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Abstract. The paper is concerned with the computation of covering numbers in the
presence of large cardinals. In particular, we revisit Solovay’s result that the Singular
Cardinal Hypothesis holds above a strongly compact cardinal.

0. Introduction. The Generalized Continuum Hypothesis (GCH) as-
serts that 2ρ = ρ+ for every infinite cardinal ρ, and the Singular Cardinal
Hypothesis (SCH) that νcf(ν) = ν+ · 2cf(ν) for any singular cardinal ν. One
of the many equivalent reformulations of GCH states that |Pκ(λ)| ≤ λ+ for
every regular uncountable cardinal κ and every cardinal λ ≥ κ. Similarly,
SCH can be rephrased as the assertion that |Pκ(λ)| ≤ 2<κ · λ+ for all κ and
λ as above. Now since |Pκ(λ)| = 2<κ · u(κ, λ) (where u(κ, λ) denotes the
least cardinality of a cofinal subset of (Pκ(λ),⊆)), it is natural to consider
the statement that u(κ, λ) ≤ λ+ for all κ and λ as above. This assertion is
equivalent to Shelah’s Strong Hypothesis (SSH).

What is the relative status of these three hypotheses? Clearly GCH im-
plies SSH, which in turn implies SCH. Neither implication can be reversed.
Adding ℵ2 Cohen reals to a model of GCH will yield a model of “¬ GCH +
SSH”. And, as Moti Gitik pointed out to the author, one obtains a model
of “u(ω1, ωω) > ω+

ω (and hence ¬SSH) + SCH” by adding ℵω+1 Cohen re-
als to a model of “for every infinite cardinal ν, 2ν equals ν++ if ν = ωω,
and ν+ otherwise”. Unlike that of GCH, the failure of SSH has large car-
dinal strength. In fact, if the covering lemma holds with respect to some
inner model satisfying GCH, then SSH holds. Gitik [10] established that
the failure of SCH is equiconsistent with the existence of a cardinal ν with
o(ν) = ν++. It is not known whether the failure of SSH is equiconsistent
with that of SCH. We will show (Proposition 3.8) that if SCH holds, then
u(κ, λ) ≤ λ+ for every regular uncountable cardinal κ and every cardinal
λ ≥ κ · τ, where τ is the least uncountable strong limit cardinal.
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The starting point of this paper is Solovay’s epochal result [33] that SCH
holds above a strongly compact cardinal. More precisely, Solovay proved the
following local result: Let κ be a regular uncountable cardinal. Suppose κ is
τ -compact, where τ ≥ κ is a regular cardinal. Then |Pκ(τ)| = τ, and in fact
τρ = τ for every regular infinite cardinal ρ with 2ρ < τ. Now using Silver’s
Theorem [31] and the fact that if κ is σ-compact for some cardinal σ > κ
with cf(σ) < κ, then κ is σ+-compact, it easily follows that if λ > κ is a
singular cardinal such that κ is λ-compact, then λcf(λ) = λ+ · 2cf(λ). Can
one improve this result? First look at the conclusion. Consider for instance
the case when λ = κ+κ < 2κ. Then of course λκ = 2κ but this is not very
informative (and does not make use of the λ-compactness of κ!). One way to
make progress is to switch from the computation of λκ to that of u(κ+, λ),
and more generally to that of u(µ, λ) for a regular cardinal µ with κ < µ < λ.

Now what about weakening the assumption of Solovay’s result? There is
more than one possibility since the λ-compactness of κ can be formulated in
several ways (for instance in terms of compactness properties of the infinitary
language Lκκ, or in terms of existence of prime ideals on Pκ(λ)). Also note
that the assumption can be made “weaker” in more than one sense. For
example we could look for an assumption of lesser consistency strength. Or
we could try to make κ small. How small can small be? Well, as small as
ω2, as shown by Todorcevic ([34], [35]) who proved (from a supercompact
cardinal) the consistency of Rado’s Conjecture (RC) and established that
RC implies SCH. In fact it implies SSH since Todorcevic also proved that
RC entails 2ℵ0 ≤ ℵ2. “Small” could also mean “smaller than 2ℵ0”. We will
show (Proposition 7.3) that if there is an ideal on Pκ(λ) that is ρ-saturated
for some cardinal ρ < κ, where κ is a regular uncountable cardinal and
λ ≥ κ a cardinal, then for any regular cardinal µ with κ ≤ µ ≤ λ, u(µ, λ)
equals λ if cf(λ) ≥ µ, and λ+ otherwise.

Before he obtained his result on strongly compact cardinals, Solovay
[33] showed that if κ is λ-supercompact and λ is regular, then the func-
tion a 7→

⋃
a is injective on some set A ⊆ Pκ(λ) such that A ∈ J∗ for

every normal prime ideal J on Pκ(λ). Johnson [13] sharpened this result
in the case when λ is a successor cardinal. Namely, he showed that if κ is
λ-Shelah and λ = ν+, then the sup-function is injective on a set in NSh∗κ,λ.
Abe [3] remarked that Johnson’s result remains valid in the case when λ is
a regular limit cardinal. We complete the picture by proving two companion
results, one (Proposition 9.4) for the case when κ ≤ cf(λ) < λ and the other
(Proposition 9.6) for the case when cf(λ) < κ.

The paper is organized as follows. In Section 1 we review basic material
concerning ideals on Pκ(λ). Section 2 lists several results of Shelah and others
on covering numbers that will be needed later. In Section 3 we establish
a result concerning the consequences of “u(µ, λ) > λ+” (and, more generally,
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of “cov(λ, µ, µ, κ) > λ+”). This will be the main tool in our subsequent
investigation of the effect of large cardinals on cardinal arithmetic. Our
motivation for considering cov(λ, µ, µ, κ) for uncountable κ goes beyond the
search for greater generality. Consider for instance the case when µ = κ+ and
λ ≥ 2κ. Then cov(λ, µ, µ, κ) = λ if and only if the ideal Iκ,λ|C is κ-normal
for some club subset C of Pκ(λ). This is proved in Section 4.

In Section 5 we review results of Todorcevic ([34], [35]) and Magidor–
Shelah [18] concerning the compactness properties wRC and PT and their
impact on cardinal arithmetic. In Section 6 we extend work of Abe [2] con-
cerning the consequences of the existence of a κ+-saturated ideal on Pκ(λ).
In Section 7 we strengthen our assumption (requiring now the existence of
an ideal that is <κ-saturated) to get a better conclusion.

In Section 8 we prove a Pκ(λ) version of the result of Solovay [32]
concerning the partition relation satisfied by a normal ideal on κ that is
τ -saturated for some τ < κ. In Section 9 we revisit Solovay’s result [33]
on the sup-function. Following Johnson [13], we assume Shelahness rather
than supercompactness. Shelahness (or rather a weak variant of it) appears
again in Section 10, where we remark that Krueger’s striking result [15]
that the strong compactness of κ does not entail the stationarity of the set
{a ∈ Pκ(κ+) : |a| > |a ∩ κ|} is in some sense optimal.

1. Ideals on Pκ(λ). In this section we review basic material concerning
ideals on Pκ(λ). For a set A and a cardinal ρ, we let Pρ(A) = {a ⊆ A :
|a| < ρ}.

Let κ be a regular uncountable cardinal, and λ ≥ κ be a cardinal.
Iκ,λ denotes the collection of all A ⊆ Pκ(λ) such that {a ∈ A : b ⊆ a} = ∅

for some b ∈ Pκ(λ). An ideal on Pκ(λ) is a collection J of subsets of Pκ(λ)
such that (i) P (A) ⊆ J for any A ∈ J, (ii)

⋃
X ∈ J for every X ∈ Pκ(J),

(iii) Iκ,λ ⊆ J, and (iv) Pκ(λ) /∈ J.
Let J be an ideal on Pκ(λ). We set J+ = P (Pκ(λ))\J and J∗ = {Pκ(λ)\

A : A ∈ J}. For A ∈ J+, let J |A = {B ⊆ Pκ(λ) : B ∩ A ∈ J}. Let cof(J)
denote the least size of any X ⊆ J such that for any A ∈ J, there is
Q ∈ Pκ(X) with A ⊆

⋃
Q.

Let J be an ideal on Pκ(λ), and δ be an ordinal with κ ≤ δ ≤ λ. Then
J is δ-normal if for every A ∈ J+ and every f : A → δ such that f(a) ∈ a
for all a ∈ A, there is B ∈ J+ ∩ P (A) such that f is constant on B. NSδκ,λ
denotes the smallest δ-normal ideal on Pκ(λ). For f : Pω(δ) → Pκ(λ), let
Cκ,λf denote the set of all a ∈ Pκ(λ) such that (i) ω ⊆ a and (ii) f(e) ⊆ a

for every e ∈ Pω(a ∩ δ).
Lemma 1.1 (Matet–Péan–Shelah [23]). NSδκ,λ is the set of all A ⊆ Pκ(λ)

such that A ∩ Cκ,λf = ∅ for some f : Pω(δ)→ Pκ(λ).
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J is normal if it is λ-normal. We let NSκ,λ = NSλκ,λ.

J is seminormal if it is δ-normal for every δ with κ ≤ δ < λ. NSSκ,λ
denotes the smallest seminormal ideal on Pκ(λ).

J is strongly normal if for every A ∈ J+ and every f : A → Pκ(λ) such
that f(a) ∈ P|a∩κ|(a) for all a ∈ A, there is B ∈ J+ ∩ P (A) such that f is
constant on B.

The following is readily checked:

Lemma 1.2. Suppose cf(λ) < κ. Then every seminormal ideal on Pκ(λ)
is normal.

Lemma 1.3 (Carr–Levinski–Pelletier [5]). Suppose κ is a limit cardinal.
Then there exists a strongly normal ideal on Pκ(λ) if and only if κ is Mahlo.

Assuming κ is Mahlo, NS[λ]<κ

κ,λ denotes the smallest strongly normal ideal
on Pκ(λ).

For a cardinal µ, J is µ-saturated (respectively, weakly µ-saturated) if
there is no Q ⊆ J+ such that (a) |Q| = µ and (b) A ∩ B ∈ J (respec-
tively, A ∩ B = ∅) for any two distinct members A,B of Q. J is prime
if it is 2-saturated. κ is λ-compact if there exists a prime ideal on Pκ(λ),
and λ-supercompact if there exists a normal prime ideal on Pκ(λ). κ is
strongly compact (respectively, supercompact) if it is τ -compact (respectively,
τ -supercompact) for every cardinal τ ≥ κ.

Lemma 1.4.

(i) (Erdős–Tarski [9]) Let J be an ω-saturated ideal on Pκ(λ). Then
J |A is prime for some A ∈ J+.

(ii) (Erdős–Tarski [9]) Let ν be a singular cardinal , and J be a ν-
saturated ideal on Pκ(λ). Then J is τ -saturated for some cardinal
τ < ν.

(iii) Let ν be a singular cardinal , and J be a weakly ν-saturated ideal on
Pκ(λ). Then J |A is weakly τ -saturated for some A ∈ J+ and some
cardinal τ < ν.

J is weakly normal if (a) J is weakly cf(λ)-saturated, and (b) for every
A ∈ J+ and every f : A → λ such that f(a) ∈ a for all a ∈ A, there are
B ∈ J+ ∩ P (A) and α < λ such that f(b) ≤ α for all b ∈ B.

Let X,Y ⊆ P (Pκ(λ)), and let ρ be a cardinal. X → [Y ]2ρ means that
for every A ∈ X and every F : A × A → ρ, there are B ∈ Y ∩ P (A) and
ξ ∈ ρ such that F (a, b) 6= ξ for all a, b ∈ B with a ⊂ b. For a cardinal
τ ≤ ρ,X → [Y ]2ρ,<τ means that for every A ∈ X and every F : A× A→ ρ,
there are B ∈ Y ∩ P (A) and e ∈ Pτ (ρ) such that F (a, b) ∈ e for all a, b ∈ B
with a ⊂ b.
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Most of the definitions above are Pκ(λ) versions of notions which origi-
nated in the study of κ. For the original definitions see e.g. [14]. They will
not be repeated here, except for that of κ→ [κ]2ρ,<τ which is maybe not so
widely known. κ → [κ]2ρ,<τ means that for every F : κ × κ → ρ, there are
B ⊆ κ with |B| = κ and e ∈ Pτ (ρ) such that F (α, β) ∈ e for all α, β ∈ B
with α < β.

Let us also recall the following:

Lemma 1.5.

(i) (Kunen [16]) If κ carries a κ+-saturated ideal , then it is measurable
in some inner model of ZFC.

(ii) (Ulam [36]) If κ carries a κ-saturated ideal , then it is a limit car-
dinal.

(iii) (see [14, p. 212]) If κ carries a ρ-saturated ideal for some cardinal
ρ < κ, then it has the tree property.

Given sets X and Y , f : X → Y and J ⊆ P (X), we let f(J) = {A ⊆ Y :
f−1(A) ∈ J}.

2. Covering numbers. In this section we recall a number of results
that will be needed in the sequel.

Definition. Given four cardinals λ, χ, µ and κ such that λ ≥ χ ≥ µ ≥ ω
and µ ≥ κ ≥ 2, cov(λ, χ, µ, κ) denotes the least cardinality of any X ⊆ Pχ(λ)
such that for any a ∈ Pµ(λ), there is Q ∈ Pκ(X) with a ⊆

⋃
Q.

Proposition 2.1 (Shelah [28, pp. 85–86]). Let λ, χ, µ and κ be four
cardinals such that λ ≥ χ ≥ µ ≥ ω and µ ≥ κ ≥ 2. Then the following hold :

(i) If λ = χ and either cf(λ) < κ or cf(λ) ≥ µ, then cov(λ, χ, µ, κ) =
cf(λ).

(ii) If either λ>χ, or λ=χ and κ≤cf(λ)<µ, then cov(λ, χ, µ, κ)≥λ.
(iii) cov(λ, χ, µ, κ) = cov(λ, χ, µ, ω · κ).
(iv) cov(λ, χ, µ, κ) ≤ cov(λ, χ, µ, κ′) for every infinite cardinal κ′ ≤ κ.
(v) cov(λ, χ, µ, κ) ≤ cov(λ, χ, µ′, κ) for every cardinal µ′ with χ ≥ µ′

≥ µ.
(vi) cov(λ, χ, µ, κ) ≤ cov(λ, χ′, µ, κ) for every cardinal χ′ with χ ≥ χ′

≥ µ.
(vii) cov(λ, χ, µ, κ) ≤ cov(λ′, χ, µ, κ) for every cardinal λ′ ≥ λ.

(viii) cov(λ+, χ, µ, κ) = λ+ · cov(λ, χ, µ, κ).
(ix) Suppose λ is a limit cardinal such that λ > χ and cf(λ) ≥ µ. Then

cov(λ, χ, µ, κ) =
⋃
χ≤λ′<λ cov(λ′, χ, µ, κ).

(x) If µ > κ ≥ ω, then cov(λ, χ, µ, κ) =
⋃
κ≤ρ<µ cov(λ, χ, ρ+, κ).
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(xi) If λ > χ and cf(λ) < κ = cf(κ), then

cov(λ, χ, µ, κ) =
⋃

χ≤λ′<λ
cov(λ′, χ, µ, κ).

Proposition 2.2. Let λ, χ and µ be three uncountable cardinals such
that λ ≥ χ > µ = cf(µ) > cf(χ). Then cov(λ, χ, µ, 2) = cov(λ, τ, µ, 2) for
some cardinal τ with κ ≤ τ < χ.

Proof. Let X ⊆ Pχ(λ) be such that for any a ∈ Pµ(λ), there is b ∈ X
with a ⊆ b. Select an increasing sequence 〈χi : i < cf(χ)〉 of infinite cardinals
cofinal in χ. For i < cf(χ), put Ti = {d ∈ Pµ(λ) : ∃b ∈ X ∩ Pχi(λ) (d ⊆ b)}.
Since Pµ(λ) =

⋃
i<cf(χ) Ti, we may find j < cf(χ) such that Tj ∈ I+

µ,λ. Then
clearly for any a ∈ Pµ(λ), there is b ∈ Ti with a ⊆ b.

Proposition 2.3. Let λ, χ, µ and κ be four infinite cardinals such
that λ ≥ χ ≥ µ = cf(µ) ≥ κ. Then either cf(cov(λ, χ, µ, κ)) < κ, or
cf(cov(λ, χ, µ, κ)) ≥ µ.

Proof. Suppose toward a contradiction that κ ≤ τ < µ, where τ =
cf(cov(λ, χ, µ, κ)). Pick X ⊆ Pχ(λ) so that |X| = cov(λ, χ, µ, κ) and for
every a ∈ Pµ(λ), there is w ∈ Pκ(X) with a ⊆

⋃
w. Let X =

⋃
i<τ Xi,

where |Xi| < |X| for any i < τ. For i < τ, select ai ∈ Pµ(λ) so that
ai \

⋃
w 6= ∅ for all w ∈ Pκ(Xi). Now set a =

⋃
i<τ ai. Since a ∈ Pµ(λ), one

can find w ∈ Pκ(X) so that a ⊆
⋃
w. Then there must be i < τ such that

w ⊆ Xi. Clearly, ai ⊆
⋃
w. Contradiction.

Corollary 2.4 (Liu [17]). Let λ be a singular cardinal. Then
cov(λ, λ, κ+, κ) > λ, where κ = cf(λ).

Proposition 2.5 (Shelah [28, Remark 6.6.A p. 101]). Let λ be a sin-
gular cardinal and let κ = cf(λ). Then cov(λ, λ, κ+, κ) > λ+ if and only if
cov(λ, λ, κ+, 2) > λ+.

Hugh Woodin, starting from a hypermeasurability hypothesis, const-
ructed a model where 2ν = ν++ for every infinite cardinal ν. It is simple to
see that in this model for every singular cardinal λ, cov(λ, λ, κ+, 2) = λ++,
where κ = cf(λ).

Proposition 2.6 (Shelah [28, p. 99]). Let λ be a singular cardinal and
let κ = cf(λ). Suppose cov(λ, λ, κ+, κ) > λ+. Then one can find yα ∈ Pκ+(λ)
for α < λ+ so that for any nonzero β < λ+, there is a one-to-one h ∈∏
α<β yα.

Proof. Select a partition 〈Xγ : γ < κ〉 of λ into κ pieces of size λ. For
β ∈ λ+, let β =

⋃
γ<κ d

β
γ , where |dβγ | < λ for all γ < κ. Given γ < κ,

define by induction yγα ∈ Pκ+(Xγ) for α < λ+ so that yγα \ Aβγ 6= ∅ for all
β < λ+, where Aβγ =

⋃
{yγζ : ζ ∈ α ∩ dβγ} (note that Aβγ ∈ Pλ(Xγ) since
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|Aβγ | ≤ κ · |α ∪ dβγ | < λ). For α < λ+, set yα =
⋃
γ<κ y

γ
α. Now suppose

0 < β < λ+. Define g : β → κ by g(α) = the least γ < κ such that α ∈ dβγ .
Select

h ∈
∏
α<β

(
yg(α)
α \

⋃
{yg(α)
ζ : ζ ∈ α ∩ dβg(α)}

)
.

Then h is easily seen to be one-to-one.

We omit the definition of the function pp, which can be found in [28,
p. 41].

Proposition 2.7 (Shelah, see e.g. [17] and [12, p. 270]). Let λ be a
singular cardinal. Then cov(λ, λ, κ+, 2) ≥ pp(λ) ≥ λ+, where κ = cf(λ).

Proposition 2.8. Let λ be a singular cardinal , and let κ = cf(λ). Then
the following hold :

(i) (Shelah [28, p. 384]) If λ < ωλ, then pp(λ) = cov(λ, λ, κ+, 2).
(ii) (Shelah [29, Claim 1.1]) If κ > ω and pp(λ) = λ+, then pp(λ) =

cov(λ, λ, κ+, 2).
(iii) (Shelah [28, p. 369]) Suppose that (a) κ = ω, (b) pp(χ) < λ for

every singular cardinal χ < λ with cf(χ) = ω, and (c) there is a
cardinal θ < λ with the property that pp(π) = π+ for every singular
cardinal π such that θ < π < λ and cf(π) = ω1. Then pp(λ) =
cov(λ, λ, κ+, 2).

Definition. For two infinite cardinals λ ≥ µ, we let u(µ, λ) =
cov(λ, µ, µ, 2).

Proposition 2.9 (Donder–Matet [7]). Let λ, µ and κ be three infinite
cardinals such that λ ≥ µ = cf(µ) ≥ κ = cf(κ). Then u(κ, λ) ≤ u(κ, µ) ·
u(µ, λ).

Note that by Proposition 2.9, if λ and κ are two infinite cardinals such
that λ > κ = cf(κ), then u(κ, λ) ≤ u(κ+, λ).

Proposition 2.10 (folklore). Let λ and µ be two cardinals such that
λ ≥ µ = cf(µ). Then λ<µ = 2<µ · u(µ, λ).

Proposition 2.11 (Shelah [29, Claim 2.1(1)]). Let κ, ρ and λ be three
infinite cardinals such that κ ≤ ρ < λ, and let θ = cov(λ, ρ+, ρ+, κ). Suppose
θ ≥ u(κ, ρ). Then u(κ, θ) = u(ρ+, λ).

Proposition 2.12. Let λ and κ be two infinite cardinals such that λ >
κ = cf(κ) > cf(λ). Suppose u(κ, λ+) = λ+. Then u(κ, λ) = λ+.

Proof. By Proposition 2.1(vii) and Corollary 2.4,

λ < cov(λ, λ, (cf(λ))+, cf(λ)) ≤ u(κ, λ) ≤ u(κ, λ+) = λ+.
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Proposition 2.13 (Shelah [30, Conclusion 1.2]). Let τ be an uncount-
able strong limit cardinal , and λ > τ be a cardinal. Then there exists an
infinite cardinal κ < τ such that cov(λ, µ, µ, κ) = λ for every cardinal µ
with κ < µ ≤ τ.

Proposition 2.14 (Gitik–Shelah [11]). Let 2 < n < ω. Suppose that
there are n strong cardinals. Then there exists a generic extension in which
(a) ωω is a strong limit cardinal , and (b) setting λ = ωωn ,

u(ωi+1, λ) = λ+(i+1) = cov(λ, ωi+1, ωi+1, ωi)

for every i ≤ n.

3. When cov(λ, µ, µ, κ) > λ+. In this section we extend the following
result of Shelah and Rinot (see the proof of Theorem 3.3 in [26]):

(∗) Let θ be an infinite cardinal such that u(ρ+, θ) ≤ θ+ for every
infinite cardinal ρ < θ. Suppose C 6= ∅, where C is the class of all
cardinals π > θ such that u(µ, π) > π+ for some successor cardinal
µ with ω < µ < π. Then letting ν =

⋂
C, ν is a singular cardinal.

Moreover, cov(ν, ν, (cf(ν))+, 2) > ν+.

Consider the following statement:

(∗∗) Let µ be a regular uncountable cardinal, and θ be an infinite car-
dinal such that u(ρ+, θ) ≤ θ++ for any infinite cardinal ρ < θ ∩ µ.
Suppose τ > θ ·µ is a cardinal such that u(µ, τ) > τ+. Then there is
a cardinal ν such that (a) θ < ν ≤ τ and cf(ν) = ω, (b) pp(ν) > ν+,
and (c) u(ρ+, π) ≤ π+ for any two cardinals π and ρ with θ < π < ν
and ρ < π ∩ µ.

It is simple to see that (∗) follows from (∗∗) (set τ =
⋂
C and µ = ρ+,

where ρ is some infinite cardinal with ρ < τ and u(ρ+, τ) > τ+). Now (∗∗) is
concerned with the two-variable function u(ρ, ψ) (= cov(ψ, ρ, ρ, ω)). Switch-
ing to the three-variable function cov(ψ, ρ, ρ, η), we obtain the following,
more general result:

Proposition 3.1. Let σ be a regular infinite cardinal , µ > σ be a regular
cardinal , and θ ≥ σ be a cardinal such that cov(θ, ρ+, ρ+, σ) ≤ θ++ for
every cardinal ρ with σ ≤ ρ < θ ∩ µ. Suppose τ > θ is a cardinal such
that cov(τ, µ, µ, σ) > τ+. Then there is a cardinal ν such that (a) θ <
ν ≤ τ and cf(ν) = σ, (b) pp(ν) > ν+ and cov(ν, ν, σ+, σ) > ν+, and
(c) cov(π, ρ+, ρ+, σ) ≤ π+ for any two cardinals π and ρ with θ < π < ν
and σ ≤ ρ < π ∩ µ.

We need some preparation.
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Definition. Let Q be a nonempty set of ordinals, and 〈µi : i ∈ Q〉 a
strictly increasing sequence of infinite cardinals. For f, g ∈

∏
i∈Q µi, we let

f <∗ g just in case |{i ∈ Q : f(i) ≥ g(i)}| < |Q|. Let δ be an ordinal. By a
scale of length δ on

∏
i∈Q µi we mean a sequence 〈fα : α < δ〉 of elements

of
∏
i∈Q µi such that (a) fα <∗ fβ whenever α < β < δ, and (b) for any

g ∈
∏
i∈Q µi, there is α < δ such that g <∗ fα.

Lemma 3.2 (Shelah [28, p. 55]). Suppose ν is a singular cardinal of
uncountable cofinality σ, and let 〈νi : i < σ〉 be an increasing continuous
sequence of infinite cardinals with supremum ν. Then for some closed un-
bounded subset C of σ, there is a scale of length ν+ on

∏
i∈C ν

+
i .

The following is essentially due to Liu [17] who proved it for κ = ω. We
include the proof for completeness.

Proposition 3.3. Let κ be a regular infinite cardinal , and ν be a sin-
gular cardinal of cofinality σ > κ. Let 〈νi : i < σ〉 be an increasing contin-
uous sequence of cardinals greater than σ with supremum ν. Suppose there
is a stationary set S ⊆ {i < σ : cf(i) ≥ κ} such that for each i ∈ S,
cov(νi, νi, σ, κ) ≤ ν+

i . Then cov(ν, ν, σ+, 2) = ν+.

Proof. By Lemma 3.2 one can find W ⊆ S and F ⊆
∏
i∈W ν+

i so that
S \W is a nonstationary subset of σ, |F | = ν+ and for each g ∈

∏
i∈W ν+

i ,
there is f ∈ F with |{i ∈W : g(i) ≥ f(i)}| < σ. For i ∈W, pick Xi ⊆ Pνi(νi)
so that |Xi| ≤ ν+

i and for any e ∈ Pσ(νi), there is Q ∈ Pκ(Xi) with e ⊆
⋃
Q.

Set Xi = {xiα : α < ν+
i }. For a ∈ Pσ+(ν), let a = {βaj : j < σ}, and set

ai = νi ∩ {βaj : j < i} for each i ∈ W. Now for f ∈ F and ξ < σ, let
Zξf be the set of all a ∈ Pσ+(ν) such that for any i ∈ W \ ξ, there is
Q ∈ Pκ({xiα : α < f(i)}) with ai ⊆

⋃
Q.

Claim 1. Let f ∈ F and ξ < σ. Then there is Y ξ
f ⊆ Pν(ν) such that

|Y ξ
f | ≤ σ and Zξf ⊆

⋃
{P (y) : y ∈ Y ξ

f }.

Proof of Claim 1. For i ∈W \ ξ, let {xiα : α < f(i)} = {tiγ : γ < νi}. For
k, l ∈ σ, set

ylk =
⋃
{tiγ : i ∈W \ ξ, γ < νk and |tiγ | < νl}.

Put Y ξ
f = {ylk : k, l ∈ σ}. Now fix a ∈ Zξf . For i ∈ W \ ξ, select Qi ∈ Pκ(νi)

so that ai ⊆
⋃
γ∈Qi t

i
γ . There must exist l < σ and a stationary subset A of

W \ ξ such that for any i ∈ A and any γ ∈ Qi, |tiγ | < νl. There must also be
k < σ and a stationary subset B of A such that Qi ⊆ νk for all i ∈ B. Then
clearly a ⊆ ylk.

Claim 2. Pσ+(ν) =
⋃
{Zξf : f ∈ F and ξ < σ}.
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Proof of Claim 2. Let a ∈ Pσ+(ν). Then for i ∈W, there is Qi ∈ Pκ(Xi)
with ai ⊆

⋃
Qi. Select g ∈

∏
i∈W ν+

i so that for any i ∈ W,Qi ⊆ {xiα :
α ≤ g(i)}. Then one can find f ∈ F and ξ < σ so that g(i) < f(i) for all
i ∈W \ ξ. Clearly a ∈ Zξf , which completes the proof of the claim.

Set A =
⋃
{Y ξ

f : f ∈ F and ξ < σ}. Then clearly, A ⊆ Pν(ν) and
|A| ≤ |σ| · ν+ = ν+. Moreover, for each a ∈ Pσ+(ν), by Claim 2 there is
y ∈ A with a ⊆ y.

We are now ready to prove our result. For better clarity we distinguish
two cases corresponding to Propositions 3.4 and 3.5 below.

Proposition 3.4. Let θ be an uncountable cardinal such that u(ω1, θ)
≤ θ++. Suppose there is a cardinal λ > θ such that u(ω1, λ) > λ+, and let ν
be the least such λ. Then cf(ν) = ω and pp(ν) > ν+.

Proof. By Proposition 2.1(viii), ν is a limit cardinal. It follows from
Proposition 2.1(ix) that cf(ν) = ω. Moreover, cov(ν, ν, ω1, 2) > ν+ since by
Proposition 2.1(ii),

cov(ν, ν, ω1, 2) = cov(ν, ν, ω1, 2) ·
( ⋃
θ<π<ν

u(ω1, π)
)
≥ u(ω1, ν).

Now suppose to the contrary that pp(ν) ≤ ν+. Then ν = ων by Propo-
sition 2.8(i). Now for every singular cardinal χ ≤ θ with cf(χ) = ω,

pp(χ) ≤ cov(χ, χ, ω1, 2) ≤ cov(θ, χ, ω1, 2) ≤ cov(θ, ω1, ω1, 2) = u(ω1, θ)
≤ θ++

by Propositions 2.1((iii) and (vii)) and 2.7. Moreover, for every cardinal π
such that θ < π < ν and cf(π) = ω,

π+ ≤ pp(π) ≤ cov(π, π, ω1, 2) ≤ cov(π, ω1, ω1, 2) = u(ω1, π) ≤ π+.

by Propositions 2.1((iii) and (vi)) and 2.7. Hence by Propositions 2.7 and
3.3, cov(η, η, ω2, 2) = pp(η) = η+ for any singular cardinal η such that
θ < η < ν and cf(η) = ω1. We can now deduce from Proposition 2.8(iii)
that pp(ν) = cov(ν, ν, ω1, 2). Contradiction.

Proposition 3.5. Let κ, µ, λ and θ be four infinite cardinals such that
cf(κ) = κ, κ · ω1 < cf(µ) = µ ≤ λ and κ ≤ θ < λ. Suppose that (i)
cov(θ, ρ+, ρ+, κ) ≤ θ++ for every cardinal ρ with κ ≤ ρ < θ ∩ µ, and (ii)
cov(λ, µ, µ, κ) > λ+. Then there exists a cardinal ν such that (a) θ < ν ≤ λ,
(b) cf(ν) = κ, (c) cov(ν, ν, κ+, κ) > ν+, (d) cov(π, ρ+, ρ+, κ) ≤ π+ whenever
π and ρ are two cardinals such that θ < π < ν and κ ≤ ρ < π ∩ µ, and (e)
pp(ν) > ν+.

Proof. Let W be the set of all cardinals π > θ such that cov(π, ρ+, ρ+, κ)
> π+ for some cardinal ρ with κ ≤ ρ < π ∩ µ. Then λ ∈ W by Propo-
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sition 2.1((vi) and (x)). Let ν be the least element of W. Note that by
Proposition 2.1((i) and (viii)), ν > θ+. Let σ be the least cardinal ρ such
that κ ≤ ρ < ν ∩ µ and cov(ν, ρ+, ρ+, κ) > ν+. Then σ+ < ν by Proposi-
tion 2.1(i).

It follows from Proposition 2.1(viii) that ν is a limit cardinal. Set τ =
cf(ν). Let 〈νi : i < τ〉 be an increasing continuous sequence of cardinals such
that θ · σ < ν0 and

⋃
i<τ νi = ν. Note that cov(νi, σ+, σ+, κ) ≤ ν+

i for every
i < τ.

Claim 1. κ ≤ τ ≤ σ.

Proof of Claim 1. That κ ≤ τ follows from Proposition 2.1((vii) and
(xi)). For the other inequality use Proposition 2.1((vii) and (ix)).

Claim 2. τ = σ.

Proof of Claim 2. Suppose otherwise. Then cov(ν, τ+, τ+, κ) ≤ ν+, so
there exists X ⊆ Pτ+(ν) such that |X| ≤ ν+ and for every c ∈ Pτ+(ν), there
is Q ∈ Pκ(X) with c ⊆

⋃
Q. For i < τ, select Yi ⊆ Pσ+(νi) so that |Yi| ≤ ν

and for any b ∈ Pσ+(νi), there is R ∈ Pκ(Yi) with b ⊆
⋃
R. Pick an onto

function fi : ν → Yi. Finally, set dx =
⋃
δ∈x
⋃
i<τ fi(δ) for each x ∈ X. Note

that dx ∈ Pσ+(ν). Now given a ∈ Pσ+(ν), select Ri ∈ Pκ(ν) for i < τ so that
a ∩ νi ⊆

⋃
δ∈Ri fi(δ). There must be Q ∈ Pκ(X) such that

⋃
i<τ Ri ⊆

⋃
Q.

Then clearly a ⊆
⋃
x∈Q dx. It follows that cov(ν, σ+, σ+, κ) ≤ |X|, which

yields the desired contradiction.

Claim 3. cov(ν, ν, σ+, κ) > ν+.

Proof of Claim 3. Suppose otherwise. Pick T ⊆ {t ∈ Pν(ν) : θ+∪σ+ ⊆ t}
so that |T | ≤ ν+ and for any b ∈ Pσ+(ν), there is H ∈ Pκ(T ) with b ⊆

⋃
H.

For t ∈ T , cov(|t|, σ+, σ+, κ) ≤ |t|+ so one can find Zt ⊆ Pσ+(t) so that
|Zt| ≤ ν+ and for every c ∈ Pσ+(t), there is G ∈ Pκ(Zt) with c ⊆

⋃
G.

Set Z =
⋃
t∈T Zt. Then clearly Z ⊆ Pσ+(ν). Moreover, |Z| ≤ ν+. Now

given b ∈ Pσ+(ν), there must be H ∈ Pκ(T ) with b ⊆
⋃
H. For t ∈ T,

select Gt ∈ Pκ(Zt) so that b ∩ t ⊆
⋃
Gt. Then b ⊆

⋃
(
⋃
t∈H Gt), where⋃

t∈H Gt ∈ Pκ(Z). Thus cov(ν, σ+, σ+, κ) ≤ ν+, a contradiction.

Claim 4. τ = κ.

Proof of Claim 4. Suppose otherwise. Then by Propositions 2.1((iii) and
(iv)) and 3.4, there must be i < σ such that cf(i) = κ and cov(νi, νi, σ, κ)
> ν+

i . But then by Proposition 2.1((v) and (vi)),

cov(νi, σ+, σ+, κ) ≥ cov(νi, νi, σ+, κ) ≥ cov(νi, νi, σ, κ) > ν+
i .

Contradiction.

Claim 5. pp(ν) > ν+.
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Proof of Claim 5. Suppose otherwise. Then by Propositions 2.1((iii) and
(iv)) and 2.7, cov(ν, ν, κ+, 2) > pp(ν) = ν+. Hence by Proposition 2.8(ii),
κ = ω. Now argue exactly as for Proposition 3.4.

Definition. Let κ < µ be two regular infinite cardinals, and τ ≥ κ
be a cardinal. We let θ(κ, τ, µ) denote the least cardinal θ ≥ τ such that
cov(θ, ρ+, ρ+, κ) ≤ θ++ for every cardinal ρ with κ ≤ ρ < θ ∩ µ.

Clearly θ(κ, τ, µ) ≤ τ<µ. Note that if κ = τ, then θ(κ, τ, µ) = τ. Also
note that if η is a cardinal such that τ ≤ η ≤ µ and η<η ≤ η++, then
θ(κ, τ, µ) ≤ η.
Definition. SSH (Shelah’s Strong Hypothesis) asserts that pp(λ) = λ+

for every singular cardinal λ.

Corollary 3.6 (Shelah ([27] and [28, p. 59]). The following are equiv-
alent :

(i) SSH.
(ii) Given two uncountable cardinals λ and µ such that λ ≥ µ = cf(µ),

u(µ, λ) equals λ if cf(λ) ≥ µ, and λ+ otherwise.
(iii) For every cardinal λ ≥ ω1 with cf(λ) = ω, u(ω1, λ) ≤ λ+.

Proof. (i)⇒(ii): By Propositions 2.1, 3.4 and 3.5.
(ii)⇒(iii): Trivial.
(iii)⇒(ii): By Propositions 2.1 and 3.5.
(iv)⇒(i): By Proposition 2.7.

Corollary 3.7 (Silver [31] for (i)⇔(iii)). The following are equivalent :

(i) SCH.
(ii) Given two uncountable cardinals λ and µ such that λ ≥ µ = cf(µ)

and λ > (θ(ω, 2ℵ0 , µ))+, u(µ, λ) equals λ if cf(λ) ≥ µ, and λ+ oth-
erwise.

(iii) For every cardinal λ ≥ 2ℵ0 with cf(λ) = ω, u(ω1, λ) ≤ λ+.

Proof. (i)⇒(iii): Trivial.
(iii)⇒(ii): Assume (iii) holds. Then by Propositions 2.7, 3.4 and 3.5,

u(µ, τ) ≤ τ+ whenever µ and τ are two cardinals such that τ ≥ µ = cf(µ) >
ω and τ > θ(ω, 2ℵ0 , µ). That (ii) holds now follows from Proposition 2.1.

(ii)⇒(i): It easily follows from (ii) that u((cf(λ))+, λ) ≤ λ+ for every
infinite cardinal λ such that λ > 2cf(λ).

Proposition 3.8. Suppose SCH holds. Then there is a cardinal τ ≥ 2ℵ0
such that for every cardinal λ > τ+ and every regular uncountable cardinal
µ ≤ λ, u(µ, λ) equals λ if cf(λ) ≥ µ, and λ+ otherwise.

Proof. Let C be the class of all cardinals π ≥ 2ℵ0 such that u(ρ+, π) ≤
π++ for every infinite cardinal ρ < π. Then clearly θ(ω, 2ℵ0 , µ) ≤ π for every
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π ∈ C and every regular uncountable cardinal µ. Moreover, for any cardinal
π ≥ 2ℵ0 with π /∈ C, there is an uncountable successor cardinal µ ≤ π such
that u(µ, λ) > λ+, where λ = π++. Hence by Corollary 3.7, τ is as desired
if and only if τ ∈ C.

To show that C 6= ∅, define σn for n < ω by σ0 = 2ℵ0 and σn+1 =⋃
ω≤ρ<σn u(ρ+, σn). Put σ =

⋃
n<ω σn. Suppose C∩σ=∅. Then σ0<σ1< · · · ,

so cf(σ) = ω. Let ρ < σ be an infinite cardinal. Then cov(σ, ρ+, ρ+, ω1)
= σ since u(ρ+, σn) < σ for any n < ω such that ρ < σn, and consequently
u(ρ+, σ) ≤ σℵ0 = σ+. Hence σ ∈ C.

4. Covering numbers and normal ideals on Pκ(λ). Throughout
this section, κ, µ and λ will denote three uncountable cardinals such that
cf(κ) = κ ≤ µ < λ.

Let Aκ,µ,λ assert the existence of B ∈ NS∗κ,λ such that NSµκ,λ|B = Iκ,λ|B.
Aκ,µ,λ has many interesting consequences. See e.g. [20] where it is shown that
Aκ,κ,λ implies that I+

κ,λ 9 (I+
κ,λ, ω1)2. In this section we show that if λ is

large enough, then Aκ,µ,λ holds just in case cov(λ, µ+, µ+, κ) = λ.

Lemma 4.1 (Matet–Péan–Shelah [24]).

cof(NSµκ,λ) = cof(NSκ,µ) · cov(λ, µ+, µ+, κ).

Lemma 4.2. Let A ∈ NS∗κ,λ. Then cof(NSµκ,λ|A) ≥ cov(λ, µ+, µ+, κ).

Proof. Select t : Pω(λ) → Pκ(λ) so that Cκ,λt ⊆ A. Fix a family G of
functions from Pω(µ) to Pκ(λ) such that |G| = cof(NSµκ,λ|C

κ,λ
t ) and for any

h : Pω(µ)→ Pκ(λ), there is X ∈ Pκ(G) \ {∅} with Cκ,λt ∩
⋂
g∈X C

κ,λ
g ⊆ Cκ,λh .

For g ∈ G, set Bg = µ ∪
⋃

ran(g). Note that |Bg| = µ. For G ∈ Pω(G) \ {∅},
define inductivelyBn

G for n < ω byB0
G =

⋃
g∈GBg andBn+1

g = Bn
G∪
⋃
{t(d) :

d ∈ Pω(Bn
G)}. Then set BG =

⋃
n<ω B

n
G. Note that |BG| = µ. Now fix D ⊆ λ

with |D| ≤ µ. Pick h : Pω(µ) → Pκ(λ) so that D ⊆
⋃

ran(h). There must
be X ∈ Pκ(G) \ {∅} such that Cκ,λt ∩

⋂
g∈X C

κ,λ
g ⊆ Cκ,λh .

For e ∈ Pω(µ), define inductively sen for n < ω by se0 = e ∪ ω and

sen+1 = sen ∪
⋃
{g(d) : g ∈ X and d ∈ Pω(sen ∩ µ)}

∪
⋃
{t(b) : b ∈ Pω(sen)}.

Let us show by induction that sen ⊆
⋃
{BG : G ∈ Pω(X) \ {∅}). This clearly

holds for n = 0. Now suppose it holds for some n. Let b ∈ Pω(sen). If
b = ∅, then clearly t(b) ⊆

⋃
{BG : G ∈ Pω(X) \ {∅}. Now assume b 6= ∅.

For β ∈ b, pick Gβ ∈ Pω(X) \ {∅} so that β ∈ BGβ . Set Q =
⋃
β∈bGβ.

Note that Q ∈ Pω(X) \ {∅}. Given β ∈ b, it is easily seen that Bn
Gβ
⊆ BQ

for all n < ω. Hence b ∈ Pω(BQ), and therefore t(b) ⊆ BQ. It readily
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follows that sen+1 ⊆
⋃
{BG : G ∈ Pω(X) \ {∅}}. Put ze =

⋃
n<ω s

e
n. Then

ze ∈ Cκ,λt ∩
⋂
g∈X C

κ,λ
g , hence ze ∈ Cκ,λh . It follows that h(e) ⊆ ze, since

e ∈ Pω(ze ∩ µ).
Finally,

D ⊆
⋃
{h(e) : e ∈ Pω(µ)} ⊆

⋃
{ze : e ∈ Pω(µ)}

⊆
⋃
{BG : G ∈ Pω(X) \ {∅}}.

Thus cov(λ, µ+, µ+, κ) ≤ |G| ≤ cof(NSµκ,λ|A).

The following is immediate from the proof of Proposition 3.5 in [24].

Lemma 4.3. Let K be a family of functions from Pω(λ) to Pκ(λ) with
the property that for any f : Pω(µ) → Pκ(µ), one can find K ∈Pκ(K) \ {∅}
and h : Pω(λ) → Pκ(µ) with f ⊆ h such that

⋂
k∈K C

κ,λ
k ⊆ Cκ,λh . Then

cof(NSκ,µ) ≤ |K|.

Lemma 4.4. Let A ∈ NS∗κ,λ. Then cof(NSµκ,λ|A) ≥ cof(NSκ,µ).

Proof. By Lemma 1.1 there is t : Pω(λ) → Pκ(λ) such that Cκ,λt ⊆ A.
By the same lemma there is a family Y of functions from Pω(µ) to Pκ(λ)
such that (a) |Y| = cof(NSµκ,λ|C

κ,λ
t ), and (b) for any B ∈ (NSµκ,λ|C

κ,λ
t )∗,

there is Y ∈ Pκ(Y) \ {∅} with Cκ,λt ∩
⋂
y∈Y C

κ,λ
y ⊆ B. For y ∈ Y, select

ŷ : Pω(λ)→ Pκ(λ) with y ⊆ ŷ. Set K = {t} ∪ {ŷ : y ∈ Y}.
Given f : Pω(µ) → Pκ(µ), define h : Pω(λ) → Pκ(µ) as follows: h(e)

equals f(e) if e ⊆ µ, and ∅ otherwise. There must be Y ∈ Pκ(Y) \ {∅} such
that Cκ,λt ∩

⋂
y∈Y C

κ,λ
y ⊆ Cκ,λf . We claim that Cκ,λt ∩

⋂
y∈Y C

κ,λby ⊆ Cκ,λh . Let

b ∈ Cκ,λt ∩
⋂
y∈Y C

κ,λby and e ∈ Pω(b). If e \ µ 6= ∅, then h(e) = ∅ ⊆ b.

Otherwise h(e) = f(e) ⊆ b, since b belongs to Cκ,λt ∩
⋂
y∈Y C

κ,λ
y and therefore

to Cκ,λf . Hence b ∈ Cκ,λh .

It now follows from Lemma 4.3 that

cof(NSκ,µ) ≤ |K| ≤ cof(NSµκ,λ|C
κ,λ
t ) ≤ cof(NSµκ,λ|A).

Proposition 4.5. Let A ∈ NS∗κ,λ. Then cof(NSµκ,λ|A) = cof(NSµκ,λ).

Proof. By Lemmas 4.1, 4.2 and 4.4.

Lemma 4.6 (Matet–Péan–Shelah [24]). If cof(NSµκ,λ)≤λ, then NSµκ,λ|A
= Iκ,λ|A for some A ∈ NS∗κ,λ.

Proposition 4.7. The following are equivalent :

(i) cof(NSκ,µ) ≤ λ = cov(λ, µ+, µ+, κ).
(ii) There is A ∈ NS∗κ,λ such that NSµκ,λ|A = Iκ,λ|A.
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Proof. (i)⇒(ii): By Lemmas 4.1 and 4.6.
(ii)⇒(i): By Lemma 4.1 and Propositions 2.1((i) and (ii)) and 4.5.

Note that if κ ≤ cf(λ) < λ, then cov(λ, (cf(λ))+, (cf(λ))+, κ) 6= λ by
Propositions 2.1 and 2.2, and therefore by Proposition 4.7, NScf(λ)

κ,λ |A 6=
Iκ,λ|A for every A ∈ NS∗κ,λ.

There is a version of Proposition 4.7 for NSSκ,λ.

Proposition 4.8. Suppose λ is a regular limit cardinal. Then the fol-
lowing are equivalent :

(i) cof(NSκ,ν) ≤ λ = cov(λ, ν+, ν+, κ) for every cardinal ν with κ ≤
ν < λ.

(ii) There is C ∈ NS∗κ,λ such that NSSκ,λ|C = Iκ,λ|C.

Proof. (i)⇒(ii): Let Z be the set of all cardinals ν with κ ≤ ν < λ.
Clearly, NSSκ,λ =

⋃
ν∈Z NS

ν
κ,λ. For each ν ∈ Z, by Proposition 4.7 there is

Aν ∈ NS∗κ,λ such that NSνκ,λ|Aν = Iκ,λ|Aν . Then

C = {a ∈ Pκ(λ) : ∀ν ∈ a ∩ Z (a ∈ Aν)}
is as desired.

(ii)⇒(i): By Proposition 4.7.

Lemma 4.9 (Matet–Péan–Shelah [23]). Suppose κ ≤ δ < λ. Then
NSδκ,λ = NS

|δ|
κ,λ|D for some D ∈ (NSδκ,λ)∗.

Proposition 4.10. Suppose λ is a successor cardinal , say λ = ν+. Then
the following are equivalent :

(i) cof(NSκ,ν) ≤ λ.
(ii) There is C ∈ NS∗κ,λ such that NSSκ,λ|C = Iκ,λ|C.

Proof. (i)⇒(ii): Let Z be the set of all ordinals δ with ν ≤ δ < λ. Note
that NSSκ,λ =

⋃
δ∈Z NS

δ
κ,λ. Since by Proposition 2.1, cov(λ, ν+, ν+, κ) = λ,

Proposition 4.7 yields A ∈ NS∗κ,λ such that NSνκ,λ|A = Iκ,λ|A. For each
δ ∈ Z, by Lemma 4.9 there is Dδ ∈ NS∗κ,λ such that NSδκ,λ = NSνκ,λ|Dδ.
Then C = {a ∈ A : ∀δ ∈ a ∩ Z (a ∈ Dδ)} is as desired.

(ii)⇒(i): By Proposition 4.7.

5. Various notions of compactness. In this section we review several
notions of compactness and consider their impact on cardinal arithmetic. We
start with mild ineffability.

Definition. Let κ and λ be two cardinals such that ω ≤ cf(κ) = κ ≤ λ.
κ is mildly λ-ineffable if given ta : a → 2 for a ∈ Pκ(λ), there is g : λ → 2
with the property that for any b ∈ Pκ(λ), there is a ∈ Pκ(λ) such that b ⊆ a
and ta�b = g�b.
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Proposition 5.1 (Carr [4]). Let κ and λ be two infinite cardinals such
that cf(κ) = κ ≤ λ. Then the following hold :

(i) Suppose κ is mildly λ-ineffable. Then κ is mildly λ′-ineffable for
every cardinal λ′ with κ ≤ λ′ < λ.

(ii) For λ = κ, κ is mildly λ-ineffable if and only if it is weakly compact.

The following is essentially due to Di Prisco and Zwicker [6].

Lemma 5.2. Let κ and λ be two infinite cardinals such that cf(κ) = κ
≤ λ. Then the following are equivalent :

(i) κ is mildly λ-ineffable.
(ii) Let 〈Qα : α < λ〉 be a sequence of partitions of Pκ(λ) into fewer than

κ pieces. Then there is h ∈
∏
α<λQα such that

⋂
α∈e h(α) ∈ I+

κ,λ for
every e ∈ Pκ(λ) \ {∅}.

Next we consider the uniform filter property UFπ.

Definition. Let π be a regular infinite cardinal. We say that UFπ holds
if for any sequence 〈Qi : i < π〉 of partitions of π into countably many pieces,
there is h ∈

∏
i<π Qi such that |

⋂
i∈e h(i)| = π for any e ∈ Pω(π) \ {∅}.

Proposition 5.3. Let κ ≤ π be two regular uncountable cardinals such
that κ is mildly π-ineffable. Then UFπ holds.

Proof. By Lemma 5.2.

Let us now consider the transversal property PT(π, ω1).

Definition. For a regular infinite cardinal π, PT(π, ω1) means that
for any size π family of countable sets without a transversal (i.e. a one-to-
one choice function), there exists a subfamily of size less than π without a
transversal.

The following is readily checked.

Proposition 5.4. Let π be a regular infinite cardinal such that UFπ
holds. Then PT(π, ω1) holds.

Proposition 5.5 (Magidor–Shelah [18]).

(i) Let π < ωω2+1 be a regular infinite cardinal. Then PT(π, ω1) does
not hold.

(iii) It is consistent (relative to infinitely many supercompact cardinals)
that PT(ωω2+1, ω1) holds.

(iii) Let π be a regular infinite cardinal such that PT(π, ω1) does not
hold. Then PT(ωπ+1, ω1) does not hold.

(iv) It is consistent (relative to infinitely many supercompact cardinals)
that PT(π, ω1) holds for every regular infinite cardinal π greater
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than the first cardinal fixed point (i.e. the least cardinal κ such that
κ = ωκ).

Proposition 5.6 (Shelah [28, p. 99]). Let λ be a singular cardinal of
cofinality ω such that PT(λ+, ω1) holds. Then cov(λ, λ, ω1, 2) = λ+.

Proof. By Proposition 2.6.

Corollary 5.7. Let κ be a regular uncountable cardinal such that
u(ρ+, κ) ≤ κ++ for every infinite cardinal ρ < κ. Further , let λ > κ+ be a
cardinal such that PT(ν+, ω1) holds for every cardinal ν such that κ < ν < λ
and cf(ν) = ω. Finally , let µ ≤ λ be a regular uncountable cardinal. Then
the following hold :

(i) Suppose cf(λ) > ω. Then u(µ, λ) equals λ if cf(λ) ≥ µ, and λ+

otherwise.
(ii) Suppose cf(λ) = ω. Then cov(λ, µ, µ, ω1) = λ and u(µ, λ) = u(ω1, λ).

Proof. (i) By Proposition 2.1 and Corollary 2.4 it suffices to show that
u(µ, σ) ≤ σ+ for every cardinal σ with µ·κ+ ≤ σ ≤ λ. For µ ≥ κ, this readily
follows from Propositions 2.7, 3.4, 3.5 and 5.6. Now suppose µ < κ < σ ≤ λ.
Then by Propositions 2.1 and 2.9,

u(µ, σ) ≤ u(µ, κ) · u(κ, σ) ≤ κ++ · σ+ = σ+.

(ii) We know from (i) that u(τ, σ) ≤ σ+ for every regular uncountable
cardinal τ < λ and every cardinal σ with τ · κ+ ≤ σ < λ. Hence by Propo-
sition 2.1,

cov(λ, µ, µ, ω1) =
⋃

µ·κ+≤σ<λ

cov(σ, µ, µ, ω1) = λ.

It follows that

u(µ, λ) ≤ u(ω1, cov(λ, µ, µ, ω1)) = u(ω1, λ).

The proof is concluded by appealing to Proposition 2.9. In case µ < κ, we
get

u(ω1, λ) ≤ u(ω1, µ) · u(µ, λ) ≤ u(ω1, κ) · u(µ, λ) ≤ κ++ · u(µ, λ) = u(µ, λ).

Otherwise,

u(ω1, λ) ≤ u(ω1, κ) · u(κ, µ) · u(µ, λ) ≤ κ++ · µ+ · u(µ, λ) = u(µ, λ).

Finally, we consider the weak Rado conjecture wRC(σ, π).

Definition. Given two uncountable cardinals σ ≤ π,wRC(σ, π) asserts
the following. Let (T,<) be a tree of size π with the property that any
subtree of size less than σ is special (i.e. is the union of countably many
antichains). Then T is not Baire (i.e. there is a sequence 〈Di : i < ω〉
of cofinal subsets of (T,<) such that (a) for any i < ω and any t ∈ Di,
{t′ ∈ T : t < t′} ⊆ Di, and (b)

⋂
i<ωDi = ∅).
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The following is easily verified.

Proposition 5.8. Let π be a regular uncountable cardinal such that UFπ
holds. Then wRC(π, π) holds (in fact , any nonspecial tree of size π has a
nonspecial subtree of size less than π).

Proposition 5.9.

(i) (Todorcevic [35]) Suppose wRC(λ+, λℵ0) holds, where λ is a singu-
lar cardinal of cofinality ω. Then λℵ0 = λ+.

(ii) (Todorcevic [34]) It is consistent (relative to a supercompact cardi-
nal) that wRC(ω2, π) holds for every cardinal π ≥ ω2.

(iii) (Todorcevic [35]) Suppose wRC(ω2, π) holds for every cardinal
π ≥ ω2. Then 2ℵ0 ≤ ℵ2.

6. Weakly λ+-saturated ideals on Pκ(λ). Throughout this section κ
and λ will denote two uncountable cardinals such that cf(κ) = κ ≤ λ.

Lemma 6.1 (folklore). For every cardinal τ, the following hold :

(i) There is a (normal) τ -saturated ideal on Pκ(κ) if and only if there
is one on κ.

(ii) Let σ be a cardinal with κ ≤ σ < λ. If there is a (σ-normal) (weakly)
τ -saturated ideal on Pκ(λ), then there is a (normal) (weakly) τ -
saturated ideal on Pκ(σ).

Proof. (i) Define f : κ → Pκ(κ) and g : Pκ(κ) → κ by f(α) = α and
g(a) =

⋃
a. If J is a (normal) τ -saturated on κ (respectively, on Pκ(κ)),

then f(J) (respectively, g(J)) is a (normal) τ -saturated ideal on Pκ(κ) (re-
spectively, on κ).

(ii) Define p : Pκ(λ) → Pκ(σ) by p(a) = a ∩ σ. If J is a (σ-normal)
(weakly) τ -saturated ideal on Pκ(λ), then p(J) is a (normal) (weakly) τ -
saturated ideal on Pκ(σ).

Lemma 6.2.

(i) (Abe [2]) Suppose that cf(λ) = λ and there is a weakly normal ideal
on Pκ(λ). Then u(κ, λ) = λ.

(ii) (Usuba [38]) Suppose that cf(λ) = λ and there is a weakly λ-satu-
rated ideal on Pκ(λ). Then there is a weakly normal ideal on Pκ(λ).

Proposition 6.3 (Usuba [38]). Suppose that cf(λ) ≥ κ and there is a
weakly λ-saturated ideal on Pκ(λ). Then u(κ, λ) = λ.

Proof. In case λ is regular the result is immediate from Lemma 6.2. Now
assume λ is singular. By Lemmas 1.4(iii) and 6.1(ii) we may find a cardinal
τ < λ such that for any cardinal σ with κ ≤ σ < λ, there exists a weakly
τ -saturated ideal on Pκ(σ). Hence by Lemma 6.2, u(κ, ν) = ν for every
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regular cardinal ν with κ · τ ≤ ν < λ. The desired conclusion now follows
from Proposition 2.1.

Definition. For a cardinal χ, Aχκ,λ asserts the existence of a size χ

subset A of Pκ(λ) such that |A ∩ P (a)| < κ for every a ∈ Pκ(λ).

Lemma 6.4. Let χ > λ be a cardinal such that Aχκ,λ holds. Then there is
f : Pκ(λ)→ Pκ(χ) such that (a) f is an isomorphism from (Pκ(λ),⊂) onto
(ran(f),⊂), (b) λ ∩ f(a) = a for every a ∈ Pκ(λ), and (c) f−1(X) ∈ Iκ,λ
for every X ∈ Iκ,χ.

Proof. Pick zα ∈ Pκ(λ) for λ ≤ α < χ so that (i) zα′ 6= zα for all
α′ 6= α, and (ii) |{α : zα ⊆ a}| < κ for every a ∈ Pκ(λ). Now define
f : Pκ(λ) → Pκ(χ) by f(a) = a ∪ xa, where xa = {α : zα ⊆ a} if κ is a
successor cardinal, and xa = {α : zα ∈ P|a∩κ|(a)} otherwise.

The following is immediate from Lemma 6.4.

Proposition 6.5. Let χ > λ be a cardinal such that Aχκ,λ holds, and
σ be a cardinal. If there is a (normal) (weakly) σ-saturated ideal on Pκ(λ),
then there is a (λ-normal) (weakly) σ-saturated ideal on Pκ(χ).

Let us remark this in passing:

Proposition 6.6. Let J be a seminormal , weakly λ+-saturated ideal on
Pκ(λ+). Then J is λ+-saturated.

Proof. Suppose otherwise. Select Aα ∈ J+ for α < λ+ so that Aβ∩Aα ∈
J for all β < α. For α < λ+, pick a bijection iα : α→ |α|, and set

Eα = {a ∈ Pκ(λ+) : ∀β ∈ a ∩ α (iα(β) ∈ a)},
Xα = {a ∈ Pκ(λ+) : ∃γ ∈ a ∩ |α| (a ∈ Ai−1

α (γ) ∩Aα)},
Bα = {a ∈ (Aα ∩ Eα) \Xα : α ∈ a}.

Then clearly Bα ∈ J+ for all α < λ+. Moreover, Bβ ∩ Bα = ∅ whenever
β < α < λ+. This is a contradiction.

Lemma 6.7 (Matet [22]). Suppose κ is a limit cardinal and cf(λ) < κ.
Then Aλ+

κ,λ holds.

Proposition 6.8. Suppose that κ is a limit cardinal , cf(λ) < κ and
there is a weakly λ+-saturated ideal on Pκ(λ). Then u(κ, λ) = λ+.

Proof. By Propositions 6.3 and 6.5 and Lemma 6.7.

Let us now consider the case when κ is a successor cardinal.

Lemma 6.9 (Matsubara [25]). Suppose κ is a successor cardinal. Then
no ideal on Pκ(λ) is weakly λ-saturated.

Note that the result is optimal if λ<κ = λ.
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Proposition 6.10. Suppose κ is a successor cardinal. Let χ > λ be a
cardinal such that Aχκ,λ holds. Then no ideal on Pκ(λ) is weakly χ-saturated.

Proof. By Proposition 6.5 and Lemma 6.9.

Lemma 6.11 (Shelah, see [24]). Suppose that cf(λ) < κ, and χ > λ is a
cardinal such that u(λ+, χ) < cov(λ, λ, κ, 2). Then Aχκ,λ holds.

Proposition 6.12. Suppose that κ is a successor cardinal , cf(λ) < κ,
and χ > λ is a cardinal such that there exists a weakly χ-saturated ideal
on Pκ(λ). Then u(λ+, χ) ≥ cov(λ, λ, κ, 2).

Proof. By Proposition 6.10 and Lemma 6.11.

In particular, if κ is a successor cardinal, cf(λ) < κ and there exists
a weakly λ+-saturated ideal on Pκ(λ), then cov(λ, λ, κ, 2) = λ+. For more
concerning the case when κ is a successor cardinal, see [22] and [38].

The following extends Abe’s result [2] that the existence of a κ+-satu-
rated ideal on Pκ(λ) implies that SCH holds between 2<κ and λ.

Proposition 6.13. Let τ and µ be two cardinals such that τ < λ and
ω < µ = cf(µ). Suppose that (θ(ω, κ · τ, µ))+ < λ and there exists a τ -
saturated ideal on Pκ(λ). Then u(µ, λ) equals λ if cf(λ) ≥ µ, and λ+ other-
wise.

Proof. By Lemma 6.1 and Proposition 6.8, cov(ν, ν, ω1, ω) ≤ ν+ for any
cardinal ν such that θ(ω, κ · τ, µ) < ν ≤ λ and cf(ν) = ω. Hence by Propo-
sitions 3.4 and 3.5, u(µ, σ) ≤ σ+ for each cardinal σ with µ∪ θ(ω, κ · τ, µ) <
σ ≤ λ. The desired conclusion easily follows.

7. <κ-saturated ideals on Pκ(λ). Throughout this section, κ and λ
will denote two uncountable cardinals such that cf(κ) = κ ≤ λ.

Using a result of Shelah we will prove that if there is a τ -saturated ideal
on Pκ(λ) for some τ < κ, then SSH holds between κ and λ.

Lemma 7.1 (Shelah [29]). Let τ < κ be a regular infinite cardinal. Sup-
pose there exists a τ -saturated ideal on κ. Then u(τ, σ) < κ for every cardinal
σ with τ ≤ σ < κ.

Lemma 7.2. Let τ and µ be two regular cardinals such that ω ≤ τ < κ ≤
µ ≤ λ. Suppose there exists a τ -saturated ideal on Pκ(λ). Then cov(λ, µ, µ, τ)
≤ λ+.

Proof. By Proposition 2.1 and Lemma 7.1, u(ρ+, κ) = κ for every cardi-
nal ρ with τ ≤ ρ < κ. Moreover, by Lemmas 1.4 and 6.1 and Proposition 6.8,
cov(ν, ν, τ+, τ) ≤ u(κ, ν) = ν+ for every cardinal ν such that κ < ν ≤ λ and
cf(ν) = τ. The desired conclusion is now immediate from Proposition 3.5.
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Proposition 7.3. Suppose Pκ(λ) carries a τ -saturated ideal for some
cardinal τ < κ. Then for every regular cardinal µ such that κ < µ ≤ λ,
u(µ, λ) equals λ if cf(λ) ≥ µ, and λ+ otherwise.

Proof. By Proposition 2.1 it suffices to show that u(χ+, σ) ≤ σ+ when-
ever χ and σ are two cardinals such that κ ≤ χ < σ ≤ λ. Now given such χ
and σ,

u(κ, χ) ≤ χ+ ≤ σ ≤ cov(σ, χ+, χ+, κ) ≤ σ+

by Proposition 6.3 and Lemma 7.2. Hence by Propositions 2.1, 2.11, 6.3
and 6.8,

u(χ+, σ) ≤ u(κ, σ+) = σ+ · u(κ, σ) = σ+.

Next we consider some cases when Aχκ,λ holds.

Lemma 7.4 (Solovay [32]).

(i) Suppose that for some cardinal τ ≤ κ+, κ carries a τ -saturated ideal.
Then κ carries a normal τ -saturated ideal.

(ii) Let τ < κ be a regular uncountable cardinal , and H be a normal
τ -saturated ideal on κ. Then for every cardinal ν < κ and every
F : κ× κ→ ν, there is A ∈ H∗ such that

|{F (α, β) : α, β ∈ A and α < β}| < τ.

Proposition 7.5. Let ν and χ be two cardinals such that ω ≤ ν =
cf(ν) < κ < λ < χ. Suppose that κ → [κ]2ν,<ν and there is fα : ν → λ for
α < χ such that |{i < ν : fα(i) = fβ(i)}| < τ whenever α < β < χ. Then
Aχκ,λ holds.

Proof. Select a bijection t : ν × λ→ λ. For α < χ, set aα = {t(i, fα(i)) :
i < ν}. Now fix e ⊆ χ with o.t.(e) = κ. Define F : {(α, β) ∈ e×e : α < β} →
ν by F (α, β) = the least j < ν such that fα(i) 6= fβ(i) whenever j ≤ i < ν.
There must be k < ν and d ⊆ e such that |d| = κ and F (α, β) ≤ k for every
(α, β) ∈ d×d with α < β. For α ∈ d, put bα = {t(i, fα(i)) : k ≤ i < ν}. Then
clearly bα∩bβ = ∅ for any (α, β) ∈ d×d with α < β. Hence |

⋃
α∈e aα| = κ.

Definition. ADSλ asserts the existence of a sequence 〈aα : α < λ+〉
such that (a) aα is a cofinal subset of λ of order type cf(λ), and (b) for any
β < λ+, there is gβ : β → λ such that

(aα \ gβ(α)) ∩ (aγ \ gβ(γ)) = ∅
whenever α < γ < β.

Assuming cf(λ) < κ, ADSλ clearly implies Aλ+

κ,λ, but the converse need
not hold:

Proposition 7.6. Suppose cf(λ) < κ and there is a cf(λ)-saturated ideal
on Pκ(λ). Then ADSλ does not hold.
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Proof. Let 〈aα : α < λ+〉 be as in the definition of ADSλ. For β < λ+,
pick hβ ∈

∏
α<β aα so that the sequence 〈aα \ hβ(α) : α < β〉 consists of

pairwise disjoint sets. By Proposition 6.5 and Lemmas 1.4 and 6.7 there is
a cf(λ)-saturated ideal J on Pκ(λ+). Given α < λ+, set

Aξα = {x ∈ Pκ(λ+) : α <
⋃
x and hS

x(α) = ξ}

for all ξ ∈ aα. There must be eα ∈ Pcf(λ)(aα) such that
⋃
ξ∈eα A

ξ
α ∈ J∗. Put

ηα =
⋃
eα. Now let α < γ < λ+. Pick x ∈ (

⋃
ξ∈eα A

ξ
α) ∩ (

⋃
ζ∈eγ A

ζ
γ). Then

for σ ∈ {α, γ}, aσ \ ησ ⊆ aσ \hS
x(σ), and therefore (aα \ ηα)∩ (aγ \ ηγ) = ∅.

Contradiction.

8. The square brackets partition relation on Pκ(λ). Let κ be a
regular uncountable cardinal with the tree property. It is known [21] that if
(a) {Pκ(λ)} → [I+

κ,λ]2λ<κ for any cardinal λ ≥ κ, and (b) κ is inaccessible,
then κ is strongly compact. As will be shown below, (a) does not imply (b).
In fact, if κ Cohen reals are added to a model where κ is supercompact,
then in the generic extension {Pκ(λ)} → [I+

κ,λ]2ω1
for every λ ≥ κ. We first

establish a two-cardinal version of Lemma 7.4 (ii).
Throughout the remainder of this section κ and λ will denote two un-

countable cardinals such that cf(κ) = κ ≤ λ.
The following is a straightforward generalization of a result of Solovay

[32].

Lemma 8.1. Let τ and ν be two cardinals with ω1 ≤ τ ≤ ν < κ, and J
be a τ -saturated ideal on Pκ(λ). Further , let g : Pκ(λ) × Pκ(λ) → ν. Then
one can find E ∈ J∗ and e ∈ Pτ (ν) so that for any a ∈ E, {b ∈ Pκ(λ) :
g(a, b) ∈ e} ∈ J∗.

Lemma 8.2. Let J be a normal κ-saturated on Pκ(λ). Further , let A∈J+

and g : A→ Pκ(λ) be such that g(a) ∈ P|a∩κ|(a) for every a ∈ A. Then one
can find D ∈ J+ ∩ P (A) and x ∈ Pκ(λ) such that g′′D ⊆ P (x).

Proof. There must be B ∈ J+ ∩ P (A) and σ < κ such that |g(a)| = σ
for every a ∈ B. For a ∈ B, let g(a) = {γai : i < σ}. For i < σ and δ < λ, set
Bδ
i = {a ∈ B : γai = δ}. Clearly for every i < σ and every E ∈ J+ ∩ P (B),

there is δ < λ such that E ∩ Bδ
i ∈ J+. Hence for each i < σ, one can

find ei ∈ Pκ(λ) so that Wi ∈ J∗, where Wi = (Pκ(λ) \ A) ∪
⋃
δ∈ei B

δ
i . Put

C =
⋂
i<σWi and x =

⋃
i<σ ei. Then g(a) ⊆ x for every a ∈ B ∩ C.

Lemma 8.3. Let χ > λ be a cardinal such that Aχκ,λ holds, and f :
Pκ(λ)→ Pκ(χ) be the function defined in the proof of Lemma 6.4. Then for
any normal κ-saturated ideal J on Pκ(λ), f(J) is a normal ideal on Pκ(χ).

Proof. Let J be a normal κ-saturated ideal on Pκ(λ). Set H = f(J).
Fix X ∈ H+ and h : X → λ+ such that h(x) ∈ x for all x ∈ X. Set
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X0 = {x ∈ X : h(x) < λ} and X1 = X \ X0. Pick i ∈ {0, 1} so that
Xi ∈ H+.

Case i = 0: There must be A ∈ J+ ∩ P (f−1(X0)) such that h ◦ f is
constant on A. Set Y = f ′′A. Then Y ∈ H+ ∩ P (X0) and h is constant
on Y.

Case i = 1: Define g : f−1(X1)→ {zα : λ ≤ α < χ} by g(a) = z(h◦f)(a).

Then by Lemma 8.2 there are B ∈ J+ ∩ P (f−1(X1)) and e ∈ Pκ(λ) such
that g′′B ⊆ P (e). Since |{α : zα ⊆ e}| < κ, there must be C ∈ J+ ∩ P (B)
such that g is constant on C. Set T = f ′′C. Then T ∈ H+ ∩ P (X1) and
moreover h is constant on T.

Proposition 8.4. Let τ and ν be two cardinals with ω1 ≤ τ ≤ ν < κ,
and J be a seminormal τ -saturated ideal on Pκ(λ). Then J+ → [I+

κ,λ]2ν,<τ .

Proof. Case cf(λ) ≥ κ: Fix g : Pκ(λ) × Pκ(λ) → ν and A ∈ J+. By
Lemma 8.1 one can find E ∈ J∗ and e ∈ Pτ (ν) such that for any a ∈ E,
{b ∈ Pκ(λ) : g(a, b) ∈ e} ∈ J∗. By Proposition 6.3, there is D ∈ I+

κ,λ with
|D| = λ. Set D = {dα : α < λ}. Inductively define aα ∈ A ∩ E for α < λ so
that

(i) dα ∪ {α} ⊆ aα.
(ii) aα \ aβ 6= 0 for every β ∈ α.

(iii) g(aβ, aα) ∈ e for every β ∈ α ∩ aα.
Finally, let C = {aα : α < λ}. Then clearly C ∈ I+

κ,λ∩P (A). Moreover, if
α, β ∈ λ are such that aβ ⊂ aα, then β ∈ α∩ aα and therefore g(aβ, aα) ∈ e.

Case cf(λ) < κ: By Lemmas 6.7 and 6.9, Aλ+

κ,λ holds, so by Lemmas 1.2
and 8.3 there is f : Pκ(λ)→ Pκ(λ+) such that (a) f is an isomorphism from
(Pκ(λ),⊂) onto (ran(f),⊂), and (b) f(J) is a normal ideal on Pκ(λ+). Now
fix A ∈ J+ and g : Pκ(λ) × Pκ(λ) → ν. Define k : Pκ(λ+) × Pκ(λ+) → ν
so that for any (a, b) ∈ Pκ(λ) × Pκ(λ), k(f(a), f(b)) = g(a, b). By the first
part of the proof there are X ∈ (f(J))+ ∩ P (f ′′A) and e ∈ Pτ (ν) such that
k(x, y) ∈ e for every (x, y) ∈ X × X with x ⊂ y. Set B = f−1(X). Then
B ∈ J+ ∩ P (A) and g(a, b) ∈ e for every (a, b) ∈ B ×B with a ⊂ b.

Proposition 8.5. Let J be an ideal on Pκ(λ) and ν < κ be an infinite
cardinal. Further , let P be a ν-cc forcing notion and G be P -generic over V.
In V [G], let H be the set of all X ⊆ Pκ(λ) such that X ∩ A = ∅ for some
A ∈ J∗. Then the following hold :

(i) Suppose J is τ -saturated , where τ is a regular uncountable cardinal
with ν ≤ τ ≤ κ+. Then H is a τ -saturated ideal on Pκ(λ).

(ii) Suppose J is prime and normal. Then H is normal. In fact , for any
f : Pκ(λ) → λ with f(x) ∈ x for every x ∈ Pκ(λ) \ {∅}, there are
X ∈ H∗ and e ∈ Pν(λ) such that f(x) ∈ e for all x ∈ X.
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Proof. (i) This is a straightforward generalization of a result of Prikry,
Solovay and Kakuda (see Theorem 17.1 in [14]).

(ii) This is proved by a standard argument (see e.g. the proof of Lem-
ma 2.4 in [1]).

Corollary 8.6. Suppose κ is λ-supercompact. Let τ < κ be a regular
uncountable cardinal and P be a τ -cc forcing notion. Further , let G be P -
generic over V. Then in V [G], there is a normal τ -saturated ideal H on
Pκ(λ).

9. Solovay’s result on the sup-function. Throughout this section κ
and λ denote two cardinals such that cf(κ) = κ ≤ λ.

Solovay [33] established that if λ is a regular cardinal, κ is λ-supercom-
pact and J is a normal prime ideal on Pκ(λ), then the function a 7→

⋃
a is

one-to-one on a set in J∗. Assuming that λ is a successor cardinal, Johnson
[13] sharpened Solovay’s result by proving that if κ is λ-Shelah, then the sup-
function is one-to-one on a set in NSh∗κ,λ. Abe [3] observed that Johnson’s
result is still valid in the case when λ is a regular limit cardinal.

Definition. NShκ,λ is the set of all A ⊆ Pκ(λ) for which one can find
ga : a → a for a ∈ A so that for every f : λ → λ, there is b ∈ Pκ(λ) with
{a ∈ A : b ⊆ a and f�b = ga�b} = ∅.

κ is λ-Shelah if Pκ(λ) /∈ NShκ,λ.
Lemma 9.1.

(i) (Carr [4]) If κ is λ-Shelah, then it is mildly λ-ineffable.
(ii) (Carr [4], Usuba [37]) If κ is λ-Shelah, then NShκ,λ is a strongly

normal ideal on Pκ(λ).

Lemma 9.2. Let µ be a cardinal with κ ≤ µ ≤ λ. Then the following
hold :

(i) (Essentially due to Johnson [13]) {a ∈ Pκ(λ) : o.t.(a ∩ µ) is not a
cardinal} ∈ NShκ,λ.

(ii) (Abe [3]) {a ∈ Pκ(λ) : cf(|a ∩ µ|) 6= |a ∩ cf(µ)|} ∈ NShκ,λ.
Proposition 9.3 (Abe [3]). Suppose that κ is λ-Shelah and λ is a reg-

ular cardinal. Then the function a 7→
⋃
a is injective on a set in NSh∗κ,λ.

Proof. The proof is similar to that of Theorem 2.1 in [13], using Lem-
ma 9.2 instead of Lemma 2.4 in [13].

What if κ is λ-Shelah and λ is a singular cardinal? We first consider the
case when cf(λ) ≥ κ.

Proposition 9.4. Suppose κ ≤ cf(λ) < λ and κ is λ-Shelah. Let 〈λi :
i < cf(λ)〉 be a strictly increasing sequence of regular cardinals such that
λ0 = cf(λ) and

⋃
i<cf(λ) λi = λ. For a ∈ Pκ(λ), define ka ∈

∏
i∈a∩cf(λ) λi
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by ka(i) =
⋃

(a ∩ λi). Then the function a 7→ ka is one-to-one on a set in
NSh∗κ,λ.

Proof. Put σ = cf(λ). Let A be the set of all a ∈ Pκ(λ) such that
(a) ω ⊆ a, (b) {λi : i ∈ a ∩ σ} ⊆ a, and (c) {iα : α ∈ a} ⊆ a, where
iα = the least i < σ such that α ∈ λi. Then clearly A ∈ NS∗κ,λ. Note
that

⋃
a =

⋃
i∈a∩σ λi for every a ∈ A. By Proposition 9.3 one can find

Bi ∈ NSh∗κ,λi for i < σ so that the function b 7→
⋃
b is injective on Bi.

For i < σ, set Ci = {a ∈ Pκ(λ) : a ∩ λi ∈ Bi}. It is simple to see that
Ci ∈ NSh∗κ,λ for all i. Put D = {a ∈ A : ∀i ∈ a ∩ σ (a ∈ Ci)}. Note that
D ∈ NSh∗κ,λ. Now fix a, b ∈ D with a 6= b. If a∩σ 6= b∩σ, then ka(0) 6= kb(0)
(and therefore

⋃
a 6=

⋃
b). Otherwise, let j = the least k ∈ a ∩ σ such that

a ∩ λk 6= b ∩ λk. Then ka(i) 6= kb(i) for any i ∈ (a ∩ σ) \ j.

Note that in the statement of Proposition 9.4, the range of the function
a 7→ ka has size λ.

It remains to deal with the case cf(λ) < κ.

Definition. Let X be an infinite set. An ω-Jónsson function for X is
a function F : ωX → X such that F ′′ ωY = X for every Y ⊆ X with
|Y | = |X|.

Lemma 9.5.

(i) (Erdős–Hajnal [8]) For any infinite set X, there exists an ω-Jónsson
function for X.

(ii) (Johnson [13]) Let µ be a cardinal with κ ≤ µ ≤ λ, and F be an
ω-Jónsson function for µ. Then the set of all a ∈ Pκ(λ) such that
ω ⊆ a and F � ω(a∩µ) is not an ω-Jónsson function for a∩µ lies in
NShκ,λ.

Usuba [37] proved that if cf(λ) < κ and κ is λ-Shelah, then λ<κ = λ+.
The following is a refinement of this result.

Proposition 9.6. Suppose that cf(λ) < κ and κ is λ-Shelah. Let 〈λi :
i < cf(λ)〉 be an increasing sequence of regular cardinals such that κ ≤ λ0

and
⋃
i<cf(λ) λi = λ, and let 〈fα : α < λ+〉 be a scale on

∏
i<cf(λ) λi. For

a ∈ Pκ(λ), define ka ∈
∏
i<cf(λ) λi by ka(i) =

⋃
(a ∩ λi). Then the function

a 7→ the least α such that ¬(fα <∗ ka) is injective on a set in NSh∗κ,λ.

Proof. For γ < λ, put zγ = {γ}. Inductively define zβ ∈ Pκ(λ) for
λ ≤ β < λ+ so that zβ /∈ {zδ : δ < β}. Define t : Pκ(λ) → Pκ(λ+) by
t(a) = {α < λ+ : zα ∈ P|a∩κ|(a)}. For i < cf(λ), pick an ω-Jónsson function
Fi for λi. Now let A be the set of all a ∈ Pκ(λ) such that

(1) a ∩ κ is an inaccessible cardinal.
(2) a ∩ κ > cf(λ).
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(3) For each i < cf(λ), o.t.(a∩λi) is a regular cardinal and Fi� ω(a∩λi)
is an ω-Jónsson function for a ∩ λi.

(4) Let α < λ+ be such that zα ∈ Pa∩κ(a). Then (a) zα+1 ∈ Pa∩κ(a),
(b) ran(fα) ⊆ a, and (c) zS

d ∈ Pa∩κ(a) for every d ⊆ {δ < λ+ :
zδ ⊆ zα}.

(5) For any g ∈
∏
i<cf(λ)(a ∩ λi), there is δ < λ+ such that g <∗ fδ and

zδ ∈ Pa∩κ(a).

It is simple to see that A ∈ NSh∗κ,λ. Note that λ ∩ t(a) = a for every
a ∈ A. Define h : A → λ+ by h(a) =

⋃
t(a). Let us first show that h is

one-to-one. Thus let a0, a1 ∈ A with h(a0) = h(a1). Put x = t(a0) ∩ t(a1)
and σ = h(a0) = h(a1).

Claim 1. Let δ < σ. Then there is α ∈ x with δ < α.

Proof of Claim 1. Inductively define αj for j < ω so that (a) α2j ∈
t(a0) and α2j+1 ∈ t(a1), and (b) δ < α0 < α1 < α2 < · · · . Then clearly⋃
j∈ω zα2j ∈ Pa0∩κ(a0) and

⋃
j∈ω zα2j+1 ∈ Pa1∩κ(a1). It follows that

⋃
j∈ω αj

∈ x, which completes the proof of the claim.

Claim 2. Let k < 2. Then |{i < cf(λ) :
⋃

(x∩λi) <
⋃

(ak∩λi)}| < cf(λ).

Proof of Claim 2. Suppose otherwise. Let

T = {i < cf(λ) :
⋃

(x ∩ λi) <
⋃

(ak ∩ λi)}.

Define g ∈
∏
i<cf(λ)(ak ∩ λi) by: g(i) ∈ (ak ∩ λi) \

⋃
(x∩ λi) if i ∈ T , and

g(i) = 0 otherwise. There must be δ ∈ t(ak) such that g <∗ fδ. By Claim 1,
there is α ∈ x with δ < α. Then ran(fα) ⊆ a0 ∩ a1 ⊆ x. But fδ <∗ fα, so
there is i ∈ T such that fα(i) > g(i). This contradiction completes the proof
of Claim 2.

Claim 3. Let k < 2. Then ak = x ∩ λ.

Proof of Claim 3. Let i < cf(λ) be such that
⋃

(x ∩ λi) =
⋃

(ak ∩ λi).
Then o.t.(x ∩ λi) = o.t.(ak ∩ λi) since o.t.(ak ∩ λi) is a regular cardinal.
Moreover, F ′′i

ω(x ∩ λi) ⊆ x ∩ λi, and consequently x ∩ λi = ak ∩ λi. The
desired conclusion is now immediate from Claim 2.

By Claim 3, a0 = a1, which completes our proof of the injectivity of h. Let
us finally prove that for any a ∈ A, h(a) = the least α such that ¬(fα <∗ ka).
Thus fix a ∈ A. We show that h(a) = {β < λ+ : fβ <∗ ka}. Firstly,
let β < λ+ with fβ <∗ ka. We may find g ∈

∏
i<cf(λ)(a ∩ λi) such that

|{i < cf(λ) : fβ(i) > g(i)}| < cf(λ). There is δ ∈ t(a) such that g <∗ fδ.
Then clearly β < δ, so β < h(a). Conversely, suppose ζ < h(a). Pick ξ ∈ t(a)
with ζ < ξ. Since ran(fξ) ⊆ a, fζ <∗ fξ <∗ ka and hence fζ <∗ ka.
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10. Sκ,λ. Throughout this section κ and λ will denote two uncountable
cardinals such that cf(κ) = κ < λ.

Definition. Sκ,λ = {a ∈ Pκ(λ) : |a| = |a ∩ κ|}.
Krueger [15] showed that it is consistent (relative to a supercompact

cardinal) that “there is a supercompact cardinal τ such that

{a ∈ Pτ (τ+) : |a ∩ τ | is not measurable} \ Sτ,τ+ ∈ NSτ,τ+”.

Moreover, he showed that it is consistent (relative to the same assump-
tion) that “there is an uncountable strongly compact cardinal τ such that
Pτ (τ+) \ Sτ,τ+ ∈ NSτ,τ+”. We will show that these results are optimal in
the sense that if κ is κ+-compact, then

{a ∈ Pκ(κ+) : |a ∩ κ| is not measurable} \ Sκ,κ+ ∈ NSS+
κ,κ+ .

Definition. Let 0 < δ ≤ λ. Then NShδκ,λ denotes the set of all B ⊆
Pκ(λ) such that one can find hb : b→ b ∩ δ for b ∈ B with b ∩ δ 6= ∅ so that
for any u : λ→ δ, there is a ∈ Pκ(λ) with hb�a 6= u�a for all b ∈ B such that
a ⊆ b and b ∩ δ 6= ∅.

Note that NShλκ,λ = NShκ,λ.

Lemma 10.1.

(i) NSh1
κ,λ = Iκ,λ.

(ii) Let 0 < η < δ ≤ λ. Then NShηκ,λ ⊆ NSh
δ
κ,λ.

(iii) Pκ(λ) /∈ NSh2
κ,λ if and only if κ is mildly λ-ineffable.

(iv) (Carr [4]) If Pκ(λ) /∈ NSh2
κ,λ, then NSh2

κ,λ = Iκ,λ.

(v) Let 2 < δ < κ. Then NShδκ,λ = NSh2
κ,λ.

Recall that if κ is λ-Shelah, then NShλκ,λ is a normal ideal on Pκ(λ).
This can be generalized as follows.

Lemma 10.2. Let κ ≤ δ ≤ λ. Suppose Pκ(λ) /∈ NShδκ,λ. Then NShδκ,λ is
a δ-normal ideal on Pκ(λ).

Proof. It is simple to see that P (B) ⊆ NShδκ,λ for every B ∈ NShδκ,λ.

Claim. Suppose Bγ ∈ NShδκ,λ for γ < δ, and let C be the set of all
c ∈

⋃
γ<δ{b ∈ Bγ : γ ∈ b} such that ω ⊆ c. Then C ∈ NShδκ,λ.

Proof of the claim. Pick f : C → δ so that for any b ∈ C, f(b) ∈ b ∈
Bf(b). For γ < δ, select hγb : b → b ∩ δ for b ∈ Bγ with b ∩ δ 6= ∅ so that for
any u : λ → δ, there is a ∈ Pκ(λ) with hγb �a 6= u�a for all b ∈ Bγ such that
a ⊆ b and b ∩ δ 6= ∅. For b ∈ C, define kb : b → b ∩ δ by kb(0) = f(b) and
kb(1 + ζ) = h

f(b)
b (ζ). Now assume there is t : λ → δ with the property that

for any d ∈ Pκ(λ), there is b ∈ C such that d ⊆ b and kb�d = t�d. Define
u : λ→ δ by u(ζ) = t(1+ζ). Given a ∈ Pκ(λ), put d = a∪ω and select b ∈ C
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so that d ⊆ b and kb�d = t�d. Then clearly a ⊆ b and b ∈ Bt(0). Moreover,
for each ζ ∈ a, u(ζ) = t(1 + ζ) = kb(1 + ζ) = h

t(0)
b (ζ). This contradiction

completes the proof of the claim.

Now let A ∈ P (Pκ(λ)) \NShδκ,λ and g : A→ δ be such that g(a) ∈ a∩ δ
for every a ∈ A. Since{

a ∈
⋃
γ<δ

g−1({γ}) : ω ⊆ a
}
/∈ NShδκ,λ,

it follows from the claim that g−1({γ}) /∈ NShδκ,λ for some γ < δ.

Lemma 10.3. Let κ ≤ δ < λ. Then {b ∈ Pκ(λ) : |b| = |b ∩ δ|} ∈ NShδκ,λ.

Proof. Suppose to the contrary that B /∈ NShδκ,λ, where B = {b ∈
Pκ(λ) : |b| = |b ∩ δ|}. For b ∈ B, select a one-to-one function hb : b→ b ∩ δ.
There must be u : λ → δ such that for any a ∈ Pκ(λ), there is b ∈ B such
that a ⊆ b and hb�a = u�a. Then u is one-to-one, a clear contradiction.

Proposition 10.4. Suppose λ = κ+ and Pκ(λ) /∈
⋃
κ≤δ<κ+ NShδκ,λ.

Then Pκ(λ) \ Sκ,λ ∈ NSS+
κ,λ.

Proof. Since clearly NSSκ,λ =
⋃
κ≤δ<λNS

δ
κ,λ, the result follows from

Lemmas 10.2 and 10.3.

Lemma 10.5. Let κ ≤ δ ≤ λ. Suppose H is a δ-normal prime ideal on
Pκ(λ). Then NShδκ,λ ⊆ H.

Proof. Let B ∈ H+, and let hb : b→ b∩δ for δ ∈ B′, where B′ = {b ∈ B :
0 ∈ b}. Define u : λ→ δ so that for any α ∈ λ,

Xα = {b ∈ B′ : hb(α) = u(α)}
lies in H+. Now given a ∈ Pκ(λ), pick b ∈

⋂
α∈aXα with a ⊆ b. Then clearly

hb�a = u�a. Hence B /∈ NShδκ,λ.

Lemma 10.6 (Matet [19]). Suppose κ is λ-compact. Let κ ≤ δ < κ+, and
let J be a normal prime ideal on κ. Then there is a δ-normal prime ideal H
on Pκ(λ) such that (a) J = {D ⊆ κ : {a ∈ Pκ(λ) :

⋃
(a∩κ) ∈ D} ∈ H}, and

(b) {a ∈ Pκ(λ) : |a| ≤ f(
⋃

(a ∩ κ))} ∈ H for every f : κ→ κ.

Lemma 10.7 (Solovay, see [14, p. 55]). If κ is a measurable cardinal ,
then there exists a normal prime ideal J on κ such that

{ρ < κ : ρ is a measurable cardinal} ∈ J.

Proposition 10.8. Suppose κ is λ-compact. Then for any f : κ → κ,
Af /∈

⋃
κ≤δ<κ+ NShδκ,λ, where Af denotes the set of all a ∈ Pκ(λ) such that

(a) a ∩ κ is a nonmeasurable infinite cardinal , and (b) |a| > f(a ∩ κ).
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Proof. By Lemmas 10.5–10.7.

To conclude let us remark that a modification of the proof of Lemma 4.2
yields the following.

Proposition 10.9. Let µ be a cardinal with κ ≤ µ < λ. Then

cof(NSµκ,λ|Sκ,λ) ≥ cov(λ, µ+, µ+, κ).

Proof. Select a family G of functions from Pω(µ) to Pκ(λ) so that |G| =
cof(NSµκ,λ|Sκ,λ) and for any h : Pω(µ) → Pκ(λ), there is X ∈ Pκ(G) \ {∅}
with Sκ,λ ∩

⋂
g∈X C

κ,λ
g ⊆ Cκ,λh . For g ∈ G, let Bg = µ ∪

⋃
ran(g). Now fix

D ⊆ λ with |D| ≤ µ. Pick h : Pω(µ) → Pκ(λ) and X ∈ Pκ(G) \ {∅} so
that D ⊆

⋃
ran(h) and Sκ,λ ∩

⋂
g∈X C

κ,λ
g ⊆ Cκ,λh . For e ∈ Pω(µ), define

inductively sen for n < ω by se0 = e ∪ ω and

sen+1 = sen ∪ |sen| ∪
⋃
{g(d) : g ∈ X and d ∈ Pω(sen ∩ µ)}.

Let ze =
⋃
n<ω s

e
n. Then ze belongs to Sκ,λ ∩

⋂
g∈X C

κ,λ
g and therefore

to Cκ,λh . Hence,

D ⊆
⋃
{ze : e ∈ Pω(µ)} ⊆

⋃
{Bg : g ∈ X}.

Question. Is it true that cof(NSµκ,λ|Sκ,λ) = cof(NSµκ,λ) for every car-
dinal µ with κ ≤ µ < λ?
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