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that are symplectomorphisms
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Abstract. Let (X,ωX) and (Y, ωY ) be compact symplectic manifolds (resp. symplec-
tic manifolds) of dimension 2n > 2. Fix 0 < s < n (resp. 0 < k ≤ n) and assume that
a diffeomorphism Φ : X → Y maps all 2s-dimensional symplectic submanifolds of X to
symplectic submanifolds of Y (resp. all isotropic k-dimensional tori of X to isotropic tori
of Y ). We prove that in both cases Φ is a conformal symplectomorphism, i.e., there is a
constant c 6= 0 such that Φ∗ωY = cωX .

1. Introduction and main results. Let (X,ω0) be the standard sym-
plectic vector space over R of dimension 2n, i.e., X ∼= R2n and ω0 =∑

i dxi ∧ dyi is the standard non-degenerate skew-symmetric form on X.
The group of automorphisms of (X,ω0) is called the symplectic group and
is denoted by Sp(X).

Linear symplectomorphisms of (X,ω0) are characterized in [6] as linear
automorphisms of X preserving some minimal, complete data defined by
ω0 on systems of linear subspaces. In this way the linear symplectic group
Sp(X) may be characterized geometrically together with its natural confor-
mal and anti-symplectic extensions. It is the natural task to put the linear
considerations into a more general nonlinear context (cf. [5], [7]).

Let (X,ωX) and (Y, ωY ) be symplectic manifolds of dimension 2n (all
manifolds in this paper are assumed to be smooth and connected). We
say that a diffeomorphism F : X → Y is a conformal symplectomorphism
(cf. [10]) if there is a non-zero constant c ∈ R such that F ∗ωY = cωX .

Here is our main result:

Theorem 1. Let (X,ωX) and (Y, ωY ) be symplectic manifolds of di-
mension 2n > 2 (resp. compact symplectic manifolds of dimension 2n > 2).
Fix a number 1 < k ≤ n (resp. 0 < s < n). Assume that Φ : X → Y is a dif-
feomorphism which transforms all k-dimensional isotropic tori of X (resp.
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2s-dimensional symplectic, closed submanifolds of X) onto isotropic tori
of Y (resp. symplectic, closed submanifolds of Y ). Then Φ is a conformal
symplectomorphism.

In other words, for any fixed k (or s) as above, the conformal symplectic
structure on X is uniquely determined by the family of all k-dimensional
isotropic tori (resp. 2s-dimensional, closed symplectic submanifolds) of X.
The proof is based on a number of results which we state below.

First we show that any element of Sp(R2n, ω0) can be finitely decom-
posed into elements of a family of elementary automorphisms.

Theorem 2. The symplectic group Sp(R2n, ω0) is generated by the fam-
ily of elementary symplectic automorphisms:

{Li(ci), Lij(cij), Ri(di), Rij(dij) : 0 < i < j ≤ n, ci, cij , di, dij ∈ R}

defined by

Li(ci)(x1, . . . , xn, y1, . . . , yn) = (x1, . . . , xn, y1, . . . , yi−1, yi+cixi, yi+1, . . . , yn),
Lij(cij)(x1, . . . , xn, y1, . . . , yn)
= (x1, . . . , xn, y1, . . . , yi−1, yi + cijxj , yi+1, . . . , yj−1, yj + cijxi, yj+1, . . . , yn),
Ri(di)(x1, . . . , xn, y1, . . . , yn) = (x1, . . . , xi−1, xi+diyi, xi+1, . . . , xn, y1, . . . , yn),
Rij(dij)(x1, . . . , xn, y1, . . . , yn)
= (x1, . . . , xi−1, xi +dijyj , xi+1, . . . , xj−1, xj +dijyi, xj+1, . . . , xn, y1, . . . , yn).

Let H : R2n × R 3 (z, t) 7→ H(z, t) ∈ R be a smooth function and
consider the system of differential equations (Hamiltonian system)

d

dt
φ(t, z) = J0(∇zH)(φ(t, x), t), φ(0, z) = z,

where z=(x1, . . . , xn, y1, . . . , yn) and J0 is the 2n×2n matrix of ω0. Then for
the smooth solution φ(t, z) the map Φ(z)=φ(1, z) is a diffeomorphism pre-
serving ω0, i.e. a symplectomorphism, which is called the hamiltonian sym-
plectomorphism with HamiltonianH (cf. [11]). The next basic result we get is

Theorem 3. For any linear symplectomorphism L : (R2n, ω0)→ (R2n, ω0)
there exists a polynomial Hamiltonian

HL(z, t) =
2n∑

i,j=1

ai,j(t)zizj ,

where ai,j(t) ∈ R[t] are polynomials of t. Moreover , HL can be computed
effectively.

Recall that a submanifold Z of a symplectic manifold X is isotropic if
ω|TZ = 0. We will call Z a symplectic submanifold of X if it is closed and the



Diffeomorphisms that are symplectomorphisms 149

pair (Z, ω|TZ) is a symplectic manifold. Existence of isotropic or symplectic
submanifolds with prescribed data in a compact symplectic manifold is a
fundamental geometric property of symplectic structures (cf. [3]). In fact,
we can find such submanifolds which satisfy some extra conditions:

Theorem 4. Let (X,ω) be a symplectic manifold of dimension 2n (resp.
compact symplectic manifold of dimension 2n). Let a1, . . . , am be a family
of points of X. Take 0 < k ≤ n (resp. 0 < s ≤ n). For every i = 1, . . . ,m
choose a linear k-dimensional isotropic subspace (resp. a 2s-dimensional
symplectic subspace) Hi ⊂ TaiX. Then there is a closed isotropic k-dimen-
sional torus (resp. a closed symplectic 2s-dimensional submanifold) Y ⊂ X
such that

ai ∈ Y, TaiY = Hi, i = 1, . . . ,m.

The purpose of this article is twofold: First, we provide the new results in
still basic linear symplectic geometry, formulated above. Second, we charac-
terize general symplectic manifolds and their structure groups through the
family of isotropic or symplectic submanifolds and their basic invariance.
This leads to a complete geometric characterization of symplectomorphisms
and to a reinterpretation of symplectomorphisms as diffeomorphisms acting
purely on isotropic or symplectic submanifolds (cf. [2], [9]). We prove an
isotropic version of our results for isotropic tori as a smallest optimal (com-
plete for the invariance considered) family of isotropic submanifolds. The
corresponding invariance result on symplectic submanifolds of a compact
symplectic manifold, following from the main theorem, reads as follows.

Theorem 5. Let (X,ω) be a compact symplectic manifold of dimension
2n > 2. Fix a number 0 < k < n. Assume that Φ : X → X is a diffeomor-
phism which maps all 2k-dimensional symplectic submanifolds of X onto
submanifolds of the same type. Then Φ is a symplectomorphism or an an-
tisymplectomorphism, i.e., Φ∗ω = ±ω. If Φ preserves orientation and n is
odd , then Φ is a symplectomorphism. Moreover , if n is even, then Φ has to
preserve orientation.

2. Generators of the group Sp(R2n). Here we recall some basic facts
about the linear symplectic group. Let (X,ω) be a symplectic vector space.
There exists a basis of X, called a symplectic basis, u1, . . . , un, v1, . . . , vn,
such that

ω(ui, uj) = ω(vi, vj) = 0, ω(ui, vj) = δij .

Let (X,ωX) and (Y, ωY ) be symplectic vector spaces. We say that a
linear isomorphism F : X → Y is a symplectomorphism (or is symplectic
on X) if F ∗ωY = ωX , i.e., ωX(x, y) = ωY (F (x), F (y)) for every x, y ∈ X.
The group of symplectomorphisms of (X,ω) is called the symplectic group
and is denoted by Sp(X,ω). Via a symplectic basis, X can be identified with
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the standard symplectic space (R2n, ω0) and Sp(X,ω) can be identified with
the group of 2n × 2n real matrices A which satisfy ATJ0A = J0, where J0

is the 2n× 2n matrix of ω0 (in the standard basis), i.e.,

J0 =



0 . . . 0 −1 . . . 0
...

...
...

...
0 . . . 0 0 . . . −1
1 . . . 0 0 . . . 0
...

...
...

...
0 . . . 1 0 . . . 0


.

We can define the following “elementary” symplectomorphisms:

Li(ci)(x1, . . . , xn, y1, . . . , yn) = (x1, . . . , xn, y1, . . . , yi−1, yi + cixi, yi+1, . . . , yn),
Lij(cij)(x1, . . . , xn, y1, . . . , yn)
= (x1, . . . , xn, y1, . . . , yi−1, yi + cijxj , yi+1, . . . , yj−1, yj + cijxi, yj+1, . . . , yn),
Ri(di)(x1, . . . , xn, y1, . . . , yn) = (x1, . . . , xi−1, xi+diyi, xi+1, . . . , xn, y1, . . . , yn),
Rij(dij)(x1, . . . , xn, y1, . . . , yn)
= (x1, . . . , xi−1, xi +dijyj , xi+1, . . . , xj−1, xj +dijyi, xj+1, . . . , xn, y1, . . . , yn),

where ci, cij , di, dij are real numbers and 1 ≤ i < j ≤ n.
We have the following basic result:

Theorem 2.1. Let X = (R2n, ω0) be the standard symplectic vector
space. Then the group Sp(X) is generated by the following family of ele-
mentary symplectomorphisms:

{Li(ci), Lij(cij), Ri(di), Rij(dij) : 0 < i < j ≤ n and ci, cij , di, dij ∈ R},
i.e. if g ∈ Sp(X) then g =

∏m
i=1 ei, where ei is one of the elementary

symplectomorphisms and m ∈ N.
Proof. We reason by induction. For n = 1 we have Sp(R2) = SL(2) and

the result is well known from linear algebra. Assume n > 1.
Let S : R2n → R2n be a linear symplectomorphism. Denote the coordi-

nates by x1, . . . , xn, y1, . . . , yn (where ω0 =
∑

i dxi ∧ dyi). We have

S(x1, y1, . . . , xn, yn) =
(∑

i

a1ixi +
∑

j

b1jyj , . . . ,
∑

i

a2n,ixi +
∑

j

b2n,jyj

)
.

Observe how the rows of the matrix of S are transformed under the com-
position S ◦ L with an elementary symplectomorphism L (for simplicity we
consider only the first row). After composition with Li(c) we have

(1) (a11, . . . , a1n, b11, . . . , b1n) 7→ (a11, . . . , a1i + cb1i, . . . , a1n, b11, . . . , b1n),



Diffeomorphisms that are symplectomorphisms 151

with Lij(c) we have
(2) (a11, . . . , a1n, b11, . . . , b1n)

7→ (a11, . . . , a1i + cb1j , . . . , a1j + cb1i, . . . , a1n, b11, . . . , b1n),

with Ri(c) we have
(3) (a11, . . . , a1n, b11, . . . , b1n) 7→ (a11, . . . , a1n, b11, . . . , b1i + ca1i, . . . , b1n),

and with Rij(c) we have
(4) (a11, . . . , a1n, b11, . . . , b1n)

7→ (a11, . . . , a1n, b11, . . . , b1i + ca1j , . . . , b1j + ca1i, . . . , b1n).

Transformations (1)–(4) will be called elementary operations. Now we show
that using only elementary operations we can transform the first row of
S into (1, 0, . . . , 0) and the second into (0, . . . , 0, 1, 0, . . . , 0) (here the unit
corresponds to b1n).

First note that the rows r1, . . . , r2n of the matrix S form a symplectic ba-
sis. Now, consider the first row. Of course it has a non-zero element, say b1s.
Using Ls(c) we can assume that also a1s 6= 0. Now using Lis(c) and Rjs(d)
for sufficiently general c and d we can assume that all elements of the
first row are non-zero. Again applying Ri(c) for i > 1 we can now trans-
form the first row into (a11, . . . , a1n, 1, 0, . . . , 0). Using L1j(c) we can trans-
form this row into (1, 0, . . . , 0, 1, 0, . . . , 0) and finally using R1(−1) we ob-
tain (1, 0, . . . , 0). Now consider the row rn+1 (after these transformations):
rn+1 = (an+1,1, . . . , an+1,n, bn+1,1, . . . , bn+1,n). We can apply our method
to the subrow (an+1,2, . . . , an+1,n, bn+1,2, . . . , bn+1,n) (if it is non-zero) and
finally obtain the row (an+1,1, 1, 0, . . . , 0, bn+1,1, 0, . . . , 0) (or (an+1,1, 0, . . .
. . . , 0, bn+1,1, 0, . . . , 0)). Since the value of ω0 on these two rows is 1 we con-
clude that bn+1,1 = 1. Now (in the first case) we can use L12(−1) to obtain a
row of the form (an+1,1, 0, . . . , 0, 1, 0, . . . , 0). Finally, applying L1(−a12) we
get (0, . . . , 0, 1, 0, . . . , 0).

Thus under all these compositions the matrix of S has the form

1 0 0 . . . 0 . . . 0
a21 a22 a23 . . . b21 . . . b2n

a31 a32 a33 . . . b31 . . . b3n

...
...

...
...

...
...

...
0 0 0 . . . 1 . . . 0

an+1,1 an+1,2 an+1,3 . . . bn+1,1 . . . bn+1,n

an+2,1 an+2,2 an+2,3 . . . bn+2,1 . . . b4n

...
...

...
...

...
...

...
a2n,1 a2n,2 a2n,3 . . . b2n,1 . . . b2n,n



.
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For j 6= 1, n+ 1 we have ω0(r1, rj) = 0 and ω0(rn+1, rj) = 0. We can easily
conclude that for all such j the elements aj1 and bj1 in S are 0. This implies
that the matrix

a22 a23 . . . b22 . . . b2n

a32 a33 . . . b32 . . . b3n
...

...
...

...
...

...
an2 an3 . . . bn2 . . . bnn

an+2,2 an+2,3 . . . bn+2,2 . . . bn+2,n
...

...
...

...
...

...
a2n,2 a2n,3 . . . b2n,2 . . . b2n,n


is a symplectic matrix and we can apply the induction hypothesis.

We conclude this section by recalling (and extending) some result
from [6].

Definition 2.2. Let Al,2r ⊂ G(l, 2n) denote the set of all l-dimensional
linear subspaces of X on which the form ω has rank ≤ 2r.

Of course Al,2r ⊂ Al,2r+2 if 2r+ 2 ≤ l. We have the following important
(see [6, Theorem 6.2]):

Theorem 2.3. Let (X,ω) be a symplectic vector space of dimension 2n
and let F : X → X be a linear automorphism. Let 0 < 2r < 2n. Assume F
maps A2r,2r−2 into A2r,2r−2. Then there is a non-zero constant c such that
F ∗ω = cω.

From Theorem 2.3 we can deduce the following interesting facts:

Proposition 2.4. Let (X,ωX) and (Y, ωY ) be symplectic vector spaces
of dimension 2n and let F : X → Y be a linear isomorphism. Fix a number s
with 0 < s < n and assume that F maps all 2s-dimensional symplectic
subspaces of X onto symplectic subspaces of Y. Then there is a non-zero
constant c such that F ∗ωY = cωX .

Proof. Via a symplectic basis we can assume that (X,ωX) ∼= (R2n, ω0) ∼=
(Y, ωY ). By assumption the mapping F ∗ induced by F maps the set A =
A2s,2s \ A2s,2s−2 into A. Of course F ∗ : A → A is an injection. Since A is
a smooth algebraic variety and F ∗ is regular, the Borel Theorem (see [1])
implies that F ∗ is a bijection. This means that F maps A2s,2s−2 into the
same set, and we conclude the proof by applying Theorem 2.3.

Proposition 2.5. Let (X,ωX) and (Y, ωY ) be symplectic vector spaces
of dimension 2n and let F : X → Y be a linear isomorphism. Fix a number k
with 1 < k ≤ n and assume that F maps all k-dimensional isotropic sub-
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spaces of X onto isotropic subspaces of Y. Then there is a non-zero constant
c such that F ∗ωY = cωX .

Proof. For k = 2 this follows immediately from Theorem 2.3. Assume
that k > 2. Take a plane H belonging to A2,0. Since H is isotropic, we
can extend H to a k-dimensional isotropic subspace L. By the assumption,
L is mapped onto an isotropic subspace F (L). Observe that F (H) is con-
tained in F (L), so F (H) is also isotropic. In particular, F (H) ∈ A2,0. Then
Theorem 2.3 yields the statement.

We end this section with:

Proposition 2.6. Let X be a vector space of dimension 2n and let
ω1, ω2 be two symplectic forms on X. If Sp(X,ω1) ⊂ Sp(X,ω2), then
there exists a non-zero constant c such that ω2 = cω1.

Proof. If n = 1, then the conclusion is obvious. Assume that n > 1.
Let A1 (resp. A2) be the set of all ω1 (resp. ω2) symplectic 2-dimensional
subspaces ofX. These sets are open and dense in the GrassmannianG(2, 2n).
Hence A1 ∩ A2 6= ∅. Take H ∈ A1 ∩ A2. We have A1 = Sp(X,ω1)H ⊂
Sp(X,ω2)H = A2. Now apply Proposition 2.4 to X = (X,ω1), Y = (X,ω2)
and F = identity.

3. Hamiltonian symplectomorphisms. Let X = (R2n, ω0) be the
standard symplectic vector space. In X we consider the norm ‖(a1, . . . , a2n)‖
= max2n

i=1|ai|. Take a smooth function H : X×R 3 (z, t) 7→ H(z, t) ∈ R and
consider a system of differential equations (cf. [4])

d

dt
φ(t, z) = J0(∇zH)(φ(t, z), t), φ(0, z) = z.

Assume that this system has a solution φ(t, z) for all z and t (this holds,
e.g., if the supports of all functions Ht, t ∈ R, are contained in a compact
set). Then we can define the diffeomorphism

(3.1) Φ(z) = φ(1, z).

It is not difficult to check that Φ is a symplectomorphism.

Definition 3.1. Let Φ : X → X be a symplectomorphism. We say that
Φ is a hamiltonian symplectomorphism if it is given by the formula (3.1) for
some smooth function H. We also say that H is a Hamiltonian of Φ.

Lemma 3.2. All elementary linear symplectomorphisms are hamiltonian
symplectomorphisms.

Proof. Indeed:

• Li(c) is given by the Hamiltonian H(x, y) = (c/2)x2
i ,

• Lij(c) is given by the Hamiltonian H(x, y) = cxixj ,
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• Ri(c) is given by the Hamiltonian H(x, y) = −(c/2)y2
i ,

• Rij(c) is given by the Hamiltonian H(x, y) = −cyiyj .

We notice that the hamiltonian flows generating the corresponding elemen-
tary symplectomorphisms are defined on the whole R2n × R.

Now we show how to compute a Hamiltonian of a linear symplectomor-
phism:

Theorem 3.3. Let L : R2n → R2n be a linear symplectomorphism. Then
L has a polynomial Hamiltonian

(3.2) HL(z, t) =
2n∑

i,j=1

ai,j(t)zizj ,

where ai,j(t) ∈ R[t] are polynomials of t. Moreover , we can compute HL

effectively.

Proof. Let L = Lm ◦ · · · ◦ L1 where Li are elementary symplectomor-
phisms. We proceed by induction on m. If m = 1 then we can use Lemma 3.2.
In this case the flow L1(t) depends linearly on t.

Now consider L′ = Lm−1 ◦ · · · ◦ L1. By the induction hypothesis L′(t) =
Lm−1(t)◦· · ·◦L1(t) is given by a Hamiltonian H ′ of the form (3.2). Let H ′′ be
the Hamiltonian of Lm (as in Lemma 3.2). Now the flow L(t) = Lm(t)◦L′(t)
is given by the Hamiltonian

H(z, t) = H ′′(z) +H ′(Lm(t)−1(z), t).

Of course it has also the form (3.2). Since we can decompose L into the
product L = Lm ◦ · · · ◦L1 effectively (see the proof of Theorem 2.1), we can
also compute H in an effective way.

Proposition 3.4. Let L : R2n → R2n be a hamiltonian symplectomor-
phism given by the flow z 7→ φ(t, z), t ∈ R. Assume that φ(t, 0) = 0 for
t ∈ [0, 1]. For every η > 0 there is an ε > 0 and a hamiltonian symplecto-
morphism Φ : R2n → R2n such that

• Φ(z) = L(z) for all z with ‖z‖ ≤ ε,
• Φ(z) = z for all z with ‖z‖ ≥ η.

Proof. We know that L(z) = φ(1, z), where φ(t, z) is the solution of some
differential equation

d

dt
φ(t, z) = J0(∇zH)(φ(t, z), t), φ(0, z) = z.

Since φ(t, 0) = 0 for every t ∈ [0, 1], we can find ε > 0 so small that all
trajectories {φ(t, z) : 0 ≤ t ≤ 1} which start from the ball B(0, ε) are
contained in the ball B(0, η/2). Let σ : R2n → R be a smooth function such
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that

σ(z) =
{

1 if ‖z‖ ≤ η/2,
0 if ‖z‖ ≥ η.

Take S = σH. The hamiltonian symplectomorphism Φ given by the differ-
ential equation

d

dt
φ(t, z) = J0(∇zS)(φ(t, z), t), φ(0, z) = z,

is well defined on the whole of R2n and

Φ(z) =
{
L(z) if ||z|| ≤ ε,
z if ‖z‖ ≥ η.

Now Theorem 3.3 easily yields the following:

Corollary 3.5. Let L : R2n → R2n be a linear symplectomorphism.
For every η > 0 there is an ε > 0 and a hamiltonian symplectomorphism
Φ : R2n → R2n such that

• Φ(z) = L(z) for all z with ‖z‖ ≤ ε,
• Φ(z) = z for all z with ‖z‖ ≥ η.

4. Characterization of symplectomorphisms. Before we formulate
our next result we need the following (well-known)

Lemma 4.1. Let X = (R2n, ω0) be the standard symplectic vector space.
Fix η > 0 and let a, b ∈ B(0, η). Then there exists a symplectomorphism
Φ : X → X such that

Φ(a) = b and Φ(z) = z for ‖z‖ ≥ 2η.

Proof. Let c = (c1, . . . , c2n) = b − a. Define a sequence of points as
follows:

a0 = a, ai = ai−1 + (0, . . . , 0, ci, 0, . . . , 0).

Of course ai ∈ B(0, η) and a2n = b. Now consider the translation

Ti : R2n 3 (x, y) 7→ (x, y) + (0, . . . , 0, ci, 0, . . . , 0) ∈ R2n.

We have Ti(ai−1) = ai for i = 1, . . . , 2n.
The translation Ti is a hamiltonian symplectomorphism given by the

Hamiltonian

Hi(x, y) =
{−ciyi if i ≤ n,
cixi−n if i > n.

Let Vi be the symplectic vector field which is determined by the Hamilto-
nian Hi. Since the ball B(0, r) is a convex set, all trajectories φ(t), 0 ≤ t ≤ 1,
of the symplectic vector fields Vi which begin at ai lie in the ball B(0, η).
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Let σ : R2n → R be a smooth function such that

σ(z) =
{

1 if ‖z‖ ≤ η,
0 if ‖z‖ ≥ 2η.

Now let Fi : R2n → R2n be the hamiltonian symplectomorphism given by
the Hamiltonian Gi = σHi. Then

Gi(ai−1) = ai and Gi(z) = z if ‖z‖ ≥ 2η.

Now it is enough to take Φ = G2n ◦G2n−1 ◦ · · · ◦G1.

We apply Proposition 3.4 to the general case:

Theorem 4.2. Let (X,ω) be a symplectic manifold. Let a1, . . . , am and
b1, . . . , bm be two families of points of X. For every i = 1, . . . , n choose a
linear symplectomorphism Li : TaiX → Tbi

X. Then there is a symplecto-
morphism Φ : X → X such that

Φ(ai) = bi, daiΦ = Li, i = 1, . . . ,m.

Proof. By the Darboux Theorem every point z ∈ X has an open neigh-
borhood Vz which is symplectically isomorphic to the ball B(0, rz) in the
standard vector space (R2n, ω0). Denote by Uz ⊂ Vz the open set which
corresponds to the ball B(0, rz/3).

Since dimX ≥ 2 the manifold X \ {a2, . . . , am} is also connected. Hence
there exists a smooth path γ : I → X such that γ(0) = a1, γ(1) = b1 and
{a2, . . . , am} ∩ γ(I) = ∅. Additionally we can assume that the sets Vz which
cover γ(I) are also disjoint from {a2, . . . , am}.

Let ε be a Lebesgue number for the function γ : I → X with respect
to the cover {Uz}z∈X and choose an integer N with 1/N < ε. If Ik :=
[k/N, (k + 1)/N ], then γ(Ik) is contained in some Uz; denote it by Uk, the set
Vz by Vk, and rz by rk. Let Ak := γ(k/N), in particular A0 = a1, AN = b1.

Since Vk
∼= B(0, rk) and Ak, Ak+1 ∈ B(0, rk/3) we can apply Lemma 4.1

to obtain a symplectomorphism Φ : B(0, rk)→ B(0, rk) such that

Φ(Ak) = Ak+1 and Φ(z) = z for ‖z‖ ≥ (2/3)rk.

We can extend Φ to the whole of X (we glue it with the identity); denote
this extension by Φk. Put

Ψ = ΦN ◦ ΦN−1 ◦ · · · ◦ Φ0.

Then Ψ(a1) = b1 and Ψ(ai) = ai for i > 1. Repeating this process, we
finally arrive at a symplectomorphism Σ : X → X such that Σ(ai) = bi
for i = 1, . . . ,m. In a similar way using Proposition 3.5 we can construct a
symplectomorphism Π : X → X such that

Π(bi) = bi, dbi
Π = Li ◦ (daiΣ)−1.

Now it is enough to take Φ = Π ◦Σ.
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Since for a compact symplectic manifold (X,ω) of dimension 2n it is well
known that for a fixed number 0 < s ≤ n there exists a closed 2s-dimensional
symplectic submanifold Z ⊂ X (which is a nontrivial result by S. Donaldson
[3, Corollary 6, p. 671]), we can use Theorem 4.2 to obtain:

Corollary 4.3. Let (X,ω) be a compact symplectic manifold of di-
mension 2n. Let a1, . . . , am be a family of points of X. Take 0 < s ≤ n.
For every i = 1, . . . ,m choose a linear 2s-dimensional symplectic subspace
Hi ⊂ TaiX. Then there is a closed symplectic 2s-dimensional submanifold
Y ⊂ X such that

ai ∈ Y, TaiY = Hi, i = 1, . . . ,m.

In contrast to the previously mentioned result on existence of symplectic
submanifolds, the existence of isotropic tori is easy to prove in Darboux
local coordinates. In a similar way to Corollary 4.3 we get:

Corollary 4.4. Let (X,ω) be a symplectic manifold of dimension 2n.
Let a1, . . . , am be a family of points of X. Take 0 < k ≤ n. For every
i = 1, . . . ,m choose a linear k-dimensional isotropic subspace Hi ⊂ TaiX.
Then there is a closed isotropic k-dimensional torus Y ⊂ X such that

ai ∈ Y, TaiY = Hi, i = 1, . . . ,m.

5. Diffeomorphisms that are symplectomorphisms. Finally, we
show that a symplectomorphism can be described as a diffeomorphism which
preserves symplectic or isotropic submanifolds of a given fixed dimension.

Theorem 5.1. Let (X,ωX) and (Y, ωY ) be compact symplectic mani-
folds of dimension 2n > 2. Fix a number 0 < s < n. Assume that Φ : X → Y
is a diffeomorphism which maps all 2s-dimensional symplectic submanifolds
of X onto symplectic submanifolds of Y. Then Φ is a conformal symplecto-
morphism, i.e., there exists a non-zero number c ∈ R such that

Φ∗ωY = cωX .

Proof. Fix z ∈ X and let H ⊂ TzX be a 2s-dimensional symplectic
subspace of TzX. By Corollary 4.3 (applied for m = 1, a1 = z and H1 = H)
there exists a 2s-dimensional symplectic submanifold M of X such that
z ∈M and TzM = H.

Let Φ(M) = M ′ and z′ = Φ(z). By assumption the submanifold M ′ ⊂ Y
is symplectic. This means that the space dzΦ(H) = Tz′M

′ is symplectic.
Hence dzΦ maps all linear 2s-dimensional symplectic subspaces of TzX onto
subspaces of the same type. By Proposition 2.4 this implies that dzΦ is a
conformal symplectomorphism. i.e.,

(dzΦ)∗ωY = λ(z)ωX ,
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where λ(z) 6= 0. This means that there is a smooth function λ : X → R∗
(= R \ {0}) such that

Φ∗ωY = λωX .

But since the form ωY is closed, so is Φ∗ωY . Since n > 1 this implies that
the derivative dλ vanishes, i.e., the function λ is constant.

Theorem 5.2. Let (X,ωX) and (Y, ωY ) be symplectic manifolds of di-
mension 2n > 2. Fix a number 1 < k ≤ n. Assume that Φ : X → Y is
a diffeomorphism which maps all k-dimensional isotropic tori of X onto
isotropic tori of Y. Then Φ is a conformal symplectomorphism, i.e., there
exists a non-zero constant c ∈ R such that

Φ∗ωY = cωX .

Proof. Fix z ∈ X and let H ⊂ TzX be a k-dimensional isotropic sub-
space of TzX. By Corollary 4.4 (applied for m = 1, a1 = z and H1 = H)
there exists a k-dimensional isotropic torus M of X such that z ∈ M and
TzM = H.

Let Φ(M) = M ′ and z′ = Φ(z). By assumption the torus M ′ ⊂ Y is
isotropic. This means that the space dzΦ(H) = Tz′M

′ is isotropic. Hence
dzΦ maps all linear k-dimensional isotropic subspaces of TzX onto subspaces
of the same type. By Proposition 2.5 this implies that dzΦ is a conformal
symplectomorphism. The rest of the proof is the same as in the case of
Theorem 5.1 above.

Remark 5.3. Let us note that in particular if Φ maps Lagrangian tori
onto tori of the same type then Φ is a conformal symplectomorphism.

Corollary 5.4. Let X be a compact manifold of dimension 2n > 2. Let
ω1 and ω2 be two symplectic forms on X. Fix a number 0 < k < n. Assume
that every 2k-dimensional ω1-symplectic submanifold of X is ω2-symplectic.
Then there exists a non-zero number c ∈ R such that

ω1 = cω2.

Proof. It is enough to apply Theorem 5.1 to X = (X,ω1), Y = (X,ω2)
and Φ = identity.

Corollary 5.5. Let (X,ω) be a compact symplectic manifold of di-
mension 2n > 2. Fix a number 0 < k < n. Assume that Φ : X → X is a
diffeomorphism which maps all 2k-dimensional symplectic submanifolds of
X onto submanifolds of the same type. Then Φ is a symplectomorphism or
an antisymplectomorphism, i.e., Φ∗ω = ±ω. If Φ preserves orientation and
n is odd , then Φ is a symplectomorphism. Moreover , if n is even, then Φ
has to preserve orientation.
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Proof. Indeed, we have Φ∗ω = cω. We can write

(5.3) vol(X) =
�

X

ωn = ±
�

X

Φ∗ωn = ±cn
�

X

ωn,

hence c = ±1. Moreover, if Φ preserves orientation and n is odd, then we
get c = 1. If n is even then (−ω)n = ωn and Φ has to preserve orienta-
tion.

Remark 5.6. Corollaries like Corollary 5.4 and Corollary 5.5 are also
true for a compact symplectic manifold X in the case of isotropic tori. A
similar geometric characterization of symplectomorphisms has already been
proved for diffeomorphisms preserving capacity, which turn out to be sym-
plectic or antisymplectic (cf. [5],[8]).

Example 5.7. We show that in the general case Φ need not to be a
symplectomorphism. Let Y = (S2, ω) (where ω is the standard volume form
on the sphere) and let (Xn, ωn) =

∏n
i=1 Y be a standard symplectic product.

Further, let σ : S2 3 (x, y, z) 7→ (x, y,−z) ∈ S2 be a mirror symmetry. Of
course σ∗ω = −ω. More generally, if Σ =

∏n
i=1 σ : Xn → Xn, then Σ∗ωn

= −ωn. Hence Φ from Corollary 5.5 may well be an antisymplectomor-
phism.

However, in any case either Φ or Φ ◦ Φ is a symplectomorphism.

Now let (X,ω) be a symplectic manifold and denote by Symp(X,ω)
the group of symplectomorphisms of X. To end this note we show that this
group also determines the conformal symplectic structure of X:

Theorem 5.8. Let X be a smooth manifold of dimension 2n > 2 and
let ω1, ω2 be two symplectic forms on X. If Symp(X,ω1) ⊂ Symp(X,ω2),
then there exists a non-zero constant c such that ω2 = cω1.

Proof. Take z ∈ X and consider the symplectic vector spaces V1 =
(TzX,ω1) and V2 = (TzX,ω2). By Theorem 4.2, for every linear symplecto-
morphism S of V1, there is a symplectomorphism ΦS ∈ Symp(X,ω1), such
that

ΦS(z) = z, dzΦS = S.

Since Symp(X,ω1) ⊂ Symp(X,ω2) we easily obtain Sp(V1) ⊂ Sp(V2).
Consequently, by Proposition 2.6 there exists a non-zero number λ(z) such
that ω2(z) = λ(z)ω1(z). Now we finish the proof as in the proof of Theo-
rem 5.1.
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