA.
Then there exists a cofinal extension N of M such that continuum many
automorphisms of M cannot be extended to N .

Proof. Let X be a generating set of Schmerl indiscernibles for M of
order type (Q, <). Let Y be a subset of X of order type (N, <) which is not
cofinal in X. Since every order-preserving permutation of X extends to an
automorphism of M, the set {f(Y ) : f ∈ Aut(M)} is of power continuum.
Let N be a cofinal countable extension of M in which Y is coded. Clearly,
{f(Y ) : f ∈ Aut(N )} is countable. Hence, continuum many automorphisms
of M cannot be extended to N .

Let M, N , X and Y be as in the proof of Theorem 1, and let K =
HullN (Y ). Since every infinite subset of X without a last element generates
a submodel of M which is isomorphic to M, every type realized in M can
be realized by an element in K which is of the form t(y), where t is a Skolem
term and y is a tuple of elements of Y . Now, if Y is coded by an a ∈ N , it
follows from a lemma due to Ehrenfeucht and Gaifman [1], [4] (for the proof
see also Theorem 1.7.2 in [13]) that tp(a) cannot be realized in M. Hence,
SSy(M) is a proper subset of SSy(N ). It is open whether Theorem 1 can
be improved to obtain SSy(M) = SSy(N ).

Let us close this section with two simple observations on automorphism
that do extend.

Proposition 2. Let M |= PA, let N be a simple (i.e. generated by one
element over M) elementary extension of M and let g ∈ Aut(M). Then g
has at most one extension to an automorphism of N .

Proof. Assume that h, f ∈ Aut(N ) extend g. Then h ◦ f−1�M = id. In
order to show that h ◦ f−1 = id it suffices to show that e = h ◦ f−1(d) = d,
where d denotes the generator of the extension. But for all formulas ϕ with
parameters m ∈ M we must have N |= ϕ(m, d) ≡ ϕ(h ◦ f−1m, e), so the
result follows from the Ehrenfeucht–Gaifman lemma.

Proposition 3. Let M |= PA and let N be a simple elementary exten-
sion of M generated by an element d over M. Let g ∈ Aut(M) be such that
for some a ∈ M with N |= d < a, g�(< a) = id. Then g extends to some
ĝ ∈ Aut(N ).

Proof. We assert that for every formula ϕ and every m ∈ M, N |=
ϕ(m, d) ≡ ϕ(g(m), d). Granted this we let ĝ(t(m, d)) = t(g(m), d) and easily
check that this ĝ is well defined on N and in fact it is an automorphism
of N . In order to check the above assertion we let n = g(m) and see that
for every formula ϕ and every m ∈ M, M |= ∀x < a [ϕ(m, x) ≡ ϕ(n, x)]
because g(x) = x. It follows that the same statement holds in N , so it holds
for x = d, so the assertion is verified.
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Observe that ĝ(d) = d in the proof given above. Of course, under the
assumption of this proposition this must be so because ĝ is unique by Propo-
sition 2.

This is about all we know about extending automorphisms to simple
cofinal extensions. The difficulty here is that one must have a candidate for
g(d), where d is the generator of the extension. It must be of the form t(m, d)
for some Skolem term t and some m ∈ M, but it is unclear how to find it
when g ∈ Aut(M) is given.

2. The description property. We say that the extension M ≺cof N
has the description property if for every a ∈ N \ M there is a sequence
〈Yn : n ∈ N〉 which is coded in N and such that for all n ∈ N:

1. Yn ∈M;
2. M |= Yn+1 ⊆ Yn;
3. N |= a ∈ Yn;
4. for every set X ∈ M with N |= a ∈ X, there is k ∈ N such that
M |= Yk ⊆ X.

If 〈Yn : n ∈ N〉 satisfies the above conditions, we say that it is a describing
sequence for a or that it describes a in N over M.

The existence of cofinal extensions with the description property is almost
obvious; indeed, almost the same argument as the one which is used to show
that every model has recursively saturated extension establishes the following
fact. IfM≺ N is any cofinal extension of models of Peano Arithmetic, then
there exists K �cof N such that the extension M ≺ K has the description
property. In particular, every countable recursively saturated model K of
PA has a countable cofinal extension M with the description property and
SSy(K)  SSy(M). The following proposition is slightly less obvious.

Proposition 4. Let M be a countable recursively saturated model
of PA. Then there exists K ≺cof M such that the extension has the de-
scription property. Moreover we may require K to be recursively saturated.

Proof. We will prove the first statement first, and then we will show
how to modify the argument to get the “moreover” part. It is well known
that every recursively saturated model realizes a minimal type (see [13,
Chapter 3]). Let p(x) be a minimal type realized in M. Since p(x) is an
unbounded type, the set of its realizations is cofinal in M. Let B be a
cofinal subset of this set of order type ω. Let K be the elementary submodel
of M generated by B. We will show that the extension K ≺ M has the
description property.

We need to show that K is a proper submodel of M. This follows, for
example, from the fact that K is not recursively saturated, since it is the
union of an ω-chain of minimal elementary end extensions. One can also show
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that in fact SSy(K)  SSy(M). Indeed, M realizes a minimal type that is
independent of p(x) (see [13, Chapter 3]). No such type can be realized in K.

Let u ∈M\K be given. Let b ∈ B be such that u < b. Consider a K-finite
set X all of whose elements are below b. Since K is a union of elementary end
extensions generated by B, there is a Skolem term t(x) such that X = t(b),
with b = b0, . . . , br. Let tn(x) be a computable enumeration of all Skolem
terms in the variables x. Let X0 = {x ∈ K : x < br}, and then recursively
define (in K) Xi+1 to be Xi∩ ti(b) if u is in this set, and Xi \ ti(b) otherwise.
Since M is recursively saturated, the sequence 〈Xn : n ∈ N〉 is coded in M .
It is clear that it is a describing sequence for u over K.

For the “moreover” part, notice that the whole argument can be repeated
starting with a recursively saturated model (M, S), where S is an inductive
partial inductive satisfaction class for M. Then the resulting model (K, S′)
is an elementary submodel of (M, S). In particular, S′ is an inductive sat-
isfaction class for K; hence K is recursively saturated.

We do not know how to improve the above argument to get SSy(K) =
SSy(M).

In [10] we defined the covering property of cofinal extensions and we
proved that covering property implies the automorphism extension prop-
erty for countable recursively saturated models. Here we will improve it
by showing that the description property, which is weaker, also implies the
automorphism extension property. This is the main result of this paper.

Theorem 5. Let M≺cof R be an extension of models of PA, where both
M,R are countable and recursively saturated , with the description property.
Assume that g ∈ Aut(M) and g−1 send coded (in R) subsets to coded ones.
Then g extends to an automorphism of R.

As usual we shall derive this result from an extension theorem for iso-
morphisms.

Lemma 6. Let M1,R1,M2,R2 be models of PA such that M1

≺cof R1, M2 ≺cof R2, and both extensions have the description property.
Let g : M1 → M2 be an isomorphism such that g sends sets coded in R1

to sets coded in R2 and g−1 sends sets coded in R2 to sets coded in R1.
Then for every a ∈ R1 there exists b ∈ R2 such that there exists an iso-
morphism ĝ : HullR1(M1 ∪ {a}) → HullR2(M2 ∪ {b}) and both extensions
HullR1(M1∪{a}) ≺cof R1 and HullR2(M2∪{b}) ≺cof R2 have the descrip-
tion property and ĝ sends subsets of HullR1(M1{a}) coded in R1 to subsets
of HullR2(M2 ∪ {b}) coded in R2.

Of course, this lemma also holds if we exchange the role ofM1,R1 with
M2,R2. The lemma implies the theorem by the standard back-and-forth
procedure. We will need one more lemma from [10] (Lemma 3.13 there).
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Lemma 7. If M ≺cof R has the description property , then for every
c ∈ R the extension HullR(M, c) ≺cof R also has the description property.

Proof of Lemma 6. Let a ∈ R1 be given. If a ∈M1 we let b = g(a) and
we are done, so assume that a ∈ R1 \M1. Pick a sequence 〈Xn : n ∈ N〉,
coded in R1, of M1-finite sets describing a. Let Yn = g(Xn). This is a
sequence of M2-finite sets coded in R2: indeed, g sends coded sets and
sequences to coded ones. Since g is an isomorphism, and, by item 3 in the
definition of the description property, for all standard n,

⋂
i≤n Xi 6= ∅, by

overspill in R2 there exists b such that for all n ∈ N, R2 |= b ∈ Yn. Pick
such a b. Thus, by the properties of describing sequences, for every formula
ϕ and every m ∈M1 we have

(1) R1 |= ϕ(m, a) iff R2 |= ϕ(g(m), b).

Of course, (1) allows one to extend g to ĝ in the standard way. Thus, what
is needed is to show that ĝ sends coded sets to coded ones.

So let c ∈ R1, so c codes the set c ∩HullR1(M1 ∪ {a}). Pick a sequence
〈An : n ∈ N〉 describing the pair 〈a, c〉 over M1, in particular this sequence
is coded in R1 and An ∈M1 for standard n. We assert that

(2) ∀n ∈ N ∃m ∈ NM1 |= ∀x ∈ Xm ∃y 〈x, y〉 ∈ An.

Fix n ∈ N. In order to show ∃m M1 |= ∀x ∈ Xm ∃y 〈x, y〉 ∈ An it suffices
to show that there exists m ∈ N such that the statement

(3) ∀x ∈ Xm ∃y 〈x, y〉 ∈ An

holds in R1 because M1 ≺ R1. In order to see this, it suffices to show that
this holds in R1 for all nonstandard m ∈ R1 (smaller than the length of
the sequences coding the sequences used above); granted this one can use
underspill. But this statement holds for x = a, so it holds in R1 for all x
in Xm because by the properties of describing sequences if m is nonstandard
then all elements of R1 of which R1 thinks they are in Xm realize the same
type with parameters from M1 in R1.

Granted (2) one argues as follows. Let Bn = g(An) and Cn = {y :
〈b, y〉 ∈ Bn}. Then Cn ∈ R2, more exactly, Cn ∈ HullR2(M2∪{b}). Clearly,
the sequence Cn describes some d ∈ R2. Pick such a d. Thus, 〈b, d〉 is in
Bn for all standard n. We assert that d codes ĝ ∗ [c ∩ HullR1(M1 ∪ {a})].
Let z ∈ HullR1(M1 ∪ {a}). Then z = t(m, a) for some (Skolem) term t
and some m ∈ M1. It follows that R1 |= t(m, a) ∈ c. Thus {〈x, y〉 :
t(m, x) ∈ y} contains some An, so {〈x, y〉 : t(g(m), x) ∈ y} contains Bn

(with the same n). Substituting x = b and y = d we see that d contains
t(g(m), b) in R2.
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3. Cofinal extensions and large sets. For an element a of a modelM
letM(a) be the smallest elementary initial segment ofM which contains a,
and let M[a] be the largest elementary initial segment of M which does
not contain a. The gap of a, denoted gap(a), is the set M(a) \M[a]. The
moving gaps lemma states that only the trivial automorphism of a countable
recursively saturated model of PA fixes all gaps setwise (see Section 3 in [8]
or Section 5 in [11]). The original proof of the lemma uses a type MG(x, y)
with the following two properties. (We remark that the proof of the moving
gaps lemma given in [13] is different.)

Let M |= PA be recursively saturated. Then

• For every a ∈ M there are arbitrarily large b ∈ M such that (a, b)
realizes MG(x, y) in M.
• If (a, b) realizes MG(x, y) in M, then a < gap(b), and for every c ∈

gap(b), a ∈ Hull(c).

From these two properties it follows that ifM |= PA is recursively saturated
and X ⊆ M has nonempty intersection with all gaps of M, then Hull(X)
=M. Hence we have the following result.

Proposition 8. Let M be a recursively saturated model of PA, and let
N be its proper cofinal extension. Then there exists b ∈ N such that gapN (b)
contains no element of M.

Proof. It is well known that under our assumption, N is an elemen-
tary extension of M (see Gaifman [3]) and it is recursively saturated (see
Smoryński and Stavi [18]). If there were no “new gaps” in N \M , then we
could apply the remark preceding the proposition to X =M, which would
give a contradiction.

It is interesting that Proposition 8 implies its stronger version in the case
when M is countable.

Proposition 9. IfM≺cof N , the extension is proper , and M is count-
able and recursively saturated , then there exist c, d ∈ N such that N (c) < d
and no element z of N with c ≤ z ≤ d is in M.

Proof. Let S be a partial inductive satisfaction class for M such that
(M, S) is recursively saturated. Let S ⊆ N be such that (M, S) ≺ (N , S).
Let K = (N , S). Applying Proposition 8 to (M, S), we get b ∈ N such that
gapK(b) contains no elements ofM. Now, since K(b) has a partial inductive
satisfaction class S, it is recursively saturated, and, in particular, it is tall.
Hence gapK(b) = K(b) \ K[b] must contain c, d such that N (c) < d, and the
result follows.

We believe that the assumption that M is countable is not necessary
in the above proposition. In fact, we suspect, but we do not know how to



140 R. Kossak and H. Kotlarski

prove that ifM is recursively saturated and N is a cofinal extension ofM,
then there are no new isolated gaps in N , i.e. there is no b ∈ N such that
gap(b)∩M = ∅ and N [b] = sup(M∩N [b]) and N (b) = inf(M ∩ (N \N (b)).
But we can prove the following.

Proposition 10. Let M be a countable model of PA and let N be its
cofinal extension. If the extension has the description property , then no new
gap in N is isolated.

Proof. Let b ∈ N \M be such that gapN ∩M = ∅. Let Bn be a sequence
describing b in N over M. Let un = min(Bn) and let wn = max(Bn).
Let c ∈ N realize the recursive type consisting of all formulas of the form
(t(un) < x) ∧ (s(x) < b), where s and t are Skolem terms in one variable.
Then let d ∈ N relize the type consisting of the formulas (t(c) < x) ∧ (s(x)
< wn), where t and s run through all Skolem terms in one variable as well.
Then [c, d] ∩M = ∅ and gapN (c) < gapN (d).

For the purposes of this section let us call a subset X of a model M
large if Hull(X) = M . From the remarks preceding Proposition 8 it follows
that if M is recursively saturated, X ⊂ M, and there is e ∈ M such that
X meets all gaps above e, then X is large. This implies that all definable
(with parameters) subsets of a recursively saturated model are large. The
assumption thatM is recursively saturated can be eliminated. This follows
from the next lemma which is due to Jim Schmerl (see Lemma 2.1.10 in
[13]). Reading the lemma and its corollary, keep in mind that “definable”
means “definable with parameters.”

Lemma 11. LetM be a model of PA and let X be a definable unbounded
subset of M. Then for every a ∈M there is an unbounded definable Y ⊆ X
and a Skolem term t(x) such that for all x ∈ Y, t(x) = a.

Corollary 12. Every unbounded definable subset of a model of PA is
large.

Notice that for any subset X ⊆M either X or its complement is large.
Suppose none of them is. Let Y be the complement of X. Then there is
a which is not in the Skolem hull of X, and b which is not in the Skolem
closure of Y . Suppose a + b is in X. Since b is not in Hull(Y ), it must be
in X. Hence, a = (a + b)− b is in Hull(X), which is a contradiction. If a + b
is in Y , the argument is similar.

Recall that we call a subset X of a model M inductive if all induction
axioms are satisfied in the structure (M, X). Every definable set is inductive.
We will now show that there are unbounded inductive sets which are not large.

Proposition 13. Let M |= PA be countable and recursively saturated.
Then M has an unbounded inductive subset which is not large.
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Sketch of proof. Let p(x) be a minimal type realized in M. Let p(x) =
{ϕn(x) : n ∈ N}. Consider the theory T consisting of all induction axioms in
the language of PA with an additional unary predicate E(x), together with
the sentences

{∀x (E(x)→ ϕn(x)) : n ∈ N} ∪ {∀x ∃y > x E(x)}.

Clearly, T is consistent. Hence, by resplendency, M is expandable to a
model of T . Suppose (M, E) is a model of T . Then E is an unbounded
inductive subset of M and all elements of E realize p(x). It now follows
from the well-known properties of minimal types that Hull(E) must be a
proper subset ofM. We already mentioned some reasons for it in the proof
of Proposition 4. Here is another reason: p(x) is realized in each gap of
Hull(E), and there are gaps ofM which do not realize any minimal types.

Let us say that a subset X of a model M is rather large if the identity
is the only automorphism of M which fixes X pointwise. Of course, every
large set is rather large. In contrast with the previous proposition we have:

Proposition 14. Every unbounded inductive subset of a recursively sat-
urated countable model of PA is rather large.

Proof. LetM be a countable recursively saturated model of PA, and let
X be an unbounded inductive subset of M. Consider the structure MX =
(M, X). By Corollary 12, X is a large subset of MX . If f ∈ Aut(M) fixes
X pointwise, then, in particular, f ∈ Aut(MX); so now, since X is large in
MX we can conclude that f = id.

4. Fixed point sets. We proved in [8] that an initial segment I of
a recursively saturated model M is a fixed point set of an automorphism
of M if and only if I is strong in M. The proof in [8] is rather involved
and some important parts of the argument have been left out. A complete
“back-and-forth” proof is given in [12]. Recently, an elegant approach has
been developed by Enayat [2]. It allows giving uniform “back-and-forth free”
proofs of several known and new results concerning automorphisms and
fixed point sets. Applying Enayat’s technique we can prove the following
generalization of the theorem on extensions of automorphisms to elementary
end extensions.

Theorem 15. Let M |= PA be countable and recursively saturated , let
I be a strong elementary cut of M, and suppose that f ∈ Aut(I) is such
that f and f−1 send coded sets to coded sets. Then there is g ∈ Aut(M)
such that f ⊆ g and fix(f) = fix(g).

Sketch of proof. The complete proof is given in [13, Theorem 8.7.4]. Here
is the outline. Because I is strong, it has a partial inductive satisfaction class
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S coded in M. By standard arguments involving minimal types, (I, S) has
an elementary end extension (J, S′) which is generated over I by a set of
indiscernibles of order type (Q, <). Again by standard arguments, (J, I) ∼=
(M, I), in particularM and J code the same subsets of I. By the assumption
and the main result of [9], f can be extended to an automorphism h ∈
Aut(J). Now, we use the indiscernibles of (J, S′) to construct by a back-and-
forth argument another automorphism k ∈ Aut(J, S′) such that k(x) = x
for all x ∈ I, and for all x ∈ J \ I, k(x) /∈ gap(J,S′)(h(x)). Consequently,
g = k ◦ h is an extension of f such that fix(f) = fix(g).

We end with a remark concerning possible generalizations of the above
theorem to cofinal extensions. One important ingredient is missing: a no-
tion of strongness for cofinal extensions. We have one strong negative result
concerning fixed point sets of automorphisms of cofinal extensions:

Proposition 16. Let M |= PA be countable and recursively saturated.
Then M has a countable cofinal extension such that for all f ∈ Aut(M)
and all g ∈ Aut(N ), fix(f) 6= fix(g).

Proof. LetN be a recursively saturated countable cofinal extension ofM
which is not arithmetically saturated (equivalently, N is not strong in N ),
and such that SSy(M) is a proper subset of SSy(N ). By a result of [12], for
each g, fix(g) ∼= N , and the result follows.

5. Open problems. There are many open problems concerning re-
cursively saturated models of PA, their automorphisms, and their cofinal
extensions. Some were mentioned throughout the paper. Here let us just
mention two.

Problem 17. Let M be a countable recursively saturated model of PA.
Is there an N such that M ≺cof N , SSy(M) = SSy(N ), and the extension
has the description property?

Problem 18. Formulate an appropriate notion of strongness for cofinal
extensions and prove that if M≺cof N and M is strong in N , then there is
g ∈ Aut(N ) such that fix(g) =M.

If the project described above is successfully carried out, it will open a
whole area of study analogous to the well developed theory of extendability
of automorphisms to elementary end extensions.
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