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Definable Davies’ theorem
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Abstract. We prove the following descriptive set-theoretic analogue of a theorem of
R. O. Davies: Every Σ1

2 function f : R×R→ R can be represented as a sum of rectangular
Σ1

2 functions if and only if all reals are constructible.

1. Introduction. In [1], R. O. Davies proved that the continuum hy-
pothesis, CH, is equivalent to the statement that every function f : R×R→
R can be represented as a sum of “rectangular” functions as follows: There
are gn, hn : R→ R, n ∈ ω, such that

f(x, y) =
∞∑
n=0

gn(x)hn(y),

where at each (x, y) ∈ R2 there are at most finitely many non-zero terms in
the above sum. We call such a representation a Davies representation of f .
Thus Davies’ Theorem says that CH is equivalent to the statement that
every function f : R× R→ R has Davies representation.

The purpose of this paper is to prove the following descriptive set-
theoretic analogue of Davies’ Theorem:

Theorem 1. Every Σ1
2 function f : R× R→ R has a Davies represen-

tation

f(x, y) =
∞∑
n=0

g(x, n)h(y, n),

where g, h : R×ω → R are Σ1
2 functions and the sum has only finitely many

non-zero terms at each (x, y) ∈ R2, if and only if all reals are constructible.

We will also show that it is not possible to find a Davies representation
of f(x, y) = exy using Baire or Lebesgue measurable functions g and h. Note
though that exy does have a representation as an infinite power series in x
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and y. We will give an example of a Borel (in fact, ∆1
1) function f : R×R→ R

which does not admit a rectangular sum representation as above with Baire
or Lebesgue measurable g and h, even if we drop the pointwise finiteness
condition on the sum, and only ask that at each (x, y) the sum converges
pointwise.

Organization. In §2 below we show (Theorem 2) that if there is a strongly
∆1
n well-ordering of R then every Σ1

n function f : R × R → R admits a
representation

f(x, y) =
∞∑
n=0

g(x, n)h(y, n),

with Σ1
n functions g, h : R × ω → R, and where the sum has only finitely

many non-zero terms at each (x, y) ∈ R2.
In §3 we establish the converse to Theorem 2 in the case of Σ1

2 func-
tions (Theorem 3). We also establish a converse in the Σ1

3 case, under the
additional assumption that there is a measurable cardinal. Finally, we es-
tablish the two facts regarding representations using Baire and Lebesgue
measurable functions mentioned after Theorem 1 above.

2. Inductive argument. The necessary descriptive set-theoretic back-
ground for this paper can be found in [9] and [8], in particular the definitions
of the (lightface) point-classes Σ1

n, ∆1
n and Π1

n. Here we recall the notions
for ∆1

n well-orderings that are the most important to us.
Following [2], we say that a ∆1

n well-ordering ≺ of R is strongly ∆1
n

if it has length ω1 and the following (equivalent) statements hold (cf. [9,
Chapter 5]):

1. If P ⊆ R× R is Σ1
n then

R(x, y) ⇔ (∀z ≺ y) P (x, z)

is Σ1
n.

2. The initial segment relation IS ⊆ R× R≤ω defined by

IS(x, y) ⇔ (∀z ≺ x)(∃n) y(n) = z ∧ (∀i, j) i = j ∨ y(i) 6= y(j)

is Σ1
n.

If all reals are constructible then there is a strongly ∆1
2 well-ordering

of R (see e.g. [6]).
It will often be necessary to work with recursively presented Polish spaces

other than R, such as ωω or R≤ω (see below). Since all uncountable recur-
sively presented Polish spaces are isomorphic in the sense that there is a
∆1

1 bijection between them with a ∆1
1 inverse (see [9, 3E.7]), once we have

a strongly ∆1
n well-ordering of R we have a strongly ∆1

n well-ordering of all
recursively presented Polish spaces. For convenience we will use the same
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symbol, usually ≺, for such a well-ordering in all the recursively presented
spaces we consider. This minor ambiguity poses no real danger.

We will say that a function f : X → Y from one recursively presented
Polish space X to another, Y , is Σ1

n (respectively Π1
n and ∆1

n) if its graph
is Σ1

n (respectively Π1
n and ∆1

n). A function f : R × R → R is said to have
a Σ1

n Davies representation if there are Σ1
n functions g, h : R× ω → R such

that
∞∑
n=0

g(x, n)h(y, n)

and the sum has only finitely many non-zero terms at each (x, y). The no-
tions of Π1

n and ∆1
n Davies representation are defined similarly.

Theorem 2. If there is a strongly ∆1
n well-ordering of R then every Σ1

n

function f : R × R → R has a Σ1
n Davies representation. In particular , if

all reals are constructible then every Σ1
2 function has a Σ1

2 Davies represen-
tation.

To prove this, we will need to verify that Davies’ proof, which uses Zorn’s
Lemma, produces functions g, h : R× ω → R that are Σ1

n and witness that
f has a Σ1

n Davies representation. This in turn requires that we produce Σ1
n

predicates (in the sense of [8, p. 3] or [6, p. 152–157]) that define g and h.
These predicates will essentially be formulas defining g and h by transfinite
recursion as in the usual proof of the transfinite recursion theorem (see e.g.
[4, p. 22, (2.6)]).

If X is a set, we write X≤ω for the set of functions g : α→ X for some
α ∈ ω + 1, and we set lh(g) = |dom(g)|, the cardinality of dom(g). For
g ∈ R≤ω we let

supp(g) = {n ∈ ω : n ∈ dom(g) ∧ g(n) 6= 0}.

It is convenient for the proof to work relative to a fixed countable se-
quence xn ∈ P(ω) of almost disjoint infinite subsets of ω. The sequence
(xn) will be used to make sure that certain almost disjoint families that are
finite are not maximal, because they will be constructed so that they are
almost disjoint from all xn, n ∈ ω. We will assume that the map n 7→ xn is
recursive.

Definition. The set S ⊆ (Rω)≤ω × (Rω)≤ω is defined by (g, h) ∈ S if
and only if

(a) The sets supp(g(k)), supp(h(m)) and xn (k ∈ dom(g), m ∈ dom(h),
n ∈ ω) form an almost disjoint sequence of sets.

(b) For all m∈dom(g) there are infinitely many k such that g(m)(k)=1.
(c) For all n ∈ dom(h) there are infinitely many k such that h(n)(k) = 1.
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Note that S is ∆1
1. We need the following lemma to encode the inductive

step.

2.1. Lemma. Suppose f ∈ R≤ω is given and (g, h) ∈ S is such that
lh(h) = lh(f). Then there is θ = θ(f, g, h) : ω → R such that :

(1) For all k ∈ dom(f),

f(k) =
∞∑
l=0

θ(l)h(k)(l),

and the sum has only finitely many non-zero terms.
(2) For all n ∈ dom(h), supp(θ) ∩ supp(h(n)) is finite.
(3) For all n ∈ dom(g), supp(θ) ∩ supp(g(n)) is finite.
(4) For all n ∈ ω, supp(θ) ∩ xn is finite.
(5) For infinitely many k we have θ(k) = 1.

Moreover , θ may be found recursively in the given data. In particular , there
is a ∆1

1 function θ : R≤ω × S → Rω such that θ(f, g, h) satisfies (1)–(5) for
all (f, g, h) ∈ R≤ω × S.

Proof. We define by induction on k ∈ ω an increasing sequence nk ∈ ω
and θ � nk + 1 such that

(1′) For all m ∈ dom(f) ∩ (k + 1),

f(m) =
nm∑
l=0

θ(l)h(m)(l).

(2′) For all m ∈ dom(h)∩(k+1), supp(θ � nk+1)∩supp(h(m)) ⊆ nm+1.
(3′) For all m ∈ dom(g)∩(k+1), supp(θ � nk+1)∩supp(g(m)) ⊆ nm+1.
(4′) For all m ≤ k, supp(θ � nk + 1) ∩ xm ⊆ nm + 1.
(5′) θ(nk) = 1.

Assuming this can be done, θ will be defined on all of ω, since nk is increasing.
By (1′) and (2′) it follows that for m ∈ dom(f) we will have

f(m) =
∞∑
l=0

θ(l)h(m)(l)

and by (2′) it is the case that θ(l)h(m)(l) = 0 for l > nm. Thus (1) and (2)
of the statement of the lemma hold. Finally, (3′), (4′) and (5′) ensure (3),
(4) and (5).

To see that we can satisfy (1′)–(5′), suppose nk and θ � nk + 1 have been
defined.

Case 1: k + 1 /∈ dom(f). Then we let p > nk be the least number
greater than nk such that p /∈ supp(g(m)), p /∈ supp(h(m)) and p /∈ xm for
m ≤ k. The number p exists because of condition (a) in the definition of S.
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Define nk+1 = p, for nk < l < nk+1 let θ(l) = 0, and θ(nk+1) = 1. Clearly
conditions (1′)–(5′) are satisfied.

Case 2: k + 1 ∈ dom(f). Then let p > nk be the least number greater
than nk such that p /∈ supp(g(m)), p /∈ supp(h(m)) and p /∈ xm for m ≤ k,
and h(k + 1)(p) = 1. The number p exists because of conditions (a) and
(c) in the definition of S. We let q > p be least such that q /∈ supp(g(m)),
q /∈ supp(h(m)) and q /∈ xm for m ≤ k + 1. Let nk+1 = q and define, for
nk < l ≤ nk+1,

θ(l) =


1 if l = q = nk+1,

f(k + 1)−
p−1∑
m=0

θ(m)h(k + 1)(m) if l = p,

0 otherwise.

It is easy to see that (2′)–(5′) are satisfied. To see (1′), note that
nk+1∑
l=0

θ(l)h(k + 1)(l) =
p∑
l=0

θ(l)h(k + 1)(l)

= f(k + 1)−
p−1∑
m=0

θ(m)h(k + 1)(m) +
p−1∑
l=0

θ(l)h(k + 1)(l)

= f(k + 1).

This ends Case 2. It is clear from the construction that θ is recursive in the
given data (f, g, h). Thus the map (f, g, h) 7→ θ(f, g, h) is in particular ∆1

1.

2.2. Davies’ argument as an inductive construction. For the remainder of
this section of the paper, θ will be the function defined in Lemma 2.1. Using
this lemma one can now produce a Davies representation of f : R× R→ R
by induction as follows: Assuming CH, fix a well-ordering ≺ of R of order
type ω1. Suppose g, h : {y ∈ R : y ≺ x} × ω → R have been defined such
that for all y, z ≺ x,

f(y, z) =
∞∑
n=0

g(y, n)h(z, n)

and that further if (wm) is an enumeration of the initial segment {y : y ≺ x}
then the functions

g0(m)(n) = g(wm, n) and h0(m)(n) = h(wm, n)

are such that (g0, h0) ∈ S. If we let f0(m) = f(wm, x) and define g(x, n) =
θ(f0, g0, h0)(n) then it is easy to check using Lemma 2.1 that for y ≺ x,

f(x, y) =
∞∑
n=0

g(x, n)h(y, n).
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If (w′m) enumerates {y : y � x} and we let f1(m) = f(x,w′m) and

g1(n) =
{
θ(f0, g0, h0) if w′n = x,
g0(k) if w′n = wk,

then (h0, g1) ∈ S, and if we let h(x, n) = θ(f1, h0, g1))(n), it is again easy to
check using the previous lemma that for all y � x,

f(y, x) =
∞∑
n=0

g(y, n)h(x, n).

Finally,
g1(m)(n) = g(w′m, n) and h1(m)(n) = h(w′m, n)

satisfy (g1, h1) ∈ S, thus allowing the induction to continue.
Our task is now to verify that if ≺ is a strongly ∆1

n well-ordering of R,
then the construction we have described may be carried out in such a way
that if f : R × R → R is Σ1

n, then the functions g, h : R × ω → R will
be Σ1

n. This can be done since the strongly ∆1
n well-ordering allows us to

enumerate initial segments in a uniformly ∆1
n way. However, in order to be

able to write down Σ1
n definitions of g and h we need a lemma which says

that there is a Σ1
n function which can correctly compute g � {y : y ≺ x}×ω

and h � {y : y ≺ x} × ω for every x.
Before stating that lemma we introduce various functions and predicates.

Fix a strongly ∆1
n well-ordering ≺ of R and let IS ⊆ R×R≤ω be the initial

segment relation as defined at the beginning of this section. Define IS∗ :
R→ R≤ω by

IS∗(x) = y ⇔ IS(x, y) ∧ (∀z ≺ y) ¬ IS(x, z).

Note that IS∗ is ∆1
n. We also define a partial function IS# : R× R→ ω by

IS#(x, y) = n ⇔ IS∗(x)(n) = y.

Note that the graph of IS# is a ∆1
n subset of R×R×ω, and that if y ≺ x then

IS#(x, y) computes the unique n which y corresponds to in the enumeration
of the initial segment of x given by IS∗(x). Finally, we define

succ(x) = y ⇔ (∀z ≺ y) z = x ∨ z ≺ x.
2.3. Lemma. Let f : R× R → R be Σ1

n and suppose there is a strongly
∆1
n well-ordering ≺ of R. Then there is a unique Σ1

n function F : R →
(Rω)≤ω × (Rω)≤ω satisfying F (x) = (G,H) if and only if

(1) lh(G) = lh(H) = lh(IS∗(x)) and (G,H) ∈ S.
(2) If z, z′ ≺ x, IS#(x, z) = k and IS#(x, z′) = k′ then

f(z, z′) =
∞∑
n=0

G(k)(n)H(k′)(n).



Definable Davies’ theorem 83

(3) For all y ≺ x, if we let w′ = IS∗(y), w = IS∗(x) and f0(k) =
f(y, w′(k)), and define, for k ∈ dom(w′),

G′(k) = G(l) ⇔ w′(k) = w(l)

and
H ′(k) = H(l) ⇔ w′(k) = w(l),

then w(m) = y implies that

G(m) = θ(f0, G
′, H ′).

(4) For all y ≺ x, if we let w′ = IS∗(y), w′′ = IS∗(succ(y)), w = IS∗(x)
and f1(k) = f(w′′(k), y), and define, for k ∈ dom(w′′),

G′′(k) = G(l) ⇔ w′′(k) = w(l),

and for k ∈ dom(w′),

H ′(k) = H(l) ⇔ w′(k) = w(l),

then w(m) = y implies that

H(m) = θ(f1, H
′, G′′).

Proof. Conditions (1)–(4) express exactly that for y ≺ x, if we let

g(y, n) = G(IS#(x, y))(n) and h(y, n) = H(IS#(x, y))(n)

then g and h are the functions we have constructed at stage x in the in-
ductive construction described in 2.2 above, provided that at any stage of
the induction we use the enumeration of the initial segments given by the
function IS∗. Thus F is unique and defined for all x. Finally, we note that
conditions (1)–(4) can be expressed using Σ1

n predicates when f is a Σ1
n

function. For instance, (3) may be replaced by

(∀y ≺ x)(∃w,w′, f0, G
′, H ′ ∈ R≤ω)(w′ = IS∗(y) ∧ w = IS∗(x)

∧ lh(f0) = lh(w′) ∧ (∀k ∈ dom(w′))(f0(k) = f(y, w′(k))
∧ (∀l ∈ dom(G))(G′(k) = G(l) ∧H ′(k) = H(l) ⇔ w′(k) = w(l)))
∧ (∀m ∈ dom(w))(w(m) 6= y ∨G(m) = θ(f0, G

′, H ′))).

Thus (1)–(4) gives a Σ1
n definition of the graph of F , and so the function F

is Σ1
n.

Proof of Theorem 2. If f : R × R → R is Σ1
n and ≺ is a strongly ∆1

n

well-ordering, let F be as in Lemma 2.3 and let F (x) = (G(x), H(x)) for
all x. Then

g(x, n) = G(succ(x))(IS#(succ(x), x))(n)

and
h(x, n) = H(succ(x))(IS#(succ(x), x))(n)

define Σ1
n functions that give us a Davies representation of f .
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Remark. If f : R × R → R is ∆1
n then conditions (1)–(4) define a ∆1

n

function F . Consequently, the functions g and h produced in the proof of
Theorem 2 will be ∆1

n. Therefore we have:

2.4. Corollary. If there is a strongly ∆1
n well-ordering of R then every

∆1
n function f : R× R→ R has a ∆1

n Davies representation.

3. A definable converse. We now show the following converse to The-
orem 2 for Σ1

2 functions:

Theorem 3. If there are Σ1
2 functions g, h : R× ω → R such that

exy =
∞∑
n=0

g(x, n)h(y, n)

with only finitely many non-zero terms at each (x, y) then there is a Σ1
2

well-ordering of R.

Since by Mansfield’s Theorem ([7], see also [4, 25.39]) the existence of
a Σ1

2 well-ordering or R is equivalent to the statement that all reals are
constructible, Theorem 3 together with Theorem 2 proves Theorem 1 as
stated in the introduction. The proof requires several lemmata:

3.1. Lemma. Let b0, . . . , bn ∈ R be distinct reals and c0, . . . , cn ∈ R.
Then

f(x) =
n∑
j=0

cje
xbj

has n+ 1 distinct roots if and only if c0 = · · · = cn = 0.

Proof. By induction on n. If f(x) has n+ 1 distinct roots then so does

g(x) = e−b0xf(x).

Using Rolle’s Theorem from calculus it follows that g′(x) has n distinct
roots, and so by the inductive hypothesis must be constantly zero. Thus
f(x) is constantly zero.

3.2. Lemma. Let a0, . . . , an and b0, . . . , bn be two distinct sequences of
real numbers. Then there are no functions gl, hl : R→ R, l < n, such that

eaibj =
n−1∑
l=0

gl(ai)hl(bj)

for all 0 ≤ i, j ≤ n.
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Proof. If there are such functions then we have the matrix identity

[eaibj ] =


g0(a0) · · · gn−1(a0)

...
...

g0(an) · · · gn−1(an)




h0(b0) · · · h0(bn)
...

...
hn−1(b0) · · · hn−1(bn)


and so [eaibj ] is a product of an (n + 1) × n and an n × (n + 1) matrix. It
follows that rank([eaibj ]) ≤ n, which contradicts the previous lemma.

3.3. Lemma. Assume Σ1
n uniformization holds and that there are Σ1

n

functions g, h : R× ω → R such that

exy =
∞∑
n=0

g(x, n)h(y, n)

with only finitely many non-zero terms at each (x, y). Suppose there is an
uncountable Σ1

n set A ⊆ R and a binary Σ1
n relation ≺ on R such that (A,≺)

is well-ordered. Then there is a Σ1
n well-ordering of R.

Proof. Define

N(x, y) = k ⇔ g(x, k)h(y, k) 6= 0 ∧ (∀l > k) g(x, l)h(y, l) = 0.

Clearly N : R× R→ ω is Σ1
n. Also define Q ⊆ R× ω by

Q(x, n) ⇔ (∃a ∈ Rω)(∀i)(∀j)(i = j ∨ a(i) 6= a(j))
∧ (∀k)(a(k) ∈ A ∧N(x, a(k)) = n),

which is Σ1
n. Let Q∗ : R→ ω be a Σ1

n uniformization of Q. Note that Q∗ is
defined everywhere since A is uncountable.

Now define R ⊆ R × [R]<ω, where [R]<ω denotes the set of finite sub-
sets (1) of R, by

R(x, s) ⇔ |s| = Q∗(x) + 2 ∧ (∀y ∈ s)(y ∈ A ∧N(x, y) = Q∗(x)).

Let R∗ : R→ [R]<ω be a Σ1
n uniformization of R.

Claim. R∗ is finite-to-one.

Proof. Suppose not. Then there is some s = {b0, . . . , bn} such that
R∗−1(s) is infinite. Pick a0, . . . , an ∈ R∗−1(s) distinct. Note that since
R∗(bi) = s we have Q∗(bi) = |s| − 2 = n− 1. Thus

eaibj =
n−1∑
l=0

g(ai, l)h(bj , l),

contradicting the previous lemma.

(1) Formally we let [R]<ω = {s ∈ R<ω : (∀k < lh(s) − 1) s(k) < s(k + 1)}, where <
is the usual linear ordering of R. Note that for s ∈ [R]<ω, the quantifiers (∀x ∈ s) and
(∃x ∈ s) can be replaced by number quantifiers in hierarchy calculations.
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Let ≺lex be the lexicographic order on [A]<ω that we obtain from the
well-ordering ≺ of A. Then we define <∗ by

x <∗ y ⇔ R∗(x) ≺lex R
∗(y) ∨ (R∗(x) = R∗(y) ∧ x < y),

where < is the usual linear ordering of R. Since R∗ is finite-to-one, <∗ is a
Σ1
n well-ordering of R.

3.4. Lemma. There are no Baire or Lebesgue measurable functions
g, h : R× ω → R such that

exy =
∞∑
n=0

g(x, n)h(y, n)

where the sum has finitely many non-zero terms at each (x, y).

Proof. Suppose there are Baire measurable g, h : R×ω → R representing
exy as above. Then N : R× R→ ω defined by

N(x, y) = k ⇔ g(x, k)h(y, k) 6= 0 ∧ (∀l > k) g(x, l)h(y, l) = 0

is also Baire measurable. It follows that there is some n0 such that

A = {(x, y) ∈ R2 : N(x, y) = n0}
is non-meagre and has the property of Baire. Thus we may find U, V ⊆ R
open and non-empty such that A is comeagre in U × V . By Kuratowski–
Ulam’s Theorem it follows that

{x ∈ U : Ax is comeagre in V }
is comeagre in U . Hence we may pick distinct elements a0, . . . , an0+1 ∈ U
such that the section Aai is comeagre in V for all i = 0, . . . , n0 +1. But then
we can find distinct elements

b0, . . . , bn0+1 ∈
n0+1⋂
i=0

Aai ,

which gives us that for 0 ≤ i, j ≤ n0 + 1,

eaibj =
n0∑
n=0

g(ai, n)h(bj , n),

contradicting Lemma 3.2.
The proof of the Lebesgue measurable case is similar.

Proof of Theorem 3. Suppose we have Σ1
2 functions g, h : R × ω → R

representing exy. By the previous lemma, g and h cannot be Baire measur-
able, and so L∩R cannot be countable by [4, 26.21]. But then we can apply
Lemma 3.3 with A = L ∩ R and ≺ the canonical Σ1

2 well-ordering of L ∩ R
to get a Σ1

2 well-ordering of R.
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Remark. Assume Σ1
3 uniformization. Suppose there is a measurable

cardinal and let U be a normal ultrafilter witnessing this. Then the tree
representation for Σ1

3 (see [6, p. 201], also [4, 32.14]) and [6, 15.10] imply
that if R ∩ L[U ] is countable then all Σ1

3 functions have the property of
Baire. Since by [11, 4.6] there is a Σ1

3 well-ordering of R ∩ L[U ], the proof
above then shows that if there is a Σ1

3 Davies representation of exy then
there is a Σ1

3 well-ordering of R. In fact, we obtain the following stronger
result:

3.5. Corollary. Assume Σ1
3 uniformization. Suppose there is a mea-

surable cardinal and let U be a normal ultrafilter witnessing this. Then if
there are Σ1

3 functions g, h : R× ω → R such that

exy =
∞∑
n=0

g(x, n)h(y, n)

with only finitely many non-zero terms at each (x, y) then R = R∩L[U ] and
so there is a strongly ∆1

3 well-ordering of R.

Proof. By inspecting the proof of Lemma 3.3, there exists a finite-to-one
Σ1

3 function θ : R→ R ∩ L[U ]. Since the relation R ⊆ R× N defined by

R(y, n) ⇔ (∃x1, . . . , xn)
n∧
i=1

θ(xi) = y ∧
∧
i 6=j

xi 6= xj

is Σ1
3, it is absolute for transitive models containing U . Suppose that there

is x1 ∈ R \ L[U ] and let y = θ(x1). If n = |θ−1(y) ∩ L[U ]| then R(y, n + 1)
holds in V . By absoluteness it holds in L[U ], contradicting the fact that
n = |θ−1(y) ∩ L[U ]|. Thus R = R ∩ L[U ] and by [11, 5.2] there is a ∆1

3

well-ordering of R.

In light of Theorem 3, it is natural to ask the following:

Question 1. If there are Σ1
2 functions gn, hn, n ∈ ω, such that

exy =
∞∑
n=0

gn(x)hn(y)

with the sum having only finitely many non-zero terms at each (x, y), does
the conclusion of Theorem 3 still hold? That is, is it necessary in Theorem 3
that gn, hn are Σ1

2 uniformly in n?

In [10], Shelah shows that the converse in Davies’ original theorem does
not remain true if we drop the assumption that the sum must have at most
finitely many non-zero terms and only require the sum to converge pointwise.
In a similar vein we ask:
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Question 2. If we drop the finiteness condition, does Theorem 1 still
hold?

Shelah also shows in [10] that if we add ℵ2 Cohen reals then there is a
function f : R× R→ R which does not allow a representation

f(x, y) =
∞∑
n

gn(x)hn(y),

even when we allow for the sum to have infinitely many non-zero terms,
requiring only that it converges pointwise. As a counterpoint to that result,
we point out the following:

Theorem 4. There is a Borel function f : R×R→ R such that for no
gn, hn : R→ R that are Baire measurable do we have

f(x, y) =
∞∑
n=0

gn(x)hn(y)

for all (x, y) ∈ R2, where the sum converges pointwise, but may have in-
finitely many non-zero terms. The same holds if we replace Baire measurable
by Lebesgue measurable.

Proof. Let as usual E0 denote the equivalence relation on 2ω defined by

xE0y ⇔ (∃N)(∀n ≥ N) x(n) = y(n).

Let 1E0 be the characteristic function of E0. Suppose now that there are
Baire measurable gn, hn : R→ R such that

1E0(x, y) =
∞∑
n=0

gn(x)hn(y).

Then we can find a dense Gδ set A on which all the functions gn and hn are
continuous. But then for x, y ∈ A we have

xE0y ⇔ (∀k)(∃N ≥ k)
N∑
n=0

gn(x)hn(y) >
1
2
.

This gives us a Gδ definition of E0 on A, and hence E0 must be a smooth
equivalence relation on A by [3, Corollary 1.2]. But E0 is not smooth on any
comeagre set, and we have a contradiction.

The proof of the Lebesgue measurable case is similar.

Remark. By [5] (see also [4, Exercise 26.2]), if there is a Cohen real
(respectively random real) over L in V , then all ∆1

2 functions are Baire
measurable (respectively Lebesgue measurable). Thus it follows that in this
setting, 1E0 cannot be represented as an infinite pointwise convergent sum
of rectangular ∆1

2 functions.
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