Definable Davies' theorem

by
Asger Törnquist (Wien) and William Weiss (Toronto)

Abstract

We prove the following descriptive set-theoretic analogue of a theorem of R. O. Davies: Every Σ_{2}^{1} function $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ can be represented as a sum of rectangular Σ_{2}^{1} functions if and only if all reals are constructible.

1. Introduction. In [1], R. O. Davies proved that the continuum hypothesis, CH , is equivalent to the statement that every function $f: \mathbb{R} \times \mathbb{R} \rightarrow$ \mathbb{R} can be represented as a sum of "rectangular" functions as follows: There are $g_{n}, h_{n}: \mathbb{R} \rightarrow \mathbb{R}, n \in \omega$, such that

$$
f(x, y)=\sum_{n=0}^{\infty} g_{n}(x) h_{n}(y)
$$

where at each $(x, y) \in \mathbb{R}^{2}$ there are at most finitely many non-zero terms in the above sum. We call such a representation a Davies representation of f. Thus Davies' Theorem says that CH is equivalent to the statement that every function $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ has Davies representation.

The purpose of this paper is to prove the following descriptive settheoretic analogue of Davies' Theorem:

Theorem 1. Every Σ_{2}^{1} function $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ has a Davies representation

$$
f(x, y)=\sum_{n=0}^{\infty} g(x, n) h(y, n)
$$

where $g, h: \mathbb{R} \times \omega \rightarrow \mathbb{R}$ are Σ_{2}^{1} functions and the sum has only finitely many non-zero terms at each $(x, y) \in \mathbb{R}^{2}$, if and only if all reals are constructible.

We will also show that it is not possible to find a Davies representation of $f(x, y)=e^{x y}$ using Baire or Lebesgue measurable functions g and h. Note though that $e^{x y}$ does have a representation as an infinite power series in x

[^0]and y. We will give an example of a Borel (in fact, Δ_{1}^{1}) function $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ which does not admit a rectangular sum representation as above with Baire or Lebesgue measurable g and h, even if we drop the pointwise finiteness condition on the sum, and only ask that at each (x, y) the sum converges pointwise.

Organization. In $\S 2$ below we show (Theorem 2) that if there is a strongly Δ_{n}^{1} well-ordering of \mathbb{R} then every Σ_{n}^{1} function $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ admits a representation

$$
f(x, y)=\sum_{n=0}^{\infty} g(x, n) h(y, n)
$$

with Σ_{n}^{1} functions $g, h: \mathbb{R} \times \omega \rightarrow \mathbb{R}$, and where the sum has only finitely many non-zero terms at each $(x, y) \in \mathbb{R}^{2}$.

In $\S 3$ we establish the converse to Theorem 2 in the case of Σ_{2}^{1} functions (Theorem 3). We also establish a converse in the Σ_{3}^{1} case, under the additional assumption that there is a measurable cardinal. Finally, we establish the two facts regarding representations using Baire and Lebesgue measurable functions mentioned after Theorem 1 above.
2. Inductive argument. The necessary descriptive set-theoretic background for this paper can be found in [9] and [8], in particular the definitions of the (lightface) point-classes $\Sigma_{n}^{1}, \Delta_{n}^{1}$ and Π_{n}^{1}. Here we recall the notions for Δ_{n}^{1} well-orderings that are the most important to us.

Following [2], we say that a Δ_{n}^{1} well-ordering \prec of \mathbb{R} is strongly Δ_{n}^{1} if it has length ω_{1} and the following (equivalent) statements hold (cf. [9, Chapter 5]):

1. If $P \subseteq \mathbb{R} \times \mathbb{R}$ is Σ_{n}^{1} then

$$
R(x, y) \Leftrightarrow(\forall z \prec y) P(x, z)
$$

is Σ_{n}^{1}.
2. The initial segment relation $\mathrm{IS} \subseteq \mathbb{R} \times \mathbb{R} \leq \omega$ defined by

$$
\operatorname{IS}(x, y) \Leftrightarrow(\forall z \prec x)(\exists n) y(n)=z \wedge(\forall i, j) i=j \vee y(i) \neq y(j)
$$

is Σ_{n}^{1}.
If all reals are constructible then there is a strongly Δ_{2}^{1} well-ordering of \mathbb{R} (see e.g. [6]).

It will often be necessary to work with recursively presented Polish spaces other than \mathbb{R}, such as ω^{ω} or $\mathbb{R}^{\leq \omega}$ (see below). Since all uncountable recursively presented Polish spaces are isomorphic in the sense that there is a Δ_{1}^{1} bijection between them with a Δ_{1}^{1} inverse (see $[9,3 \mathrm{E} .7]$), once we have a strongly Δ_{n}^{1} well-ordering of \mathbb{R} we have a strongly Δ_{n}^{1} well-ordering of all recursively presented Polish spaces. For convenience we will use the same
symbol, usually \prec, for such a well-ordering in all the recursively presented spaces we consider. This minor ambiguity poses no real danger.

We will say that a function $f: X \rightarrow Y$ from one recursively presented Polish space X to another, Y, is Σ_{n}^{1} (respectively Π_{n}^{1} and Δ_{n}^{1}) if its graph is Σ_{n}^{1} (respectively Π_{n}^{1} and Δ_{n}^{1}). A function $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is said to have a Σ_{n}^{1} Davies representation if there are Σ_{n}^{1} functions $g, h: \mathbb{R} \times \omega \rightarrow \mathbb{R}$ such that

$$
\sum_{n=0}^{\infty} g(x, n) h(y, n)
$$

and the sum has only finitely many non-zero terms at each (x, y). The notions of Π_{n}^{1} and Δ_{n}^{1} Davies representation are defined similarly.

ThEOREM 2. If there is a strongly Δ_{n}^{1} well-ordering of \mathbb{R} then every Σ_{n}^{1} function $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ has a Σ_{n}^{1} Davies representation. In particular, if all reals are constructible then every Σ_{2}^{1} function has a Σ_{2}^{1} Davies representation.

To prove this, we will need to verify that Davies' proof, which uses Zorn's Lemma, produces functions $g, h: \mathbb{R} \times \omega \rightarrow \mathbb{R}$ that are Σ_{n}^{1} and witness that f has a Σ_{n}^{1} Davies representation. This in turn requires that we produce Σ_{n}^{1} predicates (in the sense of [8, p. 3] or [6, p. 152-157]) that define g and h. These predicates will essentially be formulas defining g and h by transfinite recursion as in the usual proof of the transfinite recursion theorem (see e.g. [4, p. 22, (2.6)]).

If X is a set, we write $X \leq \omega$ for the set of functions $g: \alpha \rightarrow X$ for some $\alpha \in \omega+1$, and we set $\operatorname{lh}(g)=|\operatorname{dom}(g)|$, the cardinality of $\operatorname{dom}(g)$. For $g \in \mathbb{R}^{\leq \omega}$ we let

$$
\operatorname{supp}(g)=\{n \in \omega: n \in \operatorname{dom}(g) \wedge g(n) \neq 0\}
$$

It is convenient for the proof to work relative to a fixed countable sequence $x_{n} \in \mathscr{P}(\omega)$ of almost disjoint infinite subsets of ω. The sequence $\left(x_{n}\right)$ will be used to make sure that certain almost disjoint families that are finite are not maximal, because they will be constructed so that they are almost disjoint from all $x_{n}, n \in \omega$. We will assume that the map $n \mapsto x_{n}$ is recursive.

Definition. The set $S \subseteq\left(\mathbb{R}^{\omega}\right)^{\leq \omega} \times\left(\mathbb{R}^{\omega}\right)^{\leq \omega}$ is defined by $(g, h) \in S$ if and only if
(a) The sets $\operatorname{supp}(g(k)), \operatorname{supp}(h(m))$ and $x_{n}(k \in \operatorname{dom}(g), m \in \operatorname{dom}(h)$, $n \in \omega$) form an almost disjoint sequence of sets.
(b) For all $m \in \operatorname{dom}(g)$ there are infinitely many k such that $g(m)(k)=1$.
(c) For all $n \in \operatorname{dom}(h)$ there are infinitely many k such that $h(n)(k)=1$.

Note that S is Δ_{1}^{1}. We need the following lemma to encode the inductive step.
2.1. Lemma. Suppose $f \in \mathbb{R}^{\leq \omega}$ is given and $(g, h) \in S$ is such that $\operatorname{lh}(h)=\operatorname{lh}(f)$. Then there is $\theta=\theta(f, g, h): \omega \rightarrow \mathbb{R}$ such that:
(1) For all $k \in \operatorname{dom}(f)$,

$$
f(k)=\sum_{l=0}^{\infty} \theta(l) h(k)(l)
$$

and the sum has only finitely many non-zero terms.
(2) For all $n \in \operatorname{dom}(h), \operatorname{supp}(\theta) \cap \operatorname{supp}(h(n))$ is finite.
(3) For all $n \in \operatorname{dom}(g), \operatorname{supp}(\theta) \cap \operatorname{supp}(g(n))$ is finite.
(4) For all $n \in \omega, \operatorname{supp}(\theta) \cap x_{n}$ is finite.
(5) For infinitely many k we have $\theta(k)=1$.

Moreover, θ may be found recursively in the given data. In particular, there is a Δ_{1}^{1} function $\theta: \mathbb{R} \leq \omega \times S \rightarrow \mathbb{R}^{\omega}$ such that $\theta(f, g, h)$ satisfies (1)-(5) for all $(f, g, h) \in \mathbb{R}^{\leq \omega} \times S$.

Proof. We define by induction on $k \in \omega$ an increasing sequence $n_{k} \in \omega$ and $\theta \upharpoonright n_{k}+1$ such that
(1') For all $m \in \operatorname{dom}(f) \cap(k+1)$,

$$
f(m)=\sum_{l=0}^{n_{m}} \theta(l) h(m)(l)
$$

(2') For all $m \in \operatorname{dom}(h) \cap(k+1), \operatorname{supp}\left(\theta \upharpoonright n_{k}+1\right) \cap \operatorname{supp}(h(m)) \subseteq n_{m}+1$.
$\left(3^{\prime}\right)$ For all $m \in \operatorname{dom}(g) \cap(k+1), \operatorname{supp}\left(\theta \upharpoonright n_{k}+1\right) \cap \operatorname{supp}(g(m)) \subseteq n_{m}+1$.
(4) For all $m \leq k, \operatorname{supp}\left(\theta \upharpoonright n_{k}+1\right) \cap x_{m} \subseteq n_{m}+1$.
$\left(5^{\prime}\right) \theta\left(n_{k}\right)=1$.
Assuming this can be done, θ will be defined on all of ω, since n_{k} is increasing. By (1^{\prime}) and ($\left.2^{\prime}\right)$ it follows that for $m \in \operatorname{dom}(f)$ we will have

$$
f(m)=\sum_{l=0}^{\infty} \theta(l) h(m)(l)
$$

and by $\left(2^{\prime}\right)$ it is the case that $\theta(l) h(m)(l)=0$ for $l>n_{m}$. Thus (1) and (2) of the statement of the lemma hold. Finally, $\left(3^{\prime}\right),\left(4^{\prime}\right)$ and (5') ensure (3), (4) and (5).

To see that we can satisfy $\left(1^{\prime}\right)-\left(5^{\prime}\right)$, suppose n_{k} and $\theta \upharpoonright n_{k}+1$ have been defined.

CASE 1: $k+1 \notin \operatorname{dom}(f)$. Then we let $p>n_{k}$ be the least number greater than n_{k} such that $p \notin \operatorname{supp}(g(m)), p \notin \operatorname{supp}(h(m))$ and $p \notin x_{m}$ for $m \leq k$. The number p exists because of condition (a) in the definition of S.

Define $n_{k+1}=p$, for $n_{k}<l<n_{k+1}$ let $\theta(l)=0$, and $\theta\left(n_{k+1}\right)=1$. Clearly conditions (1^{\prime})-($\left.5^{\prime}\right)$ are satisfied.

CASE 2: $k+1 \in \operatorname{dom}(f)$. Then let $p>n_{k}$ be the least number greater than n_{k} such that $p \notin \operatorname{supp}(g(m)), p \notin \operatorname{supp}(h(m))$ and $p \notin x_{m}$ for $m \leq k$, and $h(k+1)(p)=1$. The number p exists because of conditions (a) and (c) in the definition of S. We let $q>p$ be least such that $q \notin \operatorname{supp}(g(m))$, $q \notin \operatorname{supp}(h(m))$ and $q \notin x_{m}$ for $m \leq k+1$. Let $n_{k+1}=q$ and define, for $n_{k}<l \leq n_{k+1}$,

$$
\theta(l)= \begin{cases}1 & \text { if } l=q=n_{k+1} \\ f(k+1)-\sum_{m=0}^{p-1} \theta(m) h(k+1)(m) & \text { if } l=p \\ 0 & \text { otherwise }\end{cases}
$$

It is easy to see that $\left(2^{\prime}\right)-\left(5^{\prime}\right)$ are satisfied. To see $\left(1^{\prime}\right)$, note that

$$
\begin{aligned}
\sum_{l=0}^{n_{k+1}} \theta(l) h(k+1)(l) & =\sum_{l=0}^{p} \theta(l) h(k+1)(l) \\
& =f(k+1)-\sum_{m=0}^{p-1} \theta(m) h(k+1)(m)+\sum_{l=0}^{p-1} \theta(l) h(k+1)(l) \\
& =f(k+1) .
\end{aligned}
$$

This ends Case 2. It is clear from the construction that θ is recursive in the given data (f, g, h). Thus the map $(f, g, h) \mapsto \theta(f, g, h)$ is in particular Δ_{1}^{1}.
2.2. Davies' argument as an inductive construction. For the remainder of this section of the paper, θ will be the function defined in Lemma 2.1. Using this lemma one can now produce a Davies representation of $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ by induction as follows: Assuming CH, fix a well-ordering \prec of \mathbb{R} of order type ω_{1}. Suppose $g, h:\{y \in \mathbb{R}: y \prec x\} \times \omega \rightarrow \mathbb{R}$ have been defined such that for all $y, z \prec x$,

$$
f(y, z)=\sum_{n=0}^{\infty} g(y, n) h(z, n)
$$

and that further if $\left(w_{m}\right)$ is an enumeration of the initial segment $\{y: y \prec x\}$ then the functions

$$
g_{0}(m)(n)=g\left(w_{m}, n\right) \quad \text { and } \quad h_{0}(m)(n)=h\left(w_{m}, n\right)
$$

are such that $\left(g_{0}, h_{0}\right) \in S$. If we let $f_{0}(m)=f\left(w_{m}, x\right)$ and define $g(x, n)=$ $\theta\left(f_{0}, g_{0}, h_{0}\right)(n)$ then it is easy to check using Lemma 2.1 that for $y \prec x$,

$$
f(x, y)=\sum_{n=0}^{\infty} g(x, n) h(y, n) .
$$

If $\left(w_{m}^{\prime}\right)$ enumerates $\{y: y \preceq x\}$ and we let $f_{1}(m)=f\left(x, w_{m}^{\prime}\right)$ and

$$
g_{1}(n)= \begin{cases}\theta\left(f_{0}, g_{0}, h_{0}\right) & \text { if } w_{n}^{\prime}=x \\ g_{0}(k) & \text { if } w_{n}^{\prime}=w_{k}\end{cases}
$$

then $\left(h_{0}, g_{1}\right) \in S$, and if we let $\left.h(x, n)=\theta\left(f_{1}, h_{0}, g_{1}\right)\right)(n)$, it is again easy to check using the previous lemma that for all $y \preceq x$,

$$
f(y, x)=\sum_{n=0}^{\infty} g(y, n) h(x, n)
$$

Finally,

$$
g_{1}(m)(n)=g\left(w_{m}^{\prime}, n\right) \quad \text { and } \quad h_{1}(m)(n)=h\left(w_{m}^{\prime}, n\right)
$$

satisfy $\left(g_{1}, h_{1}\right) \in S$, thus allowing the induction to continue.
Our task is now to verify that if \prec is a strongly Δ_{n}^{1} well-ordering of \mathbb{R}, then the construction we have described may be carried out in such a way that if $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is Σ_{n}^{1}, then the functions $g, h: \mathbb{R} \times \omega \rightarrow \mathbb{R}$ will be Σ_{n}^{1}. This can be done since the strongly Δ_{n}^{1} well-ordering allows us to enumerate initial segments in a uniformly Δ_{n}^{1} way. However, in order to be able to write down Σ_{n}^{1} definitions of g and h we need a lemma which says that there is a Σ_{n}^{1} function which can correctly compute $g \upharpoonright\{y: y \prec x\} \times \omega$ and $h \upharpoonright\{y: y \prec x\} \times \omega$ for every x.

Before stating that lemma we introduce various functions and predicates. Fix a strongly Δ_{n}^{1} well-ordering \prec of \mathbb{R} and let IS $\subseteq \mathbb{R} \times \mathbb{R} \leq \omega$ be the initial segment relation as defined at the beginning of this section. Define IS^{*} : $\mathbb{R} \rightarrow \mathbb{R} \leq \omega$ by

$$
\operatorname{IS}^{*}(x)=y \Leftrightarrow \operatorname{IS}(x, y) \wedge(\forall z \prec y) \neg \operatorname{IS}(x, z)
$$

Note that IS* is Δ_{n}^{1}. We also define a partial function IS $\#: \mathbb{R} \times \mathbb{R} \rightarrow \omega$ by

$$
\operatorname{IS}^{\#}(x, y)=n \Leftrightarrow \operatorname{IS}^{*}(x)(n)=y
$$

Note that the graph of IS ${ }^{\#}$ is a Δ_{n}^{1} subset of $\mathbb{R} \times \mathbb{R} \times \omega$, and that if $y \prec x$ then $\operatorname{IS}^{\#}(x, y)$ computes the unique n which y corresponds to in the enumeration of the initial segment of x given by $\mathrm{IS}^{*}(x)$. Finally, we define

$$
\operatorname{succ}(x)=y \Leftrightarrow(\forall z \prec y) z=x \vee z \prec x
$$

2.3. Lemma. Let $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be Σ_{n}^{1} and suppose there is a strongly Δ_{n}^{1} well-ordering \prec of \mathbb{R}. Then there is a unique Σ_{n}^{1} function $F: \mathbb{R} \rightarrow$ $\left(\mathbb{R}^{\omega}\right) \leq \omega \times\left(\mathbb{R}^{\omega}\right) \leq \omega$ satisfying $F(x)=(G, H)$ if and only if
(1) $\operatorname{lh}(G)=\operatorname{lh}(H)=\operatorname{lh}\left(\operatorname{IS}^{*}(x)\right)$ and $(G, H) \in S$.
(2) If $z, z^{\prime} \prec x$, $\operatorname{IS}^{\#}(x, z)=k$ and $\operatorname{IS}^{\#}\left(x, z^{\prime}\right)=k^{\prime}$ then

$$
f\left(z, z^{\prime}\right)=\sum_{n=0}^{\infty} G(k)(n) H\left(k^{\prime}\right)(n)
$$

(3) For all $y \prec x$, if we let $w^{\prime}=\mathrm{IS}^{*}(y)$, $w=\mathrm{IS}^{*}(x)$ and $f_{0}(k)=$ $f\left(y, w^{\prime}(k)\right)$, and define, for $k \in \operatorname{dom}\left(w^{\prime}\right)$,

$$
G^{\prime}(k)=G(l) \Leftrightarrow w^{\prime}(k)=w(l)
$$

and

$$
H^{\prime}(k)=H(l) \Leftrightarrow w^{\prime}(k)=w(l),
$$

then $w(m)=y$ implies that

$$
G(m)=\theta\left(f_{0}, G^{\prime}, H^{\prime}\right) .
$$

(4) For all $y \prec x$, if we let $w^{\prime}=\operatorname{IS}^{*}(y)$, $w^{\prime \prime}=\operatorname{IS}^{*}(\operatorname{succ}(y)), w=\operatorname{IS}^{*}(x)$ and $f_{1}(k)=f\left(w^{\prime \prime}(k), y\right)$, and define, for $k \in \operatorname{dom}\left(w^{\prime \prime}\right)$,

$$
G^{\prime \prime}(k)=G(l) \Leftrightarrow w^{\prime \prime}(k)=w(l),
$$

and for $k \in \operatorname{dom}\left(w^{\prime}\right)$,

$$
H^{\prime}(k)=H(l) \Leftrightarrow w^{\prime}(k)=w(l),
$$

then $w(m)=y$ implies that

$$
H(m)=\theta\left(f_{1}, H^{\prime}, G^{\prime \prime}\right) .
$$

Proof. Conditions (1)-(4) express exactly that for $y \prec x$, if we let

$$
g(y, n)=G\left(\mathrm{IS}^{\#}(x, y)\right)(n) \quad \text { and } \quad h(y, n)=H\left(\operatorname{IS}^{\#}(x, y)\right)(n)
$$

then g and h are the functions we have constructed at stage x in the inductive construction described in 2.2 above, provided that at any stage of the induction we use the enumeration of the initial segments given by the function IS*. Thus F is unique and defined for all x. Finally, we note that conditions (1)-(4) can be expressed using Σ_{n}^{1} predicates when f is a Σ_{n}^{1} function. For instance, (3) may be replaced by

$$
\begin{aligned}
& (\forall y \prec x)\left(\exists w, w^{\prime}, f_{0}, G^{\prime}, H^{\prime} \in \mathbb{R}^{\leq \omega}\right)\left(w^{\prime}=\operatorname{IS}^{*}(y) \wedge w=\mathrm{IS}^{*}(x)\right. \\
& \wedge \operatorname{lh}\left(f_{0}\right)=\operatorname{lh}\left(w^{\prime}\right) \wedge\left(\forall k \in \operatorname{dom}\left(w^{\prime}\right)\right)\left(f_{0}(k)=f\left(y, w^{\prime}(k)\right)\right. \\
& \left.\wedge(\forall l \in \operatorname{dom}(G))\left(G^{\prime}(k)=G(l) \wedge H^{\prime}(k)=H(l) \Leftrightarrow w^{\prime}(k)=w(l)\right)\right) \\
& \left.\wedge(\forall m \in \operatorname{dom}(w))\left(w(m) \neq y \vee G(m)=\theta\left(f_{0}, G^{\prime}, H^{\prime}\right)\right)\right) .
\end{aligned}
$$

Thus (1)-(4) gives a Σ_{n}^{1} definition of the graph of F, and so the function F is Σ_{n}^{1}.

Proof of Theorem 2. If $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is Σ_{n}^{1} and \prec is a strongly Δ_{n}^{1} well-ordering, let F be as in Lemma 2.3 and let $F(x)=(G(x), H(x))$ for all x. Then

$$
g(x, n)=G(\operatorname{succ}(x))\left(\operatorname{IS}^{\#}(\operatorname{succ}(x), x)\right)(n)
$$

and

$$
h(x, n)=H(\operatorname{succ}(x))\left(\mathrm{IS}^{\#}(\operatorname{succ}(x), x)\right)(n)
$$

define Σ_{n}^{1} functions that give us a Davies representation of f.

Remark. If $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is Δ_{n}^{1} then conditions (1)-(4) define a Δ_{n}^{1} function F. Consequently, the functions g and h produced in the proof of Theorem 2 will be Δ_{n}^{1}. Therefore we have:
2.4. Corollary. If there is a strongly Δ_{n}^{1} well-ordering of \mathbb{R} then every Δ_{n}^{1} function $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ has a Δ_{n}^{1} Davies representation.
3. A definable converse. We now show the following converse to Theorem 2 for Σ_{2}^{1} functions:

Theorem 3. If there are Σ_{2}^{1} functions $g, h: \mathbb{R} \times \omega \rightarrow \mathbb{R}$ such that

$$
e^{x y}=\sum_{n=0}^{\infty} g(x, n) h(y, n)
$$

with only finitely many non-zero terms at each (x, y) then there is a Σ_{2}^{1} well-ordering of \mathbb{R}.

Since by Mansfield's Theorem ([7], see also [4, 25.39]) the existence of a Σ_{2}^{1} well-ordering or \mathbb{R} is equivalent to the statement that all reals are constructible, Theorem 3 together with Theorem 2 proves Theorem 1 as stated in the introduction. The proof requires several lemmata:
3.1. Lemma. Let $b_{0}, \ldots, b_{n} \in \mathbb{R}$ be distinct reals and $c_{0}, \ldots, c_{n} \in \mathbb{R}$. Then

$$
f(x)=\sum_{j=0}^{n} c_{j} e^{x b_{j}}
$$

has $n+1$ distinct roots if and only if $c_{0}=\cdots=c_{n}=0$.
Proof. By induction on n. If $f(x)$ has $n+1$ distinct roots then so does

$$
g(x)=e^{-b_{0} x} f(x)
$$

Using Rolle's Theorem from calculus it follows that $g^{\prime}(x)$ has n distinct roots, and so by the inductive hypothesis must be constantly zero. Thus $f(x)$ is constantly zero.
3.2. Lemma. Let a_{0}, \ldots, a_{n} and b_{0}, \ldots, b_{n} be two distinct sequences of real numbers. Then there are no functions $g_{l}, h_{l}: \mathbb{R} \rightarrow \mathbb{R}, l<n$, such that

$$
e^{a_{i} b_{j}}=\sum_{l=0}^{n-1} g_{l}\left(a_{i}\right) h_{l}\left(b_{j}\right)
$$

for all $0 \leq i, j \leq n$.

Proof. If there are such functions then we have the matrix identity

$$
\left[e^{a_{i} b_{j}}\right]=\left[\begin{array}{ccc}
g_{0}\left(a_{0}\right) & \cdots & g_{n-1}\left(a_{0}\right) \\
\vdots & & \vdots \\
g_{0}\left(a_{n}\right) & \cdots & g_{n-1}\left(a_{n}\right)
\end{array}\right]\left[\begin{array}{ccc}
h_{0}\left(b_{0}\right) & \cdots & h_{0}\left(b_{n}\right) \\
\vdots & & \vdots \\
h_{n-1}\left(b_{0}\right) & \cdots & h_{n-1}\left(b_{n}\right)
\end{array}\right]
$$

and so $\left[e^{a_{i} b_{j}}\right]$ is a product of an $(n+1) \times n$ and an $n \times(n+1)$ matrix. It follows that $\operatorname{rank}\left(\left[e^{a_{i} b_{j}}\right]\right) \leq n$, which contradicts the previous lemma.
3.3. Lemma. Assume Σ_{n}^{1} uniformization holds and that there are Σ_{n}^{1} functions $g, h: \mathbb{R} \times \omega \rightarrow \mathbb{R}$ such that

$$
e^{x y}=\sum_{n=0}^{\infty} g(x, n) h(y, n)
$$

with only finitely many non-zero terms at each (x, y). Suppose there is an uncountable Σ_{n}^{1} set $A \subseteq \mathbb{R}$ and a binary Σ_{n}^{1} relation \prec on \mathbb{R} such that (A, \prec) is well-ordered. Then there is a Σ_{n}^{1} well-ordering of \mathbb{R}.

Proof. Define

$$
N(x, y)=k \Leftrightarrow g(x, k) h(y, k) \neq 0 \wedge(\forall l>k) g(x, l) h(y, l)=0 .
$$

Clearly $N: \mathbb{R} \times \mathbb{R} \rightarrow \omega$ is Σ_{n}^{1}. Also define $Q \subseteq \mathbb{R} \times \omega$ by

$$
\begin{aligned}
Q(x, n) \Leftrightarrow & \left(\exists a \in \mathbb{R}^{\omega}\right)(\forall i)(\forall j)(i=j \vee a(i) \neq a(j)) \\
& \wedge(\forall k)(a(k) \in A \wedge N(x, a(k))=n),
\end{aligned}
$$

which is Σ_{n}^{1}. Let $Q^{*}: \mathbb{R} \rightarrow \omega$ be a Σ_{n}^{1} uniformization of Q. Note that Q^{*} is defined everywhere since A is uncountable.

Now define $R \subseteq \mathbb{R} \times[\mathbb{R}]^{<\omega}$, where $[\mathbb{R}]^{<\omega}$ denotes the set of finite subsets $\left({ }^{1}\right)$ of \mathbb{R}, by

$$
R(x, s) \Leftrightarrow|s|=Q^{*}(x)+2 \wedge(\forall y \in s)\left(y \in A \wedge N(x, y)=Q^{*}(x)\right)
$$

Let $R^{*}: \mathbb{R} \rightarrow[\mathbb{R}]^{<\omega}$ be a Σ_{n}^{1} uniformization of R.
Claim. R^{*} is finite-to-one.
Proof. Suppose not. Then there is some $s=\left\{b_{0}, \ldots, b_{n}\right\}$ such that $R^{*-1}(s)$ is infinite. Pick $a_{0}, \ldots, a_{n} \in R^{*-1}(s)$ distinct. Note that since $R^{*}\left(b_{i}\right)=s$ we have $Q^{*}\left(b_{i}\right)=|s|-2=n-1$. Thus

$$
e^{a_{i} b_{j}}=\sum_{l=0}^{n-1} g\left(a_{i}, l\right) h\left(b_{j}, l\right)
$$

contradicting the previous lemma.

[^1]Let $\prec_{\text {lex }}$ be the lexicographic order on $[A]^{<\omega}$ that we obtain from the well-ordering \prec of A. Then we define $<^{*}$ by

$$
x<^{*} y \Leftrightarrow R^{*}(x) \prec_{\text {lex }} R^{*}(y) \vee\left(R^{*}(x)=R^{*}(y) \wedge x<y\right),
$$

where $<$ is the usual linear ordering of \mathbb{R}. Since R^{*} is finite-to-one, $<^{*}$ is a Σ_{n}^{1} well-ordering of \mathbb{R}.
3.4. Lemma. There are no Baire or Lebesgue measurable functions $g, h: \mathbb{R} \times \omega \rightarrow \mathbb{R}$ such that

$$
e^{x y}=\sum_{n=0}^{\infty} g(x, n) h(y, n)
$$

where the sum has finitely many non-zero terms at each (x, y).
Proof. Suppose there are Baire measurable $g, h: \mathbb{R} \times \omega \rightarrow \mathbb{R}$ representing $e^{x y}$ as above. Then $N: \mathbb{R} \times \mathbb{R} \rightarrow \omega$ defined by

$$
N(x, y)=k \Leftrightarrow g(x, k) h(y, k) \neq 0 \wedge(\forall l>k) g(x, l) h(y, l)=0
$$

is also Baire measurable. It follows that there is some n_{0} such that

$$
A=\left\{(x, y) \in \mathbb{R}^{2}: N(x, y)=n_{0}\right\}
$$

is non-meagre and has the property of Baire. Thus we may find $U, V \subseteq \mathbb{R}$ open and non-empty such that A is comeagre in $U \times V$. By KuratowskiUlam's Theorem it follows that

$$
\left\{x \in U: A_{x} \text { is comeagre in } V\right\}
$$

is comeagre in U. Hence we may pick distinct elements $a_{0}, \ldots, a_{n_{0}+1} \in U$ such that the section $A_{a_{i}}$ is comeagre in V for all $i=0, \ldots, n_{0}+1$. But then we can find distinct elements

$$
b_{0}, \ldots, b_{n_{0}+1} \in \bigcap_{i=0}^{n_{0}+1} A_{a_{i}}
$$

which gives us that for $0 \leq i, j \leq n_{0}+1$,

$$
e^{a_{i} b_{j}}=\sum_{n=0}^{n_{0}} g\left(a_{i}, n\right) h\left(b_{j}, n\right),
$$

contradicting Lemma 3.2.
The proof of the Lebesgue measurable case is similar.
Proof of Theorem 3. Suppose we have Σ_{2}^{1} functions $g, h: \mathbb{R} \times \omega \rightarrow \mathbb{R}$ representing $e^{x y}$. By the previous lemma, g and h cannot be Baire measurable, and so $L \cap \mathbb{R}$ cannot be countable by [4, 26.21]. But then we can apply Lemma 3.3 with $A=L \cap \mathbb{R}$ and \prec the canonical Σ_{2}^{1} well-ordering of $L \cap \mathbb{R}$ to get a Σ_{2}^{1} well-ordering of \mathbb{R}.

Remark. Assume Σ_{3}^{1} uniformization. Suppose there is a measurable cardinal and let U be a normal ultrafilter witnessing this. Then the tree representation for Σ_{3}^{1} (see [6, p. 201], also [4, 32.14]) and [6, 15.10] imply that if $\mathbb{R} \cap L[U]$ is countable then all Σ_{3}^{1} functions have the property of Baire. Since by [11, 4.6] there is a Σ_{3}^{1} well-ordering of $\mathbb{R} \cap L[U]$, the proof above then shows that if there is a Σ_{3}^{1} Davies representation of $e^{x y}$ then there is a Σ_{3}^{1} well-ordering of \mathbb{R}. In fact, we obtain the following stronger result:
3.5. Corollary. Assume Σ_{3}^{1} uniformization. Suppose there is a measurable cardinal and let U be a normal ultrafilter witnessing this. Then if there are Σ_{3}^{1} functions $g, h: \mathbb{R} \times \omega \rightarrow \mathbb{R}$ such that

$$
e^{x y}=\sum_{n=0}^{\infty} g(x, n) h(y, n)
$$

with only finitely many non-zero terms at each (x, y) then $\mathbb{R}=\mathbb{R} \cap L[U]$ and so there is a strongly Δ_{3}^{1} well-ordering of \mathbb{R}.

Proof. By inspecting the proof of Lemma 3.3, there exists a finite-to-one Σ_{3}^{1} function $\theta: \mathbb{R} \rightarrow \mathbb{R} \cap L[U]$. Since the relation $R \subseteq \mathbb{R} \times \mathbb{N}$ defined by

$$
R(y, n) \Leftrightarrow\left(\exists x_{1}, \ldots, x_{n}\right) \bigwedge_{i=1}^{n} \theta\left(x_{i}\right)=y \wedge \bigwedge_{i \neq j} x_{i} \neq x_{j}
$$

is Σ_{3}^{1}, it is absolute for transitive models containing U. Suppose that there is $x_{1} \in \mathbb{R} \backslash L[U]$ and let $y=\theta\left(x_{1}\right)$. If $n=\left|\theta^{-1}(y) \cap L[U]\right|$ then $R(y, n+1)$ holds in V. By absoluteness it holds in $L[U]$, contradicting the fact that $n=\left|\theta^{-1}(y) \cap L[U]\right|$. Thus $\mathbb{R}=\mathbb{R} \cap L[U]$ and by [11, 5.2] there is a Δ_{3}^{1} well-ordering of \mathbb{R}.

In light of Theorem 3, it is natural to ask the following:
Question 1. If there are Σ_{2}^{1} functions $g_{n}, h_{n}, n \in \omega$, such that

$$
e^{x y}=\sum_{n=0}^{\infty} g_{n}(x) h_{n}(y)
$$

with the sum having only finitely many non-zero terms at each (x, y), does the conclusion of Theorem 3 still hold? That is, is it necessary in Theorem 3 that g_{n}, h_{n} are Σ_{2}^{1} uniformly in n ?

In [10], Shelah shows that the converse in Davies' original theorem does not remain true if we drop the assumption that the sum must have at most finitely many non-zero terms and only require the sum to converge pointwise. In a similar vein we ask:

Question 2. If we drop the finiteness condition, does Theorem 1 still hold?

Shelah also shows in [10] that if we add \aleph_{2} Cohen reals then there is a function $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ which does not allow a representation

$$
f(x, y)=\sum_{n}^{\infty} g_{n}(x) h_{n}(y)
$$

even when we allow for the sum to have infinitely many non-zero terms, requiring only that it converges pointwise. As a counterpoint to that result, we point out the following:

Theorem 4. There is a Borel function $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ such that for no $g_{n}, h_{n}: \mathbb{R} \rightarrow \mathbb{R}$ that are Baire measurable do we have

$$
f(x, y)=\sum_{n=0}^{\infty} g_{n}(x) h_{n}(y)
$$

for all $(x, y) \in \mathbb{R}^{2}$, where the sum converges pointwise, but may have infinitely many non-zero terms. The same holds if we replace Baire measurable by Lebesgue measurable.

Proof. Let as usual E_{0} denote the equivalence relation on 2^{ω} defined by

$$
x E_{0} y \Leftrightarrow(\exists N)(\forall n \geq N) x(n)=y(n)
$$

Let $\mathbf{1}_{E_{0}}$ be the characteristic function of E_{0}. Suppose now that there are Baire measurable $g_{n}, h_{n}: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\mathbf{1}_{E_{0}}(x, y)=\sum_{n=0}^{\infty} g_{n}(x) h_{n}(y)
$$

Then we can find a dense G_{δ} set A on which all the functions g_{n} and h_{n} are continuous. But then for $x, y \in A$ we have

$$
x E_{0} y \Leftrightarrow(\forall k)(\exists N \geq k) \sum_{n=0}^{N} g_{n}(x) h_{n}(y)>\frac{1}{2}
$$

This gives us a G_{δ} definition of E_{0} on A, and hence E_{0} must be a smooth equivalence relation on A by [3, Corollary 1.2]. But E_{0} is not smooth on any comeagre set, and we have a contradiction.

The proof of the Lebesgue measurable case is similar.
Remark. By [5] (see also [4, Exercise 26.2]), if there is a Cohen real (respectively random real) over L in V, then all Δ_{2}^{1} functions are Baire measurable (respectively Lebesgue measurable). Thus it follows that in this setting, $\mathbf{1}_{E_{0}}$ cannot be represented as an infinite pointwise convergent sum of rectangular Δ_{2}^{1} functions.

Acknowledgements. A. Törnquist was supported in part by the Danish Natural Sciences Research Council post-doctoral grant no. 272-06-0211.

References

[1] R. O. Davies, Representation of functions of two variables as sums of rectangular functions I, Fund. Math. 85 (1974), 177-183.
[2] L. Harrington, Π_{2}^{1} sets and Π_{2}^{1} singletons, Proc. Amer. Math. Soc. 52 (1975), 356360.
[3] L. Harrington, A. Kechris and A. Louveau, A Glimm-Effros dichotomy for Borel equivalence relations, J. Amer. Math. Soc. 3 (1990), 903-928.
[4] T. Jech, Set Theory, Springer, Berlin, 2003.
[5] H. Judah and S. Shelah, Δ_{2}^{1}-sets of reals, Ann. Pure Appl. Logic 42 (1989), 207-223.
[6] A. Kanamori, The Higher Infinite, Springer, Berlin, 1997.
[7] R. Mansfield, The non-existence of Σ_{2}^{1} well-orderings of the Cantor set, Fund. Math. 86 (1985), 279-282.
[8] R. Mansfield and G. Weitkamp, Recursive Aspects of Descriptive Set Theory, Oxford Univ. Press, New York, 1985.
[9] Y. N. Moschovakis, Descriptive Set Theory, North-Holland, 1980.
[10] S. Shelah, On Ciesielski's problems, J. Appl. Anal. 3 (1997), 191-209.
[11] J. H. Silver, Measurable cardinals and Δ_{3}^{1} well-orderings, Ann. of Math. (2) 94 (1971), 414-446.

Kurt Gödel Research Center
University of Vienna
Währinger Strasse 25
1090 Wien, Austria
E-mail: asger@logic.univie.ac.at

Department of Mathematics
University of Toronto
40 St. George Street, Room 6092
Toronto, Ontario, Canada
E-mail: weiss@math.utoronto.ca

[^0]: 2000 Mathematics Subject Classification: Primary 03E15.
 Key words and phrases: rectangular function, Davies representation.

[^1]: $\left({ }^{1}\right)$ Formally we let $[\mathbb{R}]^{<\omega}=\left\{s \in \mathbb{R}^{<\omega}:(\forall k<\operatorname{lh}(s)-1) s(k)<s(k+1)\right\}$, where $<$ is the usual linear ordering of \mathbb{R}. Note that for $s \in[\mathbb{R}]^{<\omega}$, the quantifiers $(\forall x \in s)$ and $(\exists x \in s)$ can be replaced by number quantifiers in hierarchy calculations.

