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The generic isometry and measure preserving
homeomorphism are conjugate to their powers

by

Christian Rosendal (Chicago, IL)

Abstract. It is known that there is a comeagre set of mutually conjugate measure
preserving homeomorphisms of Cantor space equipped with the coinflipping probability
measure, i.e., Haar measure. We show that the generic measure preserving homeomorphism
is moreover conjugate to all of its powers. It follows that the generic measure preserving
homeomorphism extends to an action of (Q, +) by measure preserving homeomorphisms,
and, in fact, to an action of the locally compact ring A of finite adèles.

Similarly, S. Solecki has proved that there is a comeagre set of mutually conjugate
isometries of the rational Urysohn metric space. We prove that these are all conjugate with
their powers and therefore also embed into Q-actions. In fact, we extend these actions to
actions of A as in the case of measure preserving homeomorphisms.

We also consider a notion of topological similarity in Polish groups and use this to
give simplified proofs of the meagreness of conjugacy classes in the automorphism group
of the standard probability space and in the isometry group of the Urysohn metric space.
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1. Introduction. Suppose that M is a compact metric space and let
Homeo(M) be its group of homeomorphisms. We equip Homeo(M) with the
topology of uniform convergence, or what is equivalent, since M is compact
metric, the compact-open topology. Thus, in this way, a neighbourhood basis
at the identity consists of the sets

{h ∈ Homeo(M) | h(C1) ⊆ V1 & · · ·& h(Cn) ⊆ Vn},
where Vi ⊆ M are open and Ci ⊆ Vi compact. Under this topology the
group operations are continuous and thus Homeo(M) is a topological group.
Moreover, the topology is Polish, that is, Homeo(M) is separable and its
topology can be induced by a complete metric.

Now consider the case when M is Cantor space 2N. Then, as any two
disjoint closed sets in 2N can be separated by a clopen set, we get a neigh-
bourhood basis at the identity consisting of sets of the form

{h ∈ Homeo(2N) | h(C1) = C1 & · · ·& h(Cn) = Cn},
where C1, . . . , Cn ⊆ 2N is a partition of 2N into clopen sets.

By Stone duality, the homeomorphisms of Cantor space are just the
automorphisms of the Boolean algebra of clopen subsets of 2N, which we
denote by B∞. Thus, viewed in this way, the neighbourhood basis at the
identity has the form

{h ∈ Homeo(2N) | h|C = idC},
where C is a finite subalgebra of B∞.

Cantor space 2N is of course naturally homeomorphic to the Cantor group
(Z2)N and therefore comes equipped with Haar measure µ. Up to a hom-
eomorphism of Cantor space, µ is the unique atomless Borel probability
measure on 2N such that

• if C ∈ B∞, then µ(C) is a dyadic rational, i.e., of the form n/2k,
• if C ∈ B∞ and µ(C) = n/2k > 0, then for all l ≥ k, there is some

clopen B ⊆ C such that µ(B) = 1/2l,
• if ∅ 6= C ∈ B∞, then µ(C) > 0.

The measure µ is of course the product probability measure of the coin-
flipping measure on each factor 2 = {0, 1}. For simplicity, we call µ Haar
measure on 2N.

One easily sees that the group of Haar measure preserving homeomor-
phisms Homeo(2N, µ) of 2N is a closed subgroup of Homeo(2N) and there-
fore a Polish group in its own right. It was proved by A. S. Kechris and
C. Rosendal in [9] that there are comeagre conjugacy classes in both
Homeo(2N) and Homeo(2N, µ). In fact, the result for Homeo(2N, µ) is rather
simple and also holds for many other sufficiently homogeneous measures on
2N (see E. Akin [1]). This result allows us to refer to the generic measure
preserving homeomorphism of Cantor space (with Haar measure), knowing
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that generically they are all mutually conjugate. One of the aims of this
paper is to show that the generic measure preserving homeomorphism is
conjugate to its non-zero powers, which in turn will show that it is a part
of an action of the additive group (Q,+) by measure preserving homeomor-
phisms of 2N.

In one sense this is an optimal result, as we cannot extend these actions of
(Q,+) to actions of (R,+). Indeed, as Homeo(2N, µ) is totally disconnected,
there are no non-trivial continuous homomorphisms (or even measurable
homomorphisms) from R into Homeo(2N, µ), and thus R cannot act non-
trivially by (measure preserving) homeomorphisms on 2N. However, we shall
see that the generic measure preserving homeomorphism generates a closed
subgroup of Homeo(2N, µ) that is topologically isomorphic to the profinite
completion of the integers, and this allows us to extend this group within
Homeo(2N, µ) to the additive group (A,+) of the locally compact ring A of
finite adèles by carefully adding roots.

Our result is the natural analogue of a result due to T. de la Rue and J. de
Sam Lazaro [12] stating that for the generic element g ∈ Aut([0, 1], λ) there
is a continuous homomorphism φ : R → Aut([0, 1], λ) such that φ(1) = g,
i.e., that the generic measure preserving transformation is in the image
of a 1-parameter subgroup. Of course, our group Homeo(2N, µ) sits inside
Aut([0, 1], λ) as a dense subgroup, but the topology on Homeo(2N, µ) is much
finer than that induced from Aut([0, 1], λ), and there seems to be no way of
directly relating the two results.

Our result also gives hope that one could develop some rudimentary
adèlic Lie theory in Homeo(2N, µ), since our result implies that there is a
rich supply of 1-parameter adèlic subgroups of Homeo(2N, µ). There have
been many attempts of expanding Lie theory to a more general context of
topological groups, e.g., W. Wojtyński [15], but there are also hindrances
to this for the groups treated in this paper. For example, almost all of the
non-trivial properties developed in [15] depend on the topological group
being analytic, i.e., that the intersection of the closed central descending
sequence is trivial. In our case, however, every element of Homeo(2N, µ) is
a commutator and so all terms of the central descending sequence are just
Homeo(2N, µ) itself. Nevertheless, it would be interesting to see if alterna-
tive developments are possible. This would certainly also provide a strong
external motivation for expanding the ideas presented here.

The Urysohn metric space U is a universal separable metric space first
constructed by P. Urysohn in the posthumously published [14]. It soon went
out of fashion following the discovery that many separable Banach spaces
are already universal separable metric spaces, but has come to the forefront
over the last twenty years as an analogue of Fräıssé theory in the case of
metric spaces.
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The Urysohn space U is characterised up to isometry by being separable
and complete, together with the following extension property.

If φ : A → U is an isometric embedding of a finite metric space A
into U and B = A ∪ {y} is a one-point metric extension of A, then
φ extends to an isometric embedding of B into U.

There is also a rational variant of U called the rational Urysohn metric
space, which we denote by QU. This is, up to isometry, the unique countable
metric space with only rational distances such that the following variant of
the above extension property holds.

If φ : A → QU is an isometric embedding of a finite metric space A
into QU and B = A∪{y} is a one-point metric extension of A whose
metric only takes rational distances, then φ extends to an isometric
embedding of B into QU.

We denote by Iso(QU) and Iso(U) the isometry groups of QU and U respec-
tively. These are Polish groups when equipped with the topology of pointwise
convergence on QU seen as a discrete set and U seen as a metric space re-
spectively. Thus, the basic neighbourhoods of the identity in Iso(QU) are of
the form

{h ∈ Iso(QU) | h|A = idA},
where A is a finite subset of QU, while, on the other hand, the basic open
neighbourhoods of the identity in Iso(U) are of the form

{h ∈ Iso(U) | ∀x ∈ A d(hx, x) < ε},
where A is a finite subset of U and ε > 0.

In [13] S. Solecki proved, building on work of B. Herwig and D. Lascar
[6], the following result.

Theorem 1 (S. Solecki [13]). Let A be a finite rational metric space.
Then there is a finite rational metric space B containing A and such that
any partial isometry of A extends to a full isometry of B.

This is turn has the consequence that Iso(QU) has a comeagre conjugacy
class and we can therefore refer to its elements as generic isometries of QU.
The second aim of our paper is to prove that these are all conjugate to their
non-zero powers, which again suffices to show that they all are part of an
action of the additive group (Q,+) by isometries of QU. Again, by extra
care in this construction, we extend this action to an action of the locally
compact ring A.

In the last section we briefly consider a coarse notion of conjugacy in
Polish groups. We say that f and g belonging to a Polish group G are
topologically similar if for all increasing sequences (sn) we have fsn → 1
as n→∞ if and only if gsn → e as n→∞. As opposed to automorphism
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groups of countable structures there tend not to be comeagre conjugacy
classes in large connected Polish groups and we shall provide new simple
proofs of this for Aut([0, 1], λ) and Iso(U) by showing that in fact their
topological similarity classes are meagre.

2. Powers of generic measure preserving homeomorphisms

2.1. Free amalgams of measured Boolean algebras. We first review the
notion of free amalgams of Boolean algebras, as this will be the basis for
our construction later on. Suppose B1, . . . ,Bn are finite Boolean algebras
containing a common subalgebra A. We define the free amalgam

⊗lABl = B1 ⊗A · · · ⊗A Bn

of B1, . . . ,Bn over A as follows.
By renaming, we can suppose that Bi ∩Bj = A for all i 6= j. We then

take as our atoms the set of formal products

b1 ⊗ · · · ⊗ bn,
where each bi is an atom in Bi and such that for some atom a of A we have
bi ≤ a for all i. Also, for simplicity, if ci ∈ Bi is not necessarily an atom, but
nevertheless we have some atom a of A such that ci ≤ a for all i, we write

c1 ⊗ · · · ⊗ cn =
∨
{b1 ⊗ · · · ⊗ bn | bi is an atom in Bi and bi ≤ ci}.

We can now embed each Bi into ⊗lABl by defining for each b ∈ Bi, minoris-
ing an atom a ∈ A,

πi(b) = a⊗ · · · ⊗ a⊗ b⊗ a⊗ · · · ⊗ a,
where the b appears in the ith position. In particular,

πi(a) = a⊗ · · · ⊗ a
for all atoms a of A. Thus, for each i, πi : Bi ↪→ ⊗lABl is an embedding of
Boolean algebras and if ιi : A ↪→ Bi denotes the inclusion mapping, then
the following diagram commutes:

A ιi−−−−→ Bi

ιj

y yπi

Bj
πj−−−−→ ⊗lABl

When A is the trivial subalgebra {0, 1}, we shall write B1 ⊗ · · · ⊗ Bn

instead of B1 ⊗A · · · ⊗A Bn.
Now, if µi are measures on Bi agreeing on A, then we can define a new

measure µ on ⊗lABl by setting for all bi ∈ Bi, minorising the same atom
a ∈ A,
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µ(b1 ⊗ · · · ⊗ bn) =
µ1(b1) · · ·µn(bn)

µ1(a)n−1
.

Thus,
µ(πi(b)) = µ(a⊗ · · · ⊗ a⊗ b⊗ a⊗ · · · ⊗ a)

=
µ1(a) · · ·µi−1(a)µi(b)µi+1(a) · · ·µn(a)

µ1(a)n−1

=
µ1(a) · · ·µ1(a)µi(b)µ1(a) · · ·µ1(a)

µ1(a)n−1
= µi(b).

So πi : (Bi, µi)→ (⊗lABl, µ) is an embedding of measured Boolean algebras.
A special case is when A and each Bi are equidistributed dyadic algebras,

i.e., have 2k atoms each of measure 2−k for some k ≥ 0. Then this implies
that for each i, all atoms of A are the join of the same number of atoms
of Bi, namely 2ki−m, where A has 2m atoms and Bi has 2ki atoms. In this
case, one can verify that ⊗lABl has 2k1+···+kn−(n−1)m atoms each of measure
2(n−1)m−k1−···−kn . So again this is an equidistributed dyadic algebra.

A similar construction works for equidistributed algebras, i.e., those hav-
ing a finite number of atoms of the same (necessarily rational) measure. In
this case, the amalgam is also equidistributed.

There is, of course, a well known graphical representation of the amal-
gamated product of two Boolean algebras, which is useful for guiding the
intuition. For example, consider an amalgam of two measured Boolean al-
gebras B and C over a common subalgebra A with atoms a1, . . . , a4 and
where we have made explicit the atoms of B⊗A C below a1 ⊗ a1:

B

C
a1⊗a1

a2⊗a2

a3⊗a3

a4⊗a4

a1 a2 a3 a4

a1

a2

a3

a4

b1⊗c1 b2⊗c1

b1⊗c2 b2⊗c2

b1⊗c3 b2⊗c3
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In general, an automorphism of a finite Boolean algebra arises from a
permutation of the atoms, but in the case of equidistributed, resp. dyadic
equidistributed, algebras, any permutation of the atoms conversely gives rise
to a measure preserving automorphism. Thus, for equidistributed algebras
an automorphism is necessarily a measure preserving automorphism and we
can therefore be a bit forgetful about the measure.

Suppose A is an equidistributed Boolean algebra. By a partial auto-
morphism of A we understand an isomorphism φ : B → C between two
subalgebras B and C of A preserving the measure.

Lemma 2. Let A be an equidistributed , resp. dyadic equidistributed , fi-
nite Boolean algebra. Then any measure preserving partial automorphism of
A extends to an automorphism of A.

Proof. Suppose that B and C are subalgebras of A, and g : B → C a
measure preserving isomorphism. If b is an atom of B, then, as g is measure
preserving, b and g(b) are composed of the same number of atoms of A.
Therefore, we can extend g to an automorphism of A by choosing a bijection
between the constituents of b and g(b) for each atom b of B.

2.2. Roots of measure preserving homeomorphisms

Proposition 3. Suppose A ⊆ B are equidistributed , resp. dyadic equi-
distributed , Boolean algebras, g an automorphism of A, and f an automor-
phism of B such that f |A = gn. Then there is an equidistributed , resp.
dyadic equidistributed , algebra C ⊇ B and an automorphism h of C extend-
ing g and such that hn|B = f .

Proof. Enumerate the atoms of A as a1, . . . , am and the atoms of B as

b11, . . . , b
k
1, b

1
2, . . . , b

k
2, . . . , b

1
m, . . . , b

k
m,

where
ai = b1i ∨ · · · ∨ bki .

Since g is an automorphism of A we can find a permutation φ of {1, . . . ,m}
such that

g(ai) = aφ(i)

for all i. Similarly, we can find a function ψ : {1, . . . ,m} × {1, . . . , k} →
{1, . . . , k} such that for all i and j,

f(bji ) = b
ψ(i,j)
φn(i) .

Indeed, f(ai) = gn(ai) = aφn(i) and thus f(bji ) ≤ f(ai) = aφn(i), whence
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f(bji ) = b
ψ(i,j)
φn(i) for some ψ(i, j) ∈ {1, . . . , k}. Also, since

b
ψ(i,1)
φn(i) ∨ · · · ∨ b

ψ(i,k)
φn(i) = f(b1i ∨ · · · ∨ bki )

= f(ai) = aφn(i)

= b1φn(i) ∨ · · · ∨ b
k
φn(i),

we see that ψ(i, ·) : {1, . . . , k} → {1, . . . , k} is a bijection for each i.
Let B1 = · · · = Bn = B and consider the free amalgam ⊗lABl. We can

now define the automorphism h of ⊗lABl as follows:

h(bj1i ⊗ · · · ⊗ b
jn
i ) = b

ψ(i,jn)
φ(i) ⊗ bj1φ(i) ⊗ · · · ⊗ b

jn−1

φ(i) .

It follows from the fact that ψ(i, ·) is a bijection that h is also a bijection of
the atoms of ⊗lABl and thus defines an automorphism of ⊗lABl. Consider
now

hn(bj1i ⊗ · · · ⊗ b
jn
i ) = hn−1(bψ(i,jn)

φ(i) ⊗ bj1φ(i) ⊗ · · · ⊗ b
jn−1

φ(i) )

= hn−2(bψ(φ(i),jn−1)
φ2(i)

⊗ bψ(i,jn)
φ2(i)

⊗ bj1
φ2(i)
⊗ · · · ⊗ bjn−2

φ2(i)
)

= · · ·

= b
ψ(φn−1(i),j1)
φn(i) ⊗ bψ(φn−2(i),j2)

φn(i) ⊗ · · · ⊗ bψ(i,jn)
φn(i) .

Thus,

hn(ai ⊗ · · · ⊗ ai ⊗ bjni )

= hn
( k∨
j1=1

k∨
j2=1

· · ·
k∨

jn−1=1

bj1i ⊗ b
j2
i ⊗ · · · ⊗ b

jn
i

)

=
k∨

j1=1

k∨
j2=1

· · ·
k∨

jn−1=1

hn
(
bj1i ⊗ b

j2
i ⊗ · · · ⊗ b

jn
i

)
=

k∨
j1=1

k∨
j2=1

· · ·
k∨

jn−1=1

b
ψ(φn−1(i),j1)
φn(i) ⊗ bψ(φn−2(i),j2)

φn(i) ⊗ · · · ⊗ bψ(i,jn)
φn(i)

= aφn(i) ⊗ · · · ⊗ aφn(i) ⊗ b
ψ(i,jn)
φn(i) .

Similarly,

h(ai ⊗ · · · ⊗ ai) = h
( k∨
j1=1

k∨
j2=1

· · ·
k∨

jn=1

bj1i ⊗ b
j2
i ⊗ · · · ⊗ b

jn
i

)

=
k∨

j1=1

k∨
j2=1

· · ·
k∨

jn=1

h
(
bj1i ⊗ b

j2
i ⊗ · · · ⊗ b

jn
i

)
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=
k∨

j1=1

k∨
j2=1

· · ·
k∨

jn=1

b
ψ(i,jn)
φ(i) ⊗ bj1φ(i) ⊗ · · · ⊗ b

jn−1

φ(i)

= aφ(i) ⊗ · · · ⊗ aφ(i).

We now identify B with the image of Bn under the embedding πn of Bn

into ⊗lABl. Thus, the atoms of B are of the form

ai ⊗ · · · ⊗ ai ⊗ bji
and the atoms of A are

ai ⊗ · · · ⊗ ai.
Moreover, g acts by

g(ai ⊗ · · · ⊗ ai) = g(ai)⊗ · · · ⊗ g(ai) = aφ(i) ⊗ · · · ⊗ aφ(i),

while f acts by

f(ai ⊗ · · · ⊗ ai ⊗ bji ) = aφn(i) ⊗ · · · ⊗ aφn(i) ⊗ b
ψ(i,j)
φn(i) .

Therefore, h extends g, while hn extends f , which was what we wanted.

Proposition 4. Let n ≥ 1. Then the generic measure preserving home-
omorphism of Cantor space is conjugate to its nth power.

We recall that by a theorem of Kechris and the author [9], there is a
comeagre conjugacy class C in Homeo(2N, µ) and thus it makes sense to
speak of the elements of this conjugacy class as the generic elements of
Homeo(2N, µ).

Also, note that the basic open sets in Homeo(2N, µ) are of the form

U(h,A) = {g ∈ Homeo(2N, µ) | g|A = h|A},
where A is a finite equidistributed subalgebra of B∞ and h ∈ Homeo(2N, µ).
We shall use this notation throughout.

Proof of Proposition 4. We claim that for any U(h,A) there is some
finite equidistributed B ⊆ B∞ containing A and some measure preserving
homeomorphism k leaving B invariant, such that U(k,B) ⊆ U(h,A). To
see this, suppose h and A are given. Then for some n, both A and h(A)
are subalgebras of the equidistributed algebra B having atoms Ns = {x ∈
2N | s v x}, where s ∈ 2n. By equidistribution, the partial automorphism
h : A → h(A) of B extends to an automorphism ĥ of B. So let k be any
measure preserving homeomorphism of 2N that extends ĥ. Then B is k-
invariant while U(k,B) ⊆ U(h,A).

For simplicity, if k is an automorphism of a finite equidistributed alge-
bra B, we also write U(k,B) to denote the set {g ∈ Homeo(2N, µ) | g|B = k}.
The previous claim amounts to the fact that the open sets U(k,B), where
k is an automorphism of a finite equidistributed algebra B, form a π-basis
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for the topology, i.e., any open set contains some such U(k,B). However,
they do not form a basis, as for example, a Bernoulli shift has no non-trivial
finite invariant subalgebras and therefore does not belong to any U(k,B) of
this form for B 6= {∅, 2N}.

Let now C be the comeagre conjugacy class of Homeo(2N, µ) and find
dense open sets Vi ⊆ Homeo(2N, µ) such that C =

⋂
i Vi. Enumerate the

clopen subsets of 2N as a0, a1, . . . . We shall define a sequence of finite equidis-
tributed algebras A0 ⊆ A1 ⊆ · · · of clopen sets and automorphisms gi and
fi of Ai such that

(1) ai ∈ Ai+1,
(2) gi+1 extends gi,
(3) fi+1 extends fi,
(4) gni = fi,
(5) U(gi+1,Ai+1) ⊆ Vi,
(6) U(fi+1,Ai+1) ⊆ Vi.

To begin, let A0 be the trivial algebra with automorphism g0 = f0. So
suppose Ai, gi, and fi are defined. We let B be an equidistributed algebra
containing both ai and Ai and let h be any automorphism of B extending gi.
As Vi is dense open we can find some U(k,C) ⊆ Vi, where C is a k-invariant
equidistributed algebra containing B and k extends h. Again, as Vi is dense
open, we can find some U(p,D) ⊆ Vi, where D is a equidistributed alge-
bra containing C, and p a measure preserving homeomorphism leaving D
invariant and extending kn|C.

Now, by Proposition 3, we can find an equidistributed algebra E contain-
ing D and an automorphism q of E extending k|C such that qn extends p|D.
Finally, set Ai+1 = E,

gi+1 = q ⊇ k|C ⊇ h ⊇ gi, fi+1 = qn ⊇ p|D ⊇ kn|C ⊇ gni = fi.

Then U(gi+1,Ai+1) ⊆ U(k,C) ⊆ Vn and U(fi+1,Ai+1) ⊆ U(p,D) ⊆ Vn.
Set now g =

⋃
i gi and f =

⋃
i fi. By (1)–(3), f and g are measure

preserving automorphisms of B∞, and thus by Stone duality, measure pre-
serving homeomorphisms of 2N. And by (4), gn = f , while by (5) and (6),
f, g ∈

⋂
i Vi = C. Thus, f and g belong to the comeagre conjugacy class and

are therefore mutually conjugate.

Proposition 5. Let G be a Polish group with a comeagre conjugacy
class. Then the generic element of G is conjugate to its inverse.

Proof. Let C be the comeagre conjugacy class of G. Then also C−1 is
comeagre, so must intersect C in some point g. Thus both g and g−1 are
generic and hence conjugate. Now, being conjugate with your inverse is a
conjugacy invariant property and thus holds generically in G.
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Theorem 6. Let n 6= 0. Then the generic measure preserving homeo-
morphism of Cantor space is conjugate to its nth power and hence has roots
of all orders. Thus, for the generic measure preserving homeomorphism g,
there is an action of (Q,+) by measure preserving homeomorphisms of 2N

such that g is the action by 1 ∈ Q.

Proof. By Propositions 4 and 5, we know that the generic g is conjugate
to all its positive powers and to g−1. But then g−1 is generic and thus
conjugate to (g−1)n = g−n, whence g is conjugate with g−n, n ≥ 1.

So suppose g is generic and n ≥ 1. Then there is some f such that
(fgf−1)n = fgnf−1 = g, and hence g has a generic nth root, namely fgf−1.
This means that we can define a sequence g = g1, g2, . . . of generic elements
such that gn+1 is an (n + 1)st root of gn, (gn+1)n+1 = gn. The following
therefore defines an embedding of (Q,+) into Homeo(2N, µ) with 1 = 1

1!
7→ g1:

k

n!
7→ gkn, k ∈ Z, n ≥ 1.

2.3. The ring of finite adèles. Fix a prime number p (the reader is re-
ferred to the article “Global fields” by J. W. S. Cassels in [3] for more details
of the following construction). We recall the p-adic valuation on Q, which is
the function | · |p : Q→ [0,+∞[ defined by |0|p = 0 and∣∣∣pk a

b

∣∣∣
p

= p−k,

whenever a, b are non-zero integers not divisible by p and k ∈ Z. It is easily
seen that |st|p = |s|p · |t|p and |s + t|p ≤ max{|s|p, |t|p} for all s, t ∈ Q.
It follows that dp(s, t) = |s − t|p defines a translation invariant metric on
Q such that if (sn) and (tn) are Cauchy sequences in Q then so are (s−1

n ),
(sn + tn), and (sntn). Thus, if Qp denotes the metric completion of Q, then
Qp is a topological field, known as the field of p-adic numbers.

One way of representing the elements of the field Qp is as infinite series
∞∑
i=k

aip
i,

where k ∈ Z, ai ∈ {0, . . . , p − 1}. Note that any such series is dp-Cauchy.
Moreover, the valuation extends to all of Qp by∣∣∣ ∞∑

i=k

aip
i
∣∣∣
p

= p−k,

assuming ak 6= 0. Here, the usual ring of integers Z can be recognised as
the set of finite series

∑k
i=0 aip

i, where k < ∞. The closure of Z within
Qp, called the ring of p-adic integers and denoted by Zp, consists of all
expressions

∑∞
i=0 aip

i and is a compact, open subgroup subring of Qp. Note
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however that
Zp = {x ∈ Qp | |x|p ≤ 1},

so despite its name, Zp contains all rational numbers of the form pk ab , where
k ≥ 0 and a, b are non-zero integers not divisible by p.

We now define the restricted product
∏′
p Qp with respect to the compact

open subsets Zp. It consists of all sequences (sp) ∈
∏
p Qp, where the index

p runs over all primes, such that sp ∈ Zp for all but finitely many primes p.
Moreover,

∏′
p Qp has as basis for its topology the sets of the form∏

p∈F
Up ×

∏
p/∈F

Zp,

where F is a finite set of primes and Up ⊆ Qp is open for all p ∈ F . In
particular, we see that

∏
p Zp is a compact open subring of

∏′
p Qp.

Now if s ∈ Q∗, then writing

s =
pn1

1 · · · p
nl
l

qm1
1 · · · qmk

k

,

where pi and qi are distinct primes and ni,mi ∈ N, we see that |s|p = 1 for
all p 6= pi, qi, and so if sp denotes the element of Qp corresponding to s, then
(sp) ∈

∏′
p Qp. It follows that we can identify Q with a subfield of the ring∏′

p Qp via the embedding s 7→ (sp). Also, if s ∈ Q is such that (sp) ∈
∏
p Zp,

then |s|p ≤ 1 for all p, so actually s ∈ Z. Therefore, if (tn) is a sequence
in Q, we see that tn → 0 in the

∏′
p Qp-topology if and only if tn ∈ Z for all

but finitely many n, and moreover, for any power pk of a prime, k ≥ 1, tn
is an integer multiple of pk for all but finitely many n.

The ring
∏′
p Qp is called the ring of finite adèles and will henceforth be

denoted by A. It will be important to us that Q is a dense subset of A. This
follows from the Strong Approximation Theorem (Cassels [3, §15]). Also, A
is a locally compact ring.

We shall now present another direct construction of A, which is closer to
the viewpoint of this article (one can consult the book by L. Ribes and P. Za-
lesskii [11] for more information on the profinite completion of Z). Consider
the embedding θ of Z into the group

∏∞
n=1 Z/nZ given by θ(a) = (a(n))∞n=1,

where a(n) ≡ a mod n for every n. We define the profinite completion of Z
to be the compact subgroup of

∏∞
n=1 Z/nZ given by

Ẑ = θ(Z),

and see that Ẑ is the subgroup consisting of all sequences (a(n))n≥1 such
that a(m) ≡ a(n) mod n whenever n divides m. Identifying Z with its image
under θ, the induced topology is called the profinite topology on Z. So if (ai)
is a sequence in Z, then ai → 0 in the profinite topology if and only if for
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every integer n, ai ≡ 0 mod n for all but finitely many i. It follows from the
Chinese Remainder Theorem that Ẑ ∼=

∏
p Zp.

Now, let ‖·‖ be the norm on Q defined by setting ‖0‖ = 0 and for s ∈ Q∗,
‖s‖ = 2−min(n≥1 | s/n/∈Z).

Then for any n ≥ 1 and s, t ∈ Q, if s/n, t/n ∈ Z, also (s+ t)/n, st/n ∈ Z,
which implies that

‖s+ t‖ ≤ max{‖s‖, ‖t‖}
and

‖st‖ ≤ max{‖s‖, ‖t‖}.
We can now define a translation invariant ultrametric on Q by d(s, t) =
‖s− t‖, and notice that from ‖s+ t‖ ≤ max{‖s‖, ‖t‖} it follows that if (sn)
and (tn) are Cauchy sequences, then so is (sn + tn).

For s ∈ Q∗, we define a clopen subgroup of Q by

〈s〉 = {ns | n ∈ Z}.
To see that it is open, just note that if s = a/b with a, b ∈ Z, then

(∗) (〈s〉)2−a = {t ∈ Q | d(t, 〈s〉) < 2−a} = 〈s〉.
Indeed, if ‖t − ns‖ < 2−a, where t ∈ Q and n ∈ Z, then t − ns = la for
some l ∈ Z and so t = (lb + n)a/b ∈ 〈s〉. It follows that 〈s〉 is also closed,
since the complement Q \ 〈s〉 is the union of its disjoint open cosets. Note
that Q is the increasing union of the clopen subgroups 〈1/n!〉 and that the
d-topology on Z = 〈1〉 coincides with the profinite topology.

We claim that if (sn) and (tn) are Cauchy sequences in Q, then so is
(sntn). To see this, note that by (∗) the sn and tn will eventually all belong
to some common subgroup 〈1/k〉 and hence can be written sn = an/k and
tn = bn/k for integers an, bn. Then, if d ≥ 1 is fixed, for all sufficiently large
n,m,

sn − sm
kd

=
an − am
k2d

∈ Z

and
tn − tm
kd

=
bn − bm
k2d

∈ Z,
so
sntn − smtm

d
=
anbn − ambm

k2d

=
(an − am)(bn − bm)

k2d
+

(an − am)bn
k2d

+
an(bn − bm)

k2d
∈ Z.

Since d is arbitrary it follows that ‖sntn − smtm‖ → 0 as n,m→∞, so
(sntn) is Cauchy.

Thus, we see that the operations of addition + and multiplication · on
Q extend to continuous ring operations + and · on the d-metric completion
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of Q. Since Z = 〈1〉 is open in Q, Ẑ is a compact open subgroup of the com-
pletion, so the completion is locally compact. We also note that a sequence
tn ∈ Q converges to 0 if and only if for all natural numbers k, tn is an integer
multiple of k for all but finitely many n, i.e., if and only if tn → 0 in the∏′
p Qp-topology. So the d-metric completion of Q is topologically isomorphic

to A.

2.4. Actions of A by measure preserving homeomorphisms. Now re-
turning to generic elements of Homeo(2N, µ), we note that if g is generic,
then every g-orbit on the algebra B∞ of clopen sets is finite. This fol-
lows from the fact, established in the proof of Proposition 4, that the open
sets U(k,B), where k is an automorphism of a finite equidistributed alge-
bra B, form a π-basis for the topology. So given any b ∈ B∞, the generic
g must belong to some such U(k,B), where B is an equidistributed al-
gebra containing b, and thus the g-orbit of b is contained in the finite
g-invariant algebra B. Using this, one sees that 〈g〉 is a profinite sub-
group of Homeo(2N, µ). Conversely, any generic g has orbits of any finite
order.

Therefore, if ki ∈ Z, we have

(∗) gki −−−−→
i→∞

e ⇔ ∀n ∀∞i ki ≡ 0 mod n

and so the mapping k ∈ Z 7→ gk ∈ Homeo(2N, µ) is a topological iso-
morphism between Z equipped with its profinite topology and the infi-
nite cyclic topological subgroup 〈g〉 of Homeo(2N, µ). By the complete-
ness of Homeo(2N, µ), this extends to a topological embedding of Ẑ into
Homeo(2N, µ) whose image is the closed subgroup 〈g〉. We shall now see
how to extend this embedding to A.

Theorem 7. Let g be a generic element of Homeo(2N, µ) and let A be
the ring of finite adèles. Then 1 ∈ Q 7→ g ∈ Homeo(2N, µ) extends to a
homeomorphic embedding of (A,+) into Homeo(2N, µ).

We note that, since the ring A contains Q as a subfield, (A,+) is a
divisible group. So, by the above theorem, the generic measure preserving
homeomorphism lies in a divisible, locally compact, Abelian subgroup of
Homeo(2N, µ).

The proof is done by carefully choosing the sequence g = g1, g2, . . . of
generic elements in the proof of Theorem 6, so as to control the convergence
of sequences (gni)

ki . We split the proof into a couple of lemmas.

Lemma 8. Let B ⊆ B∞ be an equidistributed dyadic subalgebra and
suppose g, h are generic elements of Homeo(2N, µ) with g[B] = h[B] = B and
g|B = h|B. Then g and h are conjugate by an element of Homeo(2N, µ)B =
U(e,B).
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Proof. Note that U(g,B) = U(h,B) is an open subset of Homeo(2N, µ)
that is invariant under the conjugacy action by Homeo(2N, µ)B. Also, as g
and h are generic, it follows from Proposition 3.2 of [9] that X = {fgf−1 |
f ∈ Homeo(2N, µ)B} and Y = {fhf−1 | f ∈ Homeo(2N, µ)B} are comeagre
in neighbourhoods V of g, resp. W of h. So find equidistributed dyadic
algebras C ⊇ B and D ⊇ B that are respectively g-invariant and h-invariant
such that U(g,C) ⊆ V and U(h,D) ⊆ W . It suffices to show that for some
f ∈ Homeo(2N, µ)B, we have f−1U(g,C)f ∩ U(h,D) 6= ∅ since then also
f−1Xf ∩ Y 6= ∅.

Now let C ⊗B D be the free amalgam of C and D over B and define a
measure preserving automorphism k : C⊗B D→ C⊗B D by setting

k(c⊗ d) = g(c)⊗ h(d)

whenever c ∈ C and d ∈ D minorise some common atom b ∈ B. Note that
in this case, since g[B] = h[B] = B and g|B = h|B, we have g(c), h(d) ≤
g(b) = h(b), showing that the image g(c)⊗h(d) is well defined as an element
of C⊗B D.

Now, embedding the subalgebra C⊗B B of C⊗B D into B∞ via

c⊗ b 7→ c

and subsequently extending this embedding to an embedding ι of all of
C ⊗B D into B∞, we see that k′ = ι ◦ k ◦ ι−1 is an automorphism of
ι[C ⊗B D] such that k′|C = g|C. Extend now k′ arbitrarily to a measure
preserving homeomorphism of 2N also denoted by k′.

We can now find a measure preserving homeomorphism f ∈Homeo(2N, µ)
such that f(d) = ι(b⊗d) for all d ∈ D minorising an atom b of B. Note that
then f |B = idB, so f ∈ Homeo(2N, µ)B. Also,

f−1k′f(d) = f−1k′(ι(b⊗ d)) = f−1ιkι−1(ι(b⊗ d))

= f−1ιk(b⊗ d) = f−1ι(g(b)⊗ h(d)) = h(d)

whenever d ∈ D minorises an atom b of B. So f−1k′f |D = h|D. Thus,
k′ ∈ U(g,C) while f−1k′f ∈ U(h,D), so f−1U(g,C)f ∩U(h,D) 6= ∅, which
finishes the proof.

Lemma 9. Suppose B is a dyadic, equidistributed Boolean algebra, g an
automorphism of B, and b ∈ B\{0, 1} is an element having g-period k, i.e.,
gi(b) = b if and only if k divides i. Then for any n ≥ 1 there is a dyadic,
equidistributed Boolean algebra C ⊇ B and an automorphism h of C such
that hn|B = g and b has h-period kn.

Proof. Let C = B⊗ · · · ⊗B (n times) and identify B with the last
factor in the product, i.e., x ∈ B corresponds to 1 ⊗ · · · ⊗ 1 ⊗ x. Now, if
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x1 ⊗ · · · ⊗ xn−1 ⊗ xn is an atom of C, we define

h(x1 ⊗ · · · ⊗ xn−1 ⊗ xn) = g(xn)⊗ x1 ⊗ · · · ⊗ xn−1.

Then clearly

hn(1⊗ · · · ⊗ 1⊗ xn) = g(1)⊗ · · · ⊗ g(1)⊗ g(xn) = 1⊗ · · · ⊗ 1⊗ g(xn),

so hn|B = g.
Also, for any l ∈ Z,

hnl(1⊗ · · · ⊗ 1⊗ b) = 1⊗ · · · ⊗ 1⊗ gl(b),

which equals 1⊗· · ·⊗1⊗b if and only if k divides l. And if n does not divide
m, then πn(hm(1 ⊗ · · · ⊗ 1 ⊗ b)) = 1 6= b, where πn is the projection onto
the last coordinate factor. So hm(1 ⊗ · · · ⊗ 1 ⊗ b) 6= 1 ⊗ · · · ⊗ 1 ⊗ b. Thus,
1⊗ · · · ⊗ 1⊗ b has h-period nk.

Lemma 10. Suppose g ∈ Homeo(2N, µ) is generic and b ∈ B∞ has g-
period k. Then for any n ≥ 1 there is a generic f such that g = fn and b
has f -period kn.

Proof. Let B be the minimal g-invariant equidistributed subalgebra of
B∞ containing b. Now, by Lemma 9, there is an equidistributed algebra
C ⊇ B and an automorphism h̃ of C such that h̃|B = g|B, while b has
h̃-period kn. Let now h ∈ Homeo(2N, µ) be any generic extension of h̃. Then
hn|B = g|B and hn is generic too, by Proposition 4. Applying Lemma 8, hn

and g are conjugate by an element s ∈ Homeo(2N, µ)B, shns−1 = g, whereby
f = shs−1 is a generic nth root of g with respect to which b has period kn.

Proof of Theorem 7. Suppose g is generic and let b ∈ B∞ \{∅, 2N} be an
arbitrary clopen set fixed by g. Using Lemma 10, we can inductively choose
generic g = g1, g2, . . . such that (gn+1)n+1 = gn and b has gn-period n!. It
follows from looking at (gni)

ki(b) that if ki, ni ≥ 1 are such that (gni)
ki → e

as i→∞, then for all but finitely many i, ni! divides ki and, in particular,
for all but finitely many i, (gni)

ki is an integer power of g = g1, namely

(gni)
ki = gki/ni!.

So using (∗), we see that

(gni)
ki −−−−→

i→∞
e ⇔

[
∀∞i ki ≡ 0 mod ni! & ∀m ∀∞i ki

ni!
≡ 0 mod m

]
⇔ ‖ki/ni!‖ → 0.

Now, embedding Q into Homeo(2N, µ) by k/n! 7→ gkn, k ∈ Z and n ≥ 1,
and identifying Q with its image, we see that the topology induced from
Homeo(2N, µ) coincides with the d-topology. Therefore, by completeness of
Homeo(2N, µ), the embedding extends to all of A.
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It is instructive to see how the multiplication in the topological ring
A is interpreted as a multiplication operation × in the topological group
Homeo(2N, µ) via the embedding above. So suppose g is generic and let g =
g1, g2, . . . be the sequence of generic roots defined in the proof of Theorem 7.
Denote by R(g) the image of A under the embedding into Homeo(2N, µ).
We shall simplify notation a bit by letting gs denote the image of s ∈ A in
R(g). Thus gsgt = gs+t and gs × gt = gst whenever s, t ∈ A. In particular,
to compute the square root with respect to the group multiplication of an
element gs of R(g), we multiply by g1/2:

(g1/2 × gs)(g1/2 × gs) = gs/2gs/2 = gs.

The rational powers of g are of course easy to write in terms of integer
powers of gn, namely if s = k/n! for k ∈ Z and n ≥ 1, then gs = (gn)k.
On the other hand, if s, t ∈ A are arbitrary elements, we find some k such
that s, t ∈ 〈1/k〉, whereby st ∈ 〈1/k2〉. Now, given any b ∈ B∞, let O be
the orbit of b under gk

−2
. Then if mk−1, nk−1 ∈ 〈1/k〉 are sufficiently close

to s and t respectively, gmk
−1

and gnk
−1

agree with gs and gt on O. In
particular,

[gs × gt](b) = [gmk
−1 × gnk−1

](b) = (gk
−2

)mn(b).

3. Powers of generic isometries

3.1. Free amalgams of metric spaces. We shall now review the concept of
free amalgamations of metric spaces, which is certainly part of the folklore.
Suppose A and B1, . . . ,Bn are non-empty finite metric spaces and ιi : A ↪→
Bi is an isometric embedding for each i. We define the free amalgam

⊔
A Bl

of B1, . . . ,Bn over A and the embeddings ι1, . . . , ιn as follows.
Denote by di the metric on Bi for each i and let Ci = Bi \ ιi[A]. By

renaming elements, we can suppose that C1, . . . ,Cn and A are pairwise
disjoint.

We then let the universe of
⊔

A Bl be A∪
⋃n
i=1 Ci and define the metric

∂ by the following conditions:

(1) ∂(x, y) = di(ιix, ιiy) for x, y ∈ A,
(2) ∂(x, y) = di(ιix, y) for x ∈ A and y ∈ Ci,
(3) ∂(x, y) = di(x, y) for x, y ∈ Ci,
(4) ∂(x, y) = minz∈A(di(x, ιiz) + dj(ιjz, y)) for x ∈ Ci and y ∈ Cj ,

i 6= j.

We notice first that in (1) the definition is independent of i since each ιi is
an isometry. Also, a careful checking of the triangle inequality shows that
this indeed defines a metric ∂ on A ∪

⋃n
i=1 Ci.
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We define for each i an isometric embedding πi : Bi ↪→
⊔

A Bl by

• πi(x) = x for x ∈ Ci,
• πi(ιix) = x for x ∈ A.

Notice that in this way the following diagram commutes:

A ιi−−−−→ Bi

ιj

y yπi

Bj
πj−−−−→

⊔
A Bl

3.2. Roots of isometries

Proposition 11. Let A ⊆ B be finite rational metric spaces, f an
isometry of A, and g an isometry of B leaving A invariant and such that
fn = g|A for some n ≥ 1. Then there is a finite rational metric space D ⊇ B
and an isometry h of D such that hn leaves B invariant and hn|B = g.

Proof. Let B1 = · · · = Bn = B and define isometric embeddings ιi :
A ↪→ Bi by

ιi(x) = f−i(x).

To distinguish between the different copies of B, we let, for x ∈ B \A, xi

denote the copy of x in Ci = Bi \ ιi[A] = Bi \A. Note also that B = B1 =
· · · = Bn all have the same metric, which we denote by d. We now define h
on
⊔

A Bl as follows.

• h(x) = f(x) for x ∈ A,
• h(xi) = xi+1 for x ∈ B \A and 1 ≤ i < n,
• h(xn) = (gx)1 for x ∈ B \A.

Now, obviously, h is a permutation of A, and for 1 ≤ i < n, h is a bijec-
tion between Ci and Ci+1. Moreover, h is a bijection between Cn and C1.
Therefore, h is a permutation of

⊔
A Bl. We check that h is 1-Lipschitz.

Suppose first that x, y ∈ A. Then

∂(hx, hy) = ∂(fx, fy) = d(ιifx, ιify) = d(f−ifx, f−ify) = d(f1−ix, f1−iy)

= d(f−ix, f−iy) = d(ιix, ιiy) = ∂(x, y).

Also, h is clearly an isometry between Ci and Ci+1 for 1 ≤ i < n. So
consider the case Cn. Fix x, y ∈ B \A. Then

∂(h(xn), h(yn)) = ∂((gx)1, (gy)1) = d(gx, gy) = d(x, y) = ∂(xn, yn).

Now, if x ∈ A, y ∈ B \A, and 1 ≤ i < n, then

∂(h(x), h(yi)) = ∂(fx, yi+1) = d(ιi+1fx, y) = d(f−(i+1)fx, y)

= d(f−ix, y) = d(ιix, y) = ∂(x, yi).
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Also, if x ∈ A and y ∈ B \A, then

∂(h(x), h(yn)) = ∂(fx, (gy)1) = d(ι1fx, gy) = d(f−1fx, gy) = d(x, gy)

= d(g−1x, y) = d(f−nx, y) = d(ιnx, y) = ∂(x, yn).

And finally, if x, y ∈ B \A and 1 ≤ i < j ≤ n, we pick z ∈ A such that the
distance ∂(xi, yj) is witnessed by z, i.e.,

∂(xi, yj) = d(x, ιiz) + d(ιjz, y) = d(x, f−iz) + d(f−jz, y).

Assume first that j < n. Then

∂(h(xi), h(yj)) = ∂(xi+1, yj+1)
≤ d(x, ιi+1fz) + d(ιj+1fz, y)

= d(x, f−iz) + d(f−jz, y) = ∂(xi, yj).

And if j = n, we have

∂(h(xi), h(yn)) = ∂(xi+1, (gy)1)
≤ d(x, ιi+1fz) + d(ι1fz, gy)

= d(x, f−iz) + d(z, fny)

= d(x, f−iz) + d(f−nz, y) = ∂(xi, yn).

Thus, as h is a 1-Lipschitz permutation of the finite metric space
⊔

A Bl, it
follows that h is an isometry of

⊔
A Bl.

Now see g and f as isometries of the first copy B1 of B, i.e., g(x1) = (gx)1

for x1 ∈ C1. Let π1 : B1 ↪→
⊔

A Bl be the canonical isometric embedding
defined by

• π1(x1) = x1 for x1 ∈ C1,
• π1(ι1x) = x for x ∈ A.

To finish the proof, we need to show that the following diagram commutes:

B1
g−−−−→ B1

π1

y yπ1⊔
A Bl

hn

−−−−→
⊔

A Bl

First, suppose y = ι1x ∈ A. Then

hnπ1y = hnπ1ι1x = hnx = fnx = π1ι1f
nx = π1f

−1fnx = π1f
nf−1x

= π1f
nι1x = π1f

ny = π1gy.

Now suppose that x ∈ B \A. Then

hnπ1(x1) =hn(x1) = h(xn) = (gx)1 = π1(gx)1 = π1g(x1).

Proposition 12. Let n ≥ 1. Then the generic isometry of the rational
Urysohn metric space is conjugate to its nth power.
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Again, the reference to the generic isometry of the rational Urysohn
metric space is justified by the existence of a comeagre conjugacy class in
its isometry group, a fact established by Solecki in [13].

Proof. A basic open set in Iso(QU) is of the form

U(h,A) = {g ∈ Iso(QU) | g|A = h|A},

where A is a finite subspace of QU and h ∈ Iso(QU). We claim that for any
U(h,A) there is some finite B ⊆ QU containing A and some isometry k
leaving B invariant, such that U(k,B) ⊆ U(h,A). Indeed, if h and A are
given, choose by Theorem 1 some finite B ⊆ QU containing both A and
h(A) such that the partial isometry h : A → h(A) of A ∪ h(A) extends to
an isometry ĥ of B. Let k be any isometry of QU that extends ĥ. Then B
is k-invariant while U(k,B) ⊆ U(h,A).

Again, if k is an isometry of some finite B ⊆ QU, we let U(k,B) = {g ∈
Iso(QU) | g|B = k}.

Let now C be the comeagre conjugacy class of Iso(QU) and find dense
open sets Vi ⊆ Iso(QU) such that C =

⋂
i Vi. Enumerate the points of QU as

a0, a1, . . . . We shall define a sequence of finite subsets A0 ⊆ A1 ⊆ · · · ⊆ QU
and isometries gi and fi of Ai such that

(1) ai ∈ Ai+1,
(2) gi+1 extends gi,
(3) fi+1 extends fi,
(4) gni = fi,
(5) U(gi+1,Ai+1) ⊆ Vi,
(6) U(fi+1,Ai+1) ⊆ Vi.

To begin, let A0 = ∅ with trivial isometries g0 = f0. So suppose Ai, gi, and
fi are defined. We let B ⊆ QU be a finite subset containing both ai and Ai

and such that there is some isometry h of B extending gi. As Vi is dense
open we can find some U(k,C) ⊆ Vi, where C ⊆ QU is a k-invariant finite
set containing B, and k extends h. Again, as Vi is dense open, we can find
some U(p,D) ⊆ Vi, where D ⊆ QU is a finite set containing C, and p an
isometry of QU leaving D invariant and extending kn|C.

Now, by Proposition 11, we can find a finite subset E ⊆ QU containing
D and an isometry q of E extending k|C such that qn extends p|D. Finally,
set Ai+1 = E,

gi+1 = q ⊇ k|C ⊇ h ⊇ gi, fi+1 = qn ⊇ p|D ⊇ kn|C ⊇ gni = fi.

Then U(gi+1,Ai+1) ⊆ U(k,C) ⊆ Vn and U(fi+1,Ai+1) ⊆ U(p,D) ⊆ Vn.
Set now g =

⋃
i gi and f =

⋃
i fi. By (1)–(3), f and g are isometries of

QU. And by (4), gn = f , while by (5) and (6), f, g ∈
⋂
i Vi = C. Thus, f
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and g belong to the comeagre conjugacy class and are therefore mutually
conjugate.

Now in exactly the same way as for measure preserving homeomor-
phisms, we can prove

Theorem 13. Let n 6= 0. Then the generic isometry of the rational
Urysohn metric space is conjugate to its nth power and hence has roots of
all orders. Thus, for the generic isometry g, there is an action of (Q,+) by
isometries of QU such that g is the action by 1 ∈ Q.

3.3. Actions of A by isometries on QU. In a similar manner as for mea-
sure preserving homeomorphisms, it is now possible to show that any generic
isometry extends to an action of the ring A.

Theorem 14. Let g be a generic element of Iso(QU). Then 1 ∈ Q 7→
g ∈ Iso(QU) extends to a homeomorphic embedding of (A,+) into Iso(QU).

Since this is done almost exactly as for measure preserving homeomor-
phisms, modulo replacing dyadic, equidistributed Boolean algebras with fi-
nite metric spaces, we shall not overextend our claims to the reader’s atten-
tion and instead just give the exact statements of the needed lemmas.

Lemma 15. Let B ⊆ QU be a finite subset and suppose g, h are generic
elements of Iso(QU) with g[B] = h[B] = B and g|B = h|B. Then g and h
are conjugate by an element of Iso(QU)B = U(e,B).

Lemma 16. Suppose B is a finite rational metric space, g an isometry
of B, and b ∈ B is a point having g-period k, i.e., gi(b) = b if and only if k
divides i. Then for any n ≥ 1 there is a finite rational metric space C ⊇ B
and an isometry h of C such that hn|B = g and b has h-period kn.

Lemma 17. Suppose g ∈ Iso(QU) is generic and b ∈ QU has g-period k.
Then for any n ≥ 1 there is a generic f such that g = fn and b has f -period
kn.

4. Topological similarity and Rokhlin’s Lemma for isometries.
Suppose G is a Polish group and f, g ∈ G. We say that f and g are topolog-
ically similar if the topological groups 〈f〉 ≤ G and 〈g〉 ≤ G are isomorphic.
We should note here that 〈f〉 refers to the cyclic group generated by f and
not its closure. By the completeness of Polish groups, if 〈f〉 and 〈g〉 are
isomorphic, then so are 〈f〉 and 〈g〉, but not vice versa (for an example of
this, one can consider irrational rotations of the circle).

Notice first that any f is topologically similar to f−1. Indeed, if ψ(fn) =
f−n, then ψ is an involution homeomorphism, since inversion is continuous
in G. Of course, if f and g have infinite order, then any isomorphic homeo-
morphism φ between 〈f〉 and 〈g〉 must send the generators to the generators
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and so either φ(f) = g or φ(f) = g−1. But then composing with ψ we can
always suppose that φ(f) = g.

Moreover, to see that φ : fn 7→ gn is a topological group isomorphism
between 〈f〉 and 〈g〉, it is enough to check continuity at the identity e of
both φ and φ−1. But, letting {Ui}i∈N be an open neighbourhood basis at e
in G, this clearly holds if and only if

(∗) ∀i ∃j ∀n [(fn ∈ Uj → gn ∈ Ui) & (gn ∈ Uj → fn ∈ Ui)].
Notice also that as 〈f〉 and 〈g〉 are metrisable, f and g are topologically
similar if and only if for all increasing sequences (sn) ⊆ N, fsn → e as
n→∞ if and only if gsn → e as n→∞. By (∗), topological similarity is a
Borel equivalence relation. Actually, it is Π0

3, which can be seen by noting
that (∗) is equivalent to

∀i ∃j ∀n [(fn /∈ Uj ∨ gn ∈ Ui) & (gn /∈ Uj ∨ fn ∈ Ui)].
We also notice that topological similarity is really independent of the am-
bient group G. For example, if G is topologically embedded into another
Polish group H, then f and g are topologically similar in G if and only if
they are topologically similar in H.

Topological similarity is an obvious invariant for conjugacy, that is, if
there is any way to make f and g conjugate in some Polish group, then they
have to be topologically similar.

Of particular interest are the cases G = Aut([0, 1], λ), G = U(`2),
and G = Iso(U). We recall that the group Aut([0, 1], λ) of Lebesgue mea-
sure preserving automorphisms of the unit interval is equipped with the so
called weak topology : It is the weakest topology such that for all Borel sets
A,B ⊆ [0, 1] the map g 7→ λ(gA4B) is continuous. Also, Aut([0, 1], λ) sits
inside of U(`2) via the Koopman representation, and two measure preserv-
ing transformations f and g are said to be spectrally equivalent if they are
conjugate in U(`2). By the spectral theorem, spectral equivalence is Borel.
Also, topological similarity is strictly coarser than spectral equivalence. To
see this, we notice that mixing is not a topological similarity invariant,
whereas it is a spectral invariant. Indeed, if f is mixing, then the automor-
phism f ⊕ id is a non-mixing transformation of [0, 1] ⊕ [0, 1] but generates
a discrete subgroup of Aut([0, 1]⊕ [0, 1], λ⊕ λ). So taking a transformation
h ∈ Aut([0, 1], λ) conjugate to f ⊕ id, we see that f and h are topologically
similar, since they both generate discrete groups. A survey of the closely
related topic of topological torsion elements in topological groups is given
by Dikranjan in [4].

Proposition 18. Let G be a non-trivial Polish group such that for all
infinite S ⊆ N and neighbourhoods V 3 e the set A(S, V ) = {g ∈ G | ∃s ∈ S
gs ∈ V } is dense. Then every topological similarity class of G is meagre.
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Moreover , for every infinite S ⊆ N the set

C(S) = {g ∈ G | ∃(sn) ⊆ S gsn −→
n
e}

is dense Gδ and invariant under topological similarity.

Proof. Let V0 ⊇ V1 ⊇ · · · be a basis of open neighbourhoods of the
identity and notice that for any infinite S ⊆ N,

C(S) = {g ∈ G | ∃(sn) ⊆ S gsn −→
n
e}

= {g ∈ G | ∀k ∃n ∈ S \ [1, k] gn ∈ Vk} =
⋂
k

A(S \ [1, k], Vk).

Moreover, as every A(S \ [1, k], Vk) is open and dense, C(S) is dense Gδ and
invariant under topological similarity.

Now, if some topological similarity class C were non-meagre, then

C ⊆
⋂
S⊆N

infinite

C(S)

and hence for all g ∈ C, gn → e, implying that g = e, which is impossible.

Since by Rokhlin’s Lemma the sets {g ∈ Aut([0, 1], λ) | ∃s ∈ S gs = e}
are dense in Aut([0, 1], λ) for all infinite S ⊆ N, we have

Corollary 19. Every topological similarity class is meagre in the group
Aut([0, 1], λ).

This improves a result variously attributed to Rokhlin or del Junco [7]
saying that all conjugacy classes are meagre in Aut([0, 1], λ). We clearly see
the importance of Rokhlin’s Lemma in these matters. However, interestingly,
Rokhlin’s Lemma can also be used to prove the existence of dense conjugacy
classes in Aut([0, 1], λ).

It is of interest to note that the same argument applies to the uni-
tary group U(`2) (see Chapter 1.2 in Kechris’ book [8]). Thus every topo-
logical similarity class in U(`2) is meagre. Moreover, U(`2) embeds into
Aut([0, 1], λ) via the Gaussian measure construction. So in this case the
conjugacy classes in U(`2) induced by Aut([0, 1], λ) still remain meagre.

We now have the following analogue of Rokhlin’s Lemma for isometries
of the Urysohn metric space.

Proposition 20 (Rokhlin’s Lemma for isometries). Suppose S ⊆ N is
infinite. Then the set

{g ∈ Iso(U) | ∃n ∈ S gn = e}
is dense in Iso(U).

Similar sounding statements can certainly be found in the literature,
for example, it follows easily from Lemma 5.3.7 in Pestov’s book [10] that
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the set of isometries of finite order is dense in Iso(U), but the quantitative
statement above, i.e., depending on S ⊆ N, does not seem to follow easily
from the more abstract methods of [10]. We therefore include the simple
proof of Proposition 20 below.

A finite cyclic order is a finite subset F of the unit circle S1. If x ∈ F,
we denote by x+ the first y ∈ F encountered by moving counterclockwise
around S1 beginning at x. We then denote x by y−, i.e., x+ = y if and only
if y− = x.

Lemma 21. Suppose h is an isometry of U and δ > 0. Then for all finite
A ⊆ U there is an isometry f of U such that d(f(a), h(a)) ≤ δ for all a ∈ A
while d(a, f(b)) ≥ δ for all a, b ∈ A.

Proof. Let B = A ∪ h[A] and let C = B × {0, δ} be equipped with
the `1-metric d1((b, x), (b′, y)) = d(b, b′) + |x− y|. Clearly, B is isometric to
B×{0} and B×{δ}, so we can assume that B is actually B×{0} ⊆ C ⊆ U.
Now, let f be any isometry of U such that f(a, 0) = (h(a), δ) for a ∈ A.

Proof of Proposition 20. Suppose A ⊆ U is finite, h an isometry of U,
and ε > 0. We wish to find some isometry g such that d(g(a), h(a)) < ε
for all a ∈ A and gs = e for some s ∈ S. Find first some f such that
d(f(a), h(a)) < ε for all a ∈ A while d(a, f(b)) > ε/2 for all a, b ∈ A. It is
therefore enough to find some g that agrees with f on A while gs = e for
some s ∈ S.

We let ∆ = diam(A ∪ f [A]) and δ = min(d(x, f(y)) | x, y ∈ A). Fix a
number s ∈ S such that δ · (s − 2) ≥ ∆ and take a finite cyclic order F of
cardinality s. Now let

B = {a • x | a ∈ A & x ∈ F},
where a • x are formally new points.

A path in B is a sequence p = (a0 • x0, a1 • x1, . . . , an • xn) where n ≥ 1
and for each i, xi+1 is either x−i , xi, or x+

i . We define the length of p by

`(p) =
n−1∑
i=0

ρ(ai • xi, ai+1 • xi+1),

where

ρ(a • x, b • y) =


d(a, b) if y = x,
d(a, f(b)) if y = x+,
d(f(a), b) if y = x−,

and put |p| = n+ 1.
Therefore, if p̆ denotes the reverse path of p and p �q the concatenation of

two paths (whenever it is defined), then `(p̆) = `(p) and `(p �q) = `(p)+`(q).
Thus, ` is the distance function in a finite graph with weighted edges and
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hence the following defines a metric on B:

D(a • x, b • y) = inf(`(p) | p is a path with initial point a • x
and end point b • y).

We say that two paths are equivalent if they have the same initial point
and the same end point. We also say that a path p is positive if either
p = (a • x, b • x) for some x ∈ F, or p = (a0 • x0, a1 • x1, . . . , an • xn) where
xi+1 = x+

i for all i. Similarly, p is negative if either p = (a•x, b•x) for some
x ∈ F, or p = (a0 • x0, a1 • x1, . . . , an • xn) where xi+1 = x−i for all i. So p
is positive if and only if p̆ is negative. Notice also that if p is positive, then
`(p) ≥ δ · (|p| − 2).

Lemma 22. For every path p there is an equivalent path q, with `(q) ≤
`(p), which is either positive or negative.

Proof. If p is not either positive or negative, then there is a segment of
p of one of the following forms:

(1) (a • x, b • x, c • x),

(2) (a • x+, b • x, c • x),

(3) (a • x−, b • x, c • x),

(4) (a • x, b • x+, c • x),

(5) (a • x, b • x−, c • x),

(6) (a • x, b • x, c • x+),

(7) (a • x, b • x, c • x−).

We replace these by respectively

(1′) (a • x, c • x),

(2′) (a • x+, c • x),

(3′) (a • x−, c • x),
(4′) (a • x, c • x),

(5′) (a • x, c • x),

(6′) (a • x, c • x+),

(7′) (a • x, c • x−),

and see that by the triangle inequality for d we can only decrease the value
of `. For example, in case (3), we see that

ρ(a • x−, b • x) + ρ(b • x, c • x) = d(a, f(b)) + d(b, c)
= d(a, f(b)) + d(f(b), f(c))

≥ d(a, f(c)) = ρ(a • x−, c • x).

We can then finish the proof by induction on |p|.

We now claim that D(a • x, b • x) = d(a, b). To see this, notice first that
D(a•x, b•x) ≤ d(a, b). For the other inequality, let p be an either positive or
negative path from a•x to b•x. By symmetry, we can suppose p is positive.
But then, unless p = (a • x, b • x), we must have |p| ≥ s + 1, whence also
`(p) ≥ δ · (|p|−2) ≥ δ · (s−1) ≥ ∆ ≥ d(a, b). A similar argument shows that
D(a • x, b • x+) = d(a, f(b)).
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This shows that for any x0 ∈ F, A∪f [A] is isometric to A×{x0, x
+
0 } by

the function a 7→ a •x0 and f(a) 7→ a •x+
0 . So we can just identify A∪ f [A]

with A× {x0, x
+
0 }. Notice also that the following mapping g is an isometry

of B:
a • x 7→ a • x+.

Moreover, it agrees with f on their common domain A× {x0}. Realising B
as a subset of U containing A, we see that g acts by isometries on B with
gs = e. It then follows that g extends to a full isometry of U still satisfying
gs = e.

Corollary 23. Every topological similarity class is meagre in Iso(U).

Again this strengthens a result of Kechris [5] saying that all conjugacy
classes are meagre.
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