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N-determined p-compact groups
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Jesper M. Møller (København)

Abstract. One of the major problems in the homotopy theory of finite loop spaces is
the classification problem for p-compact groups. It has been proposed to use the maximal
torus normalizer (which at an odd prime essentially means the Weyl group) as the distin-
guishing invariant. We show here that the maximal torus normalizer does indeed classify
many p-compact groups up to isomorphism when p is an odd prime.
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1. Introduction. This paper addresses the classification problem at
odd primes for the p-compact groups introduced by W. G. Dwyer and
C. W. Wilkerson in their seminal paper [30] (surveyed in [63, 53, 26]). A
p-compact group is a connected, pointed, H∗Fp-local space BX such that
H∗(X; Fp) is finite where X = ΩBX is the loop space [30, §2]. It is custom-
ary, though ambiguous, to refer to BX by the name, X, for its underlying
loop space.

It has been conjectured [53, 72, 26], in analogy with the classification
theorem for compact Lie groups [25, 83], that p-compact groups are deter-
mined by their maximal torus normalizers. The maximal torus normalizer
N(X) for the p-compact group X is an extension

(1.1) T (X)→ N(X)→W (X)

of the maximal torus T (X) by the Weyl group W (X) [30, 9.8], and X is
said to be totally N -determined [66, 7.1] if

• X is determined by N(X), and

• the automorphisms of X are determined by their restrictions to N(X).

We show here that almost all simple p-compact groups are totally N -deter-
mined at odd primes.

1.2. Theorem. Let X be a simple p-compact group, where p is an
odd prime. Assume that the rational Weyl group (r0W (X)) 6= (r0W (E8))
if p = 3 and (r0W (X)) 6= (r0W (Ej)), j = 6, 7, 8, if p = 5. Then X is
totally N -determined.

The Weyl group W (X) [30, 9.7] of a connected p-compact group X is
a finite group of automorphisms of the free, finitely generated Zp-module
L(X)=π1T (X), i.e. W (X)⊂GL(L(X)). The rational Weyl group, r0W (X),
is the image of W (X) in GL(L(X) ⊗Zp Qp), and rpW (X), the Fp-Weyl
group, the image of W (X) in GL(L(X)⊗Zp Fp). As usual, (r0W (X)) stands
for the conjugacy class of the rational Weyl group. The connected p-compact
group X is simple if L(X)⊗ZpQp is an irreducible r0W (X)-module [65, 5.4].

At an odd prime p, the maximal torus normalizer extension (1.1) for
a connected p-compact group splits in an essentially unique way [5] and
thus N(X) is in fact completely determined by the reflection group
(W (X), L(X)). This explains the first part, merely a reformulation of The-
orem 1.2, of the the corollary below; see (4.3) for the precise meaning of the
other statements.

1.3. Corollary. Let X be a simple p-compact group as in Theo-
rem 1.2. Then X is determined up to (local) isomorphism by its (ratio-
nal) Weyl group, and the automorphism group Aut(X) is isomorphic to
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NGL(L(X))(W (X))/W (X). Furthermore, if X is centerless or simply con-
nected , then X is determined by its Fp-Weyl group, and X is a cohomolog-
ically unique p-compact group.

For the bigger class of connected (but not necessarily simple) p-compact
groups Theorem 1.2 takes on a particularly appealing form.

1.4. Corollary. Assume that p > 5. The map
{

Isomorphism classes of

connected p-compact groups

}
(W,L)−−−→

{
Similarity classes of

Zp-reflection groups

}

is a bijection, and Aut(X) is isomorphic to NGL(L)(W )/W for the connected
p-compact group X corresponding to the reflection group (W,L).

In the general case, for the class of not necessarily connected p-compact
groups, Theorem 1.2 takes the following form.

1.5. Corollary. Let X be a p-compact group such that all its sim-
ple factors satisfy the assumptions of Theorem 1.2. Then X is totally N -
determined and Out(X) ∼= Out(N(X)).

The simple factors of the p-compact group X are the simple, centerless
p-compact groups in the splitting [32, 80] of PX0 = X0/Z(X0), the adjoint
form of the identity component of X.

Let me also mention the following partial classification result for con-
nected finite loop spaces with maximal tori [70, 1.1].

1.6. Corollary (cf. [96], [70, 1.6]). Let X be a connected finite loop
spaces with a maximal torus. Assume that X has the same Weyl group as
the compact , connected simple Lie group G and that no simple factor of G
is locally isomorphic to E6, E7, or E8. Then (BX)[1/2] and (BG)[1/2] are
homotopy equivalent spaces.

In light of the observation by C. Wilkerson [97] that the Weyl group
of any connected finite loop space with maximal torus must agree with the
Weyl group of a compact connected Lie group, this proves the maximal torus
conjecture [49, Conjecture D, p. 68], [99] away from the prime 2 in a number
of particular cases.

The proof that the simple p-compact groups of Theorem 1.2 are N -
determined goes in outline as follows. Consider some connected p-compact
group X with maximal torus normalizer j : N → X and assume that the
same extended p-compact torus N can also serve as the maximal torus
normalizer j′ : N → X ′ for some other p-compact group X ′. Starting with
the configuration

X N
joo j′ // X ′
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our task is to construct an isomorphism f : X → X ′ under N . We observe
(3.7) that it suffices to consider the centerless form of X. According to
the Homology Decomposition Theorem [31, §8], BX is (the p-completion
of) the homotopy colimit of the A(X)op-space of centralizers BCX(E, ν)
of non-trivial elementary abelian p-subgroups ν : E → X of X. For any
monomorphism ν : E → X it is possible to find (non-uniquely) a preferred
lift µ : E → N of ν such that the morphisms

CX(E, ν) CN (E,µ)
Cjoo

Cj′ //CX′(E, ν
′)

are again maximal torus normalizers for the centralizers of (E, ν) and (E, ν ′)
where ν ′ = j′µ [67]. As the center of X is trivial, the centralizer of (E, ν)
will have smaller cohomological dimension than that of X [30, 6.14, 6.15].
Assuming, as part of an induction argument, that CX(E, ν) (which may very
well be disconnected) is totally N -determined, there will therefore be an
isomorphism f(E,µ) : CX(E, ν)→ CX′(E, ν

′) under CN (E,µ). It remains
to show that these locally defined isomorphisms f(E,µ) do not depend on
the choice of preferred lifts and that they combine to yield a morphism
f : X → X ′ under N .

N -determinism is actually not a property of the p-compact group X
itself but rather a property of the extended p-compact torus N(X): If X is
N -determined, so is, by the very nature of the concept, any other p-compact
group that admits N(X) for a maximal torus normalizer.

Most of the time the prime p will be assumed to be odd. Some mod-
ifications will be needed to handle the case where p = 2 [58]. Even the
formulation of the N -conjecture itself will have to be refined as N(O(2)) =
O(2) = N(SO(3)) but O(2) and SO(3) are distinct 2-compact groups.

Organization of the paper. In Section 3, I set up the general theory that
will be applied in a case-by-case verification of the N -conjecture for the
simple, centerless p-compact groups. We deal with an A-family, represented
by the p-compact groups PGL(n,C) = PSL(n,C), in Section 5, and with
the polynomial case, which includes nearly all remaining compact simple Lie
groups and all the exotic (non-Lie) simple p-compact groups, in Section 7.
The proofs of (1.2–1.6) are in Section 8. Sections 2 and 13 contain material
dealing with the general problem of computing cohomology groups of cate-
gories. (There is no claim to originality here as the vanishing result of (2.4)
was proved in [34] and the spectral sequence of (13.2) seems to be that of
Lück [54, 17.28] or S lomińska [87].)

Notation. Write Zp for the ring of p-adic integers, Qp for the field of p-
adic numbers, and Fp for the field with p elements. For a p-compact group
X, let
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• T (X) denote the maximal torus of X [30, 8.9],
• L(X) = π2(BT (X)) the lattice of X,
• Ť (X) = L(X)⊗ Z/p∞ the p-discrete maximal torus of X [30, §6],
• t(X) = L(X)⊗Z/p the maximal elementary abelian subgroup of Ť (X),
•W (X) the Weyl group of X [30, 9.6], r0W (X) the rational and rpW (X)

the mod p Weyl group of X (Section 4),
• N(X) the maximal torus normalizer of X [30, 9.8],
• Z(X) the center of X [31, 69],
• r(X) the rational rank (of the identity component) of X [30, 5.11],
• Aut(X) the group of invertible elements in the monoid End(X) =

[BX, ∗;BX] [66, §3] of based homotopy classes of based self-maps of BX,
and Out(X) = Aut(X)/π0(X) the corresponding group in the un-based
category, and
• A(X) the Quillen category of X.

The objects (E, ν) of A(X) are conjugacy classes of monomorphisms ν : E
→ X of non-trivial elementary abelian p-groups E into X. The morphisms
(E0, ν0) → (E1, ν1) of A(X) are group homomorphisms f : E0 → E1 such
that (E0, ν0) = (E0, ν1f). An object (E, ν) of A(X) is toral if ν : E → X
factors through the maximal torus T (X)→ X. Let

• A(X)≤t denote the full subcategory of all toral objects, and
• A(X)�t the full subcategory of all objects with a morphism to some

non-toral object.

The notation for categories is:

• pcg is the category of p-compact groups,
• Grp is the category of groups,
• Ab is the category of abelian groups,
• Sp is the category of simplicial sets, and
• Top is the category of topological spaces.

In [pcg], [Grp], [Sp] the objects are p-compact groups, groups, topological
spaces and the morphisms are conjugacy classes of p-compact group mor-
phisms, conjugacy classes of group homomorphisms, homotopy classes of
continuous maps.

Acknowledgments. I would like to thank Kasper Andersen, Jesper
Grodal, Dietrich Notbohm, and Antonio Viruel for several fruitful discus-
sions and for very valuable help at many points, and the referee for a long
list of constructive comments. This work was partially supported by Centre
de Recerca Matemàtica.

2. Higher limits of center functors. This section contains a vanish-
ing result (2.4) for the derived limits of a certain functor, defined in purely
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algebraic terms, which informs on the obstruction theory associated to the
Jackowski–McClure centralizer homology decomposition [45, 31] of BX.

Let W be a finite group and t a non-trivial FpW -module which is finite-
dimensional as an Fp-vector space. For non-trivial subgroups E0 and E1 of
t, put

(2.1)
W (E0, E1) = {w ∈W | w(E0) ⊆ E1},

W (E0) = {w ∈W | we = e for all e ∈ E0},
and note that the set of orbits for the action of the pointwise stabilizer group
W (E0) on the set W (E0, E1) is the set of group homomorphisms E0 → E1

induced by elements of W . The stabilizer subgroup W (E0, E0) of E0 will
also be written as W (E0).

2.2. Definition. A(W, t) is the category with

• objects: non-trivial elementary abelian subgroups E of t, and

• morphisms: group homomorphisms E0 → E1 induced by elements
of W .

For any ZpW -module L, Lj : A(W, t)→ Ab, j ≥ 0, is the functor that
takes the object E ⊆ t to the cohomology group H j(W (E);L) and the

morphism E0
w−→ E1 in A(W, t) to the homomorphism Hj(W (E0);L)

res◦w∗−−−−→
Hj(W (E1);L).

Here is a more detailed explanation of the functors Lj : Any morphism

E0 → E1 in A(W, t), represented by an element w ∈W (E0, E1), can be fac-
tored into an isomorphism w : E0 → wE0 followed by an inclusion. Consider
the corresponding group homomorphisms

W (E0)
c(w)−−−→W (E0)w ⊇W (E1)

where c(w)w0 = ww0w
−1 is conjugation by w and W (E0)w = wW (E0)w−1

=W (wE0) and let, as usual [37, 4.1.1], w∗ :Hj(W (E0);L)→Hj(W (E0)w;L)
be the isomorphism induced by c(w)−1 and multiplication by w on L. Define
Lj(w) as the composition

Hj(W (E0);L)
w∗−−→ Hj(W (E0)w;L)

res−−→ Hj(W (E1);L)

of w∗ followed by the restriction morphism. Since for all w0 ∈ W (E0) we
have W (E0)ww0 = W (E0)w and cohomology is insensitive to inner conju-
gation [55, IV.5.6], Lj(ww0) = Lj(w) for all w0 ∈ W (E0) and thus this
morphism is independent of the choice of the representative for wW (E0) ∈
W (E0, E1)/W (E0) = A(W, t)(E0, E1) (cf. [45, 7.6]).

For instance, for a connected p-compact group X, the functors

(2.3) L(X)2−j : A(W (X), t(X))→ Ab, j = 1, 2,
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take the non-trivial elementary abelian p-subgroup E of t(X) to the group
H2−j(W (X)(E);L(X)).

2.4. Lemma [34, 8.1]. Lj : A(W, t)→ Ab is an acyclic functor in the
sense that

limi(A(W, t);Lj) =

{
Hj(W ;L), i = 0,

0, i > 0,

for all j ≥ 0.

For a p-compact group X, let BCX : A(X)op → pcg and BZCX : A(X)
→ Top be the functors that take the object (E, ε) of A(X) to

BCX(E, ε) = map(BE,BX)Bε,(2.5)

BZCX(E, ε) = map(BCX(E, ε), BX)Be(ε),(2.6)

where Be(ε) : BCX(E, ε)→ BX is the evaluation map, and define

(2.7) πj(BZCX) : A(X)→ Ab, j = 1, 2,

to be the composition of BZCX with the jth homotopy functor. (There is no
basepoint problem here since only abelian p-compact groups are involved.)

2.8. Lemma. Let p be an odd prime and X a connected p-compact group.
Assume that the identity component CX(E)0 of the centralizer of any non-
trivial elementary abelian p-subgroup E of T (X) has N -determined auto-
morphisms (3.1). Then there is an equivalence of categories

A(W (X), t(X))→ A(X)≤t

such that the functors πj(BZCX) when restricted to A(X)≤t correspond to
the functors L(X)2−j, j = 1, 2, of (2.3).

Proof. Take wW (E0) : E0 → E1 in A(W (X), t(X)) to the morphism
w|E0 : (E0, ie0)→ (E1, ie1) in A(X)≤t (where ej : Ej → t(X), j = 0, 1, is
the inclusion and i the p-compact group morphism t(X) → T (X) → X).
This provides a functor

(2.9) A(W (X), t(X))→ A(X)≤t.

Since the natural mapW\[BE,BT (X)]→ [BE,BX], induced by BT (X)→
BX, is injective for any elementary abelian p-group E [65, 3.4], [32, 3.4],
this functor is full and as it is also clearly faithful, (2.9) is an equivalence of
categories.

Let now Ň(X) be a discrete approximation [31, 3.12] to the maximal
torus normalizer N(X). For any elementary abelian p-subgroup E of Ť (X),
CŇ(X)(E) is a discrete approximation to CN(X)(E) and ZCŇ(X)(E) is a

discrete approximation to ZCN(X)(E) which is isomorphic to ZCX(E) (2.19)

[66, 4.12]. Since the prime p is odd, Ň(X) = Ť (X)oW (X) is a semidirect
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product [5, 2.1], so

(2.10)
CŇ(X)(E) = CŤ (X)oW (X) = Ť (X)oW (X)(E),

Z(CŇ(X)(E)) = Ť (X)W (X)(E),

and hence it follows that πj(BZCX)(E) = πj((BH
0(W (X)(E); Ť (X)))∧p ) =

H2−j(W (X)(E);L(X)) = L(X)2−j(E).

If the Weyl group element w ∈ W (X) takes the elementary abelian
p-subgroup E0 ⊆ Ť (X) into the elementary abelian p-subgroup E1 ⊆ Ť (X),
then w represents a morphism w : E0 → E1 in A(W (X), t(X)). We want to
determine the effect of w on the centralizer centers. Choose a lift w̌ ∈ Ň(X)
of w ∈W (X)(E0, E1) ⊆W (X) = Ň(X)/Ť (X). Conjugation by w̌, given by
c(w̌)(n) = w̌nw̌−1, n ∈ Ň(X), takes E0 into E1 and conjugation by w̌−1,
c(w̌−1), takes CŇ(X)(E1) into CŇ(X)(E0) in such a way that the diagram

CŇ(X)(E0)× E0

e

��

CŇ(X)(E1)×E0
c(w̌−1)×1oo

1×c(w̌)
��

Ň(X) CŇ(X)(E1)×E1e
oo

where e is group multiplication, commutes up to inner automorphism of
Ň(X) (as c(w̌) ◦ e ◦ (c(w̌−1)× 1) = e ◦ (1× c(w̌))). Therefore, the diagram
of adjoint maps between spaces

BCŇ(X)(E0)

'
��

BCŇ(X)(E1)

'
��

Bc(w̌−1)oo

map(BE0, BŇ(X))Bµ1 map(BE1, BŇ(X))Bµ2
Bc(w̌)

oo

is homotopy commutative. (The vertical maps are equivalences by [40, Lem-
ma 2].) This shows that the map CX(E1)→ CX(E0) induced by the A(X)-
morphism E0 → E1 represented by w lifts to the map c(w̌−1) : CŇ(X)(E1)

→ CŇ(X)(E0) between maximal torus normalizers.

2.11. Corollary. Let p be an odd prime and X a connected p-compact
group. Then

limi(A(X)≤t, πj(BZCX)) =

{
πj(BZ(X)), i = 0,

0, i > 0.

for j = 1, 2. In particular , lim∗(A(X)≤t, π∗(BZCX)) = 0 if and only if X
is centerless.
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Proof. By (2.4, 2.8, 3.12(2)),

lim0(A(X)≤t, πj(BZCX)) = lim0(A(W (X), t(X)), L(X)2−j)

= H2−j(W (X);L(X)) = πj(BZ(X))

and, similarly, limi(A(X)≤t, πj(BZCX)) = 0 for i > 0.

Let πj(BZCX)�t be the subfunctor of πj(BZCX) which vanishes on all

toral objects of A(X) and has the same value as πj(BZCX) on all non-toral
objects of A(X). (To see that this is indeed a functor, observe that there
can be no morphism from a non-toral object to a toral object of the Quillen
category.)

2.12. Corollary. Let p be an odd prime and X a connected p-compact
group. Then there is an exact sequence

0→ lim0(A(X)�t;πj(BZCX)�t)→ lim0(A(X);πj(BZCX))→ πj(BZ(X))

→ lim1(A(X)�t;πj(BZCX)�t)→ lim1(A(X);πj(BZCX))→ 0

while limi(A(X);πj(BZCX)) = limi(A(X)�t;πj(BZCX)�t) for i ≥ 2. In

particular ,

lim∗(A(X);πj(BZCX)�t) ∼= lim∗(A(X)�t;πj(BZCX)�t)

∼= lim∗(A(X);πj(BZCX))

if and only if X is centerless.

Proof. The quotient functor π∗(BZCX)/π∗(BZCX)�t vanishes on all

non-toral objects so that, by (13.12), for all i ≥ 0,

limi(A(X);πj(BZCX)/πj(BZCX)�t)

= limi(A(X)≤t;πj(BZCX)/πj(BZCX)�t)

= limi(A(X)≤t;πj(BZCX))

which was computed in (2.11). Combine this with the fact that restriction

lim∗(A(X)�t;πj(BZCX)�t)← lim∗(A(X);πj(BZCX)�t)

is an isomorphism by (13.12) again.

Let St(GL(E)) denote the Steinberg representation for GL(E).

2.13. Corollary. Let p be an odd prime, X a connected p-compact
group with trivial center , and let j be equal to 1 or 2. If

HomA(X)(E,ν)(St(GL(E)), πj(BZCX(E, ν))) = 0

for all non-toral objects (E, ν) of rank j + 1 and j + 2, then

limj(A(X);πj(BZCX)) = 0 = limj+1(A(X);πj(BZCX)).
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Proof. Use (2.12) and Oliver’s cochain complex [81] for computing higher
limits over A(X).

For example, when (X, p) is (F4, 3) or (E8, 5) we have

lim∗(A(X);πj(BZCX)) = 0

because the Quillen category A(X) contains, up to isomorphism, a unique
non-toral object (V, ν); this V has order p3, V ∼= CX(V, ν), and A(X)(V, ν) =
SL(V ) [41, 7.4, 10.3]. The situation is much more complicated for the other
members of the E-family at p = 3 [3].

2.14. Relation between A(W, t) and the orbit category O(W ). Let O′(W )
denote the full subcategory of the orbit category of W generated by all
objects W/G with tG 6= 0. There are obvious functors

A(W, t)
L // O′(W )op

R
oo

given by

L(E0
wW (E0)−−−−−→ E1) = (W/W (E0)

wW (E0)←−−−−−W/W (E1)), w(E0) ⊂ E1,

R(W/G
wH−−→W/H) = (tG

wW (tH)←−−−−− tH), w−1Gw ⊂ H.
Using the fact that G ⊂ W (tG) and E ⊂ tW (E) we see that L and R are
adjoint functors in that

A(W, t)(E,R(W/G)) = O′(W )op(L(E),W/G)

for all objects E of A(W, t) and all objects W/G of O′(W )op. Observe also
that

(2.15) NW (G) ⊂W (tG) and W (E) ⊂ NW (W (E))

for all non-trivial subspaces E ⊂ t and all subgroups G ⊂W . In particular,
the endomorphism monoid of E is the quotient

A(W, t)(E) = W (E)/W (E)

of the group W (E) by its normal subgroup W (E). Thus A(W, t) is an EI-
category [54], a category in which all endomorphisms are isomorphisms.

A collection is a set C of subgroups of W which is closed under conjuga-
tion. Let OC(W ) denote the C-orbit category, the full subcategory of O(W )
generated by all objects W/G with G ∈ C, and AC(W, t) the full subcategory
of A(W, t) generated by all objects of the form tG for G ∈ C.

The collection C is said to be subgroup-sharp for the ZpW -module L [27,
1.13] if

limi(OC(W )op;Lj) =

{
Hj(W ;L), i = 0,

0, i > 0,

where Lj(W/G) = Hj(G;L) as in (2.14).
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2.16. Corollary. If the collection C is subgroup-sharp for L and tG 6= 0
for all g in C then Lj restricts to an acyclic functor on AC(W, t) with

lim0(AC(W, t);Lj) = Hj(W ;L).

Proof. This is immediate from (13.11) as AC(W, t) = ROC(W ).

It is known [45, §5] that the collection C(p) of all p-subgroups of W is
subgroup-sharp for any ZpW -module L and, for general reasons, tP 6= 0 for
any p-group P ∈ C(p).

2.17. Centralizers. I close this section with a simplified proof of the fol-
lowing well-known result from [74, 3.9] which was used in connection with
the mapping spaces of (2.6).

Let P be a p-toral Lie group (i.e. the identity component of P is a torus
and π0(P ) is a finite p-group), G a compact Lie group having a finite p-group
as its component group, and CG(P ) the Lie group centralizer, which also has
a finite p-group as component group [47, A4], of a Lie group homomorphism
f : P → G. The standard Lie group multiplication homomorphism CG(P )×
P → G extending f induces a p-compact group morphism ĈG(P )× P̂ → Ĝ

extending f̂ : P̂ → Ĝ. (Ĝ denotes the p-compact group BG∧p obtained by
p-completing the classifying space of the compact Lie group G.) We shall

now see that ĈG(P ) = CĜ(P̂ ) and in particular that Ẑ(P ) = Z(P̂ ), i.e. that
centralizers and centers of p-toral Lie groups can be computed either in the
Lie group category or in the p-compact group category.

2.18. Lemma [35, 101, 73]. The adjoint

BĈG(P )→ map(BP̂ ,BĜ)Bf̂

of the above standard morphism is a homotopy equivalence. In particular ,

BẐ(P ) ' map(BP̂ ,BP̂ )B1

where Z(P ) is the Lie group center of P .

Proof. The p-toral Lie group P contains [48, 1.1] a dense p-discrete toral
subgroup P̌ =

⋃
P̌m which is the union of an ascending sequence of finite

p-groups P̌m. The inclusion of P̌ into P induces a discrete approximation
i : P̌ → P̂ to the p-compact toral group P̂ and so we have homotopy equiv-
alences [30, §6]

map(BP̂ ,BĜ)Bf̂ ' map(BP̌ ,BĜ)Bf̂i ' map(BP̌m, BĜ)B(f̂ i|P̌m)

for m large enough. In particular, the above mapping spaces are Fp-complete
[31, 2.5], [30, 6.20]. Furthermore, by Dwyer–Zabrodsky [35, 1.1] and [36, 2.5]
or Lannes [52], the canonical map

BCG(P̌m)→ map(BP̌m, BĜ)B(f̂ i|P̌m)
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is an H∗Fp-equivalence and here

CG(P̌m) ∼= CG(P̌ ) ∼= CG(P )

when m is large enough and since P̌ is dense in P .

Let now G be an extended p-compact torus and Ǧ its discrete approxi-
mation [31, 3.12].

2.19. Lemma. Let µ : π → Ǧ be a homomorphism from a discrete group
π into the extended p-discrete torus Ǧ.

(1) The group-theoretic centralizer CǦ(µ) of µ is a discrete approxima-
tion to the extended p-compact torus BCG(µ) = map(Bπ,BG)Bµ.

(2) The group-theoretic center Z(Ǧ) of Ǧ is a discrete approximation to
the extended p-compact torus BZ(G) = map(BG,BG)B1

Proof. The maps

BCǦ(µ)→ map(Bπ,BǦ)Bµ → map(Bπ,BG)Bµ

are H∗Fp-equivalences: The first map is even a homotopy equivalence [40,
Lemma 2] and the fibre of the second map is [60] a K(V, 1), for some ratio-
nal vector space V , because the fiber of BǦ → BG has this form [31, 3.1].
Taking µ to be the identity map of Ǧ, we obtain a discrete approximation
to Z(G).

3. N-determinism. This section contains comments on and further
development of the material in [66] concerning N -determined p-compact
groups.

3.1. N -determined automorphisms. Let j : N(X)→ X be the maximal
torus normalizer for a p-compact group X. Turn this maximal torus normal-
izer Bj : BN(X)→ BX into a fibration. Any automorphism f : X → X of
the p-compact groupX restricts to an automorphism AM(f) :N(X)→N(X)
of the maximal torus normalizer, unique up to the action of the Weyl group
W (X0) = π1(X/N(X)) of the identity component X0 of X, such that the
diagram

BN(X)
B(AM(f)) //

Bj

��

BN(X)

Bj

��
BX

Bf
// BX

commutes up to based homotopy [66, §3], [1], [101, Theorem C]. The Adams–
Mahmud homomorphism is the resulting homomorphism

(3.2) AM: Aut(X)→ Aut(N(X))/W (X0)
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of automorphism groups, and X is said to have N -determined automor-
phisms if this homomorphism is injective [66, 3.10].

The following lemma, collecting results from [66, 4.2, 4.3, 4.8] and (9.4),
reduces the problem of determining which p-compact groups have N -deter-
mined automorphisms to the connected and centerless case. (The simple fac-
tors of the p-compact group X are the simple, centerless p-compact groups
in the splitting [32, 80] of PX0 = X0/Z(X0), the adjoint form of the identity
component of X.)

3.3. Lemma. Let p be any prime number.

(1) The connected p-compact group X has N -determined automorphisms
if its adjoint form PX does.

(2) The p-compact group X has N -determined automorphisms if its iden-
tity component X0 does.

(3) The p-compact group X has N -determined automorphisms if all of
its simple factors do.

In the connected, centerless case we use an inductive procedure based
on homology decomposition [31, 8.1] and preferred lifts [67].

3.4. Proposition [66, 4.9]. Suppose that the p-compact group X is con-
nected and centerless. Suppose that

(1) CX(L, ν) has N -determined automorphisms for each rank 1 object
(L, ν) of A(X).

(2) lim1(A(X);π1(BZCX)) = 0 = lim2(A(X);π2(BZCX)).

Then X has N -determined automorphisms.

Proof. Let f : X → X be an automorphism of X such that AM(f) : N
→ N is conjugate to the identity map of N . Then (E, fν) = (E, ν) for each
object (E, ν) of A(X), for if µ : E → N is a lift of ν : E → X we have

fν = fjµ = j ◦ AM(f) ◦ µ = j ◦ µ = ν.

Thus composition with f determines an automorphism

Cf : CX(E, ν)→ CX(E, ν)

of each centralizer in the homology decomposition hocolimBCX → BX
[31, §8]. In particular, when (L, ν) is a rank 1 object with preferred lift
µ : L→ T → N [67, 4.10], we obtain a commutative diagram

CN (L, µ)
Cj

xxqqqqqqqqqq Cj′

&&MMMMMMMMMM

CX(L, ν)
Cf

∼= // CX(L, ν)
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which implies, using the first assumption, that Cf is conjugate to the identity
[66, 3.9]. But then Cf is conjugate to the identity for all (E, ν) ∈ Ob(A(X)).
To see this, choose any line L < E and let ν : E → CX(L, ν|L) be the canon-
ical factorization (3.18) of ν through the centralizer of L. Then note that
under the isomorphism CCX(L,ν|L)(E, ν(L)) ∼= CX(E, ν) the isomorphism
Cf induced by f on X corresponds (3.20) to the isomorphism CCf induced
by Cf on CX(L, ν|L).

The second assumption of the lemma assures that there are no further
obstructions to conjugating f to the identity [100], [66, 4.9].

3.5. N -determined p-compact groups. Let j : N → X be the maximal
torus normalizer for the p-compact group X. Suppose that N may also
serve as the maximal torus normalizer for some other p-compact group X ′

so that we have two monomorphisms

(3.6) X N
joo j′ //X ′

that are both maximal torus normalizers. The p-compact group X is N -
determined if, in this situation, there always exists an isomorphism f : X →
X ′ under N , i.e. a morphism f : X → X ′ such that fj and j′ are conjugate.
A totally N -determined p-compact group is an N -determined p-compact
group with N -determined automorphisms [66, 7.1].

The following lemma, collecting results from [66, 7.8, 7.10] and (9.6), re-
duces the problem of determining which p-compact groups areN -determined
to the connected and centerless case.

3.7. Lemma. Let p be an odd prime.

(1) The connected p-compact group X is N -determined if its adjoint form
PX is.

(2) The p-compact group X is N -determined if its identity component
X0 is.

(3) The p-compact group X is N -determined if all of its simple factors
are.

Again, in the connected, centerless case we use an inductive procedure.

3.8. Proposition (cf. [66, 7.17]). In the situation of (3.6), suppose that
X is connected and centerless and that

(1) All objects of A(X) of rank ≤ 2 have totally N -determined central-
izers.

(2) For each non-toral rank 2 object (V, ν) of A(X) there exist a rank 2
object (V, ν ′) of A(X ′) and an isomorphism f(V, ν) : CX(V, ν)→ CX′(V, ν

′)
such that j′µ = ν ′ and



N-determined p-compact groups 215

CN (V, µ)
Cj

xxqqqqqqqqqq Cj′

&&NNNNNNNNNNN

CX(V, ν)
f(V,ν)

∼= // CX′(V, ν
′)

commutes for any of the p+1 [66, 6.2] special preferred lifts (V, µ) of (V, ν).

(3) lim2(A(X);π1(BZCX)) = 0 = lim3(A(X);π2(BZCX)).

Then there exists an isomorphism f : X → X ′ under N .

Proof. For each rank 1 object or toral rank 2 object (V, ν) of A(X),
put ν ′ = j′µ where µ : V → N is the preferred lift [67, 4.10], and de-
fine f(V, ν) : CX(V, ν)→ CX′(V, ν

′) to be the unique isomorphism under
CN (V, µ). Then ν ′ equals the composition

V
ν // CX(V, ν)

f(V,ν) // CX′(V, ν
′) res // X ′

and f(V, ν)ν is the canonical factorization (3.18) ν ′ of ν ′.

Any non-toral rank 2 object (V, ν) has p+ 1 special preferred lifts (V, µ)
indexed by the set of lines in V [66, 6.2]. By assumption, neither j ′µ nor
the isomorphism f(V, µ) : CX(V, ν)→ CX′(V, j

′µ) under CN (V, µ) depend
on the choice of µ. Put ν ′ = j′µ and f(V, ν) = f(V, µ) where µ is any of the
p+ 1 preferred lifts of ν.

These morphisms f(V, ν) for |V | ≤ p2 respect morphisms in A(X): Con-
sider for instance a morphism α : (V1, ν1)→ (V2, ν2) from a rank 1 object to
a rank 2 object. Let µ2 : V2 → N be the special preferred lift of ν2 for which
µ1 = µ2α is the preferred lift of ν1 = ν2α. Since ν ′1 = j′µ1 = j′µ2α = ν ′2α,
the group homomorphism α is an A(X ′)-morphism (V1, ν

′
1)→ (V, ν ′2). Then

ν ′2 = j′µ2 = j′ ◦ resN ◦ µ2 = j′ ◦ resN ◦ CN (α)µ2

= resX ◦ Cj′ ◦ CN (α)µ2 = resX ◦ f(V1, ν1) ◦ CX(α)ν2

as we see from the commutative diagram

CN (V1, µ1)
Cj

wwnnnnnnnnnnnn Cj′

((PPPPPPPPPPPP
resN // N

j′

��
V2

CN (α)µ2

00

CX(α)ν2

// CX(V1, ν1)
f(V1,ν1)

∼= // CX′(V1, ν
′
1) resX′

// X ′

and CX′(α)ν ′2 = f(V1, ν1)◦CX(α)ν2 as we see from the argument of (10.13).
Taking centralizers of V2 we obtain the commutative diagram
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CN (V2, µ2)

Cj

zzuuuuuuuuuuuuuuuuuuuuuuu

Cj′

$$JJJJJJJJJJJJJJJJJJJJJJJ

CCN (V1,µ1)(V2, CN (α)µ2)

∼=

OO

uuuuuuuuuuu

zzvvvvvvvvvvv
IIIIIIIIIII

$$IIIIIIIIIIICX(V2, ν2)
f(V2,ν2)

∼= // CX′(V2, ν
′
2)

CCX (V1,ν1)(V2, CX(α)ν2)

∼=

OO

Cf(V1,ν1)

∼= //

��

CCX′ (V1,ν
′
1)(V2, CX′(α)ν′2)

∼=

OO

��
CX(V1, ν1)

f(V1,ν1)

∼= // CX′(V1, ν
′
1)

which shows that the isomorphism f(V2, ν2) : CX(V2, ν2)→ CX′(V2, ν
′
2) un-

der CN (V2, µ2) is induced from the isomorphism f(V1, ν1) : CX(V1, ν1)
→ CX′(V1, ν

′
1) under CN (V1, µ1). This implies naturality as we may en-

large the commutative diagram by the morphisms CX(V2, ν2)→ CX(V1, ν1)
and CX′(V2, ν

′
2)→ CX′(V1, ν

′
1) induced by α (3.20).

Also, if α ∈ A(X)(V, ν) ⊆ GL(V ) is a Quillen automorphism of the rank
2 object (V, ν), and µ : V → N a special preferred lift of ν, then µα is again
a special preferred lift of ν and hence ν ′α = j′µα = j′µ = ν ′ by assumption.
Thus A(X)(V, ν) ⊆ A(X ′)(V, ν ′) and as

CX(V, ν)
CX(α)−1

// CX(V, ν)
f(V,ν)

∼=
// CX′(V, ν

′)
CX(α) // CX′(V, ν

′)

is an isomorphism under CN (V, µα), it equals f(V, ν) by assumption. This
is naturality for Quillen automorphisms of (V, ν).

Let now (E, ν) be an object of A(X) of any rank > 2. Choose a line
L < E. Define ν ′ : E → X ′ to be the composite monomorphism

E
ν // CX(E, ν)

res // CX(L, ν|L)
f(L,ν|L)

∼=
// CX′(L, (ν|L)′) res // X ′

and define the isomorphism of centralizers f(E, ν) : CX(E, ν)→ CX′(E, ν
′)

to be the isomorphism

CX(E, ν)
Cres←−−∼= CCX(L,ν|L)(E, ν(L))

Cf(L,ν|L)−−−−−−→∼=
CCX′ (L,ν|L)(E, f(L, ν|L)ν(L))

Cres−−→∼= CX′(E, ν
′)

induced by f(L, ν|L).

To see that this is well-defined, let L1 < E and L2 < E be two distinct
rank 1 subgroups of E and let V < E be the subgroup generated by them.
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Naturality for morphisms from a rank 1 object to a rank 2 object gives a
commutative diagram

CX(L1, ν|L1)
f(L1,ν|L1) // CX′(L1, (ν|L1)′)

res

((QQQQQQQQQQQQQQQ

E

ν(L1)
77nnnnnnnnnnnnnn ν(V ) //

ν(L2)
''PPPPPPPPPPPPPP CX(V, ν|V )

f(V,ν|V ) //

OO

��

CX′(V, (ν|V )′) res //

OO

��

X ′

CX(L2, ν|L2)
f(L2,ν|L2)

// CX′(L2, (ν|L2)′)

res

66mmmmmmmmmmmmmmm

showing that neither ν ′ nor f(E, ν) depend on the choice of the rank 1
subgroup of E.

To show functoriality of this construction, let α : (E1, ν1)→ (E2, ν2) be a
morphism in the category A(X). Choose a rank one subgroup L1 < E1 and
put α(L1) = L2 < E2. Naturality for the rank 1 case gives a commutative
diagram

E1

α

��

// CX(L1, ν1|L1)
f(L1,ν|L1) // CX′(L1, (ν1|L1)′) // X ′

E2
// CX(L2, ν1|L2)

CX(α)

OO

f(L2,ν|L2)
// CX′(L2, (ν1|L2)′) //

CX′(α)

OO

X ′

which shows that ν ′1 = ν ′2α, thus

A(X)((E1, ν1), (E2, ν2)) ⊆ A(X ′)((E1, ν
′
1), (E2, ν

′
2)),

and implies commutativity of the diagram

CX(E1, ν1)
f(E1,ν1)

∼=
// CX′(E1, ν

′
1)

CX(E2, ν2)
f(E2,ν2)

∼= //

CX(α)

OO

CX′(E2, ν
′
2)

CX(α)

OO

which is naturality.
We have now constructed a collection

CX(E, ν)
f(E,ν)−−−−→ CX′(E, ν

′) res−−→ X ′, (E, ν) ∈ Ob(A(X)),

of homotopy A(X)-invariant centric [28] monomorphisms from the central-
izers of the homology decomposition of BX [31, 8.1] to BX ′. Because the
obstruction groups are assumed to vanish, this collection can [100], [66, §2]
be realized by a morphism

Bf : BX
'←− hocolimBCX → BX ′
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such that

CX(E, ν)

��

f(E,ν) // CX′(E, ν
′)

��
X

f
// X ′

commutes for all (E, ν) ∈ Ob(A(X)). In particular, f is a morphism under
the maximal torus, for f is a morphism under the maximal rank monomor-
phisms [31, §4] X ← CN (L, µ)→ X ′ for some rank 1 object (L, ν) of A(X).
Thus f : X → X ′ is in fact an isomorphism [32, 5.6], [67, 3.11], and since f
is the identity on the maximal torus T = N0, also π0AM(f) : W →W is the
identity map, for W is faithfully represented as a group of operators on T
[30, 9.7]. Thus π∗(BAM(f)) is the identity automorphism of π∗(BN) and
AM(f) is the identity of N [64, 5.2], [5, 3.3].

Verification of the third assumption reduces to a computation involving
Steinberg representations (2.13). For the verification of the second condition
we shall use the following lemma which may look rather specialized but in
fact applies in all cases considered in this paper.

3.9. Lemma. Let (V, ν) be a non-toral rank 2 object of A(X) with special
preferred lift µ : V → N and put ν ′ = j′µ. Assume that

(1) All rank 2 objects of A(X), whose centralizers are isomorphic to
CX(V, ν), are isomorphic to (V, ν).

(2) A(X)(V, ν) = SL(V ). (Then also A(X ′)(V, ν ′) = SL(V ).)

(3) The isomorphism f(V, µ) : CX(V, ν)→ CX′(V, ν
′) under CN (V, µ) is

SL(V )op-equivariant.

Then j′µ1 = ν ′ and f(V, µ1) = f(V, µ) : CX(V, ν)→ CX′(V, ν
′) for all

special preferred lifts (V, µ1) of (V, ν).

Proof. The GL(V )-orbit (V, ν)·GL(V ) contains p−1 objects, the GL(V )-
orbit (V, µ) · GL(V ) contains (p − 1)(p + 1) objects, and the map j :
(V, µ) ·GL(V ) → (V, ν) ·GL(V ) is (p + 1)-to-1 [66, 6.2]. By assumption,
the orbit (V, µ) · GL(V ) contains all special preferred lifts whose centraliz-
ers in N are isomorphic to N(CX(V, ν)). Since X and X ′ have the same
special preferred lifts [66, 7.13], also j ′ : (V, µ) ·GL(V )→ (V, j′µ) ·GL(V ) is
(p+ 1)-to-1. Since the orbit (V, j ′µ) ·GL(V ) thus contains p− 1 objects, the
stabilizer subgroup of (V, j ′µ) must be SL(V ) as this is the only subgroup of
GL(V ) of that index. Thus the Quillen automorphism group A(X ′)(V, ν ′)
is SL(V ).

Any other special preferred lift of ν has the form µα for an α in SL(V )
[66, 6.2], so, clearly, j ′(µα) = ν ′α = ν ′ is independent of the choice of α.
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The commutative diagram

CN (V, µα)

Cj
��

CN (V, µ)
CN (α)oo CN (α) //

Cj

yyrrrrrrrrrr Cj′

&&MMMMMMMMMM
CN (V, µα)

Cj′
��

CX(V, ν) CX(V, ν)
CX(α)
oo

f(V,µ)
// CX′(V, ν

′)
CX′(α)

// CX′(V, ν
′)

shows that f(V, µα) = CX′(α)f(V, µ)CX(α)−1, since CX(V, ν) has N -deter-
mined automorphisms so that f(V, µα) = f(V, µ) by the third assumption.

The canonical factorizations of ν and ν ′ are SL(V )op-equivariant (3.19)
and they provide a commutative diagram

(3.10) V
ν

zzvvvvvvvvv
ν′

$$IIIIIIIIII

CX(V, ν)
f(V,µ)

// CX′(V, ν
′)

which shows that the restriction of f(V, µ) to V is SL(V )op-equivariant.
It is a tautology that f(V, µα) = f(V, µ) for all α in the Borel subgroup
stabilizing µ so it is in fact only necessary to check equivariance with respect
to one other element (of order p) [91, 3.6.21] of SL(V ).

3.11. Centers and automorphism groups of p-compact groups. The fol-
lowing theorem collects some useful facts from various sources that will be
applied several times in this paper.

3.12. Theorem. Let p be an odd prime and X a connected p-compact
group.

(1) [4, 5] The semidirect product Ň(X) = Ť (X) oW (X) is a discrete
approximation [31, 3.12] to the maximal torus normalizer N(X).

(2) [31, §7] The abelian group Ž(X) given by

H0(W (X); Ť (X))

= (H0(W (X);L(X))⊗Q)/H0(W (X);L(X))×H1(W (X);L(X))

is a discrete approximation to the center [69, 31] of X.

(3) [66, 7.2] Aut(X)
AM∼= Out(N(X)) provided X is totally N -determined.

The automorphism group of N(X) sits [64, 5.2] in a short exact sequence

(3.13) 0→ H1(W (X); Ť (X))→ Aut(N(X))

→ Aut(W (X), Ť (X), e(X))→ 1

where the normal subgroup to the left consists of all automorphisms ofN(X)
that induce the identity on homotopy groups, and the group to the right
consists of all pairs (α, θ) ∈ Aut(W (X))×Aut(Ť (X)) such that θ is α-linear
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and the induced automorphismH2(α−1, θ) [95, 6.7.6] preserves the extension
class e(X) ∈ H2(W (X); Ť (X)). The image of W (X0) ⊆ W (X) = π0N(X)
[69, 3.8] in Aut(N(X)) does not intersect the subgroup H1(W (X); Ť (X))
(as W (X0) is represented faithfully in Aut(Ť (X)) [30, 9.7]) so there is an
induced short exact sequence

(3.14) 0→ H1(W (X); Ť (X))→ Aut(N(X))/W (X0)

→ Aut(W (X), Ť (X), e(X))/W (X0)→ 1

whose middle term is the target of the Adams–Mahmud homomorphism
(3.2).

If X is connected and p is odd, the cohomology group to the left is trivial
and e(X) = 0 [5] so

Aut(N(X)) ∼= Aut(W (X), Ť (X), 0) ∼= NGL(L(X))(W (X))

is [66, 3.5], [5, 3.3] the group of self-similarities of the Zp-reflection group
(W (X), L(X)) (4.1), and the target of the Adams–Mahmud homomorphism
(3.2)

(3.15) Out(N(X)) = Aut(N(X))/W (X) ∼= NGL(L(X))(W (X))/W (X)

is [62, §2] the middle term of an exact sequence

(3.16) 1→ AutZp[W (X)](L(X))/Z(W (X))→ Out(N(X))→ Out(W (X))

of automorphism groups. An automorphism of X is exotic if its lift to N(X)
[66, 3.7] induces a non-trivial outer automorphism of W (X).

3.17. Remark. Let p and X be as in (3.12).

(1) The formula

πj(BZ(X)) = H2−j(W (X);L(X)), j = 1, 2,

is an alternative version of (3.12.(2)).
(2) The endomorphism monoid of X is given by

End(X)− {0}

∼=
{
NGL(L(X))(W (X))/W (X) = Aut(X), p | |W (X)|,
(NGL(L(X)⊗Q)(W (X)) ∩ End(L(X)))/W (X), p - |W (X)|,

provided X is totally N -determined and simple [65, 5.4]; use [65, 5.6, 5.6]
and [64, 5.2] to see this. See [46, 47, 48] for the Lie case.

3.18. Canonical factorizations [30, 8.2]. Let ν : V → X be a monomor-
phism from an elementary abelian p-group to the p-compact group X. The
canonical factorization of ν through its centralizer is the central monomor-

phism ν(V ) : V → CX(V, ν) whose adjoint is V ×V +−→ V
ν−→ X. The compo-

sition V
ν−→ CX(V, ν)

res−−→ X equals ν. If α : (V1, ν1)→ (V2, ν2) is a morphism
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in A(X) then the canonical factorizations are related by a commutative di-
agram

(3.19) V1

α

��

ν1 // CX(V1, ν1)
res // X

V2 ν2

// CX(V2, ν2)

CX(α)

OO

res
// X

so that α : (V1, ν1)→ (V2, CX(α)ν2) is a morphism in A(CX(V1, ν1)). The
induced morphisms CX(α) and CCX(V1,ν1)(α) can be identified in that the
diagram

(3.20) CCX(V1,ν1)(V1, ν1)
Cres

∼=
// CX(V1, ν1)

CCX(V1,ν1)(V2, CX(α)ν2)

res
44jjjjjjjjjjjjjjjj

CCX (V1,ν1)(α)

OO

Cres

∼=
// CX(V2, ν2)

CX(α)

OO

commutes up to conjugacy.

4. Cohomologically unique p-compact groups. We shall here dis-
cuss to what extent N -determined p-compact groups are determined by
their Weyl groups or their mod p cohomology algebras (4.3). The message
intended is that cohomological uniqueness [36, 74, 16, 93] is incidental while
N -determinism is universal. As the Weyl group of a connected p-compact
group is a reflection subgroup of the automorphism group of the lattice we
start out by introducing the category of reflection subgroups.

For a commutative domain R, an element g of GL(r,R) is a reflection
if the r × r matrix Ir − g has rank at most 1 where Ir is the r × r identity
matrix. A subgroup W of GL(r,R) is a reflection subgroup if it is generated
by the reflections contained in it.

4.1. Definition. For R = Zp,Qp,Fp, let R-Refl be the category with

• objects: pairs (W,L) where L is a finitely generated free R-module and
W a finite reflection subgroup of AutR(L), and
• morphisms: pairs (α, θ) : (W1, L1)→ (W2, L2) where α : W1 →W2 is a

group homomorphism and θ ∈ HomR(L1, L2) an α-linear R-module homo-
morphism.

A similarity is an isomorphism in R-Refl. Two objects of Zp-Refl are
R-similar if they are taken to isomorphic objects of R-Refl by the functor
rR : Zp-Refl→ R-Refl induced by − ⊗Zp R. G0(W,L) (resp. Gp(W,L)) is
the set of similarity classes of objects of Zp-Refl that are Qp-similar (resp.
Fp-similar) to the object (W,L). An object (W,L) of Zp-Refl is said to be
simple if L⊗Zp Qp is a simple QpW -module.
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A similarity class of objects of R-Refl amounts to an integer r ≥ 0 and
a conjugacy class (W ) of a reflection subgroup of GL(r,R). The automor-
phism group AutR-Refl(W,L) of an R-reflection subgroup is isomorphic to
the normalizer NGL(L⊗R)(W ) of W in GL(L⊗R) [62, §2], [61].

In Zp-Refl we shall often write r0 (resp. rp) for the functor rR if R = Qp

(resp. R = Fp). (Of course, if R = Zp, then rR is the identity functor.) By
[29, Proof of 5.2], W is a reflection subgroup of GL(L) if and only if rpW
is a reflection subgroup of GL(L ⊗ Z/p); also, W and rpW are abstractly
isomorphic groups as the kernel of GL(r,Zp)→ GL(r,Fp) contains no non-
trivial finite order elements when p is odd [57], [88, 10.7.1]. Two objects,
(W1, L1) and (W2, L2), of Zp-Refl are Qp-similar iff there exists a morphism
(α, θ) : (W1, L1)→ (W2, L2) in Zp-Refl such that r0(α, θ) is an isomorphism
in Qp-Refl, and they are Fp-similar iff there exists a group isomorphism
α : W1→W2 and a Zp-linear isomorphism θ : L1→L2 such that (α, θ⊗ZpFp)
is an isomorphism in Fp-Refl. All elements of G0(W,L), which is a finite
set according to the Jordan–Zassenhaus Theorem [24, 24.2], are represented
by centerings of (W,L), i.e. by objects of the form (W,M) where M is
a ZpW -submodule of L and the index [L : M ] is finite. Two centerings,
(W,M1) and (W,M2), are similar if and only if A(M1) = M2 for some A in
the normalizer NGL(L⊗Q)(W ) of W in GL(L⊗Q) [84, 2.1–2.3].

4.2. Proposition. Let (W,L) be an object of Zp-Refl.

(1) G0(W,L) = {(W ′) < GL(L) | (r0W
′) = (r0W )}.

(2) Gp(W,L) = {(W ′) < GL(L) | rpW ′ = rpW}.
As usual , (W ) stands for the conjugacy class of the subgroup W .

Proof. (1) Let A(W ) = {U ∈ GL(L ⊗ Q) | U−1WU ⊆ GL(L)} be the
set of automorphisms of L⊗Q that conjugate the subgroup W ⊆ GL(L) to
(another) subgroup of GL(L). We shall define surjections

{(W ′) < GL(L) | (r0W
′) = (r0W )}� A(W )� G0(W,L)

and show that the corresponding equivalence relations on A(W ) are the
same. The left surjection simply takes U ∈ A(W ) to the subgroup conjugacy
class (U−1WU). The right map takes U ∈ A(W ) to the similarity class of
(W,UL). This is indeed a well-defined surjection because for U ∈ GL(L⊗Q)
we have

U−1WU ⊆ GL(L)⇔ (U−1WU)(L) = L⇔W (UL) = UL,

meaning that UL is a ZpW -submodule of L ⊗Q if and only if U ∈ A(W ).
The Zp-Refl-objects (W,UL) and (W,V L), U, V ∈ A(W ), are similar if and
only if V AU−1W = WVAU−1 for some isomorphism of the form

UL
U−1

−−−→∼= L
A−→∼= L

V−→∼= V L
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for an A ∈ GL(L). In other words, (W,UL) and (W,V L) are similar if and
only if U−1WU and V −1WV are conjugate as subgroups of GL(L).

(2) The map

{(W ′) < GL(L) | rpW ′ = rpW} → Gp(W,L)

taking (W ′) to (W ′, L) is clearly well-defined and injective. To see that it is
also surjective, let (W1, L1) be an object of Zp-Refl that admits a similarity
(αp, θp) : rp(W1, L1)→ rp(W,L) in Fp-Refl. Lift the isomorphism θp to a Zp-
linear isomorphism θ : L1 → L. Then (W1, L1) and (W ′, L), W ′ = θW1θ

−1,
are similar and rpW

′ = θprp(W1)θ−1
p = rpW and thus the subgroup W ′ is

mapped to the element of Gp(W,L) represented by (W1, L1).

The Weyl group W (X) of a connected p-compact group X is by birth a fi-
nite reflection subgroup of GL(L(X)) [30, 9.7] and (W (X), L(X)), (r0W (X),
L(X) ⊗ Qp), and (rpW (X), L(X) ⊗ Fp) are objects of R-Refl for R =
Zp,Qp,Fp, called the Zp-Weyl group (or just the Weyl group), the Qp-Weyl
group, and the Fp-Weyl group of X, respectively. (As to functoriality we
note that any toric morphism [68] between connected p-compact groups de-
termines a morphism between the corresponding reflection subgroups.)

4.3. Definition. Let X be a connected p-compact group.

(1) X is determined by its R-Weyl group if any connected p-compact
group Y with the same R-Weyl group as X, i.e. with W (Y ) R-similar to
W (X), is isomorphic to X.

(2) X is a cohomologically unique p-compact group if any connected p-
compact group Y with H∗(BY ; Fp) isomorphic to H∗(BX; Fp) as an algebra
over the mod p Steenrod algebra, is isomorphic to X.

All p-compact tori are clearly cohomologically unique.

4.4. Corollary. Let p be an odd prime and X an N -determined con-
nected p-compact group.

(1) X is determined by its Zp-Weyl group W (X).
(2) If G0(W (X), L(X)) = ∗, then X is determined by its Qp-Weyl group

r0W (X).
(3) If Gp(W (X), L(X)) = ∗, then X is determined by its Fp-Weyl group

rpW (X).
(4) If X is determined by its Fp-Weyl group, then X is a cohomologically

unique p-compact group.

Proof. At odd primes, the (discrete) maximal torus normalizer of a con-
nected p-compact group, which is a split extension (3.12), is determined,
up to isomorphism, by the similarity class of the Weyl group. The next
two items are immediate consequences of this, since we are assuming W (X)
recoverable from r0W (X), respectively rpW (X).
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The rational rank r(X) as well as the Fp-Weyl group rpW (X) can be
read off from H∗(BX,Fp) thanks to Lannes theory [52]. Indeed, r(X) is the
maximal r ≥ 0 for which there exists a monomorphism (Z/p)r � X whose
centralizer is a p-compact torus and rpW (X) is (2.8) the automorphism
group in the Quillen category of the object t(X)→ X.

4.5. Lemma. Let W be a finite reflection subgroup of GL(L). Put t =
L/pL.

(1) [84, (1) p. 248] If t is an irreducible Fp[W ]-module, then G0(W,L)
= ∗.

(2) [7, 7.1.2] If H1(rpW ; Hom(t, t)) = 0, then Gp(W,L) = ∗.
Proof. For (1), let M be a ZpW -submodule of L not contained in pL.

Since the image of M in t = L/pL is non-trivial, we get L = M + pL by
irreducibility and L = M by Nakayama’s lemma [86, 9.2]. The H1-condition
of (2) assures that rpW lifts uniquely to GL(r,Zp).

The sets G0(W,L) and Gp(W,L) are determined in (11.18, 11.25, 11.26)
for (W,L) a simple reflection subgroup and p an odd prime.

For a connected p-compact groupX, let SX stand for the universal cover-
ing group ofX and PX = X/Z(X) the adjoint form ofX [31, 69]. Recall that
for (W,L) ∈ Ob(Zp-Refl) there are associated objects (SW,SL), (PW,PL)
∈ Ob(Zp-Refl) [75], (11.1).

4.6. Lemma. SSX = SX = SPX and PPX = PX = PSX for any
connected p-compact group X.

Proof. Use [69, 4.7, 5.4, 5.5] and that BSX = BX〈2〉 is the 2-connected
cover of BX.

4.7. Proposition. Let p be an odd prime and X an N -determined con-
nected p-compact group.

(1) H0(W (X); Ť (X)) = Ž(X) and H0(W (X);L(X)) = π1(X).
(2) SL(X) = L(SX) and PL(X) = L(PX).

Proof. The formula for the center of X (3.12(2)) immediately shows that
PL(X) = L(PX). By inspection we see that

(4.8) H0(W (PX);L(PX)) = π2(BPX)

for any simple p-compact group X. (The formula is known to hold in the
Lie case by classical results. The exotic simple p-compact groups are all
centerless and polynomial (7.9) so in this case X = PX and π2(BX) =
0 because H2(BX; Fp) = 0. Also H0(W (X);L(X)) = 0 by (11.4.3) for
G0(W (X)) = ∗ (11.18) so that L(X) = SL(X).) Therefore,

SL(PX) = ker(L(PX)→ H0(W (PX);L(PX)))

= ker(L(PX)→ π1(PX)) = L(SPX) = L(SX)
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for any simple X. For a general connected X, the Splitting Theorem for
centerless p-compact groups [32] tells us that PX =

∏
PXi where Xi is

simple. Consequently,

SL(X) = SPL(X) = SL(PX) =
∏

SL(PXi) =
∏

L(SXi)

=
∏

L(SPXi) = L(SPX) = L(SX).

From the finite covering π → SX × Z(X)0 → X of [69, 5.4] we obtain a
short exact sequence of ZpW (X)-modules

(4.9) 0→ SL(X)×H0(W (X);L(X))→ L(X)→ π → 0

and, using H1(W (X);π) = 0 = H0(W (X);SL(X)) (11.3, 11.4.3), a short
exact sequence of Zp-modules

0→ H0(W (X);L(X))→ H0(W (X);L(X))→ π → 0

identical to the short exact sequence for computing π1(X).

Recall that we write X1 ≥ X2 if there exists an isogeny X1 � X2 [65,
p. 216] in pcg, and (W1, L1) ≥ (W2, L2) if there exists an isogeny (W1, L1)
→ (W2, L2) in Zp-Refl (11.23).

4.10. Corollary. Let p be an odd prime and X1 and X2 two connected
p-compact groups. Assume that PX2 is totally N -determined.

(1) X1 and X2 are locally isomorphic ⇔ (W,L)(X1) and (W,L)(X2) are
Qp-similar.

(2) X1 ≥ X2 ⇔ (W,L)(X1) ≥ (W,L)(X2).

(3) The local isomorphism system [65, 4.7] of X2 is poset isomorphic to
G0(W (X2), L(X2)).

Proof. Write (Wi, Li) for (W (Xi), L(Xi)), i = 1, 2. It is clear from the
results of [65, §2–§4] that if X1 and X2 are locally isomorphic (and X1 ≥ X2)
then (W1, L1) and (W2, L2) are Qp-similar (and (W1, L1) ≥ (W2, L2)). Con-
versely, suppose that (W1, L1) and (W2, L2) are Qp-similar. Then (W1, L1) ∼=
(W2, Pα̌(SL2)) for some diagram α̌ : π̌(SL2) � π(L1)

ϕ−→ ŤH0(W2;L2) of
Zp-modules (11.20). Since SL2 = L(SX2), this means that (W1, L1) is sim-
ilar to (W (X ′2)L(X ′2)) for the p-compact group

X ′2 =
SX2 × Z(X2)0

(π(L1), ϕ)

locally isomorphic to X2 [65, 2.8]. But X ′2 is totally N -determined if PX2

is (3.3, 3.7), and therefore X1 is actually isomorphic to X ′2 (4.4). Moreover,



226 J. M. Møller

if (W2, Pα̌(SL2)) ≥ (W2, L2) then (11.21) there is a commutative diagram

π̌(SL2)

∼=
��

π̌(L1)
��

��

oooo ϕ // ŤH0(W2;L2)

����
π̌(SL2) π̌(L2)oooo // ŤH0(W2;L2)

induced by an automorphism of SL2 and an epimorphism of ŤH0(W2;L2)
= Ž(X2)0 onto itself with finite kernel. But any automorphism of SL2 =
L(SX2) comes from an automorphism of SX2 (3.12(3)) and so the above
diagram determines [65, 4.3, 4.5] an isogeny X1 � X2.

4.11. Corollary. Let p be an odd prime. There are fibration sequences

Bπ(L(X))→ BSX ×B2H0(W (X);L(X))→ BX,

BX → B2LH0(W (X); Ť (X))×BPX → B2π̌(L(X))

for any N -determined connected p-compact group X.

Proof. Write (W,L) for the reflection subgroup (W (X), L(X)) associ-
ated to X. The first of these fibration sequences will follow if we can show
that

(4.12) Bπ(L)

��

// BSX

��
B2H0(W ;L) // BX

is a homotopy fiber square. The top horizontal map corresponds to the
monomorphism π(L) � π̌(SL) = H0(W ; Ť (SL)) = Ž(SX) of (11.8.2)
and the bottom one corresponds to the monomorphism ŤH0(W ;L) �
H0(W ; Ť (L)) = Ž(X) of (11.4(1)). There is a fibration

BH0(W ;L)→ Bπ(L)→ B2H0(W ;L)

induced from the short exact sequence 0 → H0(W ;L) → H0(W ;L) →
π(L)→ 0 of abelian groups. But H0(W ;L) and π1(X) are (4.7) isomorphic
abelian groups and thus the left and right vertical maps in (4.12) have
identical fibers.

For the second fibration, it is enough to prove that there exists a homo-
topy fiber square

(4.13) BX //

��

B2LH0(W ; Ť (L))

��
BPX // B2π̌(L)
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with an abelian topological group in the lower right corner. The top hori-
zontal map corresponds to the epimorphism H0(W ;L)� LH0(W ; Ť (L)) of
(11.4(4)) and the bottom one to the epimorphism H0(W ;PL) = π(PL) �
π̌(L) of (11.8(2)). There is a fibration

BH0(W ; Ť (L))∧p → B2LH0(W ; Ť (L))→ B2π̌(L)

obtained by applying the Fiber Lemma [14, II.5.1] to the fibration

BH0(W ; Ť (L))→ B2π̌(L)

with BH0(W ; Ť (L)) as fiber reflecting the defining short exact sequence for
π̌(L). ButH0(W ; Ť (L)) is (3.12(2)) a discrete approximation to the center of
X and thus the left and right vertical maps in (4.13) have identical fibers.

The N -determined connected p-compact group BX is, in other words,
the quotient p-compact group of BSX×B2H0(W (X);L(X)) corresponding
to the subgroup π(L(X)) (11.8(4)) of the center

π̌(SL(X))× ŤH0(W (X);L(X))

(4.7, 11.8(1)), or the covering p-compact group [17], [69, 3.3] of

B2LH0(W (X); Ť (X))×BPX
corresponding to the quotient group π̌(L(X)) (11.8(3)) of the fundamental
group LH0(W (X); Ť (X))× π(PL(X)) (4.7, 11.8(1)).

According to [74, 8.1], any “p-convenient and simply connected or pseudo
simply connected” compact connected Lie group satisfies (4.5(2)). For our
purposes, however, the following corollary will suffice.

4.14. Corollary. Let p be an odd prime and let X be the p-compact
group represented by

• the product subgroup U(n1) × . . . × U(nk), n1 + . . . + nk = n, ni ≥ 0,
of U(n), or

• the intersection with SU(n) of such a subgroup of U(n), or

• the image in PU(n) = U(n)/U(1) of such a subgroup of U(n).

Then Gp(W (X), L(X)) = ∗.

Proof. Write t = t(U(n)), t0 = t(SU(n)), and t1 = t(PU(n)) (the dual to
t0). It suffices (4.5(2)) to show that H1(W ;−) = 0 where W is a subgroup
of the form Σn1 × . . .× Σnk of W (U(n)) = Σn and the blank is any of the
FpΣn-modules Hom(t, t), Hom(t0, t0) or Hom(t1, t1).

Let i be 1 or 2. From the fact that H i(Σn; Fp) = 0 for all n when p is
odd [50, 12.2.2], we inductively deduce that also H i(W ; Fp) = 0. But then
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also

H i(W ; t0) ∼= H i(W ; t) ∼= H i(W ; t1),

H1(W ; Hom(t0, t0)) ∼= H1(W ; Hom(t, t0)),

H1(W ; Hom(t1, t1)) ∼= H1(W ; Hom(t, t1)),

as we see from the exact sequences in cohomology induced by the short exact
sequences

0→ t0 → t
+−→ Fp → 0, 0→ Fp

∆−→ t→ t1 → 0,

0→ t0 → Hom(t, t0)→ Hom(t0, t0)→ 0,

0→ Hom(t1, t1)→ Hom(t, t1)→ t1 → 0

of FpΣn-modules.

Since the representation t = IndΣnΣn−1
(Fp) is induced from the trivial

1-dimensional representation, its restriction to W ,

resΣnW (t) = resΣnW IndΣnΣn−1
(Fp) =

∏

x∈W\Σn/Σn−1

IndW∩xΣn−1(Fp),

is a product of representations induced from trivial 1-dimensional represen-
tations. But W ∩ xΣn−1, the intersection of W with a conjugate of Σn−1 =
Σ1 × Σn−1, is again a subgroup of W -type, so it follows that H i(W ; t) =∏
H i(W ∩ xΣn−1; Fp) = 0. Furthermore, Hom(t,−) = IndΣnΣn−1

(−) so that,

by the same argument, H1(W ; Hom(t,−)) = 0 where the blank can be t, t0
or t1.

5. The p-compact group PGL(n,C). In this section we show N -
determinism for the A-family of p-compact groups where p is an odd prime.
See Broto and Viruel [16, 15] for an alternative proof and [66, 7.19] for a
prototype of Theorem 5.1.

5.1. Theorem. The p-compact group PGL(n,C) is totally N-determined
for all n ≥ 1 and all odd primes p.

As a consequence (5.3) of this theorem also GL(n,C), for instance, is
totally N -determined so that we may conclude from (3.12(3), 3.16) that

Aut(GL(n,C)) = AutZpW (GL(n,C))(L(GL(n,C))) = AutZp[Σn](Z
n
p )

when n > 2.

5.2. Corollary. Let X be a p-compact group whose Qp-Weyl group
r0W (X) is in Clark–Ewing family 1 and assume that p is odd. Then:

(1) X is totally N -determined.

(2) X is determined by its Zp-Weyl group.
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(3) For n > 2,

End(X) ∼=
{

Zp, n < p,

Z×p ∪ {0}, n ≥ p,
while End(SL(2,C)) = Zp/Z

×.

(4) If π1(X) = 1, or Z(X) = 1, or n < p3, then X is determined by its
Fp-Weyl group and X is a cohomologically unique p-compact group.

Proof. This is immediate from (3.3, 3.7) and (3.17(2), 4.4, 11.18). In
connection with the application of (3.17(2)), observe that the outer auto-
morphism of the symmetric group Σ6 [91, 2.2.18, 2.2.20] cannot be lifted to
an automorphism of N(X) because all such automorphisms take reflections
to reflections.

5.3. Corollary. Let X be the p-compact group represented by

• the product subgroup GL(n1,C)× . . .×GL(nk,C), n1 + . . .+ nk = n,
ni ≥ 0, of GL(n,C), or

• the intersection of such a subgroup with SL(n,C), or

• the image of such a subgroup in PGL(n,C).

Then X is totally N -determined , X is determined by its R-Weyl group for
R = Zp, Fp, and X is a cohomologically unique p-compact group (p odd).

Proof. That X is totally N -determined follows from (5.1) together with
(3.3, 3.7). Apply (4.14, 4.4) for the other properties of X.

We shall prove (5.1) by inductively verifying that BPGL(n,C) satisfies
the sufficient criteria (3.4, 3.8, 3.9) for total N -determinism. For this pro-
cess, it is crucial (2.12) to have information about the non-toral elementary
abelian p-subgroups of PGL(n,C) = GL(n,C)/C× and their centralizers.
Thus we shall start out by identifying the non-toral elementary abelian
p-subgroups of PGL(n,C), their Quillen automorphism groups, and their
centralizers.

Non-toral elementary abelian p-subgroups of PGL(n,C) can be con-
structed from extra-special p-groups contained in GL(n,C) as follows: Let
P be an extra-special p-subgroup (this means [P,P ] = Z(P ) is of order p
[85, 5.3]) and E an elementary abelian p-subgroup of GL(n,C) such that

Z(P ) ⊆ Z(GL(n,C)), [P,E] = {1} = P ∩ E,
where Z(P ) is the center of P and Z(GL(n,C))=C× the center of GL(n,C).
Then T = PE is a non-abelian subgroup of GL(n,C) that maps onto a
non-trivial non-toral elementary abelian p-subgroup, V , of PGL(n,C) with
kernel Z(P ). (V is non-toral because the pre-image of a toral subgroup of
PGL(n,C) is toral in GL(n,C).)
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In fact, all non-trivial non-toral elementary abelian p-subgroups of the
Lie group PGL(n,C) have this form.

5.4. Lemma [41, 3.1]. Let V be a non-trivial non-toral elementary abel-
ian p-subgroup of PGL(n,C). Then

• p divides n, and
• there is an inclusion morphism of short exact sequences of groups

1 // Z(P ) //

��

T //

%

��

V //

%

��

1

1 // C× // GL(n,C) // PGL(n,C) // 1

where T = PE is the direct product of an extra-special p-group P ⊆ GL(n,C)
and an elementary abelian p-group E ⊆ GL(n,C) such that P ∩E = {1} =
[P,E]. The extra-special p-group P can be chosen to have exponent p.

Proof. If n is not divisible by p, then all elementary abelian p-subgroups
of PGL(n,C) are toral. Assume now that p divides n. As H2(V ; Z/p) maps
onto Hom(H2(V ); C×) = H2(V ; C×), there is a subgroup R ⊆ GL(n,C)
that maps onto V with a kernel that is cyclic of order p and central in
GL(n,C). If R were abelian, then R and V would be toral subgroups.

The commutator subgroup [R,R] is cyclic of order p for it is non-trivial
and contained in the kernel of the epimorphism R→ V . Thus V = R/[R,R].
Let P be a normal subgroup of R such that P/[R,R] is complementary to
Z(R)/[R,R]. ThenR = PZ(R) and P is extra-special as Z(P ) = P∩Z(R) =
[R,R] = [PZ(R), PZ(R)] = [P,P ].

The commutative diagram

P × Z(R)

��

// GL(n,C)

��
P/[R,R]× Z(R)/[R,R] // PGL(n,C)

has an adjoint diagram

Z(R) //

��

CGL(n,C)(P )

��

// GL(n,C)

��
Z(R)/[R,R] // CPGL(n,C)(P/[R,R])0 // PGL(n,C)

where the horizontal maps are inclusions and the two rightmost vertical
maps are epimorphisms with kernel C×. The centralizer of P in GL(n,C) is
a product of general linear groups [82, Proposition 4] and Z(R) is included
here as an abelian, hence toral, subgroup. Therefore, Z(R)/[R,R] is included
as a toral subgroup in (the identity component of) the centralizer of P/[R,R]
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in PGL(n,C). It follows that Z(R)/[R,R] is the isomorphic image of an
elementary abelian p-group E ⊆ CGL(n,C)(P ) ⊆ GL(n,C).

By construction, [P,E] = {1} = E∩Z(P ) = E∩P , so P and E permute,
T = PE is a subgroup of GL(n,C) that maps onto V with kernel Z(P ). For
any extra-special p-group P− ⊆ GL(n,C) of exponent p2 with Z(P−) = p

√
1

there is an extra-special p-group P+ ⊆ GL(n,C) of exponent p that has the
same center, the same centralizer, and the same image in PGL(n,C) as P−
(5.19). Therefore we can assume P = P+ has exponent p.

The commutator subgroup and the center of the covering group T = PE
of V are [T, T ] = [P,P ] = Z(P ) = p

√
1 and Z(T ) = Z(P )E ⊇ [T, T ].

By taking commutators in T we get an alternating bilinear form

(5.5) f : V × V → [T, T ]

on V = T/[T, T ], i.e. f(u1, u2) = [u1, u2] where u ∈ T is a lift of u ∈ V . This
bilinear form may be degenerate in that

V ⊥ = Z(T )/[T, T ] = E

and we obtain a non-degenerate alternating bilinear form

(5.6) f : V/V ⊥ × V/V ⊥ → [T, T ]

by factoring out V ⊥ or, equivalently, by restricting to the subspace P/[P,P ]
∼= V/V ⊥ ∼= T/Z(T ) of V .

Define

Isom(V, f) = {α ∈ Aut(V ) | f(α(u1), α(u2)) = f(u1, u2)},
Aut(f) = {(A, a) ∈ Aut(V/V ⊥)× Aut(Z(T )) | f ◦ (A× A) = a ◦ f}

to be the group of all isometries of (V, f) and, respectively, the group of all
pairs of automorphisms (A, a) ∈ Aut(V/V ⊥)× Aut(Z(T )) that make

V/V ⊥ × V/V ⊥

A×A
��

f // [T, T ] � � // Z(T )

a

��
V/V ⊥ × V/V ⊥

f

// [T, T ] � � // Z(T )

commutative.
Any outer automorphism α of T induces an automorphism a(α) of Z(T )

and an automorphism A(α) of T/Z(T ) = V/V ⊥ such that (A(α), a(α)) ∈
Aut(f).

5.7. Lemma. For odd p there is a short exact sequence

1→ Hom(V/V ⊥, V ⊥)→ Out(T )
(A,a)−−−→ Aut(f)→ 1

for the outer automorphism group of T .



232 J. M. Møller

Proof. The 2-cocycle for the extension Z(T ) → T → T/Z(T ) = V/V ⊥

is c where

u1 · u2 = c(u1, u2)u1u2, u1, u2 ∈ T/Z(T ),

where u ∈ T is a lift of u ∈ T/Z(T ). Since

f(u1, u2)c(u2, u1) = [u1, u2](u2 · u1)(u2u1)−1 = (u1 · u2)(u2u1)−1

= (u1 · u2)(u1u2)−1 = c(u1, u2)

for all u1, u2 ∈ T/Z(T ), the 2-cochain f measures the failure of the 2-cocycle
c to be symmetric.

If the pair (A, a) is in Aut(f), then the 2-cochain d = (A∗c)−1(a∗c) is
symmetric, for

f(Au1, Au2) = af(u1, u2)

⇔ c(Au1, Au2)−1ac(u1, u2) = c(Au2, Au1)−1ac(u2, u1),

and hence 2d = δq where q is the associated quadratic form, q(u) = d(u, u),
viewed as a 1-cocycle. Thus (A, a) can be lifted to an automorphism of T .

The kernel of the map α 7→ (A(α), a(α)) is easily determined as follows.
There is a surjection

Hom(T/Z(T ), Z(T ))� ker(Out(T )→ Aut(f))

taking the homomorphism ϕ : T/Z(T )→ Z(T ) to the automorphism t 7→
ϕ(t)t of T . This automorphism is inner precisely when ϕ(t) = [u, t] for some
u ∈ T . Since any homomorphism T → [T, T ] is of this form, the kernel is
isomorphic to

Hom(T/Z(T ), Z(T ))/Hom(T/Z(T ), [T, T ]) ∼= Hom(T/Z(T ), Z(T )/[T, T ])

∼= Hom(V/V ⊥, V ⊥).

For example, if P is an extra-special p-group then Out(P ) is isomorphic
to the group Aut(f) (when p is odd).

We shall next determine the Quillen automorphism groups of the sub-
groups T ⊆ GL(n,C) and V ⊆ PGL(n,C) of (5.4).

5.8. Definition. For a homomorphism % : H → G of a (finite) group H
into a Lie group G, define the Quillen automorphism group A(G)(H, %) as

A(G)(H, %) = {α ∈ Out(H) | (%α) = (%)}
where (%) denotes the representation (%) ∈ Rep(H,G) = Hom(H,G)/G
represented by the homomorphism %.

If the target of % is G = GL(n,C), in particular, then

A(G)(H, %) = {α ∈ Out(H) | tr(%α) = tr(%)}
by complex representation theory.
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5.9. Lemma. Let T = PE and V = T/[T, T ] be as in (5.4) and assume
that T has exponent p. Then the homomorphism

A(GL(n,C))(T, %)→ A(PGL(n,C))(V, %)

is surjective.

Proof. Suppose that BC× normalizes V in PGL(n,C) for some B ∈
GL(n,C). Then TB ≤ TC×. But if g ∈ T and gB = zh for some z ∈ C×

and some h ∈ T , then z must have order p since g and h have order p. Thus
z is an element of p

√
1 = [T, T ] ≤ T . Consequently, TB = T .

In the situation of (5.4), consider first the special case where E is trivial
and T = P is an extra-special p-group whose center is central in GL(n,C).
The extra-special p-group P has |P : [P,P ]| = p2d characters of degree 1
and p − 1 irreducible characters of degree pd (described in (5.19)). These
irreducible representations of degree pd are faithful and they are [43, V.16.14]
in bijective correspondence with the non-trivial linear forms µ : Z(P )→ C×;
the representation corresponding to µ is the representation µP induced from
any extension of µ to a linear form on a maximal normal abelian subgroup
of P . Thus the representation % of P has the form

% =
∑

µP +
∑

χ

for some non-trivial linear forms µ on Z(P ) and some homomorphisms
χ : V → C×. Since % is faithful at least one µ must appear, and since % takes
the center of P into the center of GL(n,C), no χs can occur and exactly
one µ occurs. (Observe that for non-identity g ∈ Z(P ), µP (g) 6= 1 = χ(g).)
Thus in fact

% = mµP , pdm = n,

for some non-trivial homomorphism µ : Z(P )→ C×. From the formula [43,
V.16.14], [44, 7.5]

tr %(g) =

{
pdmµ(g), g ∈ Z(P ),

0, g 6∈ Z(P ),

we see that the Quillen automorphism groups

A(GL(n,C))(P, %) = {α ∈ Out(P ) | a(α) = 1},
A(PGL(n,C))(V, %) = Sp(V )

consist of those outer automorphisms of P that restrict to the identity on
the center Z(P ) and (5.7, 5.9) of all isometries of the non-degenerate space
(V, f), respectively. (Note also that V = P/P ∩C× is unique up to isomor-
phism as an object of A(PGL(n,C)).)

In general, T = PE is the direct product of an extra-special p-group with
an elementary abelian p-group E. Since the restriction of % to P is of the
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form %|P = mµP , as we have just seen, representation theory for products
of groups [43, V.10.3], [44, 8.1] tells us that the representation % = µP ]χ is
the outer tensor product of µP with a faithful m-dimensional representation
χ of E = V ⊥. From the formula

tr %(g, e) =

{
pdµ(g)χ(e), g ∈ Z(P ),

0, g 6∈ Z(P ),

we see that the Quillen automorphism groups

A(GL(n,C))(T, %) = {α ∈ Out(T ) | a(α) ∈ A(GL(n,C))(Z(T ), µ]χ)},
A(PGL(n,C))(V, %) = {α ∈ Isom(V, f) |α|V ⊥ ∈ A(PGL(n,C))(V ⊥, χ)}

consist of those outer automorphisms of T that restrict to Quillen automor-
phisms of the m-dimensional representation µ]χ of Z(T ) = Z(P )E and of
those isometries of the inner product space (V, f) whose restrictions to V ⊥

leave the representation χ invariant, respectively.

Define A(T ) ⊆ Out(T ) and A(V, f) ⊆ Aut(V ) to be the groups

A(T ) = {α ∈ Out(T ) | a(α) = 1},
A(V, f) = {α ∈ Isom(V, f) | α is the identity on V ⊥},

consisting of those outer automorphisms that restrict to the identity on
Z(T ), respectively of all isometries of (V, f) that restrict to the identity on
E = V ⊥. Then A(T ) is a subgroup of the Quillen automorphism group
A(GL(n,C))(T, %) (and equal to the latter if T is extra-special). It follows
from (5.7) that A(T ), of order |Sp(V/V ⊥)|·|Hom(V/V ⊥, V ⊥)|, is isomorphic
to A(V, f).

This proves the following lemma.

5.10. Lemma. The Quillen automorphism group A(GL(n,C))(T, %) con-
tains A(T ) and the Quillen automorphism group A(PGL(n,C))(V, %) con-
tains A(V, f). If T is extra-special , A(PGL(n,C))(V, %) equals Sp(V ).

The final step consists in identifying the centralizers and their centers for
the subgroups T ⊆ GL(n,C) and V ⊆ PGL(n,C) of (5.4). The information
we need is obtained in (5.12) as an application of the more general, and
elementary, (5.11).

5.11. Lemma. Let T be any subgroup of GL(n,C), % : T → GL(n,C)
the inclusion, and Z a central subgroup of GL(n,C).

(1) There is a short exact sequence of Lie groups

1→ CGL(n,C)(T )/Z → CGL(n,C)/Z(T )
∂−→ Hom(T,Z)(%) → 1

where the group to the right is the isotropy subgroup for the action of
Hom(T,Z) on (%) ∈ Rep(T,GL(n,C)) and ∂(BZ)(g) = [B, g].
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(2) The connected component of CGL(n,C)/Z(T ) is

CGL(n,C)/Z(T )0 = CGL(n,C)(T )/Z

and the group of components π0(CGL(n,C)/Z(T )) is isomorphic to

Hom(T,Z)(%) = {φ : T → Z | ∃B ∈ GL(n,C) ∀g ∈ T : φ(g) = [B, g]}.

Proof. The exact sequence of the first point is a consequence of the short
exact sequence

1→ CGL(n,C)(T )→ {B ∈ GL(n,C) | [B,T ] ⊆ Z} ∂−→ Hom(T,Z)(%) → 1

because CGL(n,C)/Z(T ) is the quotient of the middle group by the central
subgroup Z. The second point follows from the first because the centralizer
of T in GL(n,C), a product of general linear groups [82, Proposition 4], is
connected.

5.12. Lemma. Let T and V be as in (5.4).

(1) If T = P is extra-special , then

CPGL(pdm,C)(V ) = V × PGL(m,C), Z(CPGL(pdm,C)(V )) = V,

where the Quillen automorphism α ∈ A(V, f) = Sp(V ) acts as α−1 × 1 and
α, respectively.

(2) If V ⊥ has rank one, then the component group of Z(CPGL(pdm,C)(V ))

is isomorphic to V/V ⊥ or to V .

(3) π1Z(CPGL(pdm,C)(V )) is a finitely generated free abelian group with

trivial A(V, f)-action.

Proof. In the special case where T = P is extra-special, all elements φ
of Hom(P,C×) are of the form φ(g) = [h, g] for some h ∈ P . Thus all φ
preserve the representation (%) and it follows from (5.11) that the natural
homomorphism

(5.13) V × PGL(m,C) = V × CGL(pdm,C)(P )/C× → CPGL(pdm,C)(V )

is an isomorphism. Use (5.17) to get the action of the Quillen automorphism
group.

For (2), suppose that T = PE where E = V ⊥ is one-dimensional. Then

CPGL(pdm,C)(V ) = CPGL(pdm,C)(PE) = CC
PGL(pdm,C)

(P )(V
⊥)

= CP/[P,P ]×PGL(m,C)(V
⊥) = P/[P,P ]× CPGL(m,C)(V

⊥)

and consequently,

ZCPGL(pdm,C)(V ) = P/[P,P ]× ZCPGL(m,C)(V
⊥).
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Here (5.14), the second factor is either connected, in which case

π0CPGL(pdm,C)(V ) = π0ZCPGL(m,C)(V ) = P/[P,P ] = V/V ⊥,

or disconnected, in which case the center of Z(CPGL(pdm,C)(V )) is V .

Use (5.17) for (3).

5.14. Lemma. For any elementary abelian p-group E ⊆ PGL(n,C) of
rank one, either the centralizer CPGL(n,C)(E) and its center ZCPGL(n,C)(E)
are both connected or ZCPGL(n,C)(E) = E.

Proof. There is (5.11) an exact sequence

1→ C× → CGL(n,C)(E)→ CPGL(n,C)(E)→ Hom(E,C×)(χ) → 1

where χ : E → GL(n,C) is a lift. The group to the right is either trivial or
cyclic of order p. If it is trivial, then

CPGL(n,C)(E) = CGL(n,C)(E)/GL(1,C),

Z(CPGL(n,C)(E)) = Z(CGL(n,C)(E))/GL(1,C)

are both connected Lie groups [69, 4.6]. Otherwise, n = rp and χ = r% is a
direct sum of a number of copies of the regular representation % of E. Then

CPGL(n,C)(E) = GL(r,C)p/GL(1,C)o 〈σ〉
where σ has order p and acts on GL(r,C)p by permuting the factors cycli-
cally. Thus the center of the centralizer,

Z(CPGL(n,C)(E)) = (GL(1,C)p/GL(1,C))〈σ〉 = H1(〈σ〉 ; GL(1,C))

is cyclic of order p.

The information collected so far suffices to establish the vanishing of some
of the higher limits for the functors πj(BZCPGL(n,C)) : A(PGL(n,C))→ Ab
(2.7). We shall make use of the following lemma which, together with its ap-
plication in the proof of (5.16), is due to J. Grodal.

5.15. Lemma. Let A be a subgroup and P a parabolic subgroup of G =
GL(n,Fp) such that U ⊆ A ⊆ P where P = UL is the Levi decomposition
[23, §69A]. Then

HomFp[A](St(G),M) = HomFp[A/U ](St(L),M)

for any Fp[A]-module M which is trivial as an Fp[U ]-module and finite-
dimensional as an Fp-vector space.

Proof. The standard Fp[A]-module isomorphism Hom(St(G),Fp) ⊗M
∼=−→ Hom(St(G),M)) restricts to an isomorphism

Hom(St(G),Fp)
U ⊗M ∼=−→ HomFp[U ](St(G),M)
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of Fp[A/U ]-modules. Since Steinberg modules are self-dual and St(G)U =
St(L) [89, 18, 42] we have

Hom(St(G),Fp)
U ∼= St(G)U ∼= St(L) ∼= Hom(St(L),Fp)

as Fp[P/U ]-modules. Thus HomFp[U ](St(G),M) ∼= Hom(St(L),Fp) ⊗M ∼=
Hom(St(L),M) as Fp[A/U ]-modules and consequently

HomFp[A](St(G),M) ∼= HomFp[U ](St(G),M)A/U ∼= Hom(St(L),M)A/U

= HomFp[A/U ](St(L),M)

as vector spaces.

5.16. Lemma. limi(A(PGL(n,C)), πj(BZCPGL(n,C))) = 0 for j = 1, 2
and i = j, j + 1.

Proof. It suffices (2.13, 5.10, 5.12) to show that the following homomor-
phism groups are trivial:

• HomSp(V )(St(GL(V )), V ) where dimFp V = 2,

• HomA(V,f)(St(GL(V )), V ) and HomA(V,f)(St(GL(V )), V/V ⊥) where
dimFp V = 3 and f is a non-trivial alternating bilinear form on V ,
• HomA(V,f)(St(GL(V )),Zp) where dimFp V is 3 or 4, f is a non-trivial

alternating bilinear form on V , and Zp carries the trivial A(V, f)-action.

Note that Zp can be replaced by Fp as target module since the Steinberg
module is finitely generated. The first of these groups is clearly trivial as
Sp(V ) = SL(V ) contains −1 which acts trivially on the Steinberg module
but has no non-trivial fixed points in V . For the remaining cases, we apply
(5.15). For us, n is 3 or 4, and the group A consists of the matrices

(
Ik ∗
0 SL(2)

)

where Ik is a k × k identity matrix, k = 1, 2. Take P and U = Op(P ) to be
the subgroups of G = GL(n,Fp) consisting of matrices of the form

(
GL(k) ∗

0 GL(2)

)
, respectively,

(
Ik ∗
0 I2

)

so that L = GL(k)×GL(2). Then

HomFp[A](St(G),Fp) = HomFp[SL(2)](St(GL(k))⊗ St(GL(2)),Fp)

= HomFp[SL(2)](St(GL(2)),HomFp(St(GL(k),Fp)))

=
⊕

HomFp[SL(2)](St(GL(2)),Fp)

and, for n = 3,

HomFp[A](St(G), V/V ⊥) = HomFp[SL(2)](St(GL(2)), V/V ⊥).
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Using the fact that St(GL(2)) is an irreducible Fp[SL(2)]-module we see

that both these groups are trivial. Since V ⊥ is a trivial Fp[A]-module, also
HomFp[A](St(G), V ) must be trivial.

Proof of Theorem 5.1. PGL(n,C) is non-modular, hence totally N -
determined [66, 3.11, 7.4], for n < p. We may therefore, inductively, as-
sume that all elementary abelian p-subgroups of PGL(n,C) have totally
N -determined centralizers (3.3, 3.7, 5.12) [82, Proposition 4]. But then also
PGL(n,C) itself has N -determined automorphisms according to (3.4, 5.16)
and is N -determined according to (3.8, 5.16) provided we can verify the con-
ditions of (3.9) when n = pm is divisible by p. It only remains to consider
the third condition as the first two have been verified in (5.4, 5.10).

Let j′ : N(PGL(n,C))→ X be the maximal torus normalizer for some
p-compact group X. Let (V, ν) denote the non-toral rank 2 object of the
category A(PGL(n,C)), µ : V → N(PGL(n,C)) a preferred lift of ν : V →
PGL(n,C), and put ν ′ = j′µ. The object (V, ν ′) of A(X) does not depend
on the choice of µ (3.9). We must show that the diagram

CPGL(n,C)(V, ν)
f(V,µ) // CX(V, ν ′)

CPGL(n,C)(V, ν)

CPGL(n,C)(α)

OO

f(V,µ)
// CX(V, ν ′)

CX(α)

OO

commutes for all α ∈ Sp(V ) = SL(V ) [43, II.9.12]. This will be the case if
application of the identity component functor (−)0 and the component group
functor π0(−) gives commutative diagrams [64, 5.3], [62, 3.4, 3.10]. The first
of these derived diagrams commutes because SL(V )op, generated by elements
of order p [91, 3.6.21], acts trivially on CPGL(n,C)(V, ν)0 = PGL(m,C) =

CX(V, ν ′)0 whose automorphism group (5.2) Aut(PGL(m,C)) ∼= Z×p (or

Z×p /Z
× if m = 2) contains no elements of order p. The above diagram also

commutes on the level of π0 for π0(f(V, µ)) is SL(V )op-equivariant by (3.10,
5.12).

5.17. The action of A(GL(n,C))(T, %) on CGL(n,C)(T, %). Write (%) =
µ1(%1) + . . . + µt(%t) as a direct sum of inequivalent irreducible characters
(%1), . . . , (%t) with multiplicities µ1, . . . , µt, respectively. Then

(5.18)

CGL(n,C)(T, %) =
∏

%i∈S(%)

GL(µi,C),

Z(CGL(n,C)(T, %)) =
∏

%i∈S(%)

Z(GL(µi,C))

where S(%) = {%1, . . . , %t} is the set of irreducible characters occurring in %.
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Let Σ(S(%)) be the group of all permutations of S(%) and for a given integer-
valued function β on S(%) write Σ(S(%))β for the subgroup of permutations
that preserve β. We shall need the degree function d, recording the degree of
%i, and the multiplicity function µ(%), recording the multiplicity µi of %i in %.
The elements of NGL(n,C)(T, %) are C-linear automorphisms of Cn that are
α-linear for some automorphism α ∈ Aut(T ) and there is a homomorphism

A(GL(n,C))(T, %) = NGL(n,C)(T, %)/TCGL(n,C)(T, %)

→ Σ(S(%))d ∩Σ(S(%))µ(%)

since α permutes the irreducible representations (%i) in a degree and multi-
plicity preserving way. Now,

NGL(n,C)(T, %) ⊆ NGL(n,C)(CGL(n,C)(T, %)) ⊆ NGL(n,C)(ZCGL(n,C)(T, %))

⊆
∏

GL(diµi,C)oΣ(S(%))dµ(%)

and since the first factor of the semidirect product acts trivially on the center
ZCGL(n,C)(T, %), the action homomorphism

A(GL(n,C))(T, %)→ Out(CGL(n,C)(T, %))→ Aut(ZCGL(n,C)(T, %))

factors through Σ(S(%))d∩Σ(S(%))µ(%) ⊆ Σ(S(%))dµ(%). Note, in particular,
that the subgroup A(T ) of A(GL(n,C))(T, %) acts trivially on CGL(n,C)(T )
because any outer automorphism α ∈ A(T ) restricts to the identity on Z(T )
so that it preserves all the irreducible components µP ]χi of the representa-
tion %.

5.19. Representations of extra-special p-groups. We construct explicitly
the faithful irreducible representations of the extra-special p-groups.

Let E be an elementary abelian p-group of rank d ≥ 1 and C[E] its
complex group algebra, or rather, its underlying |E|-dimensional complex
vector space. Then there is a commutative diagram as in (5.4)

P

��

� � % // GL(C[E])

��
V

� �

%
// PGL(C[E])

where V = E∧ × E is the product of E and its dual E∧ = Hom(E,C×),
and P = P−, P+ is the subgroup of GL(C[E]),

P− = 〈ωRζ , Tu〉 , P+ = 〈Rζ , Tu〉 ,
generated by

Rζ(v) = ζ(v)v, Tu(v) = u+ v, ζ ∈ E∧, u, v ∈ E,
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where ω is a primitive p2th root of unity. Since the commutator

[ωRζ , Tu] = [Rζ , Tu] = ζ(u), ζ ∈ E∧, u ∈ V,
is scalar multiplication with the complex number ζ(u), the group P− (resp.
P+) is extra-special of order p1+2d and exponent p2 (resp. p). A trace com-
putation reveals that the p − 1 faithful irreducible representations of P
are obtained from the inclusion % by composing with the automorphisms
(ω)Rζ 7→ (ω)Riζ , Tu 7→ Tu, 0 < i < p, of P . Observe that P− and P+ have

the same center, the same centralizer in GL(C[E]), and the same image in
PGL(C[E]). The same is true for P− and P+ considered as subgroups of
GL(C[E]⊕m) by means of the representation m%.

An object (V, ν) of A(X) is said to be d-oversize if

codim ker(π0(µ) : V → π0N(X) = W (X)) ≥ d
for all preferred lifts µ : V → N(X) of ν : V → X and d ≥ 0 is the greatest
such natural number. Thus the 0-oversize objects are the toral objects. It
may be worthwhile to note that the A-family provides examples of highly
oversized elementary abelian subgroups.

5.20. Proposition. Let T and V be as in Lemma 5.4. If T = PE
where P has order p1+2d then (V, %) is a d-oversize object of the Quillen
category A(PGL(n,C)).

Proof. We shall first consider the case where T = P = p1+2d
+ is extra-

special and % is one of the irreducible and faithful representations that we
have just considered. Note that P is contained in the maximal torus nor-
malizer N(GL(n,C)) as

N(GL(n,C)) =
〈
Rζ , Tσ | ζ ∈ map(V,C×), σ ∈ Σ(V )

〉

is generated by all the operators Rζ(v) = ζ(v)v, Tσ(v) = σ(v) for all func-
tions ζ from V into C× and all permutations σ of the elements of V . Sim-
ilarly, V is contained in the maximal torus normalizer N(PGL(n,C)) =
N(GL(n,C))/C× of PGL(n,C). The centralizers are

CN(GL(n,C))(P ) = C×, CN(PGL(n,C))(V ) = V

so that the inclusion of V into the maximal torus normalizer is a preferred lift
of the inclusion of V into PGL(n,C). For this preferred lift the intersection
of V with the maximal torus has codimension d. But the intersection of
V with any maximal torus of PGL(n,C) is covered by the intersection of
P with a maximal torus of GL(n,C) and such a subgroup has order at
most p1+d, which is the order of a maximal normal abelian subgroup of the
extra-special p-group P . Thus (V, %) is a d-oversize rank 2d object of the
Quillen category of PGL(n,C).
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When % = mµP ,

CN(GL(n,C))(P ) = N(GL(n,C)) ∩ CGL(n,C)(P )

= N(GL(n,C)) ∩GL(m,C) = N(GL(m,C))

so that the centralizer of V in N(PGL(n,C)) is V ×N(PGL(m,C)). Again,
the inclusion of V into N(PGL(n,C)) is a preferred lift of the inclusion of V
into PGL(n,C) and we conclude, as above, that (V, %) is a d-oversize rank
2d object of A(PGL(n,C)).

In general, T = PE is the direct product of an extra-special p-group and
an elementary abelian p-group. But still the inclusion of V = P/[P,P ]× E
into the maximal torus normalizer is a preferred lift because its adjoint

E → CN(PGL(n,C))(P/[P,P ])→ CPGL(n,C)(P/[P,P ])

is a preferred lift as E is toral. For this preferred lift, the intersection of V
with the maximal torus has codimension d and, as above, this is actually
the minimum. Thus (V, %) is a d-oversize rank > 2d object of the Quillen
category.

6. The 3-compact group F4. We consider the 3-compact group (BF4)∧3
obtained by completing the classifying space BF4 for the exceptional Lie
group F4 of rank 4.

6.1. Theorem [92]. The following hold for the 3-compact group F4:

(1) F4 is totally N -determined.

(2) F4 is determined by its R-Weyl group for R = Z3, Q3, F3.

(3) F4 is a cohomologically unique p-compact group.

(4) End(F4)−{0} = Aut(F4) = NGL(L(F4))(W (F4))/W (F4) is an abelian

group isomorphic to Z×3 /Z
××C2 where the group C2 of order 2 is generated

by an exotic automorphism.

Proof. The information provided by Griess [41, 7.4] about elementary
abelian p-subgroups of the Lie group F4 shows that the 3-compact group F4

satisfies the conditions of (3.8); see (3.9, 3.10) and the remark below (2.13).
Combined with (4.4, 11.18, 11.25) this proves the first three items. Direct
computation shows that the normalizer

NGL(4,Z3)(W (F4)) =
〈
Z×3 , ε,W (F4)

〉

where

√
−2 ε =




−1 1 0 0

1 1 0 0

0 0 −1 1

0 0 1 1



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for the Weyl group of F4 in GL(4,Z3) as described e.g. in [12]. The final
item of the theorem is now a consequence of (3.17(2)).

Note that (6.1) yields a new proof of the existence of Friedlander’s ex-
ceptional isogeny [39].

7. Polynomial p-compact groups. All connected Fp-local spaces with
polynomial mod p cohomology are p-compact groups. We study these poly-
nomial p-compact groups in this section. See also D. Notbohm [72, 76, 79] for
further information and for references to the literature about this classical
subject.

For any connected p-compact group X, the image of H∗(BX; Fp) in

H∗(BT (X); Fp) is contained in the invariant ring H∗(BT (X); Fp)
W (X) for

the action of the Weyl group on the cohomology of the maximal torus.
Much work, summarized in the following lemma, has been done to tell when
H∗(BX; Fp) actually equals this invariant ring.

7.1. Lemma. Let p be an odd prime and X a p-compact group. The
following conditions are equivalent :

(1) H∗(BX; Fp) is a polynomial algebra.

(2) H∗(BX; Fp) = H∗(BT (X); Fp)
W (X).

(3) H∗(BX; Fp) ⊂ H∗(BT (X); Fp).
(4) H∗(BX; Fp) is concentrated in even degrees.
(5) H∗(BX; Zp) is concentrated in even degrees and degree-wise free.
(6) H∗(BX; Zp) is polynomial on even degree generators.

(7) H∗(BX; Zp) = H∗(BT (X); Zp)
W (X).

(8) H∗(BX; Zp) ⊂ H∗(BT (X); Zp).

If X satisfies these equivalent conditions, then the rational rank r of X [30,
5.1] equals the Krull dimension of H∗(BX; Fp), and |W | = ∏ di where 2di,
1 ≤ i ≤ r, are the degrees of the polynomial generators [88, 5.3.5, 5.5.4].

Proof. (1)⇒(2) is [29, 2.11] and (2)⇒(3)⇒(4)⇒(5) is elementary.
(5)⇒(1), (6), (7), (8): As was noted in [70, 4.2], H∗(ΩBX; Zp) is degree-

wise free so that Borel’s argument [8], [88, 10.7.5] shows that H∗(BX; Fp)
and H∗(BX; Zp) are polynomial. But then H∗(BX;R) is the invariant ring
for R = Zp,Fp by [29, 2.11] again. The implications (8)⇒(5), (7)⇒(5),
(6)⇒(5) are elementary.

7.2. Definition. A p-compact group X is polynomial if its cohomology
ring H∗(BX; Fp) is a polynomial Fp-algebra. A Zp-reflection group (W, Ť )

is polynomial if its invariant ring H∗(Ť ; Fp)
W is a polynomial Fp-algebra.

7.3. Example. A p-compact group X is non-modular if p does not di-
vide the order of W (X). A Zp-reflection group (W, Ť ) is non-modular if p
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does not divide the order of W . Any non-modular p-compact group is con-
nected [69, 3.8] and its Weyl group is a non-modular Zp-reflection group. The
Shephard–Todd theorem [7, 7.2.1] says that any non-modular Zp-reflection

group (W, Ť ) is polynomial, and, clearly, H0(W ; Ť ) = 0 if (W, Ť ) is also
simple. Any non-modular p-compact group X is polynomial [66, 3.12], to-
tally N -determined [66, 3.11, 7.7], and determined by its R-Weyl group for
R = Zp, Fp (4.5, 4.4); if X is also simple, then X is centerless (3.12(2)) and
determined by its Qp-Weyl group (11.18, 4.4).

The Weyl group of any polynomial p-compact group is a polynomial Zp-
reflection group but not all polynomial Zp-reflection groups are Weyl groups

of polynomial p-compact groups (7.4). If the ring of invariants H∗(Ť ; Fp)
W

for some ZpW -torus Ť is polynomial then W is a Zp-reflection group [29,
Proof of 5.2].

7.4. Remark. Borel [9, 2.5] shows that for a simple compact Lie group
G and p an odd prime, the Bousfield Fp-localization (BG)∧p of BG [13] is a

non-polynomial p-compact group BĜ precisely when

• G = SU(r + 1)/Z where Z is a non-trivial central p-subgroup, or

• G = F4, PE6, E6, E7,E8 and p = 3, or

• G = E8 and p = 5.

Kemper and Malle [51] show that a simple Zp-reflection group (W, Ť ) is
non-polynomial precisely when it is the Weyl group of one of the Lie p-
compact groups on Borel’s list—with the exception that (W, Ť )(PU(3)) at
p = 3 is polynomial because we are in dimension 2 [71, 5.1]. Combining this
with (7.27), we see that the invariant ring H∗(Ť ; Zp)

W with Zp-coefficients

is non-polynomial precisely when (W, Ť ) = (W, Ť )(Ĝ) is the Weyl group

of one of the Lie p-compact groups Ĝ on Borel’s list. Thus the polynomial
Zp-reflection group (W, Ť )(PU(3)) at p = 3 is not the Weyl group of a poly-
nomial p-compact group for then also the invariant ring with Zp-coefficients
would be polynomial (7.1). (Combine the method of (7.24) with the results
of [71, §4], [51, §5] to see that (W, Ť )(SU(r+ 1)/Z) is non-polynomial when
p | r + 1, n ≥ 3, and Z is a non-trivial central p-group.)

7.5. Lemma. Let p be an odd prime. Let i : Ť → X be a loop space ho-
momorphism from a Zp-torus Ť to a polynomial p-compact group X. If
H∗(Bi; Fp) induces an isomorphism

H∗(BX; Fp) ∼= H∗(Ť ; Fp)
W

to the ring of invariants for some finite group W of automorphisms of Ť ,
then i : Ť → X is a (p-discrete) maximal torus for X and W and W (X) are
Fp-similar Zp-reflection groups.
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Proof. AsH∗(Bi; Fp) makesH∗(Ť ; Fp) a finitely generatedH∗(BX; Fp)-

module [88, 2.3.1], i : Ť → X is a monomorphism [30, 9.11]. Moreover, Ť
and T (X) have the same rank, the Krull dimension of H∗(BX; Fp), so that

i : Ť → X is indeed a maximal torus. Also, W and W (X) have the same
order given by the degrees of the polynomial generators. By Lannes theory
[52], the homomorphism t → Ť → X is W -equivariant up to homotopy
because it is so on mod p cohomology. This means that rpW is contained in
the Quillen automorphism group A(X)(t) of t→ X which is rpW (X) (2.8).
But these two groups have the same order, so they must be identical.

If X is polynomial, then X is connected and, by Lannes theory [52], any
monomorphism of a non-trivial elementary abelian p-group into X factors
through the maximal torus and hence (2.8) the Quillen category A(X) is
equivalent to A(W (X), t(X)). About the centric [28] functor (2.5)

BCX : A(W (X), t(X))op → [pcg]

we know that, for an odd prime p,

(1) H∗(BCX ; Zp) = H∗(Ť (X); Zp)0,
(2) πj(BZCX) = L(X)2−j, j = 1, 2.

The formula in item (1) is a consequence of [33, 1.2] and (7.1, 2.10) show-
ing that polynomiality is preserved under taking centralizers of elementary
abelian subgroups. The formula in item (2) follows from (2.8). (Recall that
H∗(Ť (X); Zp)0 is (2.2) the functor given by

H∗(Ť (X); Zp)0(E) = H∗(Ť (X); Zp)
W (X)(E) = H∗(BT (X); Zp)

W (X)(E)

and, similarly (2.3), L(X)2−j is the functor given by

L(X)2−j(E) = H2−j(W (X)(E);L(X))

for all non-trivial subgroups E of t(X).)
Combined with the acyclicity result of (2.4) this leads to a very simple

proof of the homology decomposition for polynomial p-compact groups.

7.6. Proposition [45, 31]. Let p be an odd prime. For any polynomial
p-compact group X, the evaluation map

hocolimA(W (X),t(X))op BCX → BX

is an H∗Zp-equivalence.
Alternatively , the full subcategory (2.14) AC(p)(W (X), t(X))op based on

the collection C(p) of all p-subgroups of W can be used for index category.

Proof. By (2.4, 2.16) and one of the formulas above, the E2-page of the
Bousfield–Kan spectral sequence for the cohomology of a homotopy colimit
collapses onto the vertical axis and therefore the evaluation map is an H∗Zp-
equivalence.
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In particular, if X is a polynomial p-compact group and p does not divide
the order of the Weyl group (i.e. X is a non-modular p-compact group (7.3))
then BX is H∗Zp-equivalent to the homotopy colimit of a diagram of the
form

BT (X) W (X)op
ff

i.e. to BN(X); this is the case treated by Clark–Ewing [20]. If p divides the
order of the Weyl group exactly once, then BX is H∗Zp-equivalent to the
homotopy colimit of a diagram of the form

BCX(tS)W (X)(tS)op/W (X)(tS)op
77 BT (X) W (X)op

ff

W (X)(tS)op\W (X)op

oo

with just two nodes; this is the case treated by Aguadé [2]. In general, BX
is H∗Zp-equivalent to the homotopy colimit of a diagram with nodes in
one-to-one correspondence with the subgroups of the Sylow p-subgroup of
W (X). (The objects tP , for P a subgroup of SylpW (X), generate a skeletal
subcategory of AC(p)(W (X), t(X)).)

The decomposition (7.6) is usually only helpful when X is centerless.
(Any simple p-compact group X for which r0W (X) is not in family 1 of the
Clark–Ewing list and not equal to r0W (E6) if p = 3, is centerless (3.12(2),
11.18).)

Conversely, given a finite groupW of automorphisms of a Zp-torus Ť such

that H0(W ; Ť ) = 0 and the ring of invariants H∗(Ť ; Fp)
W is polynomial,

does there exist a polynomial p-compact group X(W ) with Zp-reflection

subgroup (W, Ť ) and with mod p cohomology isomorphic to this invariant
ring? Note that if X(W ) exists, then the Quillen category A(X(W )) =
A(W, t), the maximal torus normalizer Ň(X(W )) = Ť oW , and the functor
Ň ◦ CX(W ), giving the maximal torus normalizers of the centralizers, is the

functor Ň : A(W, t)op → [Grp] given by

Ň(E0
wW (E0)−−−−−→ E1) = (Ť oW (E0)

(w−1,c(w−1))←−−−−−−−− Ť oW (E1))

according to the considerations of the proof of (2.8). This means that if
BX(E) denotes the value of BCX(W ) on E ⊆ t then there must exist ho-
motopy commutative diagrams

(7.7) BŇ(E0)

Bj(E0)

��

BŇ(E1)
Ň(wW (E0))oo

Bj(E1)

��
BX(E0) BX(E1)

X(wW (E0))
oo

where the vertical arrows are (discrete) maximal torus normalizers.



246 J. M. Møller

7.8. Theorem (Generalized Clark–Ewing construction). Let p be an
odd prime and (W, Ť ) a polynomial Zp-reflection group with H0(W ; Ť ) = 0.
Suppose that there exist a centric functor [28] BX : A(W, t)op → [pcg] and a
natural transformation Bj : BŇ → BX such that , for each non-trivial sub-
group E of t, BX(E) is a polynomial p-compact group and Bj(E) : BŇ(E)
→ BX(E) is a p-discrete maximal torus normalizer. Then BX determines
an essentially unique functor BX : A(W, t)op → Top, and H∗(BX(W ); Fp)
∼= H∗(Ť ; Fp)

W as unstable algebras where

BX(W ) = (hocolimA(W,t)op BX)∧p

is the Fp-localization of the homotopy colimit. X(W ) is a centerless poly-
nomial p-compact group whose Weyl group is Fp-similar to W . If all values
of the functor BX are totally N -determined p-compact groups, then also
X(W ) is totally N -determined.

Alternatively , the full subcategory (2.14) AC(p)(W, t) based on the collec-
tion C(p) of all p-subgroups of W can be used for index category.

Proof. For any non-trivial subgroup E of t, the p-compact group BX(E)

has p-discrete center Ž(X(E)) = Z(Ň(E)) = ŤW (E) meaning (3.17(1))
that (πjBZX)(E) = H2−j(W (E);L(Ť )) = L(Ť )2−j(E) for j = 1, 2. Since
these functors are acyclic (2.4), [28, 1.1] tells us that BX lifts, essentially
uniquely, to a functor taking values in the category of topological spaces. Let
BX(W ) be the (Fp-localization of the) homotopy colimit. The polynomial p-

compact group BX(E) has cohomology H∗(BX(E);R) = H∗(Ť ;R)W (E) =
H∗(Ť ;R)0(E), R = Fp,Zp. Since this functor is acyclic (2.4), the Bousfield–
Kan spectral sequence for the cohomology of a homotopy colimit [14, XII.4.5]
collapses onto the vertical axis giving the cohomology of BX(W ) and so
H∗(BX(W ); Fp) = H∗(Ť ; Fp)

W . As this invariant ring is assumed to be
polynomial, X(W ) is indeed a polynomial p-compact group. The p-compact
group morphism T (GL(n,C)) = CGL(n,C)(t) → X(W ) is a maximal torus
and rp(W ) = rpW (X(W )) by (7.5). According to [66, 4.9] and (2.11, 3.8),
X(W ) is totally N -determined provided all values of the functor BX are
totally N -determined p-compact groups.

We may replace the index category A(W, t) by any of its full subcate-
gories I as long as lim1+j(I;L(Ť )2−j) = 0 = lim2+j(I;L(Ť )2−j), j = 1, 2,

and H∗(BŤ ; Zp)0 is acyclic on I with lim0 equal to the invariant ring. For
instance, I = AC(p)(W, t), where C(p) is the collection of all p-subgroups of
W is a possibility (2.16).

In particular, if p divides the order of W exactly once, we may use the
full subcategory A(W, t){t, tS} = I(W,W (tS)) (13.10) generated by the two
objects t and tS where S = SylpW is a Sylow p-subgroup of W .
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The Qp-Weyl group r0W (X) (4.3) of a connected p-compact group X is
a reflection subgroup of Aut(L(X)⊗Qp) [30, 9.7]. If X is simple in the sense
that this Weyl group is an irreducible reflection group then r0W (X) must
occur in the Clark–Ewing classification table [20]. The irreducible reflection
groups of this table are divided into four infinite families, denoted 1, 2a, 2b,
and 3, and 34 sporadic reflection groups G4, . . . , G37.

7.9. Theorem. Let p be an odd prime and X a simple p-compact group
with Weyl reflection group (W (X), L(X)). Assume that

• r0W (X) is not in family 1,
• if p = 3, then (r0W (X)) 6= (r0W (F4)), (r0W (E6)), (r0W (E7)),

(r0W (E8)), and
• if p = 5, then (r0W (X)) 6= (r0W (E8)).

Then:

(1) X is a centerless, simply connected , totally N -determined , polyno-
mial p-compact group.

(2) X is determined by its R-Weyl group for R = Zp, Qp, Fp.
(3) X is a cohomologically unique p-compact group.
(4) End(X) is given by (3.17(2)).

Proof. A glance at the Clark–Ewing classification table [20] (as presented
e.g. in [5, Table 1]) reveals that X is either a non-modular p-compact group,
which certainly has the stated properties (7.3), or one of the modular p-
compact groups treated in (7.10) in which case we apply (7.8, 5.3) together
with (4.4, 11.18, 11.25(3)).

7.10. Construction of modular, centerless, polynomial, simple p-compact
groups. We apply (7.8) to construct polynomial p-compact groups X(G)
where G ⊂ GL(r,Qp) is either

• in family 2a,
• r0W (G2) at p = 3 from family 2b,
• one of the groups of Aguadé [2, Table 1], or
• r0W (E6) at p = 5.

There is no ambiguity in pretending that G be a subgroup of Aut(Ť ) =
GL(r,Zp) since G0(G) = ∗ in each of these cases (11.18). The rings of

invariants H∗(Ť ;R)G, R = Fp, Zp, are polynomial rings (7.4), and from [5,

3.4] we know that H0(G; Ť ) = 0. Thus it suffices to find a functor BX that
satisfies the conditions of (7.8).

Family 2a (cf. [76]). Let p be an odd prime and r ≥ 1, m ≥ 2, n ≥ 2 nat-
ural numbers such that r |m | p−1. Let Cm ⊆ Z×p be the order m cyclic sub-
group of the p-adic units. Define G(m, r, n) = A(m, r, n)Σn as the subgroup
of GL(n,Zp) = Aut(Ť ), Ť = Ť (U(n)), generated by the group W (U(n)) =
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Σn of monomial matrices and the abelian group A(m, r, n) of diagonal ma-
trices with entries in Cm and determinant in the index r subgroup of Cm.
(For instance, G(2, 1, n) = W (SO(2n + 1)) and G(2, 2, n) = W (SO(2n)).)
The subgroup Σn normalizes A(m, r, n) and G(m, r, n) = A(m, r, n)oΣn is
in fact the semidirect product of the two groups. The ring of invariants [71,
2.4], [88, §7.4, Example 1]

H∗(Ť ; Zp)
G(m,r,n) = Zp[y1, . . . , yn−1, e], |yi| = 2im, |e| = 2

m

r
n,

is generated by e = (x1 . . . xn)m/r together with the n − 1 first elementary
symmetric polynomials yi = σi(x

m
1 , . . . , x

m
n ), 1 ≤ i ≤ n − 1, in the mth

powers of the coordinate functions xi : H
2(Ť ; Zp)→ Zp, 1 ≤ i ≤ n, which

are considered as having degree 2.

Define AC(p)(G, t) where G = G(m, r, n) or G = Σn, t = t(U(n)), to be

the full subcategory of A(G, t) generated by all objects of the form E = tP

for P ⊆ SylpΣn = SylpG(m, r, n) a subgroup of a Sylow p-subgroup of Σn

(which is also a Sylow p-subgroup of G(m, r, n)). These two small categories
have by definition the same set of objects E, with the same pointwise sta-
bilizer subgroups G(m, r, n)(E) = Σn(E), and for the morphism sets (2.1)
we note that

G(m, r, n)(E0, E1) = A(m, r, n)Σn(E1) ×Σn(E0, E1),

meaning that any morphism (a, σ) : E0 → E1 in AC(p)(G(m, r, n), t)(E0, E1)
factors uniquely as a morphism σ : E0 → E1 in AC(p)(Σn, t)(E0, E1) followed

by multiplication a : E1 → E1 by a diagonal matrix a ∈ A(m, r, n)Σn(E1) =
A(m, r, n)0(E1). To see this, it is convenient to observe that all objects
E = tP of AC(p)(G, t) are of the special form

E = {(x1, . . . , xn) ∈ Fn
p |xi = xj iff i and j are n(E)-equivalent}

for some partition n(E) of n = {1, . . . , n} into disjoint subsets. (Thus
AC(p)(G(m, r, n), t) can be viewed as the Grothendieck construction on the
functor A(m, r, n)0 from AC(p)(Σn, t) to categories with one object.)

We now define the functor BX : AC(p)(G(m, r, n), t)op → [pcg] which
shall serve as input for the generalized Clark–Ewing construction (7.8). On
objects E = tP ⊆ t = t(U(n)) we are forced to put BX(E) = BCU(n)(E)
for the pointwise stabilizer group G(m, r, n)(E) = Σn(E) = W (CU(n)(E))
and CU(n)(E), a product of unitary groups [82, Proposition 4], is deter-

mined by its Zp-Weyl group (5.3). For each morphism E0
σ−→ E1

a−→ E1

in AC(p)(G(m, r, n), t) we are required (7.7) to fill in the commutative dia-
gram
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Ť oΣn(E0)

��

Ť oΣn(E1)

��

(1,c(σ−1))oo Ť oΣn(E1)

��

(a−1,1)oo

CU(n)(E0) CU(n)(E1)oo_ _ _ _ _ _ CU(n)(E1)oo_ _ _ _ _ _

of p-compact groups with discrete maximal torus normalizers. To the left

we may put the value BCU(n)(σ) : BCU(n)(E0)← BCU(n)(E1) on E0
σ−→ E1

of the functor BCU(n) : AC(p)(Σn, t)→ [pcg]. To the right there is just one

possibility, denoted ψa
−1

, for CU(n)(E1) have N -determined automorphisms
(5.3). This prompts us to declare

BX(E0
σ−→ E1

a−→∼= E1)

= BCU(n)(E0)
BCU(n)(σ)
←−−−−−−− BCU(n)(E1)

Bψa
−1

←−−−−∼= BCU(n)(E1)

However, for this to be a valid definition of a functor we need to ver-
ify that the relation τ ◦ a = τaτ−1 ◦ τ , a ∈ Σn(E0), τ ∈ Σn(E0, E1),
which holds in AC(p)(G(m, r, n), t), also holds in [pcg], i.e. that the dia-
gram

CU(n)(E0) CU(n)(E0)
ψa
−1

oo

CU(n)(E1)

CU(n)(τ)

OO

CU(n)(E1)

CU(n)(τ)

OO

ψτa
−1τ−1

oo

commutes in [pcg]. This is not difficult as ψτa
−1τ−1

and the isomorphism

induced by ψa
−1

on CU(n)(E1) have the same effect on the maximal torus
normalizer, so are identical. Thus the above definition indeed makes BX into
a functor. BX is clearly a centric functor becauseBCU(n) is, and we conclude
from (7.8) that there exists a centerless, polynomial, totally N -determined
p-compact groupXG(m, r, n) with reflection subgroup Fp-similar, and hence

even Zp-similar (11.25), to (G(m, r, n), Ť ).

For future reference, we now compute the centralizer of an arbitrary
non-trivial subgroup E of t = t(XG(m, r, n)). Suppose that E has rank
r > 0. Choose an n× r matrix B whose columns form a basis for E. Declare
i and j to be equivalent if the ith and jth rows in B are Cm-multiples of
each other, 1 ≤ i, j ≤ n. Let n(E) denote the partition of n = {1, . . . , n}
into equivalence classes. If there is a zero-row in B, call the corresponding
equivalence class the null-class. Suppose that the null-class contains u0 ≥ 0
elements and that there are s ≥ 1 more classes containing u1, . . . , us ele-
ments, respectively.
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The following lemma, describing the pointwise stabilizer subgroup
G(m, r, n)(E), implies that the equivalence relation n(E) does not depend
on the choice of basis.

7.11. Lemma. The pointwise stabilizer G(m, r, n)(E) of E is isomorphic
to the subgroup

G(m, r, u0)×Σu1 × . . .×Σus
where the reflection subgroup (Σuj ,Z

uj
p ) is similar to (W,L)(U(uj)), 1 ≤ j

≤ s.
Proof. The element (a, σ) ∈ A(m, r, n)oΣn stabilizes E pointwise if and

only if aiBσ(i) = Bi where Bi, i = 1, . . . , n, are the rows of the matrix B.
This implies that the permutation σ of the n rows of B must respect the
Cm-equivalence classes. Therefore the group homomorphism

G(m, r, u0)×Σu1 × . . .×Σut → G(m, r, n)(E),

((b, τ), σ1, . . . , σs) 7→ ((b, a1(σ1), . . . , aj(σj)), τσ1 . . . σs),

where aj(σj)iBσj(i) = Bi, 1 ≤ j ≤ s, is an isomorphism. Observe in this

connection that the product
∏
aj(σj)i = 1; indeed, for fixed j, the product

over all aj(σj)i, where i runs through the elements of a cycle in the de-
composition of σj , equals 1. Conjugate this action of Σuj by the diagonal
matrix consisting of the first non-zero entries in the rows of B to obtain the
standard permutation action.

If we take existence for granted, referring to [76], then the above lemma
and (3.8) would suffice to show inductively that XG(m, r, n) is totally N -
determined.

The 3-compact group G2. Take BX to be the functor on the 2-object
category A(G, t){tS, t}op = I(G,W (SU(3)))op, G = W (G2) = W (SU(3))×
Z(G), Z(G) = {±1}, indicated by the diagram

BSU(3)Z(G)op
88 BT Gop

cc

W (SU(3))op\Gop

oo

where Z(G) acts on BSU(3) via the unstable Adams operations ψ±1.

The Aguadé groups. These are the reflection groups

(G12, p = 3), (G29, p = 5), (G31, p = 5), (G34, p = 7),

(G36, p = 5), (G36, p = 7), (G37, p = 7)

where the index refers to their numbering on the Clark–Ewing list [20].
Since p divides the order of the Weyl group only once, it suffices to specify
the functor BX on the full subcategory A(G, t){tS, t}op = I(G,G(tS))op =
I(G,W (SU(r+1)))op (13.7.6) where r denotes the rank. Take BX to be the
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functor indicated by the diagram

(7.12) BSU(r + 1)Z(G)op
88 BT Gop

cc

W (SU(r+1))op\Gop

oo

where Z(G), which is cyclic of order 2, 4, 4, 6, 2, 2, 2, acts on BSU(r+ 1) via
unstable Adams operations. See [4] for more details. (This follows Aguadé’s
original construction very closely.)

The 5-compact group E6. Take BX to be the functor on A(G, t){tS, t}op

= I(G,G(tS))op, G = W (E6), indicated by the diagram

BU(5)× BU(1)Cop
2 88 BT Gop

cc

W (U(5)×U(1))op\Gop

oo

where C2 acts on U(5)×U(1) in some way.

7.13. Automorphisms of X(G(m, r, n)) [21, (2.13)], [76, §7]. Assume first
that A(m, r, n) is a characteristic subgroup of G(m, r, n). Then

NGL(n,Zp)(G(m, r, n)) = Z×p G(m, 1, n)

because this normalizer is contained in the normalizer of A(m, r, n) which
equals Z×p oΣn by the argument of [82, Lemma 3], and, on the other hand, a

diagonal matrix diag(u1, . . . , un) ∈ (Z×p )n normalizes G(m, r, n) if and only

if it lies in Z×p A(m, 1, n). Thus (3.12(3)),

Out(X(G(m, r, n))) ∼= Z×p G(m, 1, n)/G(m, r, n) ∼= Z×p A(m, 1, n)/A(m, r, n)

is an abelian group and the exact sequence (3.16) has the form

(7.14) 1→ Z×p /ZG(m, r, n)→ Z×p G(m, 1, n)/G(m, r, n)→ C(r,n) → 1

where ZG(m, r, n), the center of G(m, r, n), is cyclic of order m
r (r, n) and

C(r,n) denotes a cyclic group of order the greatest common divisor (r, n) of
r and n.

Choose a primitive (p− 1)th root of unity ζ ∈ Z×p , choose integers s and

t with (r, n) = sr+ tn, and put ε = diag(ζ(p−1)/m, 1, . . . , 1) ∈ Z×p A(m, 1, n).
Then εA(m, r, n) projects onto a generator of the cyclic group C(r,n) and
the element

ζ
p−1
m

t〈ζ(r,n), ζ
p−1
m

r
(r,n) 〉 ∈ 〈ζ〉/〈ζ(r,n), ζ

p−1
m

r
(r,n) 〉 ≤ H2(C(r,n); Z

×
p /ZG(m, r, n))

classifies extension (7.14) because ζ(p−1)t/mA(m, r, n) = ε(r,n)A(m, r, n).
Consequently,

(7.14) splits ⇔ ζ
p−1
m

t ∈ 〈ζ(r,n), ζ
p−1
m

r
(r,n) 〉 ⇔ p− 1

m
t ∈ Z((r,n), p−1

m
r

(r,n)
)

⇔
(

(r, n),
p− 1

m

r

(r, n)

)∣∣∣∣
p− 1

m
t ⇔ (r, n)

∣∣∣∣
p− 1

m
in Z( r

(r,n)
)
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where at the final stage we observe that r
(r,n) and t are relatively prime since

1 = s r
(r,n) + t n

(r,n) . For instance, (7.14) splits whenever (r, n) = (r, n2) for

then (r, n) and r
(r,n) are relatively prime so that

(
(r, n),

p− 1

m

r

(r, n)

)
=

(
(r, n),

p− 1

m

)

clearly divides p−1
m t. More generally,

(p− 1)(r, n)

maxx∈Z

{(
p− 1, p−1

m t+ x
(
(r, n), p−1

m
r

(r,n)

))}

is the smallest possible order of an exotic automorphism of X(G(m, r, n))
projecting onto a generator of C(r,n).

7.15. Lemma [76, §6]. A(m, r, n) is characteristic in G(m, r, n) if and
only if (m, r, n) 6∈ {(2, 1, 2), (4, 2, 2), (3, 3, 3), (2, 2, 4)}.

Proof. For n > 4, A(m, r, n) is the Fitting subgroup of G(m, r, n). (Con-
sult e.g. [85] for general group-theoretic information.) For 2 ≤ n ≤ 4,
Fit(G(m, r, n)) = A(m, r, n)oF where F is a subgroup of Fit(Σn) which is
elementary abelian of order n. If A(m, r, n) is not characteristic inG(m, r, n),
it is not characteristic in Fit(G(m, r, n)) and then (7.16)

• n = 2: m
r m | 2mr (r, 2) so that (m, r) = (2, 1), (2, 2), (4, 2) or (4, 4),

• n = 3: m
r m

2 | 3mr (r, 3) so that (m, r) = (3, 3),

• n = 4: m
r m

3 | 4mm
r (r, 2) so that (m, r) = (2, 1) or (2, 2).

Among these options, (2, 2, 2) is an illegal choice of parameters, A(4, 4, 2) ∼=
C4 is the unique cyclic subgroup of order 4 in G(4, 4, 2) ∼= D8, A(2, 1, 4) is
the unique elementary abelian subgroup of order 16 of G(2, 1, 4), and in the
remaining four cases it can be verified that A(m, r, n) is not characteristic
in G(m, r, n).

7.16. Lemma. Let A o W be the semidirect product for the action of
a finite group W on a finite abelian group A. If A is not characteristic in
AoW , then |A| divides |Aσ| · |CW (σ)| for some non-trivial element σ ∈W .

Proof. If A is not characteristic, some automorphism of the semidirect
product takes an element of A to an element (a, σ) where σ ∈ W is non-
trivial. As automorphisms preserve centralizers up to isomorphism, we know
that |A| divides |CAoW (a, σ)|. The exact sequence

1→ Aσ → CAoW (a, σ)→ CW (σ)

shows that |CAoW (a, σ)| divides |Aσ| · |CW (σ)|.
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Since G(2, 1, 2) is conjugate to G(4, 4, 2) [21, 2.5], its normalizer was
found above. In the remaining three cases, there are exact sequences (3.16)

1→ Z×p /ZG(4, 2, 2)→ NGL(2,Zp)(G(4, 2, 2))/G(4, 2, 2)→ Σ3 → 1,

1→ Z×p → NGL(3,Zp)(G(3, 3, 3))/G(3, 3, 3)→ A4 → 1,

1→ Z×p /ZG(2, 2, 4)→ Z×pW (F4)/G(2, 2, 4)→ Σ3 → 1,

describing the automorphism groups of the groups XG(4, 2, 2), XG(3, 3, 3),
and XG(2, 2, 4).

7.17. Automorphisms of other modular polynomial p-compact groups. If
W is one of the Aguadé reflection groups or W = W (G2) and p = 3, then
(3.17(2))

End(X(W ))− {0} = Out(X(W )) = Z×p /Z(W )

for NGL(r,Zp)(W ) = Z×pW according to [4, 5.7].

The 3-compact group BX(G12) is also denoted BDI2 for, since G12 ⊂
GL(2,Z3) maps isomorphically onto GL(2,F3) [11, p. 272], [88, 10.7.1], the
mod 3 cohomology algebra

H∗(BX(G12); F3) = H∗(BŤ ; F3)GL(2,3) = F3[x12, x16]

is the rank 2 mod 3 Dickson algebra [88, 8.1.5]: a polynomial algebra on a
generator x12 in degree 12 and a generator x16 = P 1x12 in degree 16. DI2

has the potential of containing all other connected 3-compact groups of rank
2 as this is certainly true on the level of Weyl groups. Section 10 elaborates
on this aspect of DI2.

7.18. Structure of polynomial p-compact groups (cf. [79]). We start by
noting that polynomiality of a connected p-compact group is determined by
the universal covering p-compact group and the fundamental group.

7.19. Lemma. Let X be connected p-compact group with universal cov-
ering p-compact group SX [69, 3.3] and fundamental group π1(X). Then

(1) X is polynomial⇔SX is polynomial and π1(X) is a free Zp-module.

(2) If X is polynomial , then H∗(BX;R) → H∗(BSX;R) is surjective
and the kernel is the ideal generated by the degree 2 cohomology classes,
R = Fp, Zp, Qp.

(3) If X is polynomial , then

H∗(BX;R) ∼= H∗(π2(BX), 2;R)⊗H∗(BSX;R)

as graded algebras, R = Fp, Zp, Qp.

Proof. If X is polynomial, H∗(BX; Zp) is (7.1) concentrated in even
degrees and is degreewise free so that, in particular, the second homology
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group H2(BX; Zp) = π2(BX) is a free Zp-module. The Serre spectral se-
quence for the Postnikov fibration K(π1(X), 1)→ BSX → BX collapses at
the E3-page to yield

E3 = R⊗H∗(π2(BX),2;R) H
∗(BX;R) = H∗(BSX;R).

Conversely, if SX is polynomial and π1(X) is free, then the Serre spectral
sequence for the fibration BSX → BX → K(π2(BX), 2) collapses at the
E2-page for degree reasons and shows that H∗(BX; Fp) is concentrated in
even degrees and is degreewise free.

Let Y =
∏
Yi be a product of finitely many simple, simply connected

p-compact groups Yi, π a (finite) subgroup of the p-discrete center Ž(Y ) =∏
Ž(Yi) of Y , and ϕ : π → Š a homomorphism into the discrete approxima-

tion Š to a p-compact torus S. Define [65, §2] the p-compact group

X = Y × S/(π, ϕ)

by the short exact sequence π
(incl,ϕ)−−−−→ Y ×S → X. Any connected p-compact

group has this form with Y = SX and S = Z(X)0 [69, 5.4].

7.20. Corollary. X = Y × S/(π, ϕ) is polynomial if and only if ϕ : π
→ Š is a monomorphism and each simple factor Yi in the universal covering
p-compact group Y =

∏
Yi equals SU(n) for some n or is one of the p-

compact groups from (7.9).

Proof. We use criterion (7.19(1)). Elementary homological algebra per-
formed on the short exact sequence 0 → π1(S) → π1(X) → π → 0 shows
that π1(X) is a free Zp-module if and only if ϕ : π → Š is injective. (One may

also use the functor Ť of §11 to see this.) The universal covering p-compact
group Y =

∏
Yi is polynomial iff each simple factor Yi is polynomial (7.28).

According to (7.9) and Borel [9, 2.5], Yi is polynomial iff Yi = SU(n) for
some n or r0W (Yi) 6= r0W (F4), r0W (E6), r0W (E7), r0W (E8) if p = 3 and
r0W (Yi) 6= r0W (E8) if p = 5.

In greater detail, any polynomial p-compact group X is of the form X =
X1×X2 where X1 = (

∏
SU(ni)×S)/(π, ϕ) is a polynomial p-compact group

whose universal covering is a product of special unitary p-compact groups
and X2 is a product of some of the simple, simply connected, centerless,
polynomial p-compact groups of (7.9).

7.21. Corollary. All polynomial p-compact groups are totally N -deter-
mined.

Proof. Since all simple factors of PX = PY =
∏
PYi are totally N -

determined (7.20, 5.2, 7.9), X is totally N -determined (3.3, 3.7).

7.22. Corollary. Let Y be a simply connected , polynomial p-compact
group. Then
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(1) Y is determined by its Fp-Weyl group, and

(2) BY is cohomologically unique among Fp-local spaces.

Proof. Since Y is totally N -determined (7.21), it suffices (4.4, 4.5) to
show that the cohomology group H1(W (Y ); Hom(t(Y ), t(Y ))) is trivial. But
that is proved by Notbohm in [79, 6.2]: Let Y =

∏
Yi be as in (7.20). Let

S =
∏
Si ⊆

∏
W (Yi) be the product subgroup with factors Si = W (Yi) in

case Yi = SU(n) and Si = SylpW (Yi) in case Yi is one of the p-compact
groups from (7.9). Then |W (Y ) : S| is prime to p. The natural homomor-
phism CY (t(Y )S)→ Y is a monomorphism of maximal rank [31, 4.3], and,
by inspection, CY (t(Y )S) =

∏
CYi(t(Yi)

Si) is isomorphic to a product of
SU(n)s and U(n)s. Thus H1(W (t(Y )S); Hom(t(Y ), t(Y ))) = 0 by [74, 8.2].
But then also the cohomology group H1(W (Y ); Hom(t(Y ), t(Y ))) = 0 by
a transfer argument because W (CY (t(Y )S)) = W (t(Y )S) ⊇ S has index
prime to p in W (Y ).

7.23. Corollary. Any polynomial p-compact group is determined up to
local isomorphism by its mod p cohomology algebra considered as an unstable
algebra over the Steenrod algebra.

Proof. The mod p cohomological dimension as well as H∗(BSX; Fp)
(7.19), and hence (7.22) BSX, can be read off from H∗(BX; Fp) if this is a
polynomial algebra. But this information is the local isomorphism class of
X [65, 2.6].

Two locally isomorphic p-compact groups,X1 = Y ×S/(π1, ϕ1) andX2 =
Y × S/(π2, ϕ2), are isomorphic iff there exist automorphisms g ∈ Out(Y )
and h ∈ Out(S) = Aut(Š) such that the diagram

Ž(Y )

∼=Ž(g)
��

π1oooo // ϕ1 //

∼=
��

Š

h∼=
��

Ž(Y ) π2oooo //
ϕ2

// Š

commutes [65, 4.3, 4.5].

The next example shows that there are locally isomorphic but non-
isomorphic polynomial p-compact groups with isomorphic mod p cohomol-
ogy algebras.

7.24. Lemma. Let X = Y ×S/(π, ϕ) be a polynomial p-compact group. If
π ⊆ pŽ(Y ), then W (X) and W (Y ×S) are Fp-similar so that H∗(BX; Fp)
and H∗(BY ×BS; Fp) are isomorphic unstable polynomial algebras.

Proof. We may assume that π, and hence S, is non-trivial as otherwise
there is nothing to prove. From the short exact sequence 0→ π → Ť (Y )×
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Ť (S)→ Ť (X)→ 0 we get the exact sequence

0→ H1(π; Fp)→ H2(Ť (X); Fp)→ H2(Ť (Y )× Ť (S); Fp)→ H2(π; Fp)→ 0

of FpW (X)-modules.

The map induced by ϕ : π → Š,

Ext(Ť (S),Fp) = H2(Ť (S); Fp)→ H2(π; Fp) = Ext(π,Fp),

is surjective since ϕ is injective. This implies that the FpW (X)-module
homomorphism onto H2(π; Fp) has a right inverse.

We next show that the FpW (X)-module homomorphism out of H1(π; Fp)
has a left inverse. Write K for the kernel of the map onto H2(π; Fp) and

applyH0(W (X);−) to the short exact sequence 0→ H1(π)→ H2(Ť (X))→
K → 0 to get the exact sequence

H1(W (X);H2(Ť (X)))→H1(W (X);K)→ H1(π)→H0(W (X);H2(Ť (X)))

where

H1(W (X);K) ∼= H1(W (X);H2(Ť (Y )× Ť (S))) ∼= H1(W (X);H2(Ť (Y )))

since H1(W (X);H2(π)) = H2(W (X);H2(π)) = H1(W (X);H2(Ť (S))) = 0
[5, 3.2], [74, 3.1]. It suffices to show that the map into H0(W (X);H2(Ť (X)))
is injective or, by exactness, that the map out of H1(W (X);H2(Ť (X))) is
surjective. The maps Ž(Y ) → Ž(X) = Ž(Y ) × S/(π, ϕ) → Ž(Y )/π induce
dual maps

Hom(Ž(Y )/π,Z/p∞)→ Hom(Ž(X),Z/p∞)→ Hom(Ž(Y ),Z/p∞)

whose composition is surjective under the assumption of the lemma that π ⊆
pŽ(Y ). Thus the second of these maps, which by (11.17) can be identified
with the first map in the above exact sequence, must also be an epimorphism.

We now conclude that

H2(Ť (X); Fp) = H1(π; Fp) + coker(H1(π; Fp)→ H2(Ť (X); Fp))

= H2(π; Fp) + ker(H2(Ť (Y )× Ť (S); Fp)→ H2(π; Fp))

= H2(Ť (Y )× Ť (S); Fp)

as FpW (X)-modules and therefore the two rings of invariants,

H∗(BX; Fp) ∼= H∗(Ť (X); Fp)
W (X) ∼= H∗(Ť (Y )× Ť (S); Fp)

W (X)

∼= H∗(BY ×BS; Fp),

are isomorphic unstable algebras over the mod p Steenrod algebra.

7.25. Example [98], [74, 9.6]. The p-compact groups

Ui = SU(pν)×U(1)/(Z/pi, incl), 0 ≤ i ≤ ν, ν ≥ 3,
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from the local isomorphism system of U(pν) (11.28) are distinct, polyno-
mial (7.19) p-compact groups but (7.24) the Weyl groups W (Ui) are Fp-
similar and the unstable algebras H∗(BUi; Fp) are isomorphic for 0 ≤ i < ν
(and distinct from H∗(BU(pν); Fp)). Thus the polynomial p-compact group
SU(pν)×U(1) is not determined by its Fp-Weyl group, not even by its mod p
cohomology algebra.

An unstable graded algebra over the mod p Steenrod algebra is

• polynomial if its underlying graded algebra over Fp is polynomial on
finitely many generators,
• topologically realizable if it is isomorphic to the mod p cohomology of

a topological space.

Steenrod’s problem [90] asks for the determination of all topologically
realizable polynomial algebras over the the mod p Steenrod algebra. A com-
plete solution was found by D. Notbohm [76, 79] but it may still be worth-
while to record also the following form of the answer.

Write P (H, t) =
∑

(dimkH
i)ti for the Poincaré series of the graded

algebra H over the field k.

7.26. Theorem. A polynomial unstable algebra over the mod p Steenrod
algebra is topologically realizable if and only if it is isomorphic to H∗(BX; Fp)

= H∗(Ť (X); Fp)
W (X) for some polynomial p-compact group X (as described

in (7.20)). Moreover , the following conditions are equivalent :

(1) (W, Ť ) is the Weyl group of a polynomial p-compact group,
(2) (W,SŤ ) is polynomial and H0(W ;L(Ť )) is a free Zp-module,

(3) (W, Ť ) is polynomial and H0(W ;L(Ť )) is a free Zp-module,

(4) (W, Ť ) is polynomial and H1(W ; Ť ) = 0,
(5) (W, Ť ) is polynomial and P (H∗(Ť ; Fp)

W , t) = P (H∗(Ť ; Qp)
W , t),

(6) H∗(Ť ; Zp)
W is polynomial ,

for any Zp-reflection group (W, Ť ).

Proof. If BX is an Fp-local space and H∗(BX; Fp) is polynomial, then

X is a polynomial p-compact group and H∗(BX; Zp) = H∗(Ť (X); Zp)
W (X)

is a polynomial ring (7.1). This proves (1)⇒(6), and (6)⇔(5) by (7.27); we
proceed to show (5)⇒(4)⇒(3)⇒(2)⇒(1).

If (5) holds, then H1(W ;Hj(Ť ; Zp)) = 0 for all degrees j ≥ 0 (7.27). For

j = 1, in particular,H1(W ;L(Ť )∨) = 0, which, for general reasons (11.11(1),
11.8(8)–(9)), is equivalent to H1(W ; Ť ) = 0 or to H0(W ;L(Ť )) being a
free Zp-module. From the (split) short exact sequence 0 → SŤ → Ť →
H0(W ; Ť )→ 0 of ZpW -tori (11.8(10)) we get an epimorphism H2(Ť ; Fp)�
H2(SŤ ; Fp) of FpW -modules and therefore [71, 4.1] (W,SŤ ) is polynomial.

In the splitting (11.15) of (W,SŤ ) into a product of simple Zp-reflection
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groups (Wi, Ťi) with H0(Wi;L(Ťi)) = 0, each factor is polynomial (7.28),
i.e. not similar to the Weyl groups of F4, E6−8 at p = 3 and E8 at p = 5
(7.4). Thus all simple factors of (W,SŤ ) are Weyl groups of simple, simply
connected, polynomial p-compact groups, (W,SŤ ) is the Weyl group of the
product Y of these, and (W, Ť ), where Ť = (SŤ × Š)/(π, ϕ), is the Weyl
group of the p-compact group X = (Y × S)/(π, ϕ), BS = (BŠ)∧p , which is
polynomial by (7.20).

The map
{

Isomorphism classes of

polynomial p-compact groups

}
(W,Ť )−−−−→

{
Similarity classes of polynomial

Zp-reflection groups with H1 =0

}

is surjective by (7.26(4)) and injective by (7.21).

7.27. Lemma. Let (W, Ť ) be a Zp-reflection group. Then H∗(Ť ; Zp)
W

is polynomial if and only if (W, Ť ) is polynomial and P (H∗(Ť ; Fp)
W , t) =

P (H∗(Ť ; Qp)
W , t). If this is the case, then H∗(Ť ; Zp)

W⊗Z/p ∼= H∗(Ť ; Fp)
W

and H1(W ;H∗(Ť ; Zp)) = 0.

Proof. The Poincaré series condition ensures that the monomorphism of
H∗(Ť ; Zp)

W ⊗Z/p to H∗(Ť ; Fp)
W is an isomorphism. Now, if the Poincaré

series condition is satisfied, and H∗(Ť ; Zp)
W ⊗ Z/p = H∗(Ť ; Fp)

W is poly-

nomial, then there exist homogeneous elements x1, . . . , xr ∈ H∗(Ť ; Zp)
W ,

where r is the rank of Ť , that reduced mod p become polynomial generators
for H∗(Ť ; Fp)

W . Thus the ring homomorphism Zp[x1, . . . , xr]→H∗(Ť ; Zp)
W

becomes an isomorphism mod p and hence it is an isomorphism by Nakaya-
ma’s lemma. Conversely, if H∗(Ť ; Zp)

W is polynomial, then [77, 2.3, 2.4],
[78] the polynomiality condition from [11, Ch. 5, §5, Exercice 5], [88, 5.5.4,
5.5.5] can be used to show that H∗(Ť ; Fp)

W is polynomial. The last assertion
of the lemma follows from the exact sequence

. . .
·p−→ H∗(Ť ; Zp)

W � H∗(Ť ; Fp)
W 0−→ H1(W ;H∗(Ť ; Zp))

·p−→ H1(W ;H∗(Ť ; Zp))→ . . .

where H1(W ;Hj(Ť ; Zp)) is a finite Zp-module for fixed degree j.

7.28. Lemma. Let A and B be finitely generated graded algebras over
a field k. If A ⊗k B is a graded polynomial ring over k on homogeneous
generators of positive degree, then both factors A and B are polynomial.

Proof. Since A⊗k B is free over A (a k-basis for B provides an A-basis
for A ⊗k B) and the global dimension of the polynomial algebra A⊗k B is
finite by Hilbert’s syzygy theorem [7, 4.2.3], the global dimension of A is
also finite. Thus A is polynomial by Serre’s converse [7, 6.2.3] to Hilbert’s
theorem.
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8. Proofs of Theorem 1.2 and Corollaries 1.3–1.6. This small
section contains the proofs of the results stated in the introduction.

Proofs of Theorem 1.2, Corollary 1.3, and Corollary 1.5. The classifica-
tion of Theorem 1.2 is the content of (5.2, 6.1, 7.9). To obtain Corollaries 1.3
and 1.5, combine this with (4.4, 4.10, 11.18, 11.25) and (3.3, 3.7, 3.12(3)).

Proof of Corollary 1.4. Two connected p-compact groups with similar
Zp-reflection groups have isomorphic maximal torus normalizers (3.12(1)),
so are isomorphic (1.2). Thus the map (W,L) is injective.

To prove that the map (W,L) is surjective, let (W,L) be any Zp-reflection
group. Then L sits as the kernel of a short exact sequence (11.5)

0→ L→ LH0(W ; Ť )× PL→ π̌(L)→ 0

of ZpW -modules. Choose a p-compact torus S and a centerless p-compact
group PX such that S ×PX realizes the Zp-reflection group in the middle.
This is possible since PL is a product (11.15) of simple Zp-reflection groups,
each of which is realizable (7.10). The Zp-reflection group (W,L) is now
realized by a covering p-compact group of S × PX (4.10).

The expression for the automorphism group of X is (3.12(3), 3.15).

Proof of Corollary 1.6. Observe that the maximal torus normalizers [70,
1.3] for X and G become homotopy equivalent after fiberwise completion
away from the prime 2. This is because the maximal torus normalizers of the
associated p-compact groups split [4] when p is odd; cf. [70, Proof of Propo-
sition 5.5]. Thus there exists a space (BN)[1/2] and rational equivalences

(BX)[1/2]← (BN)[1/2]→ (BG)[1/2]

that p-complete to maximal torus normalizers for the p-compact groups
(BX)∧p and (BG)∧p at each odd prime p. In this situation, N -determinism of

the p-compact group (BG)∧p and the Arithmetic Square [14, VI.8.1] ensure
the existence of a homotopy equivalence (BG)[1/2] ' (BX)[1/2] of spaces
localized away from 2.

Within the framework of this paper, it can be easily shown (see remark
below (2.13)) that also the simple p-compact group (E8, p = 5) [94] is totally
N -determined, determined by its R-Weyl group for R = Zp,Qp,Fp, and is a
cohomologically unique p-compact group (4.4, 11.18, 11.25). However, more
information is needed for the other members of the E-family [6]. If this
program goes through we can remove the exceptions from Theorem 1.2,
and it will then follow that any finite family (Yi) of connected, simple, non-
abelian, pairwise non-isomorphic p-compact groups is similarity free and
any connected p-compact group is completely reducible in the (provisional)
sense of [62, 3.4, 3.10] when p is odd. Thus for instance [64, 5.2] will apply
to all (non-connected) p-compact groups G and [62, p. 381] will contain a
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description of the set εQ(X1,X2) of rational isomorphisms between any two
locally isomorphic p-compact groups, X1 and X2, for p odd.

9. N-determinism of product p-compact groups. We show in this
section that determinacy behaves well with respect to formation of (finite)
products of p-compact groups.

First two lemmas of a general nature. A p-compact group morphism
f : X → Y is said to be trivial if Bf : BX → BY is null-homotopic.

9.1. Lemma. Let X and Y be p-compact groups and X → Z(Y ) a p-
compact group morphism into the center of Y . If the composite morphism
X → Z(Y )→ Y is trivial , then X → Z(Y ) is trivial.

Proof. Turn the center Bz : BZ(Y )→ BY into a fibration (with fiber
Y/Z(Y )) and map BX into it to obtain the fibration

map(BX,Y/Z(Y ))→ map(BX,BZ(Y ))Bz−1(B0) → map(BX,BY )B0

where the total space consists of all mapsBX → BZ(Y ) that composed with
Bz become null-homotopic. With the help of the Sullivan Conjecture for p-
compact groups [31, 9.3], the fiber of this fibration identifies with Y/Z(Y )
and the base with BY . Thus the total space identifies with the connected
space BZ(Y ) = map(BX,BZ(Y ))B0. This shows the lemma.

9.2. Lemma. Let f : X → Y be a p-compact group morphism and jp :
Np(X)→ X the p-normalizer [30, 9.8] of the maximal torus of X. Then

(1) [32, 5.6] f is a monomorphism⇔ fjp is a monomorphism,
(2) [65, 6.6] f is trivial⇔ fjp is trivial.

If X is connected , this remains true with the p-normalizer replaced by the
maximal torus.

Proof. Suppose the restriction fjp of f to the p-normalizer is a monomor-
phism. Then [30, 9.11] H∗(BNp(X)) is a finitely generated H∗(BY )-module
via H∗(Bfjp). Since H∗(BX) is an H∗(BY )-submodule of H∗(BNp(X))
thanks to the transfer homomorphism [31, 9.13] and H∗(BY ) a noetherian
graded ring [30, 2.4], H∗(BX) is a finitely generated H∗(BY )-module via
H∗(Bf). The converse follows from the fact that the composition of two
monomorphisms is a monomorphism.

If X is connected, any monomorphism of Z/p to X factors through the
maximal torus monomorphism i : T (X)→ X [30, 4.7, 5.6], [31, 3.11]. This
implies that if Ňp(X) → Np(X) → X → Y has a non-trivial kernel, the

same is true for Ť (X) → T (X) → X → Y [30, §7]; here, Ňp(X) and Ť (X)
are discrete approximations [30, 6.4]. In other words, if T (X)→ X → Y is
injective, so is Np(X)→ X → Y [30, 7.3], [31, 3.5].

The second part of the lemma is [65, 6.6, 6.7].
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We now address N -determinism of automorphisms of product p-compact
groups. Let X1 and X2 be p-compact groups and

X1
ι1

// X1 ×X2

π1oo π2 // X2
ι2

oo

the natural projections and inclusions.

9.3. Lemma. Let f : X1 ×X2 → X1 be a p-compact group morphism
such that fι1 : X1 → X1 is an isomorphism and fι2 : X2 → X1 is trivial.
Then f is conjugate to fι1π1.

Proof. We want to show that the adjoint of Bf , mapping BX2 to
map(BX1, BX1)B(fι1) which is a space homotopy equivalent [31, 1.3] to
BZ(X1), is null-homotopic. But this follows immediately from (9.1) since
composition with the evaluation monomorphism to BX1 gives the null-
homotopic map Bf ◦Bι2.

9.4. Proposition. Let X1 and X2 be two connected p-compact groups
with N -determined automorphisms. Then also the product p-compact group
X1 ×X2 has N -determined automorphisms.

Proof. Let f be an automorphism of X1×X2 under the product N1×N2

of the two maximal torus normalizers. The morphism π1fι1 : X1 → X1 is an
isomorphism for [69, 3.7], [31, 4.7] it is a rational equivalence [30, 9.7] and a
monomorphism (9.2). As also π1fι2 : X2 → X1 is trivial by (9.2), it follows
from (9.3) that π1f is conjugate to π1fι1π1. Similarly, π2f is conjugate to
π2fι2π2 and thus f is conjugate to the product morphism f1 × f2 where
f1 = π1fι1 and f2 = π2fι2. Thus N(f) = N1(f1) × N2(f2) and, since X1

and X2 have N -determined automorphisms, it follows that f1 and f2 are
conjugate to identity morphisms.

Next, we address N -determinism of products. This is based on a slight
reformulation of the Splitting Theorem [32, 6.1], [80].

9.5. Theorem. Assume that p is odd. Let X be a connected p-compact
group and i : T → X a maximal torus with normalizer j : N → X. For any

decomposition N
∼=−→ N1×N2 of N into a product of two extended p-compact

tori , N1 and N2, there exist p-compact groups, X1 and X2, and an isomor-
phism s : X → X1 ×X2 such that

N

j

��

∼= // N1 ×N2

j1×j2
��

X s

∼= // X1 ×X2

commutes up to conjugacy where j1 : N1 → X1 and j2 : N2 → X2 are nor-
malizers of maximal tori.
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Proof. Write Ni, i = 1, 2, as an extension Ti → Ni →Wi of a p-compact
torus Ti and a finite group Wi. Then the Weyl group W = π0(N) of X is
isomorphic to W1×W2 and Wi acts [32, 6.3] as a reflection group on π1(Ti)⊗
Q. According to [32, 6.1], the splitting π1(T ) ∼= π1(T1) × π1(T2) as a W ∼=
W1 ×W2-module can be realized by a p-compact group splitting s : X →
X1 ×X2. This means that if N(s) : N → N ′1 ×N ′2, where j′i : N

′
i → Xi is the

normalizer of the maximal torus Ti → Xi, i = 1, 2, is the lift [65, 5.1] of
s, then the discrete approximation [31, 3.12] Ň(s) to N(s) determines an
isomorphism

0 // Ť //

Ť (s)
��

Ň //

Ň(s)
��

W

W (s)

��

// 1

0 // Ť1 × Ť2
// N ′1 ×N ′2 // W1 ×W2

// 1

of short exact sequences where Ť (s) is the given splitting Ť ∼= Ť1 × Ť2 and
W (s) the given splitting W ∼= W1 × W2. Relative to the given splitting
Ň ∼= Ň1 × Ň2, the middle isomorphism Ň(s) takes Ň1 × Ň2 isomorphically
to Ň ′1 × Ň ′2. The composite

Ň1
ι1−→ Ň1 × Ň2

Ň(s)−−−→ Ň ′1 × Ň ′2
π′2−→ Ň ′2,

where ι1 is the injection and π′2 the projection, can be factored through a
homomorphism W1 → Ť2 as it restricts to the trivial morphism Ť1 → Ť2.
Since p is assumed to be odd, any such homomorphism is trivial for the
reflection groupW1 is generated by elements of order prime to p. This implies
that Ň(s) : Ň1 × Ň2 → Ň ′1 × Ň ′2 is the product of two isomorphisms, Ň1 →
Ň ′1 and Ň2 → Ň ′2. Let ji, i = 1, 2, be the composite of this isomorphism
Ňi → Ň ′i with ji : Ň

′
i → Xi.

The assumption that p should be odd is presumably not essential.

9.6. Proposition. The product of two connected N -determined p-com-
pact groups is N -determined when p > 2.

Proof. This is immediate from the commutative diagram

N1 ×N2

xxqqqqqqqqqqq

j′ $$HHHHHHHHHH

))TTTTTTTTTTTTTTT

X1 ×X2 X ′ s

∼= // X ′1 ×X ′2
where X ′ is any p-compact group with maximal torus normalizer j ′ and s
the splitting isomorphism from (9.5). For if X1 and X2 are N -determined,
we get isomorphisms f1 : X1 → X ′1 and f2 : X2 → X ′2 under N1 and N2, re-
spectively, and s−1 ◦ (f1× f2) is then an isomorphism X1×X2 → X ′ under
N1 ×N2.
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The next step is to generalize (9.4) and (9.6) to possibly non-trivial
extensions.

9.7. Theorem. Let Y → G→ X be a short exact sequence of connected
p-compact groups.

(1) If the adjoint forms PX and PY have N -determined automorphisms,
so does G.

(2) If the adjoint forms PX and PY are N -determined and p > 2, so
is G.

Since a connected p-compact group has N -determined automorphisms
or is N -determined provided this holds for its adjoint form [66, 4.8, 7.10],
the proof of the above theorem is an immediate consequence of (9.4, 9.6)
and the lemma below.

9.8. Lemma. Let Y → G → X be an extension of connected p-compact
groups. Then

(1) G is locally isomorphic [65, 2.7] to X × Y , and

(2) the adjoint form PG is isomorphic to PX × PY .

Proof. Let SX denote the universal covering p-compact group and S =
Z(X)0 the identity component of the center of X. Let Y → E1 → SX×S be
the extension obtained by pulling back along the isogeny [69, 5.4] SX×S →
X. Since [64, 3.2, 3.3, 3.4] the projection of SX×S to S induces a bijection

Ext(S, Y )
∼=−→ Ext(SX × S, Y )

of equivalence classes of extensions, the p-compact group E1, which is locally
isomorphic to G, is isomorphic to SX×E2 for some extension Y → E2 → S
of the p-compact torus S by Y . By [64, 2.6], E2 is locally isomorphic to
S × Y and hence G is locally isomorphic to SX × S × Y , which is locally
isomorphic to X × Y .

Any connected p-compact group has the same adjoint form as its uni-
versal covering p-compact group (4.6). Hence

PG ∼= P (SX × SY ) ∼= PX × PY.

9.9. Example. Since [64, 3.3, 3.4]

Ext(PU(p),SU(p)) = [BPU(p),B2Z(SU(p))] = H2(BPU(p); Z/p)

= Hom(Z/p,Z/p) = Z/p

there are p equivalence classes of extensions of PU(p) by SU(p) in the cate-
gory of p-compact groups. However, since the local isomorphism system of
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the p-compact group SU(p)× SU(p) [65, p. 217]

SU(p)× PU(p)
,,XXXXX

SU(p)× SU(p)

22fffff

,,XXXXX
PU(p)× PU(p)

SU(p)o PU(p)

22fffff

consists of very few p-compact groups, we see from (9.10) that the middle
p-compact group in any of these extensions must be isomorphic to either the
direct product SU(p)× PU(p) or the semidirect product SU(p)oPU(p) for
the conjugation action of PU(p) on SU(p). All the p-compact groups locally
isomorphic to SU(p)× SU(p) are totally N -determined. The automorphism
groups are, for instance,

Out(SU(p)× PU(p)) = Z∗p × Z∗p,

Out(SU(p)o PU(p)) ∼= {(u, v) ∈ Z∗p × Z∗p | u ≡ v mod p}o Z/2,

where Z/2 permutes the coordinates. Formulas like these follow from (5.1)
in combination with [65, 4.3] and [62, 3.5].

9.10. Lemma. For any short exact sequence Y
ι−→ G

π−→ X of connected
p-compact groups there exists a corresponding short exact sequence Z(Y )→
Z(G) → Z(X) of centers. In particular , Y and G have isomorphic centers
if X is centerless.

Proof. Let z : Z(Y )→ Y be the center of Y . In the commutative diagram

map(BZ(Y ), BY )Bz

'
��

// map(BZ(Y ), BG)B(ιz)

��

// map(BZ(Y ), BX)B0

'
��

BY // BG // BX

the horizontal lines are fibration sequences and the vertical arrows are evalu-
ation maps. Note that the middle arrow is a homotopy equivalence since the
outer two arrows are homotopy equivalences. This shows that ιz : Z(Y )→ G
is central and by naturality we obtain [30, 8.3] a short exact sequence

PY → G/Z(Y )→ X

of p-compact groups. This extension is equivalent to the trivial extension
[64, 3.4] since PY is centerless [69, 4.7], [31, 6.3]. Thus G/Z(Y ) ∼= PY ×X
and

Z(G)/Z(Y ) ∼= Z(G/Z(Y )) ∼= Z(PY ×X) ∼= Z(X)

by [69, 4.6(4)].

10. Maximal rank subgroups of DI2. This section contains some gen-
eral theory for monomorphisms between p-compact groups and it is shown
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that DI2 contains essentially unique copies of each of the 3-compact groups
SU(2)× SU(2), U(2), Spin(5), SU(3), PU(3), and G2.

Recall from the previous section that BDI2 is the homotopy colimit (at
p = 3) of a diagram of the form

(10.1) BSU(3)(Z/2)op
88 BT (SU(3)) W op

ff

W (SU(3))op\W op

oo

where Z/2 acts on BSU(3) as {ψ±1} and W , the Weyl group of DI2, is the
subgroup of GL(2,Zp)

W = W (DI2) = 〈W (SU(3)),W (PU(3))〉 = 〈σ, τ,−E〉
generated by the Weyl groups of SU(3) and PU(3) or, alternatively, by the
matrices

σ =

(
0 −1

1 −1

)
and τ =

(
0 −1

−1 0

)

together with scalar multiplication with −1. The semidirect product

Ň(DI2) = Ť oW

where Ť = Ť (SU(3)) is (3.12) the discrete approximation to the maximal
torus normalizer N(DI2) for DI2.

We start our investigation of maximal rank subgroups of DI2 with some
general remarks.

Let X1 and X2 be two connected p-compact groups of the same rank. Let
j1 : N1 → X1 and j2 : N2 → X2 be normalizers of maximal tori i1 : T1 → X1

and i2 : T2 → X2.

Consider the map [67, 3.11]

(10.2) N : Mono(X1,X2)→ Mono(N1, N2)

that to any conjugacy class of a monomorphism f : X1 → X2 associates the
unique conjugacy class N(f) : N1 → N2 such that

N1
N(f) //

j1
��

N2

j2
��

X1 f
// X2

commutes up to conjugacy. Here, Mono(X1,X2) ⊂ [BX1, BX2] denotes the
set of conjugacy classes of monomorphisms of X1 into X2 and Mono(N1, N2)
denotes the set of conjugacy classes of maps BN1 → BN2 inducing mono-
morphisms on π1 and isomorphisms on π2. Note that if Ň1 → N1 and
Ň2 → N2 are discrete approximations then

[BŇ1, BŇ2] = [BN1, BN2]
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so that
Mono(N1, N2) = Mono(Ň1, Ň2)/Ň2

consists of conjugacy classes of monomorphisms of Ň1 into Ň2. For any
monomorphism f ∈ Mono(X1,X2), we let Ň(f) ∈ Mono(Ň1, Ň2), deter-
mined up to conjugacy, denote any discrete approximation to N(f).

10.3. Definition. The monomorphism f ∈ Mono(X1,X2) is N -deter-
mined if the subset N−1(N(f)) of Mono(X1,X2) consists of f alone.

Let W1 = π0(N1) and W2 = π0(N2) denote the Weyl groups.

10.4. Example. If p - |W1|, then all monomorphisms are N -determined.
Indeed, it is not difficult to see that (10.2) is bijective in this case.

In case X1 = X2, the map (10.2) is the homomorphism N : Out(X1)
→ Out(N1) previously encountered. We say that X1 has N -determined
monomorphisms if this map is injective; if X1 is totally N -determined then
N is a bijection. Note that (10.2) is equivariant in the sense that there is a
commutative diagram

Mono(X1,X2)×Out(X1)

N×N
��

// Mono(X1,X2)

N
��

Mono(N1, N2)×Out(N1) // Mono(N1, N2)

relating group actions on sets of monomorphisms.
Let G and H be groups. Write {G > H} for the set of conjugacy classes

of subgroups abstractly isomorphic to H of G.

10.5. Proposition. Let i : X1 → X2 be a monomorphism between the
two p-compact groups X1 and X2 of the same rank. Then the Euler charac-
teristic χ(X2/iX1) = |W2 : W1| and if

• i is N -determined ,
• X1 is totally N -determined ,
• {Ň2 > Ň1} is a one-point set ,

then the action Mono(X1,X2)×Out(X1)→Mono(X1,X2) is transitive and
all monomorphisms of X1 into X2 are N -determined.

Proof. The first part is [67, 3.11]. For the second part, note first that for
any α ∈ Out(X1), iα is an N -determined monomorphism. Suppose namely
that N(f) = N(iα) = N(i)N(α) for some monomorphism f : X1 → X2.
Then N(fα−1) = N(f)N(α)−1 = N(i), so fα−1 = i and therefore f = iα.

Let now f : X1 → X2 be any monomorphism and Ň(f) : Ň1 → Ň2 a rep-
resentative for the conjugacy class N(f). Since Ň2 contains but a single copy
of Ň1 up to conjugacy and X1 is totally N -determined, Ň(f) = Ň(i)Ň(α)
for some automorphism α of X1. Then Ň(f) = Ň(iα) and f = iα.
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The third condition is satisfied in case Ň1 = Ť1oW1, Ň2 = Ť2oW2 are
semidirect products and the set {W1 > W2} is a one-point set.

10.6. Definition. For a monomorphism f : Y → X of p-compact
groups, let WX(f), or WX(Y ), the Weyl group of f , denote the compo-
nent group of the Weyl space WX(Y ) [32, 4.1, 4.3].

10.7. Proposition. Let f : Y → X be a monomorphism of p-compact
groups.

(1) If the homomorphism π0(Z(Y )) → π0(CX(Y )) induced by f is sur-
jective, then the Weyl group WX(Y ) is the isotropy subgroup Out(Y )f for
the action of Out(Y ) on f ∈Mono(Y,X).

(2) If f is centric [28], then there is a short exact sequence of loop spaces
[30, 3.2] Y → NX(Y ) → WX(Y ) where NX(Y ) is the normalizer of f [32,
4.4].

Proof. The monomorphism f determines a fibration

WX(Y )→
∐

f◦α'f
map(BY,BY )Bα

Bf
−−→ map(BY,BX)Bf

where the components of the total space are indexed by the isotropy sub-
group Out(Y )f and the fiber is the Weyl space. The assumptions of the
proposition assure that the inclusion of the fiber into the total space is a
bijection on π0. If we make the additional assumption that f be centric, the
Weyl space becomes homotopically discrete and the exact sequence of the
proposition is the one from [32, 4.6]

10.8. Lemma. Suppose that i : X1 → X2 is a monomorphism and let
N(i) ∈ Mono(N1, N2) be the induced monomorphism of normalizers. Then
the stabilizer subgroup Out(N1)N(i) of N(i) is isomorphic to the quotient
group NW2(W1)/W1.

Proof. Note that there is an epimorphism

NŇ2
(Ň1)/Ň1 � (Aut(Ň1)/Ň1)N(i) = Out(N1)N(i)

given by conjugation by elements of Ň2 normalizing Ň1. This homomorphism
is actually also injective, hence bijective, for if conjugation by, say, n2 ∈
NŇ2

(Ň1) agrees with conjugation by some element n1 ∈ Ň1, then n1 and n2

have the same image in W2, so that n2 belongs to Ň1. This follows because
the Weyl groups of the connected p-compact groups X1 and X2 are faithfully
represented in their maximal tori. Consequently,

Out(N1)N(i)
∼= NŇ2

(Ň1)/Ň1

and this last group is isomorphic to the quotient group NW2(W1)/W1 by the
projection Ň2 �W2.



268 J. M. Møller

10.9. Proposition. Let i : X1 → X2 be an N -determined monomor-
phism between the two p-compact groups X1 and X2 inducing an epimor-
phism π0(Z(X1))→ π0(CX2(X1)). Then

WX2(X1) = NW2(W1)/W1

provided X1 is totally N -determined.

Proof. The assumptions imply that the Weyl group WX2(X1) is isomor-
phic to the stabilizer subgroup Out(X1)i which again is isomorphic to the
stabilizer subgroup Out(N1)N(i) for the action

Mono(Ň1, Ň2)/Ň2 ×Aut(Ň1)/Ň1 → Mono(Ň1, Ň2)/Ň2

of Out(N1) on N(i) ∈ Mono(N1, N2). Now apply (10.8).

10.10. Example. By (10.4), the inclusion Ť o 〈−τ 〉 � Ť oW is real-
izable by an N -determined monomorphism i : U(2)→ DI2. The monomor-
phism i is centric (because BU(2) = BThZ/2 and the centralizer CU(2)(T ) ∼=
T ∼= CDI2(T )) so (10.5, 10.7, 10.9)

χ(DI2/U(2)) = 24 and WDI2(U(2)) ∼= Z(W )

and Out(U(2)) acts transitively on Mono(U(2),DI2) because {Ť o W >
Ť o 〈−τ 〉} is a one-point set.

10.11. Example. Similarly, {W > Z/2×Z/2} is a one-point set, so there
is an essentially unique monomorphism i : SU(2)× SU(2)→ DI2 realizing
the inclusion of Ť o (Z/2 × Z/2) into Ť o W . The monomorphism i is
N -determined, centric, and

χ(DI2/SU(2)× SU(2)) = 12 and WDI2(SU(2)× SU(2)) ∼= Z(W )

and Out(SU(2)× SU(2)) acts transitively on Mono(SU(2)× SU(2),DI2).

10.12. Example. Also {W > D8} = {D8}, where D8 is the dihe-
dral group of order 8. It follows that there exists a unique monomorphism
i : Spin(5)→ DI2 realizing the inclusion Ť oD8 � Ť oW . This monomor-
phism is centric (because BSpin(5) and B(Ť o D8) are H∗F3-equivalent),
so

χ(DI2/Spin(5)) = 6 and WDI2(Spin(5)) ∼= Z(W )

and Out(Spin(5)) acts transitively on Mono(Spin(5),DI2).

In a situation where a pair of monomorphisms G→ X1 and G→ X2 are
given, let us write mapBG(BX1, BX2) for the space of maps BX1 → BX2

under BG up to homotopy.

10.13. Lemma. Let z : Z → X1 be a central monomorphism and i :
X1 → X2 any monomorphism inducing an isomorphism X1

∼= CX1(z) →
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CX2(f ◦ z). Then f induces a homotopy equivalence

mapBZ(BX1, BX1)→ mapBZ(BX1, BX2)

of mapping spaces.

Proof. The spaces BCX1(z) = map(BZ,BX1)Bz and BCX2(f ◦ z) =
map(BZ,BX2)B(f◦z) are X1/Z-spaces and BCf (Z) :BCX1(z)→BCX2(f◦z)
is an X1/Z-map inducing a map

mapBZ(BX1, BX1) = BCX1(z)h(X1/Z)

→ BCX2(f ◦ z)h(X1/Z) = mapBZ(BX1, BX2)

of homotopy fixed point spaces. If Cf (z) is an isomorphism, then this map
is a homotopy equivalence.

This happens for instance for V → CX(V )→ X so that

mapBV (BCX(V ), BCX(V )) ' mapBV (BCX(V ), BX)

for any connected p-compact group X, any elementary abelian p-group V ,
and any monomorphism V → X.

10.14. Example. Let i : SU(3)→ DI2 denote the monomorphism arising
in the construction (10.1) of BDI2 as a homotopy colimit. By (10.13), Bi
induces a homotopy equivalence

mapBZ/3(BSU(3),BSU(3))→ mapBZ/3(BSU(3),BDI2)

where Z/3→ SU(3) is the center, and thus a bijection

Out+(SU(3))→ Mono(SU(3),DI2),

where Out+(SU(3)) consists of the unstable Adams operations ψu indexed
by units u ∈ Z∗3 with u ≡ 1 mod 3. We obtain a commutative diagram

Out+(SU(3))
∼= //

N ∼=
��

Mono(SU(3),DI2)
��
N

��
Out(Ť oW (SU(3)))/W (SU(3)) // Mono(Ť oW (SU(3)), Ť oW )/W

and using (10.8) we see that the kernel of the composition going down and
then right is trivial. Thus i is N -determined and [28, 4.2] centric. Conse-
quently,

χ(DI2/SU(3)) = 8 and WDI2(SU(3)) ∼= Z(W ),

Out(SU(3)) acts transitively on Mono(SU(3),DI2), and all monomorphisms
of SU(3) into DI2 are N -determined.

10.15. Example. Similarly, the monomorphism i : SU(3)→ G2 arising
in the construction (7.12) of BG2 as a homotopy colimit is N -determined
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and centric. Also, Out(SU(3)) acts transitively on Mono(SU(3),G2) with
stabilizer subgroup WG2(SU(3)) = {±E}, and χ(G2/SU(3)) = 2.

10.16. Example. The inclusions of the maximal torus and of SU(3)
into DI2 constitute a homotopy coherent set of maps out of the centralizer
diagram (7.10) for BG2 into BDI2. Observing that both maps are centric
one sees first that the Wojtkowiak obstruction groups vanish according to
(13.7) and next that the resulting map BG2 → BDI2 is a centric monomor-
phism realizing the inclusion Ť oW (G2) → Ť oW (G2) of maximal torus
normalizers. As also {W > W (G2)} = {W (G2)}, we conclude that

χ(DI2/G2) = 4 and WDI2(G2) ∼= {1}
and that Out(G2) acts transitively on Mono(G2,DI2).

10.17. Example. BPU(3) is the homotopy colimit of a diagram of the
form

BVSL(V )op
;;

Sop
3 \SL(V )op

// BN3

Z/2

[[ BT W (PU(3))op
cc

Sop
3 \W (PU(3))op

oo

where S3 is a Sylow 3-subgroup of SL(V ) and N3 is the 3-normalizer of the
maximal torus. There is a canonical map BN3 → BDI2 because N3 is also
the 3-normalizer of the maximal torus of DI2. This map BN3 → BDI2 is
centric and it respects the maps of the above diagram up to homotopy. The
obstructions to extending BN3 → BDI2 to a map BPU(3) → BDI2 lie in
the higher limits of the A(PU(3))-module

π∗(BT (DI2))SL(V )
88 π∗(BZ3)

Z/2

ZZSL(V )/S3

oo

W (PU(3))/S3

// π∗(BT ) W (PU(3))
ff

which vanish completely (13.7). (We are here implicitly using computations
of mapping spaces like map(BV,BDI2)Bi = BT (DI2).) Thus there exists
a unique homotopy class Bi : BPU(3)→ BDI2 extending the inclusion of
the 3-normalizer. Also, the restriction of i to the 3-normalizer of the max-
imal torus is a monomorphism, so i itself is a monomorphism (9.2), and
i is centric because the Bousfield–Kan spectral sequence [14, XI.7.1] for
map(BPU(3),BDI2)Bi shows that this mapping space is weakly contractible.
As also {Ť oW > Ť oW (PU(3))} is a one-point set and PU(3) is totally
N -determined (5.1), (10.5, 10.7, 10.9) show that

χ(DI2/PU(3)) = 8 and WDI2(PU(3)) = Z(W )

and that the group Out(PU(3)) acts transitively on the set Mono(PU(3),DI2)
of conjugacy classes of monomorphisms.
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In view of [10], which says that any connected, closed subgroup of max-
imal rank of a compact connected Lie group is the normalizer of its center,
this example is somewhat surprising.

There is no monomorphism of PU(3) into G2 for A(PU(3))(V ) = SL(V )
(5.10) is too big to be a subgroup of A(G2)(V ) = Σ3 × Z/2 (7.10). Indeed,
no non-trivial compact, connected Lie group admits a proper, centerless
subgroup of maximal rank [10].

The next example describes the normalizers of the elementary abelian
subgroups of DI2. Strictly speaking, these normalizers are not 3-compact
groups, but rather extended 3-compact groups, in that their component
groups are not 3-groups.

We start with a general observation.

10.18. Proposition. Let ν : V → X be a monomorphism of an elemen-
tary abelian p-group V into a p-compact group X.

(1) There is a short exact sequence of groups

1→ π0(CX(ν)/V )→WX(ν)→ A(X)(ν)→ 1

where CX(ν)/V is the standard quotient [30, 8.3].
(2) There is a short exact sequence of loop spaces

CX(ν)→ NX(ν)→ A(X)(ν)

where NX(ν) is the normalizer of ν [32, 4.4].

Proof. Assuming Bν : BV → BX to be a fibration, consider the induced
fibration

WX(ν)→
∐

f∈A(X)(ν)

map(BV,BV )Bf
Bν−−→ map(BV,BX)Bν

where the fibre is the Weyl space [32, 4.1] of ν and the components, each one
homotopy equivalent to BV , of the total space are indexed by the automor-
phism group of ν in the Quillen category. The homotopy exact sequences of
this fibration and of its subfibration

CX(ν)/V → BV → BCX(ν)

give the exact sequence of groups and show that B(CX(ν)/V ) is the regular
covering space of BWX(ν) corresponding to π0(CX(ν)/V ) � WX(ν). Thus
there is a pull-back diagram

BCX(ν) //

��

BNX(ν)

��
B(CX(ν)/V ) // BWX(ν)

where the horizontal maps are regular covering spaces.
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10.19. Example. For any monomorphism λ : Z/3→ DI2 there is (10.18)
a short exact sequence of loop spaces

SU(3)→ NDI2(λ)→ Z(W )

where Z(W ) ∼= Z/2 acts on SU(3) as {ψ±1}. Thus

NDI2(λ) = SU(3)o Z(W )

where B(SU(3)oZ(W )) denotes the total space of the unique [64, 3.3, 3,7]
BSU(3)-fibration over BZ(W ) realizing the given monodromy action. (It
is not essential in [64, §3] that the component group π0(X) be a p-group.)

Since the homotopy fixed point space BZ(SU(3))hZ(W ) is contractible, the
inclusion ŤoW (SU(3))� SU(3) extends uniquely to a short exact sequence
morphism

Ť oW (SU(3))
��

��

// NŤoW (λ)

��

// Z(W )

SU(3) //NDI2(λ) //Z(W )

where NŤoW (λ) = Ť oW (λ) = Ť o (W (SU(3))× Z(W )).

For any monomorphism ν : (Z/3)2 → DI2 there is a short exact sequence
of loop spaces

T → NDI2(ν)→W

so NDI2(ν) is an extended p-compact torus with Ť oW as discrete approx-
imation [31, 3.12].

10.20. Example. The normalizers of the 3-compact subgroups of DI2

are (10.7(2))

NDI2(G2) = G2 and NDI2(X) = X o Z(W )

for X = U(2),SU(2)× SU(2),Spin(5),SU(3),PU(3) where Z(W ) acts on X
as {ψ±1}. In each case there is a unique short exact sequence morphism
connecting the normalizer in Ť oW of NX(T ) and the normalizer in DI2 of
X. For X = PU(3), for instance, the picture is

Ť oW (PU(3))
��

��

// NŤoW (Ť oW (PU(3)))

��

// Z(W )

PU(3) //NDI2(PU(3)) //Z(W )

where NŤoW (Ť oW (PU(3))) = Ť o (W (PU(3)) × Z(W )). It seems likely
that this is another instance of N -determinism.

11. Free Zp-modules and p-discrete tori. Nearly all material of this
section is present, in one form or another, in [75].
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A Zp-module which is isomorphic to Zr
p for some finite r will be called

a Zp-lattice, and a Zp-module which is isomorphic to (Z/p∞)r = (Qp/Zp)
r

for some finite r will be called a Zp-torus.

Let Ť and L denote the endo-functors of the category Ab of abelian
groups given by

Ť = Z/p∞ ⊗− and L = Hom(Z/p∞,−).

Then HomAb(Ť (A), B) = HomAb(A,L(B)) so (Ť , L) is a pair of adjoint
functors. The left adjoint functor Ť is right exact, Ť vanishes on finite Zp-

modules, turns Zp-lattices into Zp-tori, and its left derived functor Ť1 =
Tor(Z/p∞,−) preserves finite Zp-modules and vanishes on Zp-lattices. The
right adjoint functor L is left exact, L vanishes on finite Zp-modules, turns
Zp-tori into Zp-lattices, and its right derived functor L1 = Ext(Z/p∞,−)
preserves finite Zp-modules and vanishes on Zp-tori. In symbols:

Ť (0→ S → L→ H → 0)

= (0→ Ť1(L)→ Ť1(H)→ Ť (S)→ Ť (L)→ Ť (H)→ 0),

L(0→ H → Ť → P̌ → 0)

= (0→ L(H)→ L(Ť )→ L(P̌ )→ L1(H)→ L1(Ť )→ 0),

where S is a Zp-lattice, P̌ is a Zp-torus, and L, H, and Ť are Zp-modules.

In fact the pair (Ť , L) provides adjoint equivalences [14, p. 181] between the
full subcategories of (the underlying abelian groups of) Zp-lattices and (the
underlying abelian groups of) Zp-tori.

A ZpW -module whose underlying Zp-module is a Zp-lattice will be called
a ZpW -lattice, and a ZpW -module whose underlying Zp-module is a Zp-torus
will be called a ZpW -torus.

11.1. Definition [75, 1.1.4, 1.1.5]. For a ZpW -lattice L and a ZpW -

torus Ť , put

SL = ker(L→ H0(W ;L)), PL = L(P Ť (L)),

P Ť = coker(H0(W ; Ť )→ Ť ), SŤ = Ť (SL(Ť )).

In plain language, SL is simply the ZpW -submodule of L generated by

the union of the subsets (1−w)L, w ∈W , and Ť (PL) is the quotient of Ť (L)
by the invariants Ť (L)W for the W -action. We have short exact sequences

(11.2)
0→ SL→ L→ H0(W ;L)→ 0,

0→ H0(W ; Ť (L))→ Ť (L)→ Ť (PL)→ 0

defining SL and PL. (SL could perhaps be called the root lattice and PL
the weight lattice of L.)

It simplifies matters a great deal to assume that W is generated by ele-
ments of order prime to p (as are Zp-reflection subgroups for odd primes p).
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11.3. Lemma. Suppose that W is generated by elements of order prime
to p. Then H1(W ;H) = 0 = H1(W ;H) for any Zp-module H with trivial
W -action.

Proof. Observe that the abelianizationH1(W ; Z) is a finite abelian group
generated by elements of order prime to p and apply universal coefficients.

11.4. Lemma. Let L be a ZpW -lattice.

(1) The Zp-module homomorphism H0(W ;L)→ L is split injective and

the Zp-module homomorphisms ŤH0(W ;L) → H0(W ; Ť (L)), H0(W ;L) →
H0(W ;L) are injective.

(2) coker(H0(W ;L)→ H0(W ;L)) is finite.
(3) H0(W ;SL) = 0 = H0(W ; Ť (SL)) and H0(W ;SL) is finite. If W is

generated by elements of order prime to p, then H0(W ;SL) = 0.
(4) The Zp-module homomorphism Ť (L) → H0(W ; Ť (L)) is split sur-

jective and the Zp-module homomorphisms H0(W ;L) → LH0(W ; Ť (L)),

H0(W ; Ť (L))→ H0(W ; Ť (L)) are surjective.
(5) ker(H0(W ; Ť (L))→ H0(W ; Ť (L))) is finite.
(6) H0(W ; Ť (PL)) = 0 = H0(W ;PL) and H0(W ; Ť (PL)) is finite. If

W is generated by elements of order prime to p, then H0(W ; Ť (PL)) = 0.
(7) H0(W ;L) ∼= LH0(W ; Ť (L)) and H0(W ; Ť (L)) ∼= ŤH0(W ;L).
(8) H0(W ;L) = 0 ⇔ H0(W ;L) is finite ⇔ H0(W ; Ť (L)) = 0 ⇔

H0(W ; Ť (L)) is finite.
(9) H0(W ;L) = 0⇔ H0(W ; Ť (L)) = 0 = H1(W ; Ť (L))

⇔ H0(W ;L⊗Zp Z/p) = 0.

(10) H0(W ; Ť (L)) = 0⇔ H0(W ;L) = 0 = H1(W ;L)
⇔ H0(W ; Hom(Z/p, Ť (L))) = 0.

Proof. The inclusion H0(W ;L) � L has a right inverse because its
cokernel is a torsion-free, hence free, Zp-module. Then also ŤH0(W ;L) →
H0(W ; Ť (L)) ⊆ Ť (L) is injective by functoriality. Since the first homology
group H1(W ;L/H0(W ;L)) is finite, the long exact coefficient sequence in
homology shows that H0(W ;L)→ H0(W ;L) is injective. The QpW -module
L⊗Qp contains H0(W ;L⊗Qp) as a direct summand, so H0(W ;L⊗Qp) ⊆
H0(W ;L ⊗ Qp), and it contains H0(W ;L ⊗ Qp) as a direct summand, so
H0(W ;L ⊗ Qp) ⊆ H0(W ;L ⊗ Qp). Thus the vector spaces H0(W ;L) ⊗
Qp
∼= H0(W ;L⊗Qp) and H0(W ;L)⊗Qp

∼= H0(W ;L⊗Qp) have the same
dimension. This shows that the cokernel of the monomorphism H0(W ;L)�
H0(W ;L) is finite. Apply the left exact functor H0(W ;−) to (11.2) and,
using (1), conclude that H0(W ;SL) = 0. Apply the right exact functor to
(11.2) and conclude that H0(W ;SL) is finite (and, using (11.3), trivial if
W is generated by elements of order prime to p). This proves the first three
items and the next three are proved in a dual fashion. For (7), take the
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short exact sequence 0 → Zp → Qp → Z/p∞ → 0 of Zp-modules. Apply
H0(W ;−) ◦ (L⊗−) and H0(W ;L) ◦ − to it and compare the results

H0(W ;L) // H0(W ;L⊗Qp) // H0(W ; Ť (L)) // 0

H0(W ;L) // H0(W ;L)⊗Qp
//

∼=
OO

ŤH0(W ;L) //

OO

0

to see that ŤH0(W ;L) ∼= H0(W ; Ť (L)). Dually, compare the values of
H0(W ;−) ◦ Hom(−, Ť (L)) and Hom(−,H0(W ; Ť (L))) applied to the same
short exact sequence and conclude that H0(W ;L) and LH0(W ; Ť (L)) are
isomorphic. Combine these isomorphisms with (2) and (5) to obtain (8).
To get the formulas of (10) and (11.4), simply apply the right exact func-

tor H0(W ;−) to the short exact sequence 0 → L
·p−→ L → L ⊗ Z/p → 0

and the left exact functor H0(W ;−) to the short exact sequence 0 →
Hom(Z/p, Ť )→ Ť

·p−→ Ť → 0 where L⊗ Z/p = Hom(Z/p, Ť ).

From the commutative diagrams with exact rows

0 // SL // L // H0(W ;L) // 0

0 // SL // SL×H0(W ;L)

OO

OO

// H0(W ;L)

hhQ Q Q Q Q Q Q Q OO

OO

// 0

0 // H0(W ; Ť (L))

����

// Ť (L)

����

//

uuk k k k k k k k k Ť (PL) // 0

0 // H0(W ; Ť (L)) // H0(W ; Ť (L))× Ť (PL) // Ť (PL) // 0

the Snake Lemma produces exact sequences of ZpW -modules

(11.5)

0→ SL×H0(W ;L)→ L→ π(L)→ 0,

0→ π(L)→ Ť (SL)× ŤH0(W ;L)→ Ť (L)→ 0,

0→ π̌(L)→ Ť (L)→ H0(W ; Ť (L))× Ť (PL)→ 0,

0→ L→ LH0(W ; Ť (L))× PL→ π̌(L)→ 0,

where π(L) and π̌(L) are the finite groups defined by the short exact se-
quences

0→ H0(W ;L)→ H0(W ;L)→ π(L)→ 0,(11.6)

0→ π̌(L)→ H0(W ; Ť (L))→ H0(W ; Ť (L))→ 0(11.7)

of abelian groups. We have thus constructed functors
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š : ZpW -mod→ (ZpW -mod)•←•→•,

s : ZpW -mod→ (ZpW -mod)•→•←•,

š(L) = (Ť (SL)� π(L)
ϕ(L)−−−→ ŤH0(W ;L)),

s(L) = (PL� π̌(L)
ϕ̌(L)←−−− LH0(W ; Ť (L)))

from the category of ZpW -modules into the category of push-out (pull-back)
diagrams of ZpW -modules. Since we can recover L from the value of these

functors in that colim š(L) = Ť (L) and L = lim s(L), the classification of
ZpW -modules has been reduced to the classification of ZpW -modules L with
π(L) = 0 or π̌(L) = 0.

11.8. Lemma. Let L be a ZpW -lattice and assume that W is generated
by elements of order prime to p.

(1) π(PL) = H0(W ;PL), π̌(SL) = H0(W ; Ť (SL)), π̌(PL) = 0 =
π(SL), and π(PL) ∼= π̌(SL).

(2) π(L)→H0(W ; Ť (SL))= π̌(SL) is injective and π(PL)=H0(W ;PL)
→ π̌(L) is surjective.

(3) 0 → H0(W ;L) → LH0(W ; Ť (L)) × π(PL) → π̌(L) → 0 is an exact
sequence.

(4) 0 → π(L) → π̌(SL) × ŤH0(W ;L) → H0(W ; Ť (L)) → 0 is an exact
sequence.

(5) SSL = SL = SPL and PPL = PL = PSL.

(6) π(L) = 0⇔ SL×H0(W ;L) = L and π̌(L) = 0⇔ L=LH0(W ; Ť (L))
× PL.

(7) If H0(W ;L) = 0, then π(L) = H0(W ;L), π̌(L) = H0(W ; Ť (L)), and
there is a short exact sequence 0→ π(L)→ π̌(SL)→ π̌(L)→ 0.

(8) ϕ(L) ∈ Hom(π(L), ŤH0(W ;L)) ∼= Ext(π(L),H0(W ;L)) classifies
the above abelian extension (11.6) and ϕ̌(L) ∈ Hom(LH0(W ; Ť (L)), π̌(L)) ∼=
Ext(H0(W ; Ť (L)), π̌(L)) classifies (11.7).

(9) H0(W ; Ť (L)) ∼= cokerϕ(L), H1(W ; Ť (L)) ∼= kerϕ(L), H0(W ;L) ∼=
ker ϕ̌(L), H1(W ;L) ∼= coker ϕ̌(L).

(10) 0→ H0(W ;L)→L→PL→ H1(W ;L)→ 0 and 0→ H1(W ; Ť (L))
→ Ť (SL)→ Ť (L)→ H0(W ; Ť (L))→ 0 are exact sequences.

Proof. (1) is true because H0(W ;PL) = 0 = H0(W ; Ť (PL)) by (11.4.6).
For (2), note that there is a commutative diagram

0 // π(L)

((PPPPPPPPPPPPP
(α,β) // Ť (SL)× ŤH0(W ;L)

��

// Ť (L) // 0

Ť (L)× Ť (L)

+

66nnnnnnnnnnnnn
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for some homomorphisms α and β. For all x ∈ π(L), α(x) + β(x) = 0 in
Ť (L). If α(x) = 0 in Ť (SL), then also α(x) = 0 in Ť (L) so β(x) = 0 in
Ť (L). But this means that the monomorphism (α, β) takes x to 0, so x = 0.
Thus α is a monomorphism. Apply the functor H0(W ;−) to a short exact
sequence from (11.5) to obtain the commutative diagram

0 // L

��

// LH0(W ; Ť (L))× PL

��

// π̌(L) // 0

0 // H0(W ;L) // LH0(W ; Ť (L))×H0(W ;PL) // π̌(L) // 0

with a bottom row that is exact according to (11.3). Conclude that SPL =
SL. Using the exact sequence of (3) and (11.4(7)) we see that there is a
short exact sequence

0→ ker(H0(W ;L)→ LŤH0(W ;L))→ π(PL)→ π̌(L)→ 0

for any ZpW -module L. Applied to SL, this gives π(PL) ∼= π̌(SL).

For (9) and (10) apply the left exact functor H0(W ;−) to one of the
short exact sequences from (11.5) and get the commutative diagram

0 // L // LH0(W ; Ť (L))× PL // π̌(L) // 0

0 // H0(W ;L)

OO

OO

// LH0(W ; Ť (L))

OO

OO

ϕ̌(L) // ker(π̌(L)→ H1(W ;L))

OO

OO

// 0

using H0(W ;PL) = 0 = H1(W ;PL) (11.4(10)). Now apply the Snake
Lemma.

The group W acts on the dual Zp-lattice L∨ = Hom(L,Zp) according to
the rule (w · ϕ)(x) = ϕ(w−1x), w ∈ W , ϕ ∈ L∨, x ∈ L. The W -equivariant
duality pairing

(11.9) Ť (L)× L∨ → Z/p∞

obtained from the identificationL∨=Hom(L,L(Z/p∞))=Hom(Ť (L),Z/p∞)
induces pairings

(11.10)
H∗(W ; Ť (L))×H∗(W ;L∨)→ Z/p∞,

H∗(W ; Ť (L))×H∗(W ;L∨)→ Z/p∞

relating homology and cohomology groups. (A duality pairing of Zp-modules
is a bilinear map A × B → C of Zp-modules such that the adjoint homo-
morphisms A→ HomZp(B,C) and B → HomZp(A,C) are isomorphisms.)

11.11. Lemma. Let L be a ZpW -lattice and L∨ its dual. Assume that
W is generated by elements of order prime to p.
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(1) The bilinear maps (11.10) are duality pairings.

(2) S(L∨) = (PL)∨.

Proof. It is immediate that

H∗(W ;L∨) = H∗(W ; Hom(Ť (L),Z/p∞)) ∼= Hom(H∗(W ; Ť (L)),Z/p∞)

for Hom(−,Z/p∞) is an exact functor. But then also

H∗(W ; Ť (L)) ∼= Hom(H∗(W ;L∨),Z/p∞)

because A ∼= Hom(Hom(A,Z/p∞),Z/p∞) for any Zp-torus, Zp-lattice, or
finite Zp-module A. Apply the exact functor Hom(−,Z/p∞) to the short
exact sequence 0→ S(L∨) → L∨ → H0(W ;L∨)→ 0 to get the short exact
sequence

0→ H0(W ; Ť (L))→ Ť (L)→ Ť (S(L∨)∨)→ 0

and conclude that PL = S(L∨)∨.

Suppose that the group W = W1 × . . . × Wn is the direct product of
finitely many of its normal subgroups W1, . . . ,Wn. For j = 1, . . . , n, let

W⊥j =
∏

i6=j
Wi

denote the product of all these subgroups but Wj . Then W = Wj×W⊥j and

Wj =
⋂
i6=jW

⊥
i . Observe that H0(W⊥i ;L) is a ZpWi-module and also that

the direct sum
∐
H0(W⊥i ;L) is a ZpW -module with a natural ZpW -module

homomorphism to L given by addition.

11.12. Lemma [32, 1.5]. If H0(W ; Ť (L)) = 0 = H0(W ;L) for a ZpW -
lattice L, then there is a ZpW -lattice U and a short exact sequence 0 →∐
H0(W⊥i ;L)→ L→ U → 0 of ZpW -lattices. Each summand H0(W⊥i ;L)

is a ZpWi-lattice and

• H0(Wi; ŤH
0(W⊥i ;L)) = 0 provided H0(W ; Ť (L)) = 0,

• H0(Wi;H
0(W⊥i ;L)) = 0 provided H0(W ;L) = 0 and each factor group

Wi is generated by elements of order prime to p.

Proof. This amounts to showing that the addition maps
∐

H0(W⊥i ;L)→ L,
∐

Ť (H0(W⊥i ;L))→ Ť (L)

are injective.

Suppose that (xi), with xi ∈ H0(W⊥i ;L), satisfies
∑
xi = 0. Then, for

an arbitrarily chosen index j, xj = −∑i6=j xi. The left hand side is fixed by

W⊥j and the right hand side is fixed by
⋂
i6=jW

⊥
i = Wj. Thus xj is fixed by

W⊥j ×Wj = W , so that xj ∈ H0(W ;L). But H0(W ;L) = 0 by (11.4(8)).

For the other addition map, recall from (11.4(1)) that Ť (H0(W⊥i ;L)) is
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contained in H0(W⊥i ; Ť (L)) and proceed as above. The computation

H0(Wi; Ť (H0(W⊥i ;L))) ⊆ H0(Wi;H
0(W⊥i ; Ť (L)))

= H0(Wi ×W⊥i ; Ť (L)) = H0(W ; Ť (L))

shows that H0(Wi; Ť (H0(W⊥i ;L))) = 0 if H0(W ; Ť (L)) = 0. If Wi is gen-
erated by elements of order prime to p, then H1(Wi;π(H0(W⊥i ;L))) = 0 so
that

H0(Wi;H
0(W⊥i ;L)) ⊆ H0(Wi;H0(W⊥i ;L)) = H0(Wi×W⊥i ;L) = H0(W ;L)

proving the final assertion of the lemma.

We now specialize to reflection subgroups. If W ⊆ Aut(L) is a group of
automorphisms of the Zp-lattice L, any w ∈W restricts to an automorphism
Sw of SL and projects to an automorphism Pw of PL. If Sw is the identity
on SL, then w is the identity on Ť (L) = colim š(L) so w is the identity. If w is
a reflection on L, then Sw is a reflection on SL because SL/SL〈σ〉 ∼= L/L〈σ〉.
This means that if W is a reflection subgroup of Aut(L) then also SW (resp.
PW ) is a reflection subgroup of Aut(SL) (resp. Aut(PL)). Thus the S-
construction and the P -construction (11.1) are endo-functors of the category
Zp-Refl of Zp-reflection subgroups (4.1).

We wish to classify the elements of the category Zp-Refl up to similarity.
The preceding general discussion implies the following first reduction of this
classification problem.

11.13. Lemma. Let (W1, L1) and (W2, L2) be two objects of Zp-Refl.
Then the following three statements are equivalent :

(1) (W1, L1) and (W2, L2) are similar.

(2) The diagram

Ť (SL1)

Ť (θ) ∼=
��

π(L1)oooo

∼=
��

// ŤH0(W1;L1)

Ť (ψ∗)∼=
��

Ť (SL2) π(L2)oooo // ŤH0(W2;L2)

commutes for some similarity (α, θ) : (SW1, SL1)→ (SW2, SL2), some iso-
morphism between π(L1) and π(L2), and some isomorphism ψ : H0(W1;L1)
→ H0(W2;L2).

(3) The diagram

PL1

θ ∼=
��

// // π̌(L1)

∼=
��

LH0(W1; Ť (L1))oo

(Ť ψ)∗∼=
��

PL2
// // π̌(L2) LH0(W2; Ť (L2))oo
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commutes for some similarity (α, θ) : (PW1, PL1)→ (PW2, PL2), some iso-
morphism between π̌(L1) and π̌(L2), and an isomorphism ψ : H0(W1; Ť (L1))
→ H0(W2; Ť (L2)).

The classification of similarity classes of objects (W,L) of Zp-Refl has
now been reduced to the case where π(L) = 0 or π̌(L) = 0. Fortunately, this
is very easy.

11.14. Theorem [75]. Let (W1, L1) and (W2, L2) be two objects of Zp-
Refl where p is odd. Assume that π(L1) = 0 = π(L2) or π̌(L1) = 0 = π̌(L2),
i = 1, 2. Then (W1, L1) and (W2, L2) are similar if they are Qp-similar.

Proof. Assume that (W1, L1) and (W2, L2) are Qp-similar objects of Zp-

Refl with π̌(L1) = 0 = π̌(L2). Since Li = PLi × LH0(Wi, Ť (Li)), i = 1, 2
(11.8(6)), it suffices (11.13) to show that (PW1, PL1) and (PW2, PL2) are
similar. As the splitting constructed in (11.15) below depends on rational
information only, it suffices to prove the theorem under the additional hy-
pothesis that (Wi, Li) be simple. This is done in (11.18) below by going
through the Clark–Ewing classification table [20].

11.15. Lemma [32, 75]. Let (W,L) be an object of Zp-Refl where p is

odd. If H0(W ; Ť (L)) = 0 (or H0(W ;L) = 0), then

(W,L) =
∏

(Wi, Li)

splits as a product of simple objects of Zp-Refl with H0(Wi; Ť (Li)) = 0 (or
H0(Wi, Li) = 0) for all i.

Proof. We shall only consider the case where L = P is a ZpW -lattice

with H0(W ; Ť (P ))=0. As W is a finite reflection subgroup of Aut(P ) and
H0(W ;P ) = 0 (11.4(8)), the QpW -module P ⊗Zp Qp splits as a direct sum∐
Mi
∼= P ⊗Zp Qp of finitely many irreducible QpW -modules M1, . . . ,Mn.

Each of these irreducible summands occurs with multiplicity one and carries
a non-trivial W -action [32, p. 280]. Define Wi to be the subgroup of W that
pointwise fixes

⊕
j 6=iMj so that the action of Wi is concentrated on the

summand Mi. Then W =
∏
Wi is the direct product of these normal sub-

groups [32, 6.3] and, according to (11.12), P is isomorphic to the direct sum
of the ZpW -lattices H0(W⊥i ;P ). Observe that each summand H0(W⊥i ;L)
is a ZpWi-lattice and

• Wi is a reflection subgroup of AutZp(H
0(W⊥i ;L)),

• (Wi,H
0(W⊥i ;L)) is simple,

• PH0(W⊥i ;L) = H0(W⊥i ;L).

Indeed, the first item is implicit in the proof of [32, 6.3], the second item is
clear because the rationalizationH0(W⊥i ;L)⊗ZpQp = H0(W⊥i ;L⊗ZpQp) =
Mi by construction, and the third item is contained in (11.12).
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11.16. Lemma. Let (W,L) be a Zp-reflection group.

(1) (W,L) and (W,L∨) are Qp-similar and π̌(L) ∼= π(L∨).

(2) (W,SL) and (W,S(L∨)) are Zp-similar.

(3) (W,PL) and (W,P (L∨)) are Zp-similar.

(4) (W,SL) and (W, (PL)∨) are Zp-similar.

Proof. For (2), first note that S(L∨)=SP (L∨)=S((SL)∨) by (11.11(2)).
But SL is (11.15) a product of simple Zp-reflection groups (Wi, Li) with
H0(Wi;Li) = 0. So (SL)∨ is isomorphic to the product

∏
(Wi, L

∨
i ) and

S((SL)∨) =
∏

(Wi, S(L∨i )). By inspection (of reflection group family 1 and
W (E6) at p = 3), we see that (Wi, Li) and (Wi, S(L∨i )) are Zp-similar. Thus
SL and S(L∨) are Zp-similar. Moreover, the isomorphisms

H0(W ;L∨) ∼= Hom(H0(W ; Ť (L)),Z/p∞) ∼= Hom(ŤH0(W ;L),Z/p∞)

∼= Hom(H0(W ;L),Zp)

from (11.11(1)) show that the lattices H0(W ;L∨) and H0(W ;L) have the
same rank. Therefore (W,L) and (W,L∨) are Qp-similar (11.5). Finally,
(W,SL) ∼= (W,P (L∨)∨) ∼= (W, (PL)∨) by (11.11(2)) again.

11.17. Lemma. Let (W,L) be a Zp-reflection group. Then there are nat-

ural group isomorphisms H0(W ;L∨ ⊗ Z/p) ∼= Ext(H0(W ; Ť (L)),Z/p) and
H1(W ;L∨ ⊗ Z/p) ∼= Hom(H0(W ; Ť (L)),Z/p).

Proof. Using (11.11), we get H0(W ;L∨ ⊗ Z/p) = H0(W ;L∨) ⊗ Z/p =
Hom(H0(W ; Ť (L)),Z/p∞)⊗Z/p = Ext(H0(W ; Ť (L)),Z/p). In the univer-
sal coefficient exact sequence

0→ H1(W ;L∨)⊗ Z/p→ H1(W ;L∨ ⊗ Z/p)→ Tor(H0(W ;L∨),Z/p)→ 0

the term to the right identifies to Hom(H0(W ; Ť (L)),Z/p) and the term
to the left is trivial because H1(W ;L∨) = Hom(H1(W ; Ť (L)),Z/p∞) and
H1(W ; Ť (L)) = 0 [5, 3.3].

Recall that G0(W,L) stands for the set of similarity classes of reflection
subgroups that are Qp-similar to (W,L) (4.1).

Write PpiSU(r + 1) for the quotient SU(r + 1)/Cpi of SU(r + 1) by the

central subgroup Cpi of order pi for 0 ≤ i ≤ νp(r+ 1) where νp(r+ 1) is the
highest power of p that divides r + 1.

11.18. Lemma. Let (W,L) be a simple object of Zp-Refl. Then G0(W,L)
= ∗ except that

(1) G0(W (SU(r+ 1))) = {W (PpiSU(r+ 1)) | 0 ≤ i ≤ νp(r+ 1)} contains
νp(r + 1) + 1 elements.

(2) G0(W (E6)) = {W (E6), W (PE6)} contains two elements if p = 3.
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Proof. The reflection subgroup rp(W,L) = (W,L ⊗ Z/p) is irreducible,
and hence G0(W ) = ∗ (4.5(1)), unless (W,L) is in Clark–Ewing family 1 or
p = 3 and r0W is r0W (E6) or r0W (G2) [4, 6.2]. All the Lie cases are covered
by G. Maxwell [56, Table I]. (See also [22] or [84, 5.1] for the A-family.)

We learn from (11.18) that two simple objects, (W1, L1) and (W2, L2),
of Zp-Refl are similar if they are Qp-similar and either π(L1) ∼= π(L2)
or π̌(L1) ∼= π̌(L2). Combined with the splitting result (11.12), this proves
(11.14).

Let (W,L) be an object of Zp-Refl. We shall next describe G0(W,L) as
a partially ordered set. For given diagrams

(11.19)
α : π(PL) = H0(W ;PL)� π̌ ← LH0(W ; Ť (L)),

α̌ : π̌(SL) = H0(W ; Ť (SL))� π → ŤH0(W ;L)

of Zp-modules, put

(11.20)
Sα(PL) = lim(PL→ π̌ ← LH0(W ; Ť (L))),

Ť (Pα̌(SL)) = colim(Ť (SL)← π → ŤH0(W ;L)),

so that π̌(Sα(PL)) = π̌ and π(Pα̌(SL)) = π. There are defining short exact
sequences

0→ Sα(PL)→ LH0(W ; Ť (L))× PL→ π̌ → 0,

0→ SL×H0(W ;L)→ Pα̌(SL)→ π → 0

of ZpW -modules. We have previously (11.5) seen that

Sπ(PL)�π̌(L)←H0(W ;L)(PL) = L = Pπ̌(SL)�π(L)→ŤH0(W ;L)(SL).

By naturality,W is a reflection subgroup of Aut(Sα(PL)) and of Aut(Pα̌(SL)).
Also by naturality, there are morphisms

Sα(PL)→ Sπ(PL)�0←H0(W ;L)(PL) = PL×H0(W ;L),

H0(W ;L)× SL = Pπ̌(SL)�0→ŤH0(W ;L)(SL)→ Pα̌(SL)

showing that (W,Sα(PL)) and (W,Pα̌(SL)) are Qp-similar to (W,L). Con-
versely, any element of G0(W,L) will have this form because if (W1, L1) and
(W2, L2) are Qp-similar then (SW,SL1) and (SW,SL2) ((PW,PL1) and
(PW,PL2)) are Zp-similar by (11.14) and clearlyH0(W1;L1) andH0(W2;L2)
are isomorphic Zp-lattices.

Declare two diagrams of the form considered in (11.19) to be equivalent
if they can be connected by an automorphism in AutZp-Refl(W,PL) (or

AutZp-Refl(W,SL)) (4.1) and an automorphism in Aut(H0(W ;L)) as in
(11.13).
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11.21. Lemma. For any object (W,L) of Zp-Refl, p odd , there is a
bijection between the following three sets:

(1) G0(W,L).

(2) Equivalence classes of diagrams

π(PL)� π̌ ← LH0(W ; Ť (L))

of Zp-modules.

(3) Equivalence classes of diagrams

π̌(SL)� π → ŤH0(W ;L)

of Zp-modules.

Since π̌(SL) ∼= π(PL) is a finite group (11.4(2)), G0(W,L) is a finite set.
Our next aim is to introduce an ordering relation on G0(W,L).

11.22. Lemma. For a Zp-Refl morphism (α, θ) : (W1, L1)→ (W2, L2)
the following three statements are equivalent :

(1) r0(α, θ) : r0(W1, L1)→ r0(W2, L2) is a similarity in Qp-Refl and W2

acts trivially on coker θ.

(2) S(α, θ) : S(W1, L1)→ S(W2, L2) is a similarity in Zp-Refl and the

induced morphism of Zp-tori Ť ((α, θ)∗) : ŤH0(W1;L1)→ ŤH0(W2;L2) is
an epimorphism with finite cokernel.

(3) P (α, θ) : P (W1, L1)→ P (W2, L2) is a similarity in Zp-Refl and the
induced morphism of Zp-lattices (α, θ)∗ : H0(W1;L1)→ H0(W2;L2) is a
monomorphism with finite kernel.

Proof. Assume that L1 → L2 is injective with finite cokernel H. Then
there is a short exact sequence

0→ ker(H0(W1;L1)→ H0(W2;L2))→ coker(SL1 → SL2)

→ ker(H → H0(W2;H))→ 0

provided by the Snake Lemma. If the middle term is trivial, then H =
H0(W2;H). If W2 acts trivially on H, then the kernel to the left is trivial
because H1(W2;H) = 0 by (11.3), and the kernel to the right is trivial
because H = H0(W2;H). The proof for PL1 → PL2 is completely dual.

11.23. Definition. An isogeny is a Zp-Refl morphism (α, θ) : (W1, L1)
→ (W2, L2) that satisfies one of the three equivalent conditions of (11.22).

Write (W1, L1)≥(W2, L2) if there exists an isogeny (W1, L1)→(W2, L2).

11.24. Lemma. If (W1, L1) ≥ (W2, L2) ≥ (W1, L1) then (W1, L1) and
(W2, L2) are similar objects of Zp-Refl.
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Proof. An isogeny (W1, L1)→ (W2, L2) induces a commutative diagram

Ť (SL1)

∼=
��

π(L1)oooo

∼=
��

// ŤH0(W1;L1)

���
�
�

Ť (SL2) π(L2)oooo // ŤH0(W2;L2)

which can be completed [59] by a vertical isomorphism to the right.

Thus the relation ≥ induces a partial ordering relation on the set of
similarity classes of objects of Zp-Refl; in particular on the set G0(W,L).
For any object (W,L),

(W,SL×H0(W ;L)) ≥ (W,L) ≥ (W,LH0(W ; Ť (L))× PL)

by (11.5) and actually

G0(W,L) = {(W ′, L′) | (W ′, L′) ≥ (W,LH0(W ; Ť (L))× PL)}
= {(W ′, L′) | (W,SL×H0(W ;L)) ≥ (W ′, L′)}

is the set of similarity classes of objects above LH0(W ; Ť (L))×PL or below
SL×H0(W ;L).

I close this section with a few remarks about the set Gp(W,L) (4.1).

11.25. Lemma. Let (W,L) be an object of Zp-Refl.

(1) If (W,L) is simple, then Gp(W,L) ⊆ G0(W,L).

(2) G0(W,L)∩Gp(PW,PL) = ∗ = G0(W,L)∩Gp(SW,SL) if H0(W ;L)
= 0.

(3) If (W,L) is simple, then Gp(W,L) = ∗ unless (W,L) is similar to
(W (X), L(X)) for X = PpiSU(r + 1)), 0 < i < νp(r + 1).

Proof. Gp(W ) ⊆ G0(W ) when W is simple because any two abstractly
isomorphic groups from the Clark–Ewing list happen to have the same rank r
and to be conjugate as subgroups of GL(r,Qp) [4, 2.6]. When H0(W ;L) = 0,
PL is the unique object of G0(W,L) with π̌ = 0 (11.21); this condition can
(11.8(6)) be read off from L⊗ Z/p.

11.26. Example. Put (W,L) = (W,L)(PU(r+1)) so that π(L) is cyclic
of order pν where this is the highest power of p that divides r+ 1. The ν+ 1
elements of G0(W,L) are represented by the centerings (W,Li), 0 ≤ i ≤ ν,
where Li ⊆ L is the inverse image of the order pi subgroup of π(L) (11.21),
[84, 5.1]. Thus π(Li) is cyclic of order pi and L = Lν . Assume now that
0 < i < ν so that both π(Li) and π̌(Li) are non-trivial cyclic p-groups. As
pointed out to me by D. Notbohm, tensoring the commutative diagram of
ZpW -modules with exact rows and columns
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0

��

0

��
0 // L0

// Li

��

// π(Li)

��

// 0

0 // L0
// Lν

��

// π(Lν)

��

// 0

π̌(Li)

��

π̌(Li) //

��

0

0 0

with Z/p results in the commutative diagram

Tor(π̌(Li),Z/p)

��

Tor(π̌(Li),Z/p)

∼=
��

0 // Tor(π(Li),Z/p) // L0 ⊗ Z/p // Li ⊗ Z/p // π(Li)⊗ Z/p // 0

with a split epimorphism to the right. We conclude that

Li ⊗ Z/p ∼= coker(H0(W ;L0 ⊗ Z/p)→ L0 ⊗ Z/p)⊕H0(W ;Li ⊗ Z/p),

0 < i < ν, as FpW -modules. (These modules are irreducible [38] and it is no
coincidence [84, 3.3] that Li ⊗ Z/p have the same irreducible constituents,
namely

coker(H0(W ;L0⊗Z/p)→ L0 ⊗Z/p) ∼= ker(Lν ⊗Z/p→ H0(W ;Lν ⊗Z/p))

and Z/p, for all i.) This shows that Gp(W (PpiSU(r + 1))) consists of ν − 2
elements for 0 < i < ν.

11.27. Example (cf. (9.9)). For

(W,L) = (W (X), L(X)), X = SU(p)× SU(p),

the set G0(W,L) consists of four elements corresponding to the four sub-
group-orbits under the action of the automorphism group AutZp-Refl(W,PL)

= (Z×p × Z×p )o Z/2 on H0(W ;PL) = Z/p× Z/p.

11.28. Example. G0(W (X), L(X)) for X = U(pν) is the poset {(i, j) ∈
Z × Z | 0 ≤ j ≤ i ≤ ν} with lexicographic ordering. The point (i, j) corre-
sponds to the diagram

Z/pν ⊇ Z/pi
·pj−−→ Z/p∞

where Z/pi is the subgroup of order pi of H0(W (X); Ť (SL(X))) = Z/pν ⊆
Z/p∞. U(pν) corresponds to (ν, 0) in this formalism. If i1 ≤ i2 and j1 ≤ j2,
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then the commutative diagram

Z/pν Z/pi1oooo
��

��

·pj1 // Z/p∞

·pj2−j1
����

Z/pν Z/pi2oooo ·pj2 // Z/p∞

shows that (i1, j1) ≤ (i2, j2).

12. Shapiro’s lemma. The main purpose of this section is to introduce
some notation to be used in Section 13.

For any set S and any abelian group M we put

M [S] = Z[S]⊗Z M, M〈S〉 = HomZ(Z[S],M)

where Z[S] stands for the free abelian group with basis S.M [−] is a covariant
and M〈−〉 a contravariant functor from the category of sets to the category
Ab of abelian groups. (M [−] (resp. M〈−〉) is the left (resp. right) adjoint
of the forgetful functor from abelian groups to sets.) M〈S〉 can also be
considered as the abelian group of all functions u : S →M . In case S is a
left G-set and M a left G-module for some group G, the rules

g(s⊗m) = gs⊗ gm, (gu)(s) = gu(g−1s),

g ∈ G, s ∈ S, m ∈M, u : S →M,

make M [S] and M〈S〉 into left G-modules. A special case occurs when S is
the left G-set G/H of left cosets of a subgroup H of G.

12.1. Lemma. M [G/H] is isomorphic to the induced module IndGH(M)

and M〈G/H〉 is isomorphic to the coinduced module CoindGH(M).

Proof. Let T be a set of left coset representatives for G/H.
The set T is a basis for the free right ZH-module ZG. The induced

module IndGH(M) = ZG⊗ZH M is [95, 6.3.4] the sum over |T | copies t⊗M
of M with G-action g(t⊗m) = s ⊗ hm where gt = sh, s ∈ T , h ∈ H. The
module M [G/H] = Z[G/H]⊗ZM is the sum over |T | copies t⊗M of M with
G-action g(t⊗m) = s⊗gm. The Z-linear isomorphismM [G/H]→ IndGH(M)
that takes t ⊗m to t ⊗ t−1m is G-linear as it takes g(t ⊗m) = y ⊗ gm to
y ⊗ y−1gm = y ⊗ ht−1m = g(t⊗ t−1m).

The set T−1 = {t−1 | t ∈ T} is a basis for the free left ZH-module ZG.
The coinduced module CoindGH(M) is [95, 6.3.4] the product over |T | copies
πtM of M , where πtm : ZG→M is the H-map sending t−1 to m ∈M and
z−1 to 0 for all z 6= t in T . The G-action is given by g(πtm) = πy(hm).
The module M〈G/H〉 is the product over |T | of copies %tM of M , where
%tm : G/H →M is the set map sending tH to m and zH to 0 for all z 6= t
in T . The G-action is given by g(%tm) = %y(gm). The Z-linear isomorphism
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CoindGH(M) → M〈G/H〉 that takes πtm to %t(tm) is G-linear as it takes
g(πtm) = πy(hm) to %y(yhm) = %y(gtm) = g%t(tm).

Let ShG denote the homotopy colimit of S viewed as a functor from the
category G to the category of sets. (ShG is the nerve of the small groupoid
that has S for object set and {g ∈ G | gs1 = s2} as the set of morphisms
s1 → s2.) The next lemma is just a reformulation of Shapiro’s lemma.

12.2. Lemma. There are natural isomorphisms

H∗(G;M [S]) ∼= H∗(ShG;M), H∗(G;M〈S〉) ∼= H∗(ShG;M).

Proof. Let X be a set of representatives for the G-orbits in S and G(x)
the isotropy subgroup at x ∈ X. Then there are a homotopy equivalence

∐

x∈X
BG(x)→ ShG

and isomorphisms of G-modules

M [S] ∼=
∐

M [G/G(x)] ∼=
∐

IndGG(x)(M),

M〈S〉 ∼=
∏

M〈G/G(x)〉 ∼=
∏

CoindGG(x)(M),

induced by the isomorphism S ∼=
∐
G/G(x) of G-sets. These isomorphisms

combine, with the help of Shapiro’s lemma, to the isomorphisms of the
lemma.

In other words,

(12.3)
H∗(G;M [S]) ∼=

∐
H∗(G(x);M),

H∗(G;M〈S〉) ∼=
∏

H∗(G(x);M),

where x ∈ S runs through a set of representatives for the orbit set S/G.

13. Cellular cohomology of small categories. The following is a
general discussion of the derived functors of the inverse limit.

Let I be a small category such that

• I has only finitely many objects,
• any endomorphism is an isomorphism,
• any isomorphism is an automorphism,

meaning that I is a special kind of very small ordered category [81] or EI-
category [54]. I could for instance be a skeletal subcategory of the Quillen
category of a p-compact group.

Write S(i, j) for the set of morphisms from the object i to the object j
and I(i) for the group of morphisms i→ i. Under the above assumptions, the
set Ob(I) of objects of I has the structure of a partially ordered set (poset),
where i ≤ j if there is a morphism from i to j. Let K(I) = Cx(Ob(I))
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denote the ordered simplicial complex associated to Ob(I). The vertex set
of K(I) is the poset Ob(I) and the p-simplices, p > 0, is the set of all strictly
increasing sequences (i0 . . . ip) of elements of Ob(I) (where i < j if i ≤ j
and i 6= j). The ordered simplicial complex K(I) is d-dimensional if there
exists a string i0 → . . . → id of d morphisms between distinct objects but
no such string of d+1 morphisms. K(I) is again a poset with ordering given
by inclusion.

For any p-simplex (i0 . . . ip) ∈ K(I)p, put

I(i0 . . . ip) = I(ip)×. . .×I(i0) and S(i0 . . . ip) = S(ip−1, ip)×. . .×S(i0, i1)

with the convention that for p = 0, S(i0) is understood to be a point. Form
the homotopy orbit space

ShI(i0 . . . ip) = S(i0 . . . ip)hI(i0...ip)

for the action of the group I(i0 . . . ip) on the set S(i0 . . . ip) given by

(ap, . . . , a0) · (ap−1,p, . . . , a01) = (apap−1,pa
−1
p−1, . . . , a1a01a

−1
0 )

for all aj ∈ I(ij) and aj−1,j ∈ I(ij−1, ij). This homotopy orbit space con-
struction provides a functor

ShI : K(I)op → Sp

from the opposite poset of K(I) to the category Sp of simplicial sets. For
any inclusion σ ≤ σ′ of simplices, the map ShI(σ) ← ShI(σ

′) is induced by
the obvious projection I(σ) ← I(σ′) and the map S(σ) ← S(σ′) given by
composition or omission of morphisms in the usual way.

Let now M :I→Ab be a functor. Consider the functor HqM :K(I)→Ab
that takes the p-simplex (i0 . . . ip) ∈ K(I)p to the abelian group

Hq(ShI(i0 . . . ip);M(ip)) = Hq(I(i0 . . . ip);M(ip) 〈S(i0 . . . ip)〉).
Define cohomology of K(I) with coefficients in HqM , H∗(K(I);HqM), as
the cohomology of the cochain complex (C(K(I);HqM), δ):

(13.1) . . .→
∏

(i0...ip−1)∈K(I)p−1

HqM(i0 . . . ip−1)

δp−1

−−−→
∏

(i0...ip)∈K(I)p

HqM(i0 . . . ip)→ . . .

with differential

δp−1(U)(i0 . . . ip) =

p∑

j=0

(−1)jφj∗%
∗
jU(i0 . . . îj . . . ip)
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for all cochains U ∈ Cp−1(K(I);HqM) and all p-simplices (i0 . . . ip) of the
simplicial complex K(I). Here,

%j : I(ip)× . . .× I(i0)→ I(ip)× . . .× Î(ij)× . . .× I(i0)

is the projection and the homomorphisms

M(ip) 〈I(i0, . . . , ip)〉 φ
j

←





M(ip) 〈I(i1, . . . , ip)〉 if j = 0,

M(ip)〈I(i0, . . . , îj, . . . , ip)〉 if 0 < j < p,

M(ip−1) 〈I(i0, . . . , ip−1)〉 if j = 0,

are given by

φj(u)(ap−1,p, . . . , a01) =





u(ap−1,p, . . . , a12) if j = 0,

u(ap−1,p, . . . , aj,j+1aj−1,j, . . . , a01) if 0 < j < p,

M(ap−1,p)u(ap−2,p−1, . . . , a01) if j = p.

It will become clear later that δδ = 0, i.e. that (C(K(I);H qM), δ) is indeed
a cochain complex.

Let lim∗(I;−) denote the right derived functors of the inverse limit func-
tor lim: AbI → Ab.

13.2. Theorem [54], [87]. There is a first quadrant cohomological spec-
tral sequence Epqr with

Epq1 = Cp(K(I);HqM) and Epq2 = Hp(K(I);HqM)

converging to limp+q(I;M).

This spectral sequence is associated to a descending filtration on the
cochain complex C(I;M) that has lim∗(I;M) for cohomology groups:

Let ∆ be the category of totally ordered finite sets and weakly order
preserving maps. The cosimplicial replacement functor [14, XI.5]

∏∗ : AbI → Ab∆

takes the abelian I-group M to the cosimplicial abelian group
∏∗M that in

codegree n is the abelian group of twisted n-cochains of I with coefficients
in M , i.e. (∏∗

M
)n

=
∏

i0→...→in∈N(I)n

M(in)

consists of all functions U from N(I)n with values U(i0 → i1 → . . .→ in) in
M(in). (As usual, the nerve, N(I), of I is the singular set of I: The simplicial
set that in degree 0 is the set of objects of I and in degree n > 0 is the set
of all sequences i0 → i1 → . . . → in of n composable morphisms in I.) The
coface maps

dj(U)(i0 → . . .→ in+1) = U(i0 → . . .→ îj → . . .→ in+1), 0 ≤ j ≤ n,
dn+1(U)(i0 → . . .→ in+1) = M(in → in+1)U(i0 → . . .→ in)
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are the obvious ones. Define C(I;M) to be the underlying cochain complex
whose differential is the alternating sum

∑
(−1)idi. The ith cohomotopy

group of the cosimplicial abelian group
∏∗M ,

πi
(∏∗

M
)

= H i(C(I;M)), i ≥ 0,

is defined [14, X.7.1] as the ith cohomology group of its underlying cochain
complex C(I;M).

13.3. Lemma [14, XI.6.2], [81, Lemma 2]. The functors

AbI
∏∗
−→ Ab∆ πi→ Ab, i ≥ 0,

form a universal cohomological δ-functor [95, 2.1.1] with lim in degree 0.

In other words, lim∗ = π∗ ◦ ∏∗ and limi(I;M) = H i(C(I;M)) is the
ith cohomology group of the cochain complex C(I;M) of I with (twisted)
coefficients M .

Define l to be the function on N(I) that is 0 on N(I)0; on N(I)1, l(i→ i)
= 0 while l(i→ j) = 1 if i and j are non-isomorphic; and in general

l(i0 → i1 → . . .→ in) =
n−1∑

i=0

l(ii → ii+1),

the function l counts the number of strict inequalities in the string i0 ≤ i1 ≤
. . . ≤ in. This makes the nerve into a filtered simplicial set

∅ = F0N(I) ⊆ F1N(I) ⊆ . . . ⊆ FpN(I) ⊆ Fp+1N(I) ⊆ . . . ⊆ N(I)

where

FpN(I) = {i0 → i1 → . . .→ in ∈ N(I) | l(i0 → i1 → . . .→ in) < p}
is the set of all strings of composable morphisms where less than p of the mor-
phisms have non-isomorphic domain and codomain. Since I has only finitely
many equivalence classes of objects, the filtration is finite: Fd+1N(I) = N(I)
if K(I) has dimension d.

The filtration we are going to use is the induced descending filtration on
the cochain complex C(I;M),

(13.4) C(I;M) = F0C(I;M) ⊇ F1C(I;M) ⊇ . . .
⊇ FpC(I;M) ⊇ Fp+1C(I;M) ⊇ . . . ⊇ {0}

where
FpC(I;M) = {U ∈ C(I;M) | UFp(N(I)) = 0}

consists of all cochains that vanish on FpN(I). This filtration is finite:
Fd+1C(I;M) = {0} if K(I) is d-dimensional.

Proof of Theorem 13.2. Suppose that K(I) is d-dimensional. Then the
E1-page of the spectral sequence associated [95, 5.4.1] to the filtration (13.4)
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satisfies Epq
1 = 0 whenever p > d and Ed∗

1 = H∗(FdC(I;M)[−d]) where
FdC(I;M)[−d] is the translated cochain complex [95, 1.2.8] that in degree
n equals FdC(I;M)d+n. Note that

FdC(I;M)[−d] =
⊕

(i0...id)∈K(I)d

C(i0 . . . id;M)

splits as a direct product over the d-simplices in K(I) of the cochain com-
plexes C(i0 . . . id;M) given by

C(i0 . . . id;M)n

= M(id)
〈 ∐

r0+...+rd=n

I(id)
rd × I(id−1, id)× . . .× I(i0, i1)× I(i0)r0

〉

with a differential that is the restriction of the differential on C(I;M). The
claim is that the cohomology of C(i0 . . . id;M) equals H∗M(i0 . . . id) as de-
fined above (13.1). The standard cochain complex for computing this coho-
mology group is

(13.5) HomI(id)×...×I(i0)(B∗(I(id))⊗ . . .⊗B∗(I(i0)),

M(id) 〈I(id−1, id)× . . .× I(i0, i1)〉)
where B∗(I(id))⊗ . . .⊗B∗(I(i0)) as the tensor product of unnormalized bar
resolutions has

∂(ad• ⊗ . . .⊗ a0•) = ad• ⊗ . . .⊗ ∂a0•
+ (−1)r0ad• ⊗ . . .⊗ ∂a1• ⊗ a0• + . . .

+ (−1)r0+...+rd−1∂ad• ⊗ ad−1• ⊗ . . .⊗ a0•

as its differential. Here, aj• = ajrj ⊗ . . .⊗ aj1 where ajk ∈ I(aj) and

∂aj• = ajrj ⊗ . . .⊗aj2 +

rj−1∑

ij=1

. . . aj,ij+1ajij ⊗ . . .+(−1)rjajrjaj,rj−1⊗ . . .⊗aj1

as usual [95, 6.5.1]. In fact, there is an isomorphism, σ, of cochain complexes
from the standard cochain complex (13.5) to C(i0 . . . id;M) given by

σ(U)(ad•, ad−1,d, . . . , a1•, a01, a0•)

= (−1)r1+r3+...U(ad•, ad•ad−1,d, . . . , a1•, a1•a01, a0•)

where aj•aj−1,j = ajrj . . . aj1aj−1,j and the sign is (−1) raised to the power
that is the sum over all odd j of rj = |aj•|. I leave it to the reader to
check that this isomorphism σ indeed commutes with the differentials. The
conclusion is that

Edq1 = Hq(FdC(I;M)[−d]) ∼=
∏

(i0...id)∈K(I)d

HqM(i0 . . . id)
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is isomorphic to the degree d group of the cochain complex C(K(I);H qM)
(13.1).

This same pattern repeats itself at all stages of the filtration as

FpC(I;M)p+q = Fp+1C(I;M)p+q ⊕
∏

(i0...ip)∈K(I)p

C(i0 . . . ip;M)p+q

and, in fact, there is an isomorphism

FpC(I;M)[−p]/Fp+1C(I;M)[−p] ∼=
∏

(i0...ip)∈K(I)p

C(i0 . . . ip;M)

of cochain complexes. So, by the above computation,

Epq1
∼=

∏

(i0...ip)∈K(I)p

HqM(i0 . . . ip)

is isomorphic to Cp(K(I);HqM).

It remains to compute the d1-differential. Again, it will be sufficient to

consider the differential dd−1,q
1 : Ed−1,q

1 → Edq1 as similar arguments apply
in general. Consider a cohomology class [U(i0 . . . id−1)] in Hq(id−1 . . . i0;M)
represented by the q-cocycle

U(i0 . . . id−1) :∐

rd−1+...r0=q

I(id−1)rd−1×. . .×I(i0)r0→M(id−1) 〈I(id−2, id−1)× . . .× I(i0, i1)〉

and extend this to an element of Fd−1C(I;M)q+d−1 by mapping the other

(q + d− 1)-simplices of N(I) to 0. The image dd−1,q
1 [U(i0 . . . id−1)] is repre-

sented by (σ−1δσ)U(i0 . . . id−1) where δ is the zigzag-homomorphism of the
short exact sequence

0→ FdC(I;M)→ Fd−1C(I;M)→ FdC(I;M)/Fd−1C(I;M)→ 0

of cochain complexes. This means that dd−1,q
1 [U(i0 . . . id−1)] vanishes on all

(q + d)-simplices of N(I) except on the ones of the form

(13.6) i0 → . . .→ ij−1

aij−1i
′
j−−−−→ i′j

ai′
j
ij−−−→ ij → . . .→ id−1

for some object i′j of I, where it has the value

(−1)q+jU(ad−1•, ad−2,d−1, . . . , aj•, aij−1i′j
ai′j ij , aj−1•, . . . , a01, a0•)
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assuming, for simplicity, that 0 < j < d − 1. We must compare this to the
homomorphism

B∗(I(id−1))⊗ . . .⊗B∗(I(ij))⊗B∗(I(i′j))⊗B∗(I(ij−1))⊗ . . .⊗B∗(I(i0))

→ B∗(I(id−1))⊗ . . .⊗B∗(I(i0))

U(i0...id−1)−−−−−−−→M(id−1) 〈I(id−2, id−1)× . . .× I(i0, i1)〉
φj→M(id−1)

〈
I(id−2, id−1)× . . .× I(i′j , ij)× I(ij−1, i

′
j)× . . .× I(i0, i1)

〉

where the first homomorphism takes ad−1•⊗ . . .⊗aj•⊗a′j•⊗aj−1•⊗ . . .⊗a0•
to ad−1• ⊗ . . .⊗ aj• ⊗ 1• ⊗ aj−1• ⊗ . . .⊗ a0•. Assuming U(i0 . . . id−1) to be
normalized [95, 6.5.5], this agrees with the value of (σ−1δσ)U(i0 . . . id−1) on
the (q + d)-simplex (13.6) except that the sign is missing.

There is also a dual spectral sequence

E2
pq = Hp(K(I);HqM)⇒ colimp+q(I;M)

where HqM(i0 . . . ip) = Hq(ShI(i0 . . . ip);M(i0)).

13.7. Example. 1. [95, 3.5.12] If the category I is a poset S, the spectral
sequence (13.2) for a functor M : S → Ab degenerates to a cochain complex

. . .→
∏

(s0...sp−1)∈K(S)p−1

M(sp−1)→
∏

(s0...sp)∈K(S)p

M(sp)→ . . .

with cohomology lim∗(S;M).
2. If the category I is a group G and M : Gop → Ab a G-module, then

the spectral sequence 13.2 collapses onto the vertical axis in the sense that

E0j
1 = Hj(G;M) and Eij

1 = 0 for i > 0.
3. Suppose that I is a category

0
S(0,1) // 1

with two objects and no non-identity automorphisms. Then limn(I;M) = 0
for n > 1 and there is an exact sequence

0→ lim0(I;M)→M(0)×M(1)
δ−→M(1) 〈S(0, 1)〉 → lim1(I;M)→ 0

where δ(m0,m1)(a) = m1 −M(a)(m0) for all morphisms a ∈ S(0, 1).
4. For a category I with two objects, 0 and 1, there is a long exact

sequence

. . .→ Hj(I(0);M(0))⊕Hj(I(1);M(1))
d1−→ Hj(E(0, 1);M(1))→ limj+1(I;M)→ . . .

where we are assuming that I(1) × I(0) acts transitively on S(0, 1) with
stabilizer subgroup E(0, 1).
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5. With I = A(W, t){E, t}, the full subcategory of A(W, t) containing t
and one of its non-trivial subspaces E 6= t, we get a long exact sequence

. . .→ Hj(W (E)/W (E);M(E))×Hj(W ;M(t))
d1−→ Hj(W (E);M(t))

→ limj+1(I;M)→ . . .

where the homomorphism d1 is induced from M(E) → M(t) and from the
inclusion W (E) ⊂W .

In case E = tS 6= t is the fixed-point space for the action of the Sylow
p-subgroup S of W and M(tS) and M(t) are Z(p)-modules, we conclude that
there is an exact sequence

(13.8) 0→ lim0(I;M)→M(tS)W (tS)/W (tS) ×M(t)W

→M(t)W (tS) → lim1(I;M)→ 0

and

(13.9) limj+1(I;M) =
Hj(W (tS);M(t))

Hj(W ;M(t))
, j ≥ 1.

This quotient group vanishes if S has order p for NW (tS)(S) = NW (S)

(2.15) and both cohomology groups equal H j(S;M(t))NW (S) as these are
the stable elements [19, 9.1, 10.1] in this case. Assuming, furthermore, that

M(tS) = MW (tS) and M(t) = M for some Z(p)[W ]-module M , we recover
the formula

limj(I;M) =

{
MW if j = 0,

0 if j > 0,

from [2].

6. Let H be a subgroup of the group G and

I(G,H) = O(G)op{G/H,G/{e}}
the full subcategory

(13.10) G/H
G/H

//NG(H)/H
88 G/{e} Gff

of O(G)op containing the two objects G/{e} and G/H. The limits of any
functor M : I(G,H)→ Ab fit into a long exact sequence

. . .→ Hj(NG(H)/H;M(G/H))⊕Hj(G;M(G/{e}))
d1−→ Hj(NG(H);M(G/{e}))→ limj+1(I(G,H);M)→ . . .

where the homomorphism d1 is induced fromM(H) : M(G/H)→M(G/{e})
and from the inclusion of NG(H) into G.
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7. Let I be a category with three objects, 0, 11, and 12, of the shape

11 gg

099

I1 77oooooo

I2
''OOOOOO

12 gg

and let M be an I-module with M(0) = 0, M(11) = M1, and M(12) = M2.
Then

lim∗(I;M) = lim∗(I1;M1)× lim∗(I2;M2)

where I1 is the full subcategory generated by the objects 0 and 11, I2 the full
subcategory generated by the objects 0 and 12, and the I(11)-module M1 is
considered as an I1-module and the I(12)-module M2 as an I2-module. Of
course, this extends to an arbitrary star shaped finite category with outward
pointing arrows.

8. Let I be a category with three objects, 01, 02, and 1, of the shape

0177 I1

''OOOOOO

1 ee

0277
I2

77oooooo

and let M be an I-module with M(01) = 0 = M(02) and M(1) = M . Then
there is a Mayer–Vietoris sequence

. . .→ Hj(I(1);M)→ limj(I1;M1)× limj(I2;M2)

→ limj(I;M)→ Hj+1(I(1);M)→ . . .

where I1 is the full subcategory generated by the objects 01 and 1 and I2

the full subcategory generated by the objects 02 and 1.

In the next lemma, R(A) means the full subcategory containing all ob-
jects of the form Ra for a ∈ Ob(A).

13.11. Lemma. Let

I
L //

J
R

oo

be an adjunction between two small categories, I(i, Rj) = J(Li, j) for all
i ∈ Ob(I), j ∈ Ob(J), and A a full subcategory of J. Then

(1) lim∗(J;L∗M) ∼= lim∗(I;M),

(2) lim∗(A;M) ∼= lim∗(R(A);L∗M) ∼= lim∗(LR(A);M),

for any functor M : J→ Ab.

Proof. Since any left adjoint functor is left cofinal, the first assertion is
a consequence of the Cofinality Theorem [14, XI.9.2, XI.7.2].
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For the proof of the second assertion, where we may assume that Ob(J) =
Ob(A) ∪Ob(LRA), we consider the inclusion functors

A ↪→ J←↩ LRA.

The inclusion of LRA into J is left cofinal for the universal arrow LRa→ a
is a terminal object in the over category LRA ↓ a for all a ∈ Ob(J). For the
other inclusion, consider the Grothendieck spectral sequence

limp(J; limq(a ↓ A;M))⇒ limp+q(A;M)

If a is an object of A, the identity of a is an initial object in the under
category a ↓ A. Otherwise, note that the restrictions

Ra ↓ RA
L // LRa ↓ A
R

oo

are adjoint functors so that

limq(LRa ↓ A;M) ∼= limq(Ra ↓ RA;L∗M) =

{
MLRa, q = 0,

0, q > 0,

because the identity of Ra is an initial object in the under category Ra ↓
RA. We conclude that lim∗(A;M) ∼= lim∗(J;M) ∼= lim∗(LRA;M). Finally,
observe that there is an induced adjointness between RA and LRA so that
also the two groups lim∗(RA;L∗M) and lim∗(LRA;M) are isomorphic.

13.12. Proposition. Let J be a full subcategory of I. If M vanishes
on all objects outside J and if any object of I with a morphism to an object
of J is in J, then lim∗(I;M) ∼= lim∗(J;M).

Proof. The cochain projection map
∏

i0→...→in∈N(I)n

M(in)→
∏

j0→...→jn∈N(J)n

M(jn)

is an isomorphism.
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de groupes de Lie compacts, Ann. of Math. (2) 57 (1953), 115–207.

[9] —, Sous-groupes commutatifs et torsion des groupes de Lie compacts connexes,
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2001, 271–306.

[69] J. M. Møller and D. Notbohm, Centers and finite coverings of finite loop spaces,
J. Reine Angew. Math. 456 (1994), 99–133.

[70] —, —, Connected finite loop spaces with maximal tori, Trans. Amer. Math. Soc.
350 (1998), 3483–3504.

[71] H. Nakajima, Invariants of finite groups generated by pseudoreflections in positive
characteristic, Tsukuba J. Math. 3 (1979), 109–122.

[72] D. Notbohm, Classifying spaces of compact Lie groups and finite loop spaces, in:
Handbook of Algebraic Topology, North-Holland, Amsterdam, 1995, 1049–1094.

[73] —, Maps between classifying spaces, Math. Z. 207 (1991), 153–168.

[74] —, Homotopy uniqueness of classifying spaces of compact connected Lie groups at
primes dividing the order of the Weyl group, Topology 33 (1994), 271–330.

[75] —, p-adic lattices of pseudo reflection groups, in: Algebraic Topology: New Trends
in Localization and Periodicity (Sant Feliu de Gúıxols, 1994), Birkhäuser, Basel,
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