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Generalized Helly spaces, continuity of monotone functions,
and metrizing maps
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Lech Drewnowski and Artur Michalak (Poznań)

Abstract. Given an ordered metric space (in particular, a Banach lattice) E, the gen-
eralized Helly space H(E) is the set of all increasing functions from the interval [0, 1] to E
considered with the topology of pointwise convergence, and E is said to have property (λ)
if each of these functions has only countably many points of discontinuity. The main ob-
jective of the paper is to study those ordered metric spaces C(K,E), where K is a compact
space, that have property (λ). In doing so, the guiding idea comes from the fact that there
is a natural one-to-one correspondence between increasing functions f : [0, 1] → C(K,E)
(with countably many discontinuities) and continuous maps F : K → H(E) (with metriz-
able ranges). It leads to the investigation of general continuous metrizing maps (those
with metrizable ranges), and especially of the so called separately metrizing maps, and
the results obtained are then used to derive some permanence properties of the class of
spaces C(K,E) with property (λ). For instance, it is shown that if K is the product of
compact spaces Kj (j ∈ J) such that each of the spaces C(Kj , E) has property (λ), so
does C(K,E); and, for any compact space K, if both C(K) and a Banach lattice E have
property (λ), so does C(K,E).

1. Introduction. Let E be a real Banach lattice. It was shown by Lavrič
[8] that if E is separable or if E is σ-Dedekind complete and contains no
lattice copy of l∞ (or, equivalently, E has an order continuous norm), then
every monotone function f : [0, 1] → E has at most countably many points
of discontinuity.

This direction of research was continued by the first named author in [2],
where the Banach lattices satisfying the assertion of Lavrič’s results were
said to have property (λ). Most of paper [2] was devoted to the question
which of the Banach lattices C(K,E), where K is a compact space, have

2000 Mathematics Subject Classification: Primary 54E35, 54F05, 54D30, 54C05,
54B10; Secondary 46B42, 46E15.

Key words and phrases: ordered metric space, increasing function, points of disconti-
nuity, generalized Helly space, metrizing map, separately metrizing map.

This research was partially supported by Komitet Badań Naukowych (State Commit-
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property (λ). Of course, a necessary condition for this to happen is that
both the spaces C(K) ≡ C(K,R) and E have property (λ). Now, under the
assumption that E has property (λ), it was proved in [2] that C(K,E) has
property (λ) when

(a) each separable subspace of K is metrizable, or
(b) K is the product of a family of compact spaces such that C(K ′, E)

has property (λ) for each finite subproduct K ′ of the family.

A number of open problems were posed in [2], among them the following
ones:

(a′) Is it true that if both C(K) and E have property (λ), so does
C(K,E)?

(b′) Is it true that if K1 and K2 are compact spaces, and both C(K1, E)
and C(K2, E) have property (λ), so does C(K1 ×K2, E)?

Note that a positive answer to question (b′) would make the extra hy-
pothesis in result (b) redundant; however, the answer to (b′) was unknown
even for the case E = R.

Somewhat later, the second named author carried out in [9] a thorough
investigation of the structure of those real Banach spaces X endowed with
the order relation induced by a norming subset of the dual space X∗ that
admit an increasing function f : [0, 1]→ X with uncountably many discon-
tinuities. (In isomorphic terms, he dealt with closed subspaces X of C(K)-
spaces considered with their natural pointwise order.) He proved, among
other things, that a Banach lattice, in particular a C(K) space, has prop-
erty (λ) iff it contains no order-isomorphic copy of the space D(0, 1) ([9,
Cor. 5]; see [9] and [10] for more information about D(0, 1)). This was highly
surprising because D(0, 1) entered the scene in [2, Prop. 4.2] merely as an
example of a Banach lattice containing no isomorphic copy of l∞ and yet
failing property (λ). However, an intrinsic characterization of those compact
spaces K for which C(K) has property (λ) is as yet unknown.

In the present paper we answer the above questions in the affirmative.
Two crucial observations that made this possible concern increasing func-
tions f : [0, 1]→ C(K) with 0 ≤ f ≤ 1 (a condition one can always assume
without loss of generality), and have already been successfully exploited
in [9]. They are the following (cf. [9, Th. 1]):

• First, there is a natural one-to-one correspondence between such func-
tions f and continuous maps F : K → H, where H is the Helly space,
given by the equality F (t)(s) = f(s)(t). (Recall that H is the compact
space consisting of all increasing functions from [0, 1] into itself and
considered with the topology of pointwise convergence.)
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• Second, such a function f has only countably many discontinuities iff
the associated map F has a metrizable range.

Thus, question (b′) for the case E = R can be reformulated in purely topo-
logical terms as follows:

(b′′) Suppose every continuous map from compact spaces K1 and K2

to H has a metrizable range; is then the same true of continuous
maps from K1 ×K2 to H?

It turns out to be easier to deal with, and answer (in the affirmative),
question (b′′) rather than question (b′). Moreover, from the positive answer
to question (b′) for the case E = R we are able to deduce a positive answer to
question (a′) in its general form. From this a positive answer to the general
form of question (b′) follows immediately.

As explicitly noted in [2], most of the results proved in that paper, in
particular the results (a) and (b) remain valid when E is an arbitrary ordered
metric space, and the questions raised therein, in particular questions (a′)
and (b′), make sense in this more general setting as well. However, in this
case we cannot reduce our problems to C(K) spaces and continuous maps
F : K → H. On the contrary, we have to deal directly with the spaces
C(K,E) and continuous maps F : K → H(E), where H(E) is a natural
analogue of H consisting of all increasing functions from [0, 1] to E.

Motivated by what was said above, in this paper:

1) we extend some of the results known for the Helly space H to the
generalized Helly spaces H(E), where E is an ordered metric space;

2) we investigate continuous maps with metrizable ranges; we call such
maps metrizing, and focus our attention on the question when a sep-
arately metrizing continuous map defined on the product of a family
of compact spaces is (globally) metrizing;

3) we apply the results obtained to more general versions of questions
(a′) and (b′).

2. A few preliminary facts. Throughout the paper, I stands for the
interval [0, 1]; all topological spaces occurring are assumed to be Hausdorff;
and, given a set S, we denote by F(S) the family of all its finite subsets.

For a function f from I to a topological space X, we denote by D(f) the
set of points of discontinuity of f . Moreover, given a set F of such functions,
we write D(F ) for the union of the sets D(f), where f ∈ F .

If X is a metric space, then D(f) is an Fσ subset of I (see [6, §21.III]);
consequently, either |D(f)| ≤ ℵ0 or |D(f)| = 2ℵ0 (by [6, §37.I, Thm. 3]).

A function f : I → X, where X is a (partially) ordered space, is mono-
tone if it is increasing or decreasing (in the weak sense); that is, in an
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alternative terminology, nondecreasing or nonincreasing, respectively. Since
such a function f is decreasing iff the function s 7→ f(1− s) is increasing, in
what follows we restrict our attention to increasing functions only.

By an ordered metric space we understand a metric space X = (X, d)
with a (partial) order relation ≤ such that the metric d is monotone relative
to ≤. The latter means that whenever x ≤ u ≤ v ≤ y, then d(u, v) ≤ d(x, y).
We shall sometimes assume that the relation ≤ is closed as a subset of the
product space X ×X, that is

(m) whenever (xn) and (yn) are sequences in X with xn ≤ yn for all n,
and xn → x, yn → y in X, then x ≤ y.

In general, for a function f from the interval I to a topological space,
if |D(f)| ≤ ℵ0, then f has a separable range. (For if Q is any countable
dense subset of I containing D(f)∪ {0, 1}, then f(Q) is dense in f(I).) For
monotone functions taking values in ordered metric spaces, also the converse
is true (see [8] and [2, Fact 1.7]); this is included in the following.

Proposition 2.1. Let X be an ordered metric space, and f : I → X an
increasing function. Then the following are equivalent.

(a) |D(f)| ≤ ℵ0.
(b) There is a countable set A ⊂ I such that at each point s ∈ I \ A

the function f satisfies the Cauchy condition for the existence of the
left-hand limit f(s−) or the right-hand limit f(s+).

(c) The range of f is separable.

Proof. That (a) implies (b) is trivial.
(b)⇒(c): Suppose f(I) is nonseparable. Then, for some ε > 0, one can

find an uncountable set S ⊂ I such that d(f(s′), f(s′′)) > ε for all distinct
points s′, s′′ ∈ S. It can also be assumed that each s ∈ S is a two-sided
accumulation point of S. Now, take any s ∈ S. Then to the left of s, as well
as to the right of s, and at the same time arbitrarily close to s, one can find
distinct points s′, s′′ with d(f(s′), f(s′′)) > ε. This contradicts (b).

(c)⇒(a): Suppose |D(f)| > ℵ0. Then, for some ε > 0, one can find an
uncountable set S ⊂ D(f) such that d(f(s′), f(s′′)) > ε whenever s′ <
s < s′′ and s ∈ S. It can also be assumed that each s ∈ S is a two-sided
accumulation point of S. Then d(f(s′), f(s′′)) > ε for any two distinct points
s′, s′′ ∈ S, thus contradicting (c).

As in [2], we say that an ordered metric space X has property (λ) if
every increasing function f : I → X has at most countably many points of
discontinuity, i.e., |D(f)| ≤ ℵ0.

Lemma 2.2. Let R be an infinite countable subset of an interval [a, b] ⊂
R such that R is order dense in itself (i.e., (s, t)∩R 6= ∅ whenever s, t ∈ R
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and s < t) and has neither a smallest nor largest element. Also, let Q be
a countable dense subset of (0, 1). Then there exists a strictly increasing
function ϕ : I → [a, b] such that ϕ(0) = a, ϕ(1) = b, and ϕ(Q) = R.

Proof. It is a well known fact (see [7, Ch. VI, § 3, Thm. 2]) that the
assumptions on R and Q guarantee that there exists a strictly increasing
function (an order isomorphism) ψ mapping Q onto R. We extend ψ to a
function ϕ from I into [a, b] by setting ϕ(0) = a, ϕ(1) = b, and ϕ(t) =
sup{ψ(s) : s ∈ Q ∩ (0, t]} for t ∈ (0, 1). It is then easily seen that ϕ has the
desired properties.

Corollary 2.3. Let X be an ordered metric space, and f : I → X an
increasing function. If |D(f)| > ℵ0, then there exists a strictly increasing
function ϕ : I → I such that for the increasing function g := f ◦ ϕ : I → X
one has

inf{d(g(s), g(s′)) : s, s′ ∈ I, s 6= s′} > 0.

In particular , D(g) = I.

Proof. By [2, Lemma 3.1], for some ε > 0 we can find an uncountable
set D ⊂ I such that d(f(s), f(s′)) > ε for all distinct s, s′ ∈ D. It can
be assumed, additionally, that each point in D is a two-sided accumulation
point of D, and that D has neither a smallest nor largest element. Let R be
any countable dense subset of D, and let Q be the set of rationals in (0, 1).
By Lemma 2.2, there exists a strictly increasing function ϕ : I → I such
that ϕ(Q) = R.

Consider the function g := f ◦ϕ. Take any t, t′ ∈ I with t < t′, and next
choose s, s′ ∈ Q so that t < s < s′ < t′. Then d(g(t′), g(t)) ≥ d(g(s′), g(s)) >
ε, and the proof is complete.

Corollary 2.4. An ordered metric space X fails to have property (λ)
if and only if it contains a metrically discrete order-isomorphic copy of the
interval I, that is, there exists an increasing function g : I → X such that ,
for some ε > 0, one has d(g(t′), g(t)) > ε whenever t, t′ ∈ I and t 6= t′.

We are now in a position to give an affirmative answer to Problem 1 in [2]
by showing that the apparently weaker property (λ0) stated in condition (b)
below implies property (λ).

Proposition 2.5. For an ordered metric space X, the following are
equivalent.

(a) X has property (λ).
(b) X has property (λ0), that is, every increasing function f : I → X

has a point of continuity in I.
(c) For every increasing function f : I → X and every ε > 0 there exists

a pair of distinct points s, s′ ∈ I with d(f(s), f(s′)) < ε.
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Proof. The implications (a)⇒(b)⇒(c) are trivial, and that (c) implies (a)
follows directly from Corollary 2.4.

3. Spaces C(K,E) with property (λ). Preliminary facts. Let X be
a (Hausdorff) topological space and E = (E,≤, d) an ordered metric space.
Then C(X,E) stands for the set of all continuous functions x : X → E
equipped with the pointwise order induced from E. It will be considered
either with the topology τp of pointwise convergence on X, or with the
(metrizable) topology τu of uniform convergence on X, and the result-
ing topological spaces will be indicated by Cp(X,E) and Cu(X,E), respec-
tively. Clearly, if E satisfies condition (m), so does Cp(X,E) and a fortiori
Cu(X,E). For each point t ∈ X we denote by pt the evaluation map on
C(X,E) defined by pt(x) = x(t).

Given a function f : I → C(X,E), it will often be convenient to write
f(s, t) instead of f(s)(t) for s ∈ I and t ∈ X. Clearly, f(·, t) = pt ◦ f for
each t ∈ X. Evidently, if |D(f)| ≤ ℵ0, then |D(pt ◦ f)| ≤ ℵ0 for each t ∈ X.

In most cases occurring below, the domain space X is assumed to be
compact and, as a rule, we denote it by K. Note that in this case the
topology τu is defined by the standard supremum (extended) metric d∞,
and we usually write simply C(K,E) instead of Cu(K,E) or (C(K,E), d∞).

We are interested in continuity type properties of increasing functions
f : I → C(K,E). In particular, we would like to know under what circum-
stances the space C(K,E) has property (λ); an obvious necessary condition
is that E has property (λ). We start with the following observation.

Proposition 3.1. Let K be a compact space. Then an increasing func-
tion f : I → C(K,E) is continuous at a point s0 ∈ I (for the metric topology
of d∞), that is,

lim
s→s0

d∞(f(s), f(s0)) = 0,

if and only if it is continuous at s0 for the topology τp, that is,

lim
s→s0

d(f(s, t), f(s0, t)) = 0 ∀t ∈ K;

in other words, each of the increasing functions pt ◦ f : I → E (t ∈ K) is
continuous at s0. Likewise for the left- and right-continuity at s0.

Consequently ,

(∗) D(f) =
⋃
t∈K

D(pt ◦ f) = D({pt ◦ f : t ∈ K}).

Proof. The “if” part: Given any monotone sequence (sn) in I converging
to s0, the sequence d(f(sn, ·), f(s0, ·)) of continuous real-valued functions
on K is decreasing and converges pointwise to the zero function. Apply the
Dini theorem (see e.g. [4, 3.2.18]).
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Proposition 3.2. Let X be a topological space, and let f : I → C(X,E)
be an increasing function. Then the set X0 of all points t∈X with |D(f(·, t))|
≤ ℵ0 is sequentially closed.

Proof. Let a sequence (tn) in X0 converge to a point t0 ∈ X. Then
the functions f(·, tn) converge to f(·, t0) pointwise on I, and their ranges
f(I, tn) are all separable. It follows that also f(I, t0) is separable, as a subset
of the closure of the union of the f(I, tn)’s. Hence |D(f(·, t0))| ≤ ℵ0 by
Proposition 2.1.

Corollary 3.3. Let X be a first countable topological space. Then for
every increasing function f : I → C(X,E) the set of all points t ∈ X with
|D(f(·, t))| ≤ ℵ0 is closed.

Of the three results stated below, the first is a strengthened version of
Theorem 5.1 in [2], with an alternative proof. The second is an extraction
from the proof of Theorem 5.13 in [2], and from it the third result is derived
as a corollary.

Theorem 3.4. Let K be a metrizable compact space. If f : I → C(K,E)
is an increasing function such that |D(pt ◦ f)| ≤ ℵ0 for a dense set of points
t ∈ K, then also |D(f)| ≤ ℵ0. Consequently , if E has property (λ), so does
C(K,E).

Proof. By Corollary 3.3 it is immediate that |D(pt ◦ f)| ≤ ℵ0 for every
t ∈ K. From this, repeating almost verbatim the proof of Theorem 5.1 in [2],
we get the desired conclusion.

Alternatively, from the assumptions and Proposition 2.1 it follows that
there is a dense countable subset C of K such that f(I, t) is separable for
each point t ∈ C. Let F denote the closure in E of the union of the sets
f(I, t), t ∈ C. Then F is a separable subspace of E, and f(I, t) ⊂ F for
every t ∈ K (cf. the proof of Proposition 3.2). Consequently, we may view
f as a function with values in the ordered metric space C(K,F ) which, in
addition, is separable. To finish, appeal to Proposition 2.1.

Note. For the separability of C(K,F ), see [6, § 22.III] or [4, 4.2.18]. It
can also be shown as follows: By the Banach–Mazur theorem (see [1, Ch. XI,
Th. 10]), F is isometric to a subset of the Banach space C(I). Hence, in turn,
C(K,F ) is isometric to a subset of the Banach space C(K,C(I)) ∼= C(K×I),
and the latter space is separable (see [13, 7.6.2]) because K×I is a metrizable
compact space.

Proposition 3.5. Let K be a compact space, and f : I → C(K,E)
an increasing function. Then there exists a separable compact subspace K0

of K such that the increasing function g : s 7→ f(s)|K0 from I to C(K0, E)
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has the same set of discontinuities as f : D(g) = D(f). Consequently , if
|D(f)| > ℵ0, then also |D(g)| > ℵ0.

Proof. Let Q denote the set of rationals in I. For each pair r, r′ of distinct
points in Q choose a point tr,r′ ∈ K so that

d∞(f(r), f(r′)) = d(f(r, tr,r′), f(r′, tr,r′)),

and let K0 denote the closure of the set of all those points tr,r′ .
If s1 ≤ s′1 < s′2 ≤ s2 with s′1, s

′
2 ∈ Q, then

d∞(f(s2), f(s1)) ≥ d∞(g(s2), g(s1)) ≥ d∞(g(s′2), g(s′1)) = d∞(f(s′2), f(s′1)).

From this it follows directly that D(f) = D(g).

Let us say that a compact space is separably metrizable if all its separable
subspaces are metrizable.

Corollary 3.6. If a compact space K is separably metrizable, and the
space E has property (λ), so does the space C(K,E).

Remark 3.7. It is obvious that closed subspaces, continuous images,
and countable products of separably metrizable compact spaces are again
of the same type. Note that this class of spaces includes all Corson com-
pacts, in particular, all Eberlein compacts (see [11] for more information on
Corson, Eberlein and other related classes of compact spaces). It is also
worth pointing out that the compact space W of all ordinal numbers ≤ ω1

(see [4, 3.1.27]) is in this class but is not a Corson compact.

4. Generalized Helly spaces. The usual Helly space H is the set of
all increasing functions mapping the interval I into itself, equipped with
the topology of pointwise convergence. Its basic properties are stated in
[5, Ch. 5, Problem M]: H is a separable, nonmetrizable, first-countable com-
pact Hausdorff space. Moreover, a compact subspace K of H is metrizable
iff |D(K)| ≤ ℵ0. As shown in [12], the latter condition characterizes, in fact,
those subspacesK ⊂ H that are separable and metrizable. It was also proved
there that H contains a homeomorphic copy of every separable metrizable
space, and that metrizable compact subsets of H are Gδ sets.

Additionally, observe that H does contain nonseparable compact sub-
spaces. For instance, such is the subspace K consisting of all functions of
the form χ(r,1], χ[r,1], and 1

2χ{r} + χ(r,1], where r ∈ I. (χJ denotes the char-
acteristic function of a set J ⊂ I.)

It is obvious that the definition of the Helly space admits various exten-
sions. The following one is the most suitable for our purposes.

Let E = (E,≤, d) be an ordered metric space.
By the Helly space determined by E we shall mean the set H(E) ≡

H(I, E) of all increasing functions x : I → E equipped with the topol-



Generalized Helly spaces 169

ogy τp of pointwise convergence on I. Thus for each x ∈ H(E) a base of
τp-neighborhoods of x is formed by the sets

U(x;A, ε) := {y ∈ H(E) : d(y(s), x(s)) < ε ∀s ∈ A},
where A ∈ F(I) and ε > 0.

Given x ∈ H(E) and a subset S of I, we define

U(x;S) = {U(x;A, ε) : A ∈ F(S), ε > 0}.

Proposition 4.1. If the space E satisfies condition (m), then H(E) is
a closed subspace of the space EI of all functions from I to E.

Most of our results will be concerned with the following subspace of
H(E):

H0(E) := {x ∈ H(E) : |D(x)| ≤ ℵ0}.
Obviously, H(E) = H0(E) iff E has property (λ).

Proposition 4.2. H0(E) is sequentially closed in H(E).

Proof. Define f : I → Cp(H(E), E) by f(s)(x) = x(s). Then f is
increasing, and H0(E) coincides with the set of points x ∈ H(E) with
|D(f(·, x))| ≤ ℵ0. To finish, apply Proposition 3.2.

We will need the following two lemmas.

Lemma 4.3. For every ε > 0 there is δ > 0 such that if x, y, z, x′, z′ ∈ E,
x′ ≤ z′, and

d(y, x) < δ, d(y, z) < δ, d(x′, x) < δ, d(z′, z) < δ,

then d(y′, y) < ε for each point y′ in the order interval [x′, z′].

Proof. Let y′ ∈ [x′, z′]. Then, using the monotonicity of d to justify the
second inequality below, we have

d(y′, y) ≤ d(y′, x′) + d(x′, x) + d(x, y) ≤ d(z′, x′) + d(x′, x) + d(x, y)
≤ d(z′, z) + d(z, y) + d(y, x) + d(x, x′) + d(x′, x) + d(x, y)
= 2d(y, x) + d(y, z) + 2d(x′, x) + d(z′, z),

which is < ε provided that δ < ε/6.

Lemma 4.4. Let x ∈ H(E) and let Q be a dense subset of I containing
D(x) ∪ {0, 1}. If y ∈ H(E) and x|Q = y|Q, then x = y.

Proof. Let s ∈ I \Q. If s′, s′′ ∈ Q and s′ < s < s′′, then y(s′) = x(s′) ≤
x(s), y(s) ≤ x(s′′) = y(s′′), hence

d(y(s), x(s)) ≤ d(y(s), x(s′)) + d(x(s′), x(s)) ≤ 2d(x(s′′), x(s′)).

Since x is continuous at s, it follows that d(x(s), y(s)) = 0.



170 L. Drewnowski and A. Michalak

Proposition 4.5. Let x ∈ H(E), and let Q be a dense subset of the
interval I containing its endpoints. Then the following are equivalent.

(a) Q ⊃ D(x).
(b) The family U(x;Q) is a base of neighborhoods of x in the space H(E).

Proof. (a)⇒(b): Consider a “typical” neighborhood U(x;A, ε) of x in
H(E), where A ∈ F(I) and ε > 0. We are going to show that it contains a
member of U(x;Q). This is trivial when A ⊂ Q, so assume that A 6⊂ Q.

Let 0 < δ < ε be as required in Lemma 4.3. For each s ∈ B := A \ Q
choose s′, s′′ ∈ Q so that s′ < s < s′′ and

(1) d(x(s′), x(s)) < δ, d(x(s′′), x(s)) < δ;

this is possible because x is continuous at s. Denote by B′ the set formed
by all the points s′ and s′′ thus selected. Clearly, A′ := B′ ∪ (A ∩ Q) is a
finite subset of Q. Now, let y ∈ U(x;A′, δ); thus

(2) d(y(t), x(t)) < δ for each t ∈ A′.

Take any s ∈ A. If s ∈ A ∩ Q, then we obviously have d(y(s), x(s)) < ε. If
s ∈ B = A\(A∩Q), then y(s′) ≤ y(s) ≤ y(s′′), and in view of conditions (1)
and (2) Lemma 4.3 gives d(y(s), x(s)) < ε. Thus U(x;A′, δ) ∈ U(x;Q) and
U(x;A′, δ) ⊂ U(x;A, ε).

(b)⇒(a): Suppose there is a point t ∈ D(x) \Q. Then 0 < t < 1 and for
some ε > 0 we have either

(i) d(x(s), x(t)) > ε for all s ∈ [0, t), or
(ii) d(x(s), x(t)) > ε for all s ∈ (t, 1].

We are going to show that the neighborhood U(x; {t}, ε) of x contains no
neighborhood from U(x;Q).

Suppose, for instance, that (i) holds, and let A be a finite nonempty
subset of Q. Define a = minA. If a < t, then let c = max(A ∩ [0, t)) and
define a function y ∈ H(E) by setting y(s) = x(s) for s ∈ [0, c) ∪ (t, 1] and
y(s) = x(c) for s ∈ [c, t]. If a > t, then define a function y ∈ H(E) by
y(s) = x(0) for s ∈ [0, t] and y(s) = x(s) for s ∈ (t, 1]. In either case we have
y(s) = x(s) for all s ∈ A so that y ∈ U(x;A, δ) ∈ U(x;Q) for every δ > 0.
However, d(y(t), x(t)) > ε and thus y /∈ U(x; {t}, ε).

Corollary 4.6. A point x ∈ H(E) has a countable base of neigh-
borhoods iff |D(x)| ≤ ℵ0. Consequently , H0(E) is precisely the subspace
of H(E) formed by the points that have a countable base of neighborhoods
in H(E).

Proof. The “if” part is immediate from Proposition 4.5 by taking for Q
any countable dense subset of I containing D(x) ∪ {0, 1}.
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“Only if”: Suppose x has a countable base of neighborhoods. Clearly, we
may assume that it is formed by the sets U(x;A,n−1), where A is any finite
subset of a certain countable dense setQ ⊂ I, and n ∈ N. By Proposition 4.5,
D(x) ⊂ Q ∪ {0, 1}, hence |D(x)| ≤ ℵ0.

For a subset A of H(E) and any s ∈ I, we define

A(s) = {x(s) : x ∈ A}, R(A) =
⋃
x∈A

x(I), D(A) =
⋃
x∈A

D(x).

Proposition 4.7. If F is a separable subspace of E, then H(F ) =
H0(F ) is a separable subspace of H0(E).

Proof. The inclusion H(F ) ⊂ H0(E) follows from Proposition 2.1. It
remains to verify that H(F ) is separable.

First of all note that for each n ∈ N the product space Fn is metrizable
and separable, hence so is its subspace

(Fn)↑ := {(v1, . . . , vn) ∈ Fn : v1 ≤ · · · ≤ vn}.

Let Mn be a countable dense subset of (Fn)↑. Next, denote by Zn the count-
able set of all functions z : I → E such that for a sequence of rationals
0 = r0 < r1 < · · · < rn = 1 and a sequence (u1, . . . , un) ∈ Mn we have
z(s) = ui for s ∈ [ri−1, ri) (1 ≤ i ≤ n− 1), and z(s) = un for s ∈ [rn−1, rn].
Let Z denote the union of the Zn’s; clearly, Z ⊂ H(F ).

We now show that Z is dense in H(F ). Let x ∈ H(F ), take any points
s1 < · · · < sn in I, and fix any number ε > 0. Next, choose rationals
0 = r0 < r1 < · · · < rn = 1 so that si ∈ [ri−1, ri) for i = 1, . . . , n − 1, and
sn∈ [rn−1, rn]. Since (x(s1), . . . , x(sn))∈(Fn)↑, we can find (u1, . . . , un)∈Mn

so that d(x(si), ui)<ε for i = 1, . . . , n. Finally, define a function z : I → E
as in the preceding paragraph. Then z ∈ Zn ⊂ Z and d(x(si), z(si)) < ε for
i = 1, . . . , n, which concludes the proof.

Corollary 4.8. For a subspace A of H(E) the following are equivalent.

(a) A is contained in a separable subspace of H0(E).
(b) R(A) is a separable subspace of E.

Proof. (a)⇒(b): Suppose A is contained in a separable subspace B of
H0(E), and let C be a countable dense subset of B. Each x ∈ B has a
separable range because |D(x)| ≤ ℵ0. It follows that the closure S of R(C)
in E is separable. To finish note that R(A) ⊂ R(B) ⊂ S.

(b)⇒(a): If F := R(A) is separable then, by Proposition 4.7, so is the
subspace H(F ) of H0(E), and it obviously contains A.

Proposition 4.9. A compact subspace K of H0(E) is metrizable iff
|D(K)| ≤ ℵ0.
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Proof. Suppose |D(K)| ≤ ℵ0 and let Q be any countable dense subset
of I containing D(K) ∪ {0, 1}. By Lemma 4.4, if x, y ∈ K and x|Q = y|Q,
then x = y. This means that the restriction map x 7→ x|Q from K into∏
s∈QK(s) is one-to-one. Moreover, it is continuous, and the factors in the

product are all compact subsets in the metric space E. Consequently, we
have a homeomorphic embedding of K into a metrizable compact space,
hence K itself is metrizable.

Conversely, let K be metrizable. Define a function f : I → C(K,E)
by f(s)(x) = x(s). Then f is increasing, and D(f) = D(K), as follows
easily from equality (∗) in Proposition 3.1. Moreover, for each x ∈ K one
has px ◦ f = x, and |D(x)| ≤ ℵ0 by assumption. Therefore, we may apply
Theorem 3.4 to deduce that |D(f)| ≤ ℵ0.

For the usual Helly space H, the following has been shown in [9, Fact 2].

Corollary 4.10. Every nonmetrizable compact subspace K of H0(E)
contains another compact subspace L which is nonmetrizable and separa-
ble. In other words, a separably metrizable compact subspace of H0(E) is
metrizable.

Proof. Let f be the function defined as in the proof above. Then, by
Proposition 3.5, there is a separable closed subset L of K such that for the
function g : s 7→ f(s)|L one has D(K) = D(f) = D(g) = D(L). It follows
that |D(L)| > ℵ0 so that L is nonmetrizable by the previous proposition.

It is worth noting that an inspection of the argument used in the proof
of Fact 2 in [9] mentioned above reveals that, in fact, it is a proof of a much
stronger result. (For scattered spaces, see [13, Sec. 8.5].)

Proposition 4.11. Every nonmetrizable compact subspace K of H con-
tains another compact subspace L which is nonmetrizable, nonscattered , and
separable. Consequently , scattered compact subspaces of H are metrizable,
and therefore countable.

Proposition 4.9 is, actually, a particular case of a more general fact:

Proposition 4.12. A compact subspace K of a product X =
∏
j∈J Xj

of metrizable spaces is metrizable iff there exists a countable subset J0 of J
such that whenever x, y ∈ K and x|J0 = y|J0, then x = y.

Proof. The argument for the “if” part is like that in the proof of Propo-
sition 4.9. The “only if” part follows from the fact that the identity map
from K ⊂ X to K depends only on countably many coordinates j ∈ J (see
[3, p. 221], [4, 3.2.H], and [2, Lemma 5.8]).

The “if” part of Proposition 4.9 admits a more general version:



Generalized Helly spaces 173

Proposition 4.13. Let A be a subspace of H(E), and Q a dense subset
of I containing D(A)∪ {0, 1}. Then the restriction map RQ : x 7→ x|Q is a
homeomorphic embedding of A into the product space EQ. Consequently , if
|D(A)| ≤ ℵ0, then the subspace A is metrizable, and if in addition A(s) ⊂ E
is separable for each s ∈ I, then also A is separable.

Proof. By Proposition 4.5, for every x ∈ A the family U(x;Q) is a base
of neighborhoods of the point x in H(E). From this it follows that RQ has
a continuous inverse on RQ(A).

Thus, in particular, every countable subspace A of H0(E) is metrizable.
The following result is a generalization of [12, Prop. 2].

Proposition 4.14. For a subspace A of H0(E) the following are equiv-
alent.

(a) A is metrizable and separable.
(b) |D(A)| ≤ ℵ0 and R(A) is separable.

Proof. (b)⇒(a): This is contained in Proposition 4.13.
(a)⇒(b): F := R(A) is separable by Corollary 4.8.
Suppose |D(A)| > ℵ0. Then with no loss of generality we may assume

that the set Dr(A) of points t ∈ I where at least one of the functions
x ∈ A is not continuous from the right is uncountable. Next, remembering
that |D(x)| ≤ ℵ0 for every x ∈ A, we can find a number ε > 0 and an
uncountable subset D of Dr(A) such that for each s ∈ D there is a function
xs ∈ A for which d(xs(s), xs(t)) ≥ ε for all t ∈ (s, 1]. We may assume that
xs 6= xs′ whenever s 6= s′.

Since F is separable, it can be covered by a sequence of open balls
K(zn, r) (n ∈ N) with centers zn ∈ F and radius r = ε/3. Clearly, there is an
index m for which the set D0 := {s ∈ D : xs(s) ∈ K(zm, r)} is uncountable.

Now, for each s ∈ D0 the set Us := {x ∈ A : x(s) ∈ K(zm, r)} is open
in A and contains xs. On the other hand, if s, s′ ∈ D0 and s < s′, then
xs /∈ Us′ . Indeed,

d(xs(s′), zm) ≥ d(xs(s′), xs(s))− d(xs(s), zm) ≥ ε− 1
3ε = 2

3ε > r.

Since A is separable and metrizable, its topology has a countable base,
say B. Then for each s ∈ D0 there is a Bs ∈ B such that xs ∈ Bs ⊂ Us.
Since |D0| > ℵ0, there must be distinct s, s′ ∈ D0 with Bs = Bs′ . Then both
xs and xs′ would belong to each of the sets Us and Us′ , which, as we have
just seen, is impossible.

The next two results, Proposition 4.15 and Corollary 4.18, are extensions
to the spaces H(E) of analogous results proved in [12, p. 44] for the usual
Helly space.
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Proposition 4.15. For a compact subset K of H(E) the following are
equivalent.

(a) There is a countable set Q ⊂ I such that whenever x ∈ K, y ∈ H(E),
and x|Q = y|Q, then y ∈ K.

(b) K is a Gδ subset of H(E).

Proof. (a)⇒(b): Let Q = {s1, s2, . . . }. For every x ∈ K and n ∈ N set
Un(x) = U(x;Qn, n−1), where Qn := {s1, . . . , sn}. Define

Gn =
⋃
x∈K

Un(x) (n ∈ N) and G =
∞⋂
n=1

Gn.

Clearly, K ⊂ G. To finish, it suffices to verify that G ⊂ K.
Let y ∈ G. Then for each n there is xn ∈ K such that y ∈ Un(xn). Thus

d(y(si), xn(si)) < n−1 for i = 1, . . . , n.

Since K is compact, the sequence (xn) has a cluster point x ∈ H(E). Evi-
dently, y(s) = x(s) for every s ∈ Q. Hence y ∈ K, by (a).

An alternative argument : Consider the continuous map f : x 7→ x|Q
from H(E) into the metrizable compact space L :=

∏
s∈QK(s). Then K ′ :=

f(K) is a compact, hence Gδ, subset of L. Moreover, by (a), whenever
y ∈ H(E) \K, then f(y) /∈ K ′. This means that K = f−1(K ′), hence K is
a Gδ subset of H(E).

(b)⇒(a): Let (Gn) be a sequence of open sets in H(E) such that its
intersection is equal to K. Note that for each x ∈ K and n ∈ N there is
a neighborhood of x of the type U(x;A, ε) (A ∈ F(I), ε > 0) contained
in Gn. Hence, by the compactness of K, for every n we can find points
xn,1, . . . , xn,mn ∈ K, sets An,1, . . . , An,mn ∈ F(I) and positive numbers
εn,1, . . . , εn,mn such that

K ⊂
mn⋃
i=1

U(xn,i;An,i, εn,i) ⊂ Gn.

Let
Q :=

∞⋃
n=1

mn⋃
i=1

An,i.

Suppose x ∈ K, y ∈ H(E), and x|Q = y|Q. Since x ∈ K, for each n
there is in such that x ∈ U(xn,in ;An,in , εn,in). But x = y on An,in , hence
also y ∈ U(xn,in ;An,in , εn,in). Thus y ∈ Gn for every n, and consequently
y ∈ K.

It is worth noting that Proposition 4.15 admits a more general version:

Proposition 4.16. Let M be a subspace of a product
∏
s∈S Xs of metriz-

able spaces. Then for a compact subset K of M the following are equivalent.
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(a) There is a countable set T ⊂ S such that whenever x ∈ K, y ∈ M ,
and x|T = y|T , then y ∈ K.

(b) K is a Gδ subset of M .

Corollary 4.17. A point x ∈ H(E) is a Gδ-point iff there is a count-
able set Q ⊂ I such that whenever y ∈ H(E) and x|Q = y|Q, then x = y.

Corollary 4.18. Every metrizable compact subspace K of H0(E) is a
Gδ subset of H(E).

Proof. By Proposition 4.9, |D(K)| ≤ ℵ0. In view of Lemma 4.4, any
countable dense subset Q of I containing D(K) ∪ {0, 1} is as required in
condition (a) of Proposition 4.15.

With the help of points of order-discontinuity, we are now going to give
more precise versions of Lemma 4.4 and Corollary 4.17. We shall say that a
function x ∈ H(E) is order-continuous at a point s0 ∈ I if

x(s0) = sup{x(s) : s ∈ [0, s0)} and x(s0) = inf{x(s) : s ∈ (s0, 1]},
with the proviso that only the first or the second equality is required to hold
when s0 = 1 or s0 = 0, respectively.

Proposition 4.19. If x ∈ H(E) is continuous at a point s0 ∈ I, then x
is also order-continuous at s0.

For each x ∈ H(E), let Do(x) denote the set of all points in I where x is
not order-continuous. By the proposition above, Do(x) ⊂ D(x). In general,
these two sets may be radically different. For instance, if E is the unit
interval [0, 1] with the natural order and the discrete (zero-one) metric, and
x ∈ H(E), then

(a) Do(x) coincides with the set of usual points of discontinuity of x
(i.e., those for the natural metric of E) so that |Do(x)| ≤ ℵ0;

(b) |D(x)| ≤ ℵ0 iff |x(I)| ≤ ℵ0 (by Proposition 2.1).

Proposition 4.20. Let x ∈ H(E), and let Q be a dense subset of the
interval I containing its endpoints. Then the following are equivalent.

(a) Q ⊃ Do(x).
(b) Whenever y ∈ H(E) and x|Q = y|Q, then x = y.
(c) The intersection of the neighborhoods U ∈ U(x;Q) is equal to {x}.
Proof. It is quite obvious that conditions (b) and (c) are indeed equiva-

lent.
(a)⇒(b): Let y be as required in (b), and let s0 ∈ I \ Q. Since x is

order-continuous at s0 and Q ∩ [0, s0) is a cofinal subset of [0, s0), we have
x(s0) = sup{x(s) : s ∈ Q ∩ [0, s0)}. On the other hand, x(s) = y(s) for
all s ∈ Q ∩ [0, s0), hence x(s0) ≤ y(s0). Likewise, y(s0) ≤ x(s0). Thus
x(s0) = y(s0).
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(b)⇒(a): Suppose there is a point s0 ∈ Do(x) \Q. Then 0 < s0 < 1 and
for some z ∈ E we have either

(i) x(s) ≤ z < x(s0) for all s ∈ [0, s0), or
(ii) x(s0) < z ≤ x(s) for all s ∈ (s0, 1].

In either case, define a function y ∈ H(E) by setting y(s) = x(s) for
s 6= s0 and y(s0) = z. Obviously, y|Q = x|Q and y 6= x, contradicting (b).

Corollary 4.21. A point x ∈ H(E) is a Gδ-point iff |Do(x)| ≤ ℵ0.

Proof. Suppose |Do(x)| ≤ ℵ0 and take any countable dense subset Q
of I containing Do(x) ∪ {0, 1}. By Proposition 4.20, {x} is equal to the
intersection of the neighborhoods U(x;A,n−1), where A ∈ F(Q) and n ∈ N.
Thus {x} is a Gδ set in H(E).

Conversely, assume that {x} is the intersection of a countable family of
neighborhoods of x. We may assume that they are of the form U(x;A,n−1),
where A ∈ F(Q) and n ∈ N, for a certain countable dense set Q ⊂ I contain-
ing 0 and 1. Then, by Proposition 4.20, Q ⊃ Do(x), hence |Do(x)| ≤ ℵ0.

We conclude this section with an existence result.

Proposition 4.22. Let the ordered metric space E satisfy condition (m),
and for every s ∈ I let F (s) be a compact subset of E. Assume that for every
set A ∈ F(I) there is an increasing function x : A → E with x(s) ∈ F (s)
for all s ∈ A. Then there exists an increasing function x : I → E with
x(s) ∈ F (s) for all s ∈ I.

Proof. Consider the compact space F =
∏
s∈I F (s). For every A ∈ F(I)

let FA denote the set of all x ∈ F such that x|A is increasing. By assumption,
each of the sets FA is nonempty, and in view of condition (m) it is clear that
FA is compact in F . Moreover, the family {FA : A ∈ F(I)} is downward
directed by inclusion. It follows that this family has a nonempty intersection,
which proves the theorem.

5. Increasing functions and the Helly spaces (I). As before, K
will stand for a compact space, and E for an ordered metric space. The
ideas and facts collected below are, in essence, a somewhat elaborated and
generalized version of those already present in [9] (especially in Theorem 1
therein).

It is a simple observation, and yet of key importance for us, that there
exist natural one-to-one correspondences between increasing functions f :
I → C(K,E) and

a) functions ϕ : I ×K → E that are increasing in the first variable and
continuous in the second variable, as well as

b) continuous maps F : K → H(E).
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These correspondences are determined by the equalities

ϕ(s, t) = f(s)(t) = F (t)(s), where s ∈ I and t ∈ K.

Thus, in particular, F (t) = pt ◦ f for every t ∈ K.
The two propositions below gather together a few easy relevant facts.

Proposition 5.1. The map f → F described above is a homeomorphism
between the spaces H(Cp(K,E)) and Cp(K,H(E)).

If L is a compact subset of H(E), we define a function gL : I → C(L,E)
by gL(s) = πs, where πs : L → E is the evaluation map (or projection) at
the point s ∈ I; thus πs(x) = x(s) for x ∈ L. Clearly, gL is an increasing
function, and px ◦ gL = x for each x ∈ L. Hence the associated continuous
map GL : L→ H(E) is simply the identity embedding, and D(gL) = D(L)
by equality (∗) in Proposition 3.1.

Note. Functions of the type gL have already been used in the proofs of
Propositions 4.2 and 4.9, and of Corollary 4.10.

Proposition 5.2. Let f : I → C(K,E) be an increasing function and
F : K → H(E) the associated continuous map, and let Kf := F (K), a com-
pact subset of H(E). Then

D(f) = D(Kf ) = D(gKf
).

Moreover , the composition operator cf : g 7→ g ◦ F is an order preserving
isometric embedding of C(Kf , E) into C(K,E), and f = cf ◦ gKf

.

Proof. The last equality follows from the following chain of relations,
where s ∈ I and t ∈ K, and πs is defined on Kf :

(cf ◦ gKf
)(s)(t) = cf (πs)(t) = (πs ◦ F )(t) = πs(F (t)) = F (t)(s)

= pt(f(s)) = f(s)(t).

Using Proposition 4.9, from the equality D(f) = D(Kf ) we now derive
the following.

Proposition 5.3. Let f : I → C(K,E) be an increasing function. Then
|D(f)| ≤ ℵ0 iff the associated map F : K → H(E) takes its values in H0(E)
and has a metrizable range.

Corollary 5.4. The space C(K,E) has property (λ) iff E has prop-
erty (λ) and every continuous map from K into H(E) has a metrizable
range.

This section will be continued as Section 7 below.

6. Metrizing maps on products of compact spaces. In all of this
section, X and Xj (j ∈ J) stand for arbitrary compact (Hausdorff) spaces,
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Z for a Hausdorff topological space and, as before, E for an ordered metric
space.

Motivated by the last two results of the preceding section, we shall say
that a continuous map f : X → Z is metrizing if its range, f(X), is a
metrizable (compact) subspace of Z. The most natural question arising in
this context is: For what spaces X and Z every continuous map f : X → Z is
metrizing? Note that it is certainly so when either Z or X itself is metrizable
(for the latter case see [6, §41.VI, Th. 3] or [13, 7.6.3]). On the other hand,
it may happen that the only metrizing maps are the constant ones, as is
the case when the space X is connected and the space Z has no infinite
metrizable subspaces (it is so e.g. for Z = βN, see [4, 3.6.15]).

Proposition 6.1. If a compact space Y is a continuous image of the
space X, and every continuous map from X to Z is metrizing , then so is
every continuous map from Y to Z.

In view of Proposition 5.3, the situation most interesting for us is when Z
is the Helly space H0(E). In this case our results will be much better than
in the general case, thanks to the following two properties of H0(E):

(A) H0(E) is a first-countable space (Corollary 4.6);
(B) A separably metrizable compact subspace of H0(E) is metrizable

(Corollary 4.10).

Proposition 6.2. A continuous map f : X → H0(E) is metrizing iff
the image under f of every separable compact subset of X is metrizable.

Proof. “If”: Since for every separable compact set L ⊂ f(X) one can
find a separable compact set C ⊂ X so that L = f(C), the range of f is
separably metrizable. Apply (B).

We may now restate Corollary 3.6 as follows.

Corollary 6.3. If the compact space X is separably metrizable, then
every continuous map f : X → H0(E) is metrizing.

We finish this part with the following consequence of Proposition 4.11.

Proposition 6.4. If the compact space X is scattered , then every con-
tinuous map f : X → H is metrizing ; equivalently , the space C(X) has
property (λ).

We now turn to our basic problem of when a separately metrizing con-
tinuous map, defined on a product of compact spaces, is metrizing.

Consider the product space

XJ :=
∏
j∈J

Xj
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(this sort of notation for product spaces will often be used in what follows).
Given a point u = (uj) ∈ XJ and an index i ∈ J , we denote by ui the
homeomorphic embedding of Xi into XJ that assigns to each point t ∈ Xi

the point (xj) ∈ XJ such that xj = uj for j 6= i and xi = t.
Now, a continuous map f : XJ → Z will be called metrizing in each

variable separately , or briefly separately metrizing , if for each u ∈ XJ and
i ∈ J the map f ◦ ui : Xi → Z is metrizing. Thus, in particular, a map
f : X1 ×X2 → Z is separately metrizing iff for any a1 ∈ X1, a2 ∈ X2 both
f(a1, ·) : X2 → Z and f(·, a2) : X1 → Z have metrizable ranges.

We seek conditions under which a separately metrizing map is metrizing.
We start with two auxiliary results. Given a compact space X, we denote
by Cp(X,Z) the space of all continuous maps from X to Z equipped with
the topology τp of pointwise convergence (the one induced from the product
space ZX).

Proposition 6.5. Let X1 and X2 be compact spaces, and let f be a
continuous map from X1 × X2 to Z. Then there exist compact spaces Y1

and Y2, continuous surjective maps q1 : X1 → Y1 and q2 : X2 → Y2, and a
continuous map g : Y1 × Y2 → Z such that

1) f = g ◦ (q1, q2), i.e., f(x1, x2) = g(q1(x1), q2(x2)) for all (x1, x2) in
X1 ×X2;

2) both the maps y1 7→ g(y1, ·) : Y1 → Cp(Y2, Z) and y2 7→ g(·, y2) : Y2 →
Cp(Y1, Z) are one-to-one.

Proof. Consider the maps q1 : x1 7→ f(x1, ·) from X1 to Cp(X2, Z) and
q2 : x2 7→ f(·, x2) from X2 to Cp(X1, Z). They are obviously continuous,
hence their ranges,

Y1 := {f(x1, ·) : x1 ∈ X1} and Y2 := {f(·, x2) : x2 ∈ X2},

are compact subsets of the spaces Cp(X2, Z) and Cp(X1, Z), respectively.
Next, define a map g : Y1×Y2 → Z by setting g(y1, y2) = f(x1, x2), where

(x1, x2) is any point in X1 ×X2 such that y1 = f(x1, ·) and y2 = f(·, x2).
This makes sense because if f(x1, ·) = f(x′1, ·) and f(·, x2) = f(·, x′2) for

some (x′1, x
′
2), then f(x1, x2) = f(x′1, x2) = f(x′1, x

′
2).

From the definition of g it is clear that both conditions 1) and 2) are
satisfied. Moreover, since (q1, q2) is a continuous surjective map of X1 ×X2

onto Y1 × Y2 (hence a quotient map) and f is continuous, so is g.

Proposition 6.6. Let F be a compact subset of the space Cp(X,Z). If
the space X is separable and for each t ∈ X the (compact) set

F (t) := {f(t) : f ∈ F} ⊂ Z

is metrizable, then also F is metrizable.
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Proof. Let D be a countable dense subset of X. Then the map f 7→ f |D
from F to the product space

∏
t∈D F (t), which is compact and metrizable,

is continuous and one-to-one, hence it is a homeomorphic embedding. From
this the assertion follows immediately.

We are now ready for our basic result on separately metrizing maps.

Theorem 6.7. Let (Xj)j∈J be a finite (J= {1, . . . , n}) or infinite (J= N)
sequence of compact spaces, all of which, except possibly one, are separable.
If a continuous map f from the product space XJ to the space Z is separately
metrizing , then it is metrizing.

Proof. We may assume that all the spaces Xj for j ≥ 2 are separable.
We start with the case of a finite sequence X1, . . . , Xn. We proceed by

induction.
First, let n = 2. In view of Proposition 6.5 we may assume that the con-

tinuous maps q1 : x1 7→ f(x1, ·) from X1 to Cp(X2, Z) and q2 : x2 7→ f(·, x2)
from X2 to Cp(X1, Z) are one-to-one. Then

F := q1(X1) = {f(x1, ·) : x1 ∈ X1}
is a compact subset of Cp(X2, Z) and, by assumption, each of the sets
F (x2) = f(X1, x2) ⊂ Z is metrizable. Hence, by Proposition 6.6, F is metriz-
able, and since q1 is a homeomorphism between X1 and F , also the space X1

is metrizable.
Now, as X1 is compact and metrizable, hence separable, interchanging

the roles of X1 and X2 in the above argument shows that also the space X2

must be metrizable.
Consequently, both the spaces X1 and X2 are compact and metrizable,

and so are X1 ×X2 and f(X1 ×X2).
Assume now the assertion holds for some n = k ≥ 2, and consider the

case of n = k + 1 spaces. Fix any x1 ∈ X1 and let g denote the continuous
map (x2, . . . , xn) 7→ f(x1, x2, . . . , xn) from Y := X2 × · · · × Xn to Z. It is
clear that g is separately metrizing. By the induction hypothesis, g has a
metrizable range. Now, the space Y is separable, and f viewed as a map
from X1×Y to Z is separately metrizing. By the case n = 2, f is metrizing.

Now, let us deal with the case of an infinite sequence (Xj) of spaces. For
every k ∈ N set

Yk =
k∏

n=1

Xn, Zk =
∞∏

n=k+1

Xn.

Fix any k ∈ N. Then for every point z ∈ Zk the map y 7→ f(y, z) from Yk
to Z is separately metrizing. Therefore, by the first part of the proof, it has
a metrizable range. Denote by fk the continuous map from Yk to Cp(Zk, Z)
defined by the equality fk(y)(z) = f(y, z). In view of Proposition 6.6, from
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the preceding observation and since the space Zk is separable it follows that
Fk = fk(Yk) is a metrizable compact subset of the space Cp(Zk, Z).

Let F :=
∏
k∈N Fk, a metrizable compact space, and define a continuous

map q : XJ → F as follows:

q(x) = (fk(xk))k∈N,

where x := (x1, x2, . . . ) ∈ XJ and xk := (x1, . . . , xk) ∈ Yk.
Let G := q(XJ), a metrizable and compact subset of F , and let g ∈ G.

Suppose g = q(x) = q(y) for some x, y ∈ XJ . This means that for each k the
maps fk(xk) = f(x1, . . . , xk, ·) and fk(yk) = f(y1, . . . , yk, ·) from Zk to Z co-
incide. Consequently, f(x) = f(uk), where uk = (y1, . . . , yk, xk+1, xk+2, . . . ).
On the other hand, since uk → y as k → ∞, we have f(uk) → f(y) as
k →∞. Hence f(x) = f(y).

We may therefore define a map f̃ : G → Z by setting, for each g ∈ G,
f̃(g) = f(x), where x is any point in X such that q(x) = g. From this
definition it is clear that f = f̃ ◦ q. It follows that f̃ is continuous and that
f(XJ) = f̃(G) is metrizable.

Example 6.8. Theorem 6.7 fails to hold even in the case of two compact
spaces X1 and X2 if the separability hypothesis is omitted.

To see this, let K = {0, 1}I , where I = [0, 1], and note that the map
m : K × K → K defined by m(x, y) = xy (pointwise multiplication) is
continuous. Next, consider the setX of all elements x ∈ K such that x(s) = 1
for at most one point s ∈ I. As is easily seen, X is a nonseparable compact
subset of K. Now, f := m|X ×X is a continuous map from X ×X onto X,
and it is separately metrizing because f(x,X) = f(X,x) = {0, x} for every
x ∈ X. However, X = f(X ×X) is not metrizable.

Note that, in the example above, the function 0 is the only nonisolated
point of X, hence X is homeomorphic to the one-point compactification of
the discrete space [0, 1]. It is also worth noting that the space X can be
viewed as the weak closure in the Banach space l2(I) of the set of its unit
vectors es (s ∈ I). Thus without the separability assumption Theorem 6.7
fails to hold even if X1, X2, and Z are Eberlein compacts.

An analogue of Theorem 6.7 for arbitrarily large families (Xj) of sepa-
rable compact spaces requires an extra assumption on the space Z.

Theorem 6.9. Let Xj (j ∈ J) be separable compact spaces and assume
that each point in the space Z is a Gδ set. If a continuous map f from the
product space XJ to the space Z is separately metrizing , then it is metrizing.

Proof. By a result due to Corson and Gleason (see [3], [4, 2.7.13]), f
depends only on a countable number of coordinates. Thus there exists a
countable subset T of J and a continuous map g : XT → Z such that
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f = g ◦ pT , where pT is the natural projection from XJ onto XT . Clearly,
g is separately metrizing and f(XJ) = g(XT ), and to get the assertion it
suffices to apply Theorem 6.7.

Corollary 6.10. Let Xj (j ∈ J) be compact spaces and assume that
each point in the space Z is a Gδ set. Also, let f be a separately metrizing
continuous map from the product space XJ to the space Z. Then every sepa-
rable subspace of the range f(XJ) of f is metrizable. In particular , if f(XJ)
is separable, then f is metrizing.

Proof. Take any closed separable subspace W of f(XJ). Then there ex-
ists a closed separable subspace Y of XJ such that f(Y ) = W . For each
j ∈ J , let Yj denote the image of Y under the natural projection of XJ

onto Xj ; clearly, Yj is a separable compact subspace of Xj . To finish, apply
Theorem 6.9 to the restriction of f to the subspace YJ :=

∏
j∈J Yj of XJ .

In view of Proposition 6.2, the following is an immediate consequence of
the preceding corollary and the fact that H0(E) is a first-countable space.

Corollary 6.11. A separately metrizing continuous map from any
product of compact spaces into the Helly space H0(E) is always metrizing.

Corollary 6.12. Let Xj (j ∈ J) be compact spaces, where |J | ≤ 2ℵ0 ,
at most one of which is nonseparable. Moreover , assume that each point in
the space Z is a Gδ set. If a continuous map f from the product space XJ

to the space Z is separately metrizing , then it is metrizing.

Proof. We only need to consider the case where one of the spaces Xj ,
say Xj0 , is nonseparable. Define X = Xj0 and Y =

∏
j∈J\j0 Xj . Then the

space Y is separable (by [4, 2.3.16]), and using Theorem 6.9 it is easily seen
that f , as a map from X × Y into Z, is separately metrizing. An appeal to
Theorem 6.7 finishes the proof.

Example 6.13. Theorem 6.9 becomes false if one omits the assumption
that each point in Z is a Gδ set. Let {Ij : j ∈ J} be a partition of I = [0, 1]
into infinite countable subsets; of course, |J | = 2ℵ0 . For each j ∈ J , let
Xj = DIj , and let Z = DI , where D stands for the discrete space {0, 1}.
Note that each of the compact spaces Xj is metrizable, and that no point
in Z is a Gδ set. Consider the map f that assigns to each point x = (xj)
in XJ the point z ∈ Z such that z|Ij = xj for every j ∈ J . Clearly, f is a
homeomorphism between XJ and Z, and it is separately metrizing. However,
Z = f(XJ) is not metrizable.

7. Increasing functions and the Helly spaces (II). In this section,
E is an ordered metric space, and KJ stands for the product of a family
(Kj : j ∈ J) of compact spaces. For each point u ∈ KJ and index i ∈ J , the
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homeomorphic embedding ui : Ki → KJ is defined as at the beginning of
Section 6.

Theorem 7.1. Let a function f : I → C(KJ , E) be increasing. Assume
that for every point u = (uj) ∈ KJ and every index i ∈ J the function
s 7→ f(s)◦ui from I to C(Ki, E) has at most countably many discontinuities.
Then f itself has at most countably many discontinuities.

Proof. Consider the map F : KJ → H(E) associated with f (see Sec-
tion 5). Thus F (t)(s) = f(s)(t) for t = (tj) ∈ KJ , s ∈ I. Since F (t)(s) =
f(s) ◦ ti(ti), we have |D(F (t))| ≤ ℵ0 so that the range of F is actually con-
tained in H0(E). From the assumptions on f and Proposition 5.3 it now
follows that F : KJ → H0(E) is separately metrizing. To conclude, apply
Corollary 6.11 and Proposition 5.3 again.

Theorem 7.2. For every j ∈ J let Xj be a subspace of C(Kj , E) having
property (λ), and define X to be the subspace of C(KJ , E) consisting of all
functions x such that x ◦ ui ∈ Xi for all u ∈ KJ and i ∈ J . Then X has
property (λ).

Proof. Let f : I → X be an increasing function. Then each of the
increasing functions s 7→ f(s) ◦ ui from I to Xi ⊂ C(Ki, E) has at most
countably many discontinuities because Xi has property (λ). To finish, apply
the preceding theorem.

Corollary 7.3. If all the spaces C(Kj , E) have property (λ), so does
the space C(KJ , E).

Corollary 7.4. Let K be a compact space and E a Banach lattice. If
both the spaces C(K) and E have property (λ), then also the space C(K,E)
has property (λ).

Proof. Let U denote the positive part of the closed unit ball in the
dual Banach lattice E∗; equipped with the induced weak∗ topology, U is a
compact space. Then E can be viewed, via a natural order-preserving linear
isomorphic embedding, as a subspace of C(U). Hence, likewise, C(K,E)
can be viewed as subspace of C(K,C(U)) ∼= C(K × U). To finish, apply
Theorem 7.2 with X1 = C(K) and X2 = E ⊂ C(U).
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[1] S. Banach, Théorie des Opérations Linéaires, Warszawa, 1932; reprinted in: S. Banach,
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