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On coarse embeddability into ℓp-spaces and

a conjecture of Dranishnikov

by

Piotr W. Nowak (Nashville, TN)

Abstract. We show that the Hilbert space is coarsely embeddable into any ℓp for
1 ≤ p ≤ ∞. It follows that coarse embeddability into ℓ2 and into ℓp are equivalent for
1 ≤ p < 2.

Coarse embeddings were defined by M. Gromov [Gr, 7.E2] to express
the idea of inclusion in the large scale geometry of groups. G. Yu showed
later that the case when a finitely generated group with a word length
metric is being embedded into the Hilbert space is of great importance in
solving the Novikov Conjecture [Yu], while recent work of G. Kasparov and
G. Yu [KY] treats the case when the Hilbert space is replaced with just a
uniformly convex Banach space. Due to these remarkable theorems coarse
embeddings gain a great deal of attention, but still embeddability into the
Hilbert, and more generally Banach spaces, is not entirely understood with
many question remaining open.

In this context the class of ℓp-spaces seems to be particularly interesting.
Their embeddability into the Hilbert space is known—ℓp admits such an
embedding when 0 < p ≤ 2 but does not if p > 2 due to a recent result of
W. Johnson and N. Randrianarivony [JR]. In this note we study the opposite
situation, i.e. we show that the separable Hilbert space embeds into ℓp for
any 1 ≤ p ≤ ∞. As a consequence we obtain a new characterization of
embeddability into ℓ2, namely that the properties of embeddability into ℓp

for 1 ≤ p ≤ 2 are all equivalent.

In [GK, Section 6] the authors advertised a conjecture stated by A. N. Dra-
nishnikov [Dr, Conjecture 4.4]: a discrete metric space has Property A if and

only if it admits a coarse embedding into the space ℓ1. The results presented in
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this note show that this is the same as asking whether Property A is equivalent
to embeddability into the Hilbert space, and although it is a folk conjecture
that such statement is not true, no example distinguishing between the two
is known.

Acknowledgements. I would like to thank my advisor Guoliang Yu
for inspiring conversations on coarse geometry of Banach spaces.

Lp-spaces and theMazurmap. In everything what follows we consider
only separable Lp(µ)-spaces and we will specialize to the most interesting case
of the spaces ℓp; the case of Lp(µ) for other, including non-separable, measures
follows easily and is left to the reader. We use the standard notation ℓp = ℓp(N)
and we denote by S(X) the unit sphere in the Banach space X.

The Mazur map Mp,q : S(ℓp) → S(ℓq) is defined by the formula

Mp,q(x) = {|xi|p/q signxi}∞i=1

where x = {xi}∞i=1 ∈ ℓp. It is a uniform homeomorphism between unit
spheres of ℓp-spaces. More precisely, for some C depending only on p/q it
satisfies the inequalities

(1)
p

q
‖x − y‖p ≤ ‖Mp,q(x) − Mp,q(y)‖q ≤ C‖x − y‖p/q

p

for all x, y ∈ S(ℓp) and p < q, and the opposite inequalities if p > q (note
that Mp,q = M−1

q,p ). For the proof of these estimates and details on the Mazur
map and its applications we refer the reader to [BL, Chapter 9.1].

If {Xn}n∈N is a sequence of Banach spaces, we denote by (
∑

Xn)p the
direct sum of Xn with the p-norm, i.e.

(

∞
∑

n=1

Xn

)

p
=

{

x = {xn}n∈N : xn ∈ Xn,

∞
∑

n=1

‖xn‖p < ∞
}

,

‖x‖p =
(

∞
∑

n=1

‖xn‖p
)1/p

.

Clearly, ℓp is isometric to (
∑

ℓp)p.
We will also need the following classification of separable Lp-spaces.

Theorem 1 (see e.g. [Wo, III.A]). A separable space Lp(µ) is isometric

to one of the following spaces: ℓn
p for n = 1, 2, . . . , Lp[0, 1], ℓp, (Lp[0, 1]⊕ℓn

p)p

for n = 1, 2, . . . , (Lp[0, 1] ⊕ ℓp)p.

A condition for coarse embeddability. We recall the definition of a
coarse embedding.

Definition 1. Let X, Y be metric spaces. A map f : X → Y is a coarse

embedding if there exist non-decreasing functions ̺1, ̺2 : [0,∞) → [0,∞)
satisfying
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(1) ̺1(dX(x, y)) ≤ dY (f(x), f(y)) ≤ ̺2(dX(x, y)) for all x, y ∈ X,
(2) limt→∞ ̺1(t) = +∞.

In [DG] M. Dadarlat and E. Guentner characterized spaces coarsely em-
beddable into the Hilbert H space in terms of existence of maps into the
unit sphere S(H). Their result is a reminiscence of a characterization of uni-

form embeddability (meaning existence of a uniform homeomorphism onto
a subset) into a Hilbert space obtained by Aharoni et al. in [AMM].

Theorem 2 ([DG, Theorem 2.1]). A metric space X admits a coarse

embedding into the Hilbert space H if and only if for every R > 0 and ε > 0
there is a map ϕ : X → S(H) and S > 0 satisfying

(1) sup{‖ϕ(x) − ϕ(y)‖H : x, y ∈ X, d(x, y) ≤ R} ≤ ε,
(2) limS→∞ inf{‖ϕ(x) − ϕ(y)‖H : x, y ∈ X, d(x, y) ≥ S} =

√
2.

We are going to use this idea to prove a similar condition for embeddings
into the spaces ℓp. The proof relies on the original proof of Theorem 2.

Theorem 3. Let X be a metric space and 1 ≤ p < ∞. If there is a δ > 0
such that for every R > 0, ε > 0 there is a map ϕ : X → S(ℓp) satisfying

(1) sup{‖ϕ(x) − ϕ(y)‖p : x, y ∈ X, d(x, y) ≤ R} ≤ ε,
(2) limS→∞ inf{‖ϕ(x) − ϕ(y)‖p : x, y ∈ X, d(x, y) ≥ S} ≥ δ,

then X admits a coarse embedding into ℓp.

Proof. By the assumptions for every n ∈ N there is a map ϕn : X →
S(ℓp) and a number Sn > 0 such that ‖ϕn(x) − ϕn(y)‖p ≤ 1/2n whenever
d(x, y) ≤ n, and ‖ϕn(x) − ϕn(y)‖p ≥ δ/2 whenever d(x, y) ≥ Sn. Without
loss of generality we can choose the sequence of Sn’s to be strictly increasing
and tending to infinity as n → ∞.

Choose x0 ∈ X and define a map Φ : X → (
∑

ℓp)p by the formula

Φ(x) =

∞
⊕

n=1

(ϕn(x) − ϕn(x0)) .

It is easy to see that

‖Φ(x)‖p
p =

∞
∑

n=1

‖ϕn(x) − ϕn(x0)‖p
p < ∞,

which shows that Φ is well defined.

We will show that Φ is a coarse embedding. Take k ∈ N and p
√

k − 1 ≤
d(x, y) < p

√
k. Then
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‖Φ(x) − Φ(y)‖p
p =

k−1
∑

n=1

‖ϕn(x) − ϕn(y)‖p
p +

∞
∑

n=k

‖ϕn(x) − ϕn(y)‖p
p

≤ 2p(k − 1) +
∞

∑

n=k

1

2kp
≤ 2p(k − 1) + 1 ≤ 2pd(x, y)p + 1.

The first estimate comes from the fact that unit vectors cannot be more
than distance 2 apart.

On the other hand, for Sk−1 ≤ d(x, y) < Sk we have

‖Φ(x) − Φ(y)‖p
p ≥

k−1
∑

n=1

‖ϕn(x) − ϕn(y)‖p
p ≥ (k − 1)

(

δ

2

)p

.

Thus we can choose ̺1(t) =
∑

∞

n=1 δ p
√

n χ[Sn−1,Sn)(t), ̺2(t) = 2t +1 and it is
clear that Φ is a coarse embedding.

G. Yu defined Property A [Yu], which gives a sufficient condition for
embeddability of a discrete metric space into a Hilbert space. We recall a
characterization of Property A given by J. L. Tu.

Proposition 1 ([Tu]). A metric space X has property A if and only if

for every R > 0 and ε > 0 there is a map η : X → S(ℓ2(X)) and S > 0 such

that

(1) ‖η(x) − η(y)‖2 ≤ ε when d(x, y) ≤ R;
(2) supp η(x) ⊂ B(x, S) for all x ∈ X.

Theorem 2 and the above characterization exhibit the subtle relation
between Property A and coarse embeddability.

The following proposition shows that the property of Theorem 3 is not
sensitive to changing the index p.

Proposition 2. Let X have the property described in Theorem 3 with

respect to some 1 ≤ p < ∞. Then X has the same property with respect to

any 1 ≤ q < ∞.

Proof. For R > 0 and ε > 0, given a map fp : X → S(ℓp) which satisfies
conditions (1) and (2) of Theorem 3 define fq : X → S(ℓq) by the formula

fq(x) = Mp,q[fp(x)],

where Mp,q : S(ℓp) → S(ℓq) is the Mazur map.
If p < q, by inequalities (1) we have

p

q
‖fp(x) − fp(y)‖p ≤ ‖fq(x) − fq(y)‖q ≤ C‖fp(x) − fp(y)‖p/q

p .

Consequently,

sup{‖fq(x) − fq(y)‖q : x, y ∈ X, d(x, y) ≤ R} ≤ Cεp/q,
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and

lim
S→∞

inf{‖fq(x) − fq(y)‖q : x, y ∈ X, d(x, y) ≥ S} ≥ p

q
δ.

The case p > q is proved similarly.

In the case of Property A a statement similar to Proposition 2 was stud-
ied by Dranishnikov under the name of Property Ap in [Dr].

Corollary 4. If X admits a coarse embedding into ℓ2 then it admits a

coarse embedding into any ℓp with 1 ≤ p ≤ ∞. In particular , the separable

Hilbert space embeds into all ℓp.

Proof. If X admits a coarse embedding into ℓ2 then, by Theorem 2,
X has the property from Theorem 3 for ℓ2. By Proposition 2 it has this
property also for ℓp, 1 ≤ p < ∞, and by Theorem 3 it admits an embedding
into ℓp.

The case p = ∞ is clear since ℓ∞ is a universal space for isometric
embeddings.

It follows from the above proof that Theorem 3 cannot be extended to
a characterization of coarse embeddability into ℓp if p > 2. Indeed, in that
case the procedure described in the above proof would imply that ℓp for
p > 2 embeds coarsely into the Hilbert space, which is not the case by a
result of Johnson and Randrianarivony [JR].

In [No] it was shown that Lp(µ) for 1 ≤ p ≤ 2 admits a coarse embedding
into the Hilbert space and that coarse embeddability into ℓ2 is equivalent
to coarse embeddability into Lp[0, 1] again for 1 ≤ p ≤ 2. This allows us to
state

Theorem 5. Let X be a separable metric space. Then the following

conditions are equivalent :

(1) X admits a coarse embedding into the Hilbert space;
(2) X admits a coarse embedding into ℓp for some (equivalently all)

1 ≤ p < 2;
(3) X admits a coarse embedding into Lp[0, 1] for some (equivalently all)

1 ≤ p < 2.

Note that this covers all separable Lp(µ)-spaces with 1 ≤ p ≤ 2. This is
particularly interesting since the spaces Lp for different p’s are not coarsely
equivalent. To see this assume they are and take f : Lp(µ) → Lq(µ) to be the
coarse equivalence. Since Lp-spaces are geodesic, f is in fact a quasi-isometry
and it induces a Lipschitz equivalence on their ultrapowers. By a theorem
of Heinrich [He] ultrapowers of Lp-spaces are again Lp-spaces (possibly on
a different measure), and the assertion follows from the classical fact that
Lipschitz equivalence on Lp-spaces induces a linear isomorphism.
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