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Characterization of diffeomorphisms
that are symplectomorphisms

by

Stanistaw Janeczko and Zbigniew Jelonek (Warszawa)

Abstract. Let (X,wx) and (Y,wy) be compact symplectic manifolds (resp. symplec-
tic manifolds) of dimension 2n > 2. Fix 0 < s < n (resp. 0 < k < n) and assume that
a diffeomorphism @ : X — Y maps all 2s-dimensional symplectic submanifolds of X to
symplectic submanifolds of Y (resp. all isotropic k-dimensional tori of X to isotropic tori
of Y'). We prove that in both cases @ is a conformal symplectomorphism, i.e., there is a
constant ¢ # 0 such that $*wy = cwx.

1. Introduction and main results. Let (X,wp) be the standard sym-
plectic vector space over R of dimension 2n, ie., X = R?" and wy =
>, dz; A dy; is the standard non-degenerate skew-symmetric form on X.
The group of automorphisms of (X,wy) is called the symplectic group and
is denoted by Sp(X).

Linear symplectomorphisms of (X,wp) are characterized in [6] as linear
automorphisms of X preserving some minimal, complete data defined by
wo on systems of linear subspaces. In this way the linear symplectic group
Sp(X) may be characterized geometrically together with its natural confor-
mal and anti-symplectic extensions. It is the natural task to put the linear
considerations into a more general nonlinear context (cf. [5], [7]).

Let (X,wyx) and (Y,wy) be symplectic manifolds of dimension 2n (all
manifolds in this paper are assumed to be smooth and connected). We
say that a diffeomorphism F : X — Y is a conformal symplectomorphism
(cf. [10]) if there is a non-zero constant ¢ € R such that F*wy = cwx.

Here is our main result:

THEOREM 1. Let (X,wx) and (Y,wy) be symplectic manifolds of di-
mension 2n > 2 (resp. compact symplectic manifolds of dimension 2n > 2).
Fiz a number 1 <k <n (resp. 0 < s <n). Assume that ¢ : X —'Y is a dif-
feomorphism which transforms all k-dimensional isotropic tori of X (resp.
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2s-dimensional symplectic, closed submanifolds of X) onto isotropic tori
of Y (resp. symplectic, closed submanifolds of Y). Then ® is a conformal
symplectomorphism.

In other words, for any fixed k (or s) as above, the conformal symplectic
structure on X is uniquely determined by the family of all k-dimensional
isotropic tori (resp. 2s-dimensional, closed symplectic submanifolds) of X.
The proof is based on a number of results which we state below.

First we show that any element of Sp(R?",wp) can be finitely decom-
posed into elements of a family of elementary automorphisms.

THEOREM 2. The symplectic group Sp(R?",wq) is generated by the fam-
ily of elementary symplectic automorphisms:
{Li(ci), Lij(cij), Ri(di), Rij(diz) : 0 < i < j <m, ¢, ¢i5,di, dij € R}
defined by

Li(c) (1, s Tny Ytye ooy Un) = (X1y ooy Ty Yly e v o s Yim 1, YiHCiliy Yik 1y -+ - 5 Yn),
Lij(cij) (@1, s Ty Y1y -, Yn)
= (21, Ty YLy Yie 15 Yi F CijTs Yit1s -+ o> Yj—1, Y5 + CijTis Yj1s -+ Yn),s
Ri(di) (@1, s @ny Yty e ooy Un) = (X1, oy Tie 1, TitdiYis Tig1se ooy Ty Yls -« -, Yn),
Rij(dij)(z1,. .., Zny Y1, -5 Yn)
= (T1,.. ., Tic1, T+ dijYj, Tig1, -, Tjm1, T+ ijYis Tip 1, - o Ty Yls - -« 5 Yn)-

Let H : R?™ x R > (2,t) — H(z,t) € R be a smooth function and
consider the system of differential equations (Hamiltonian system)

%d)(t? Z) = JO(VZH)<¢(t7 .CC),t), ¢(07 Z) =2z,

where z=(21,...,Zn, Y1, .,Yn) and Jy is the 2nx2n matrix of wy. Then for
the smooth solution ¢(t,z) the map ®(z)=¢(1, z) is a diffeomorphism pre-
serving wy, i.e. a symplectomorphism, which is called the hamiltonian sym-
plectomorphism with Hamiltonian H (cf. [11]). The next basic result we get is

THEOREM 3. For any linear symplectomorphism L : (R*", wg) — (R?", w)
there exists a polynomial Hamiltonian
2n

Hp(zt) = Y aij(t)ziz,
ij=1
where a; j(t) € R[t] are polynomials of t. Moreover, Hy, can be computed
effectively.

Recall that a submanifold Z of a symplectic manifold X is isotropic if
w|rz = 0. We will call Z a symplectic submanifold of X if it is closed and the
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pair (Z,w|rz) is a symplectic manifold. Existence of isotropic or symplectic
submanifolds with prescribed data in a compact symplectic manifold is a
fundamental geometric property of symplectic structures (cf. [3]). In fact,
we can find such submanifolds which satisfy some extra conditions:

THEOREM 4. Let (X,w) be a symplectic manifold of dimension 2n (resp.
compact symplectic manifold of dimension 2n). Let ay,...,an be a family
of points of X. Take 0 < k <n (resp. 0 < s <mn). For every i =1,...,m
choose a linear k-dimensional isotropic subspace (resp. a 2s-dimensional
symplectic subspace) H; C T,,X. Then there is a closed isotropic k-dimen-
sional torus (resp. a closed symplectic 2s-dimensional submanifold) Y C X
such that

aiGY, TaiYZHi; izl,...,m.

The purpose of this article is twofold: First, we provide the new results in
still basic linear symplectic geometry, formulated above. Second, we charac-
terize general symplectic manifolds and their structure groups through the
family of isotropic or symplectic submanifolds and their basic invariance.
This leads to a complete geometric characterization of symplectomorphisms
and to a reinterpretation of symplectomorphisms as diffeomorphisms acting
purely on isotropic or symplectic submanifolds (cf. [2], [9]). We prove an
isotropic version of our results for isotropic tori as a smallest optimal (com-
plete for the invariance considered) family of isotropic submanifolds. The
corresponding invariance result on symplectic submanifolds of a compact
symplectic manifold, following from the main theorem, reads as follows.

THEOREM 5. Let (X,w) be a compact symplectic manifold of dimension
2n > 2. Fiz a number 0 < k < n. Assume that ® : X — X is a diffeomor-
phism which maps all 2k-dimensional symplectic submanifolds of X onto
submanifolds of the same type. Then @ is a symplectomorphism or an an-
tisymplectomorphism, i.e., ®@*w = +w. If ® preserves orientation and n is
odd, then @ is a symplectomorphism. Moreover, if n is even, then @ has to
preserve orientation.

2. Generators of the group Sp(R?"). Here we recall some basic facts
about the linear symplectic group. Let (X, w) be a symplectic vector space.
There exists a basis of X, called a symplectic basis, ui,...,Up, V1,...,Upn,
such that

w(ui,uj) = w(vi, Uj) = 0, w(ui, Uj) = 51]

Let (X,wx) and (Y,wy) be symplectic vector spaces. We say that a
linear isomorphism F : X — Y is a symplectomorphism (or is symplectic
on X) if F*wy = wy, i.e., wx(z,y) = wy(F(x), F(y)) for every z,y € X.
The group of symplectomorphisms of (X,w) is called the symplectic group
and is denoted by Sp(X,w). Via a symplectic basis, X can be identified with
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the standard symplectic space (R?",wq) and Sp(X,w) can be identified with
the group of 2n x 2n real matrices A which satisfy A7 JyA = Jy, where Jy
is the 2n x 2n matrix of wp (in the standard basis), i.e.,

0 ... 0 -1 ... 0
0 _1

Jo =

0 1 0
0 ... 1 0 ... 0

We can define the following “elementary” symplectomorphisms:
Li(ci) (1, .oy TnyYtye ooy Un) = (T1, o Ty YLy e o5 Yie 1, Yi + Ciiy Yit 1y -+ -, Yn),
Lij(cij)(z1, ... Zn, Y1y, Yn)
= (T1, - Ty Yy oo 5 Yin 1, Ui+ Cij Ty Yit 1y - - Yi—1,Yj + CijTis Yjtds -+ -5 Yn),
Ri(di)(@1,y. s Ty Y1se ooy Yn) = (T1ye ooy Tim 1, Titdiliy Tit 1y e ooy Ty Yls -« - Yn),
Rii(dij)(z1,. -, Zny Y1, -5 Yn)
= (21,.. ., Tic1, Ti+dijYj, Tit1s -, Tjm1, L5+ dijYis Tjg1s oo Try Yls - - -5 Yn)s
where c¢;, ¢;j,d;, d;; are real numbers and 1 <i < j < n.

We have the following basic result:

THEOREM 2.1. Let X = (R?",wq) be the standard symplectic vector
space. Then the group Sp(X) is generated by the following family of ele-
mentary symplectomorphisms:

{Li(ci),Lij(cij),Ri(di),Rij(dij) << j <n and Ci,Cij,di,dij S R},
i.e. if g € Sp(X) then g = [[;", e;, where e; is one of the elementary
symplectomorphisms and m € N.

Proof. We reason by induction. For n = 1 we have Sp(R?) = SL(2) and
the result is well known from linear algebra. Assume n > 1.

Let S : R?® — R?" be a linear symplectomorphism. Denote the coordi-
nates by z1,...,%n, Y1,...,Yn (Where wg =, dz; A dy;). We have

S(@1,y15- -5 T, Yn) = (Zalifﬁi + Zbljyj7 - wZGQn,i«Ti + szwyj)'
i j i j

Observe how the rows of the matrix of S are transformed under the com-
position S o L with an elementary symplectomorphism L (for simplicity we
consider only the first row). After composition with L;(c) we have

(1) (a11,..-,@1p,b11, .., b1pn) — (a11,. .., a1 + cbii, ..., a1n, b11, - .., b1p),
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with L;j(c) we have
(2) (CLH,...,aln,bll,...,bln)

— (a11,...,a15 + cbij, ..., a1+ cbig, ... a1, b1, ..., bip),
with R;(c) we have
3)  (ai1,...,@1p,b11,...,b1p) — (a11,...,@1n,b11, ..., b1 +cais, ..., bin),

and with R;;(c) we have
(4) (all,...,aln,bll,...,bln)

— (an, ... ,(Iln,bll,. . -abli =+ cayj, - - -,blj + caq;, - . -abln)-
Transformations (1)—(4) will be called elementary operations. Now we show
that using only elementary operations we can transform the first row of
S into (1,0,...,0) and the second into (0,...,0,1,0,...,0) (here the unit
corresponds to byy,).

First note that the rows ry, ..., ra, of the matrix S form a symplectic ba-
sis. Now, consider the first row. Of course it has a non-zero element, say bis.
Using Ls(c) we can assume that also a5 # 0. Now using L;s(c) and Rjs(d)
for sufficiently general ¢ and d we can assume that all elements of the
first row are non-zero. Again applying R;(c) for i > 1 we can now trans-
form the first row into (ai1,...,a1pn,1,0,...,0). Using Li;(c) we can trans-
form this row into (1,0,...,0,1,0,...,0) and finally using R;(—1) we ob-
tain (1,0,...,0). Now consider the row r,41 (after these transformations):
nt1 = (Gnt11y-- s @ntin, bnt11s- -5 bnt1n). We can apply our method
to the subrow (an412;--.,0n+1,n: 00412, .-, 0nt1,,) (if it is non-zero) and
finally obtain the row (ap+1,1,1,0,...,0,b,411,0,...,0) (or (@n41,1,0,...
.o, 0,bp41,1,0,...,0)). Since the value of wy on these two rows is 1 we con-
clude that b,+11 = 1. Now (in the first case) we can use Lia(—1) to obtain a
row of the form (an+11,0,...,0,1,0,...,0). Finally, applying L;(—ai2) we
get (0,...,0,1,0,...,0).

Thus under all these compositions the matrix of S has the form

1 0 0 .. 0 ... 0
a1 a2 a3 N 621 e bgn
as1 aso ass e b31 S bsn
0 0 0 o 1 o 0
41,1 Angl2 Opt13 oo bpg11l oo bpgin
(n42,1 Ani22 Ani23 --- bpyoa1 ... by
a2n1  G2n2 (23 ... bap1 ... bopn
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For j # 1,n 4 1 we have wy(ri,r;) = 0 and wo(rp41,r;) = 0. We can easily
conclude that for all such j the elements a;1 and bj; in S are 0. This implies
that the matrix

a9 a3 e bgg e bgn
as2 ass c. 1)32 . bgn
an2 an3 PN bng PN bnn
n42,2 Ani23 --- bny22 ... buyon
| a2n2  a2n3 .. ban2 ... bopn

is a symplectic matrix and we can apply the induction hypothesis. =

We conclude this section by recalling (and extending) some result
from [6].

DEFINITION 2.2. Let A; 9, C G(I,2n) denote the set of all I-dimensional
linear subspaces of X on which the form w has rank < 2r.

Of course A; 2, C Ajor42 if 2r +2 < 1. We have the following important
(see [6, Theorem 6.2]):

THEOREM 2.3. Let (X,w) be a symplectic vector space of dimension 2n
and let F: X — X be a linear automorphism. Let 0 < 2r < 2n. Assume F
maps Aapor—2 into Agpor—2. Then there is a non-zero constant ¢ such that
Frw = cw.

From Theorem 2.3 we can deduce the following interesting facts:

PROPOSITION 2.4. Let (X,wyx) and (Y,wy) be symplectic vector spaces
of dimension 2n and let F : X — 'Y be a linear isomorphism. Fix a number s
with 0 < s < n and assume that F maps all 2s-dimensional symplectic
subspaces of X onto symplectic subspaces of Y. Then there is a non-zero
constant ¢ such that F*wy = cwx.

Proof. Via a symplectic basis we can assume that (X, wy) = (R?", wg) &
(Y,wy). By assumption the mapping F* induced by F' maps the set A =
Aas 26 \ Azs2s—2 into A. Of course F* : A — A is an injection. Since A is
a smooth algebraic variety and ™ is regular, the Borel Theorem (see [1])
implies that F™* is a bijection. This means that F maps Ass25—2 into the
same set, and we conclude the proof by applying Theorem 2.3. =

PROPOSITION 2.5. Let (X,wx) and (Y,wy) be symplectic vector spaces
of dimension 2n and let F' : X — Y be a linear isomorphism. Fiz a number k
with 1 < k < n and assume that F' maps all k-dimensional isotropic sub-
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spaces of X onto isotropic subspaces of Y. Then there is a non-zero constant
¢ such that F*wy = cwx.

Proof. For k = 2 this follows immediately from Theorem 2.3. Assume
that k& > 2. Take a plane H belonging to Aso. Since H is isotropic, we
can extend H to a k-dimensional isotropic subspace L. By the assumption,
L is mapped onto an isotropic subspace F'(L). Observe that F(H) is con-
tained in F'(L), so F'(H) is also isotropic. In particular, F(H) € A . Then
Theorem 2.3 yields the statement. =

We end this section with:

PROPOSITION 2.6. Let X be a vector space of dimension 2n and let
w1, wa be two symplectic forms on X. If Sp(X,w1) C Sp(X,ws), then
there exists a non-zero constant ¢ such that wy = cwi.

Proof. If n = 1, then the conclusion is obvious. Assume that n > 1.
Let A; (resp. As2) be the set of all wy (resp. wa) symplectic 2-dimensional
subspaces of X. These sets are open and dense in the Grassmannian G(2, 2n).
Hence Ay N Ay # (). Take H € A; N Ay. We have A; = Sp(X,w1)H C
Sp(X,we)H = Ay. Now apply Proposition 2.4 to X = (X,w1), Y = (X, ws)
and F' = identity. =

3. Hamiltonian symplectomorphisms. Let X = (R?" wg) be the
standard symplectic vector space. In X we consider the norm ||(a1, ..., a2,)||
= max?",|a;|. Take a smooth function H : X xR 3 (2,t) — H(z,t) € R and
consider a system of differential equations (cf. [4])

S0(1,2) = BV 0(t,2),1), 0(0,2) = =

Assume that this system has a solution ¢(t, z) for all z and ¢ (this holds,
e.g., if the supports of all functions H;, t € R, are contained in a compact
set). Then we can define the diffeomorphism

(3.1) (2) = 6(1,2).
It is not difficult to check that @ is a symplectomorphism.

DEFINITION 3.1. Let @ : X — X be a symplectomorphism. We say that
& is a hamiltonian symplectomorphism if it is given by the formula (3.1) for
some smooth function H. We also say that H is a Hamiltonian of ®.

LEMMA 3.2. All elementary linear symplectomorphisms are hamiltonian
symplectomorphisms.

Proof. Indeed:

e L;(c) is given by the Hamiltonian H(x,y) = (c/2)x2,
e L;j(c) is given by the Hamiltonian H(z,y) = cx;z;,
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e R;i(c) is given by the Hamiltonian H(z,y) = —(c/2)y?,
e R;j(c) is given by the Hamiltonian H(z,y) = —cy;y;.

We notice that the hamiltonian flows generating the corresponding elemen-
tary symplectomorphisms are defined on the whole R?>" x R. =

Now we show how to compute a Hamiltonian of a linear symplectomor-
phism:

THEOREM 3.3. Let L : R?™ — R?" be qa linear symplectomorphism. Then
L has a polynomial Hamiltonian

2n
(3.2) HL(Z,t) = Z am(t)zizj,

ij=1
where a; j(t) € R[t] are polynomials of t. Moreover, we can compute Hp,
effectively.

Proof. Let L = Ly, o --- 0 L1 where L; are elementary symplectomor-
phisms. We proceed by induction on m. If m = 1 then we can use Lemma 3.2.
In this case the flow L;(t) depends linearly on t.

Now consider L' = Ly,_1 0 --- o Ly. By the induction hypothesis L'(t) =
Ly,—1(t)o---0Ly(t) is given by a Hamiltonian H’ of the form (3.2). Let H” be
the Hamiltonian of L,, (as in Lemma 3.2). Now the flow L(t) = L, (t)o L'(t)
is given by the Hamiltonian

H(z,t) = H"(2) + H (L (t)71(2),1).

Of course it has also the form (3.2). Since we can decompose L into the
product L = L, o---o L effectively (see the proof of Theorem 2.1), we can
also compute H in an effective way. =

PROPOSITION 3.4. Let L : R?" — R?" be a hamiltonian symplectomor-
phism given by the flow z — ¢(t,z), t € R. Assume that ¢(t,0) = 0 for
t € 10,1]. For every n > 0 there is an € > 0 and a hamiltonian symplecto-
morphism @ : R®® — R2" such that

o &(z) = L(2) for all z with ||z|| <,
o &(z) =z for all z with ||z|| > n.

Proof. We know that L(z) = ¢(1, z), where ¢(t, z) is the solution of some
differential equation

d
£¢(t, Z) = JO(VZH)(¢(t7 Z))ﬂa Cb(O, Z) = Z.
Since ¢(t,0) = 0 for every t € [0,1], we can find € > 0 so small that all

trajectories {¢(t,z) : 0 < t < 1} which start from the ball B(0,¢) are
contained in the ball B(0,7/2). Let o : R?® — R be a smooth function such
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that
{1 if ||z]] < n/2,
0(z) = .
0 if ||z >n.

Take S = o H. The hamiltonian symplectomorphism @ given by the differ-
ential equation

d

%qb(t,z) = Jo(V.9)(o(t,2),t), ¢(0,2) = z,

is well defined on the whole of R?" and
o= {1 Tl <
z if |[z]] >n. =
Now Theorem 3.3 easily yields the following:

COROLLARY 3.5. Let L : R?>® — R?" be a linear symplectomorphism.
For every n > 0 there is an € > 0 and a hamiltonian symplectomorphism

& : R?" — R?" such that

o &(z) = L(2) for all z with ||z|| <,
o &(z) =z for all z with ||z|| > n.

4. Characterization of symplectomorphisms. Before we formulate
our next result we need the following (well-known)

LEMMA 4.1. Let X = (R?",wy) be the standard symplectic vector space.
Fiz n > 0 and let a,b € B(0,n). Then there exists a symplectomorphism
@ . X — X such that

D(a)=b and P(z)=2z for|z] > 2n.
Proof. Let ¢ = (c1,...,c2n) = b — a. Define a sequence of points as
follows:
apg = a, ai:ai_1+(O,...,O,ci,O,...,O).
Of course a; € B(0,7n) and ag, = b. Now consider the translation
T; : R*" 3 (x,y) — (z,y) + (0,...,0,¢;,0,...,0) € R*".

We have Tj(a;—1) = a; fori=1,...,2n.
The translation 7; is a hamiltonian symplectomorphism given by the

Hamiltonian

Hi(z,y) = {

Let V; be the symplectic vector field which is determined by the Hamilto-
nian H;. Since the ball B(0, ) is a convex set, all trajectories ¢(t), 0 <t <1,
of the symplectic vector fields V; which begin at a; lie in the ball B(0,7).

CiXi—p i1 >n.
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Let ¢ : R?® — R be a smooth function such that
{1 if 2] <,
o(z) = .
0 if ||z]| > 2n.
Now let Fj : R?® — R?" be the hamiltonian symplectomorphism given by
the Hamiltonian G; = 0 H;. Then

Gi(ai—1) =a; and Gi(z) =2z if|z| >2n.
Now it is enough to take ® = Go,, 0 Gopp_10---0G1. =
We apply Proposition 3.4 to the general case:

THEOREM 4.2. Let (X,w) be a symplectic manifold. Let ay,...,an and
bi,...,by be two families of points of X. For every i = 1,...,n choose a
linear symplectomorphism L; : T,, X — T, X. Then there is a symplecto-
morphism @ : X — X such that

D(a;) =b;, do,®=L;, i=1,...,m.

Proof. By the Darboux Theorem every point z € X has an open neigh-
borhood V. which is symplectically isomorphic to the ball B(0,7,) in the
standard vector space (R?",wp). Denote by U, C V, the open set which
corresponds to the ball B(0,r,/3).

Since dim X > 2 the manifold X \ {a2,...,an} is also connected. Hence
there exists a smooth path v : I — X such that v(0) = a1, y(1) = b1 and
{ag,...,am} N~y(I) = 0. Additionally we can assume that the sets V, which
cover «y(I) are also disjoint from {as, ..., am}.

Let € be a Lebesgue number for the function v : I — X with respect
to the cover {U,},cx and choose an integer N with 1/N < e. If I} :=
[k/N, (k + 1)/N], then v(I}) is contained in some U; denote it by Uy, the set
V. by Vi, and r, by rg. Let Ay := ~v(k/N), in particular Ay = a;, Axy = by.

Since Vj, = B(0, ) and A, Ag+1 € B(0,71/3) we can apply Lemma 4.1
to obtain a symplectomorphism @ : B(0,r;) — B(0,7) such that

O(Ag) = Agy1 and D(z) =z for ||z]| > (2/3)rg.
We can extend @ to the whole of X (we glue it with the identity); denote
this extension by &;. Put
wz@NOQSN—I O---O@().
Then ¥(a;) = by and ¥(a;) = a; for ¢ > 1. Repeating this process, we
finally arrive at a symplectomorphism X' : X — X such that Y (a;) = b;

for i =1,...,m. In a similar way using Proposition 3.5 we can construct a
symplectomorphism IT : X — X such that

(b)) =b;, dp, 1T = Lo (dg, %) .
Now it is enough to take ® = Il o . u
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Since for a compact symplectic manifold (X, w) of dimension 2n it is well
known that for a fixed number 0 < s < n there exists a closed 2s-dimensional
symplectic submanifold Z C X (which is a nontrivial result by S. Donaldson
[3, Corollary 6, p. 671]), we can use Theorem 4.2 to obtain:

COROLLARY 4.3. Let (X,w) be a compact symplectic manifold of di-
mension 2n. Let aq,...,a, be a family of points of X. Take 0 < s < n.
For every 1 = 1,...,m choose a linear 2s-dimensional symplectic subspace
H; C T,,X. Then there is a closed symplectic 2s-dimensional submanifold
Y C X such that

w €Y, T,Y=H, i=1,...,m.

In contrast to the previously mentioned result on existence of symplectic
submanifolds, the existence of isotropic tori is easy to prove in Darboux
local coordinates. In a similar way to Corollary 4.3 we get:

COROLLARY 4.4. Let (X,w) be a symplectic manifold of dimension 2n.
Let ai,...,am be a family of points of X. Take 0 < k < n. For every
it =1,...,m choose a linear k-dimensional isotropic subspace H; C Ty, X.
Then there is a closed isotropic k-dimensional torus Y C X such that

a; €Y, TaiYZHi; 1=1,...,m.

5. Diffeomorphisms that are symplectomorphisms. Finally, we
show that a symplectomorphism can be described as a diffeomorphism which
preserves symplectic or isotropic submanifolds of a given fixed dimension.

THEOREM 5.1. Let (X,wx) and (Y,wy) be compact symplectic mani-
folds of dimension 2n > 2. Fix a number 0 < s < n. Assume that & : X — Y
1s a diffeomorphism which maps all 2s-dimensional symplectic submanifolds
of X onto symplectic submanifolds of Y. Then @ is a conformal symplecto-
morphism, i.e., there exists a non-zero number ¢ € R such that

P*wy = cwx.

Proof. Fix z € X and let H C T,X be a 2s-dimensional symplectic
subspace of T, X. By Corollary 4.3 (applied for m =1, ay = z and H; = H)
there exists a 2s-dimensional symplectic submanifold M of X such that
z€ M and T,M = H.

Let ®(M) = M’ and 2’ = &(z). By assumption the submanifold M’ C Y
is symplectic. This means that the space d,®(H) = T, M’ is symplectic.
Hence d,® maps all linear 2s-dimensional symplectic subspaces of T, X onto
subspaces of the same type. By Proposition 2.4 this implies that d,® is a
conformal symplectomorphism. i.e.,

(d,P)*wy = \2)wx,
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where A\(z) # 0. This means that there is a smooth function A : X — R*
(=R \ {0}) such that

P*wy = wx.

But since the form wy is closed, so is ®*wy. Since n > 1 this implies that
the derivative d\ vanishes, i.e., the function A is constant. m

THEOREM 5.2. Let (X,wx) and (Y,wy) be symplectic manifolds of di-
mension 2n > 2. Fiz a number 1 < k < n. Assume that ® : X — Y s
a diffeomorphism which maps all k-dimensional isotropic tori of X onto
isotropic tori of Y. Then @ is a conformal symplectomorphism, i.e., there
exists a non-zero constant ¢ € R such that

P wy = cwx.

Proof. Fix z € X and let H C T,X be a k-dimensional isotropic sub-
space of T, X. By Corollary 4.4 (applied for m = 1, a; = z and Hy = H)
there exists a k-dimensional isotropic torus M of X such that z € M and
.M = H.

Let (M) = M’ and 2z’ = &(z). By assumption the torus M’ C Y is
isotropic. This means that the space d,®(H) = T,,M' is isotropic. Hence
d,® maps all linear k-dimensional isotropic subspaces of T, X onto subspaces
of the same type. By Proposition 2.5 this implies that d,® is a conformal
symplectomorphism. The rest of the proof is the same as in the case of
Theorem 5.1 above. n

REMARK 5.3. Let us note that in particular if & maps Lagrangian tori
onto tori of the same type then @ is a conformal symplectomorphism.

COROLLARY 5.4. Let X be a compact manifold of dimension 2n > 2. Let
w1 and we be two symplectic forms on X. Fix a number 0 < k < n. Assume
that every 2k-dimensional w1 -symplectic submanifold of X is wo-symplectic.
Then there exists a non-zero number ¢ € R such that

w1 = Cwy.

Proof. 1t is enough to apply Theorem 5.1 to X = (X,w1), ¥ = (X,w2)
and ¢ = identity. »

COROLLARY 5.5. Let (X,w) be a compact symplectic manifold of di-
mension 2n > 2. Fiz a number 0 < k < n. Assume that & : X — X is a
diffeomorphism which maps all 2k-dimensional symplectic submanifolds of
X onto submanifolds of the same type. Then @ is a symplectomorphism or
an antisymplectomorphism, i.e., ®*w = tw. If @ preserves orientation and
n s odd, then @ is a symplectomorphism. Moreover, if n is even, then @
has to preserve orientation.
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Proof. Indeed, we have ®*w = cw. We can write

(5.3) vol(X) = {w" = £ | "™ = 2" [ W™,

X X X
hence ¢ = +1. Moreover, if @ preserves orientation and n is odd, then we
get ¢ = 1. If n is even then (—w)” = w™ and @ has to preserve orienta-
tion. m

REMARK 5.6. Corollaries like Corollary 5.4 and Corollary 5.5 are also
true for a compact symplectic manifold X in the case of isotropic tori. A
similar geometric characterization of symplectomorphisms has already been
proved for diffeomorphisms preserving capacity, which turn out to be sym-
plectic or antisymplectic (cf. [5],[8]).

ExaMpPLE 5.7. We show that in the general case @ need not to be a
symplectomorphism. Let Y = (52, w) (where w is the standard volume form
on the sphere) and let (X,,,w,) = [[;=; Y be a standard symplectic product.
Further, let o : S? 3 (z,y,2) — (z,y, —2) € S? be a mirror symmetry. Of
course 0w = —w. More generally, if ¥ = [[" 0 : X;,, — X,,, then Y*w,
= —wp. Hence @ from Corollary 5.5 may well be an antisymplectomor-
phism.

However, in any case either @ or @ o @ is a symplectomorphism.

Now let (X,w) be a symplectic manifold and denote by Symp(X,w)
the group of symplectomorphisms of X. To end this note we show that this
group also determines the conformal symplectic structure of X:

THEOREM 5.8. Let X be a smooth manifold of dimension 2n > 2 and
let wy, wy be two symplectic forms on X. If Symp(X,w;) C Symp(X, ws),
then there exists a non-zero constant ¢ such that wy = cwi.

Proof. Take z € X and consider the symplectic vector spaces Vi =
(T, X,w1) and V5 = (T, X,ws). By Theorem 4.2, for every linear symplecto-
morphism S of Vi, there is a symplectomorphism &g € Symp(X,w;), such
that

Ds(z) =2, d,Ps=2S.

Since Symp(X,w1) C Symp(X,ws) we easily obtain Sp(V1) C Sp(Va).
Consequently, by Proposition 2.6 there exists a non-zero number A(z) such
that wa(z) = A(z)wi(z). Now we finish the proof as in the proof of Theo-
rem 5.1. =
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