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On special partial types and weak canonical bases
in simple theories

by

Ziv Shami (Ariel)

Abstract. We define the notion of a weak canonical base for a partial type in a simple
theory. We prove that members of a certain family of partial types, which we call special
partial types, admit a weak canonical base; this family properly contains the family of
amalgamation bases.

1. Introduction. For a simple theory the notion of the canonical base
is essential for the development of parts of the theory such as the theory of
analyzability. Given an amalgamation base p ∈ S(A), the canonical base of p
is the minimal hyperimaginary, in the sense of definable closure, e ∈ dcl(A)
such that p does not fork over e and p|e is an amalgamation base. In this
note we define a notion of a weak canonical base for a partial type in a simple
theory; it is defined in the same way as the usual canonical base except that
it is required to be minimal with respect to bounded closure in the above
sense (and there is no requirement on the restriction of the partial type
to it). We prove that members of a certain family of partial types (we call
them special partial types) have a weak canonical base. This family clearly
properly contains the class of amalgamation bases. Our original motivation
was to prove Corollary 2.10 so as to obtain a certain definability result
that seemed required for the proof of the dichotomy between 1-basedness
and supersimplicity proved in [S1]; however, this corollary turned out to be
unnecessary for this specific definability result. Nevertheless, it should have
other applications to situations where one needs a compactness argument
when dealing with families of canonical bases.

The characterization of the class of partial types that admit a weak
canonical base appears to be an important problem and it looks reasonable
that this class should properly contain the class of special partial types that
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we deal with in this paper. The class of special partial types is a subclass
of the class of partial types obtained by generic composition of a pair of
complete types; we say that a partial type r(x, a) over a sufficiently saturated
model of T is obtained by generic composition of the complete types p(x, y)
and q(y, z) (without parameters) if the following condition holds in that

model: b realizes r iff there exists c such that p(b, c), q(c, a), and b |̂
c
a.

Our proof does not seem to extend to general generic composition. The
skeleton of the proof of the existence of weak canonical bases is similar to
the construction of the usual canonical base.

Throughout this paper, T is assumed to be a first-order simple theory
and we work in a monster model C of T , namely a sufficiently saturated, and
sufficiently strongly homogeneous model of T . We will sometime assume, for
simplicity, that T is hypersimple, that is, a simple theory with elimination
of hyperimaginaries. We only assume basic knowledge of simple theories as
in [K], [KP] and [HKP].

2. Weak canonical bases

Definition 2.1. Let Γa be a partial type over a tuple a (not necessarily
finite). We say that a hyperimaginary e is a weak canonical base for Γa if

(1) e ∈ dcl(a) and Γa does not fork over e.
(2) e ∈ bdd(e′) whenever e′ ∈ bdd(a) is a hyperimaginary such that Γa

does not fork over e′.

Example 2.2. Let L = {E} be a language for a 2-place relation E. Let
T be the complete L-theory saying that E is an equivalence relation with
infinitely many equivalence classes each of which is infinite. Let Γ (x) ≡
E(x, a) ∨ E(x, a′) for some a, a′ ∈ C such that ¬E(a, a′). Then Γ (x) does
not have a weak canonical base. To see this, assume otherwise. First, note
that clearly Γ (x) forks over neither a nor a′. Thus by our assumption and
the definition of a weak canonical base, e ∈ bdd(a) ∩ bdd(a′). So, we get a

contradiction since a |̂ a′ and Γ (x) forks over ∅.

We start by introducing the special partial types. First, we will say that
a relation R(x, x′) is generically transitive on a partial type π(x) if for all

a′, a, a′′ |= π, if a′ |̂
a
a′′ and R(a′, a) ∧R(a, a′′), then R(a′, a′′).

Lemma 2.3. Let q(y, z), r(z, x) ∈ S(∅) be such that ∃xyz (q(y, z) ∧
r(z, x)). Assume q(y, z) ` z ∈ acl(y). Let p(x) = ∃z r(z, x) and let a |= p.
Let Γa be defined by

Γa(y) ≡ ∃z (q(y, z) ∧ r(z, a) ∧ y |̂
z
a).
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Then

(1) Γa(x) is a partial type.
(2) Let R̄Γ be the relation defined by R̄Γ (c, a, a′) iff c |= Γa ∧ Γa′ and

c |̂
a
a′ and c |̂

a′
a. Then R̄Γ is type-definable and thus so is the relation

RΓ (x, x′) ≡ ∃y R̄Γ (y, x, x′) on pC.
(3) If q(y, z) ` z ∈ dcl(y) and tp(d/a) is an amalgamation base for

(d, a) |= r, then RΓ is generically transitive on pC.

Proof. (1) is easy since in the definition of Γa the complete type of
(z, a) is fixed. For (2) note that since q(y, z) ` z ∈ acl(y), an easy forking
computation shows that for all c, a, a′ we have R̄Γ (c, a, a′) iff there exist d, d′

such that

q(c, d)∧ q(c, d′)∧ r(d, a)∧ r(d′, a′) and c |̂
d
aa′ ∧ c |̂

d′
aa′ ∧ d |̂

a
a′ ∧ d′ |̂

a′
a.

Again, since q and r are complete we find that R̄Γ is type-definable.

To prove (3), assume q(y, z) ` z ∈ dcl(y). Let a, a′, a′′ be such that a′ |̂
a
a′′

and assume RΓ (a′, a) and RΓ (a, a′′) (so, clearly a, a′, a′′ |= p). Now, by (2)
we know that R̄Γ (x, a′, a) is a partial type and clearly by its definition it
does not fork over a. Likewise, the partial type R̄Γ (x, a, a′′) does not fork
over a. It will be sufficient to show the following.

Claim 2.4. There are c′ |= R̄Γ (x, a′, a) and c′′ |= R̄Γ (x, a, a′′) such that
Lstp(c′/a) = Lstp(c′′/a).

This is sufficient since c′ |̂
a
a′ for all c′ |= R̄Γ (x, a′, a) and c′′ |̂

a
a′′ for

all c′′ |= R̄Γ (x, a, a′′), thus by the independence theorem this will imply

there exists c∗ |= R̄Γ (x, a′, a) ∧ R̄Γ (x, a, a′′) with c∗ |̂
a
aa′a′′. In particular,

c∗ |̂
aa′

aa′a′′, and by the definition of R̄Γ , c∗ |̂
a′
aa′a′′. Likewise, c∗ |̂

a′′
aa′a′′.

Hence R̄Γ (a′, a′′).

Proof of Claim 2.4. Since q(y, z) ` z ∈ dcl(y), by the observation on R̄Γ
in the proof of (2), there are d′′, c′′ such that q(c′′, d′′), r(d′′, a) and r(d′′, a′′)

and d′′ |̂
a
a′′, and d′′ |̂

a′′
a and c′′ |̂

d′′
aa′′. Likewise, there is d′ with d′ |̂

a
a′ and

d′ |̂
a′
a and r(d′, a) and r(d′, a′). Now, since Lstp(d′/a) = Lstp(d′′/a), there

exists c′ such that tp(c′d′/a) = tp(c′′d′′/a) and Lstp(c′/a) = Lstp(c′′/a) and

c′ |̂
d′a
a′. By the choice of c′, c′ |̂

d′
a, hence by transitivity c′ |̂

d′
aa′. We conclude

that R̄Γ (c′′, a, a′′), R̄Γ (c′, a′, a) and Lstp(c′/a) = Lstp(c′′/a), as required.
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Definition 2.5. A partial type Γa(y) as defined in Lemma 2.3 for some
q(y, z), r(z, x) ∈ S(∅) is called a special partial type if q(y, z) ` z ∈ dcl(y)
and tp(d/a) is an amalgamation base for (d, a) |= r.

Remark 2.6. Note that, in general, the class of special partial types
properly contains the class of amalgamation bases. To see this, let r(z, x)
be any complete type over ∅ such that tp(d/a) is an amalgamation base for
(d, a) |= r, and let q(y, z) = (y = z) ∧ (∃x r(z, x)). Then, if we apply the
definition of Γa in Lemma 2.3, we get Γa(y) = tp(d/a) for (d, a) |= r. To
justify properness, we give an example of a special partial type which is not
complete. Let L = {R} and let T be the L-theory of the random graph. Let
a, b, c ∈ C be any three distinct elements such that R(b, c) and R(c, a). Then

bc |̂
c
a. Let q = tp(bc, c), r = tp(c, a). Let

Γa(y0y1) ≡ ∃z
(
q(y0y1, z) ∧ r(z, a) ∧ y0y1 |̂

z
a
)
.

Then clearly Γa is a special partial type and Γa(y0y1) is equivalent to (y0 6=
y1) ∧ (y0 6= a) ∧ (y1 6= a) ∧ R(y0, y1) ∧ R(y1, a). In particular, Γa is not
complete.

To prove the theorem we need the following well known fact (used for
the construction of the usual canonical base).

Fact 2.7 ([W, Lemma 3.3.1]). Let π(x) be a partial type over ∅ and let
R(x, x′) be a type-definable relation over ∅ that is reflexive, symmetric and
generically transitive on πC. Let ER be the transitive closure of R on πC.
Then ER is type-definable and for all a, a′ |= π we have ER(a, a′) iff there

exists b |= π such that R(a, b) and R(b, a′) and a |̂
a′
b and b |̂

a
a′.

Theorem 2.8. Let Γa be a special partial type. Then Γa has a weak
canonical base.

Proof. By Lemma 2.3 and Fact 2.7 we know that the transitive closure
of RΓ (as defined in Lemma 2.3), which we denote by EΓ , is type-definable
and for all a′ |= tp(a) we have EΓ (a, a′) iff there exists b |= tp(a) such that

RΓ (a, b) and RΓ (b, a′) and a |̂
a′
b and b |̂

a
a′.

Let e = aEΓ . Clearly e ∈ dcl(a). First we show Γa does not fork over e.

Pick a′ |= tp(a) such that a |̂
aEΓ

a′ and tp(a′/aEΓ ) = tp(a/aEΓ ). In particular,

EΓ (a, a′). Let b be as above. Then easily a |̂
aEΓ

b and thus if c |= Γa∧Γb with

a |̂
b
c, then since aEΓ ∈ dcl(b) we conclude that a |̂

aEΓ
c. To prove (2) of 2.1,

assume Γa(x) does not fork over some e′ ∈ bdd(a). Let σ ∈ Aut(C/bdd(e′))
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and let a′ = σ(a). Pick a∗ such that tp(a∗/bdd(e′)) = tp(a/bdd(e′)) and

a∗ |̂
e′
aa′. By the independence theorem, neither Γa ∧Γa∗ nor Γa∗ ∧Γa′ forks

over e′. Since e′ ∈ bdd(a∗) ∩ bdd(a) ∩ bdd(a′), we have EΓ (a, a′). Thus
e ∈ bdd(e′).

Remark 2.9. Definition 2.5 of special partial types can be applied in
the more general context of hyperimaginaries. It is not hard to check that
Theorem 2.8 remains true in this context; the main properties we need for
that are the following.

First, for the proof of Fact 2.7 we only need two properties besides stan-

dard forking computations: the first one is that a |̂
c
b if and only if for every

φ = φ(x, y) ∈ L and k < ω we have D(tp(a/c), φ, k) = D(tp(a/bc), φ, k), and
the second property is the type-definability of the D(−, φ, k)-rank in the fol-
lowing sense: for any, possibly infinite, tuples of the sorts s0, s1 and for φ =
φ(x, y) ∈ L and k, n < ω the set {(a0, a1) ∈ Cs0 × Cs1 | D(tp(a1/a0), φ, k) ≥
n} is type-definable. These properties remain true in the hyperimaginary
context and thus so does Fact 2.7. For the proofs in this paper (and even
for knowing that special partial types are in fact types) we only need, in
addition, the following property: if b0, c0 are hyperimaginaries, then for any
fixed hyperimaginary sort SE (where E is a type-definable equivalence re-

lation over ∅), the set {(a, b, c) | a ∈ SCE , a |̂
c
b, tp(b, c) = tp(b0, c0)} is

type-definable (i.e. the union of the classes of members of this set is type-
definable).

Here is a corollary of our main theorem. For simplicity we assume that
T is hypersimple (rather than just simple). In the following, when we write
Cb(a/b), we mean the usual canonical base of (the amalgamation base)
tp(a/bdd(b)) (where bdd(b) denotes the set of hyperimaginaries of countable
length whose type over b is bounded). The assumption that T is hypersimple
implies that such a canonical base exists as a set of imaginary elements and
a type over an algebraically closed set in Ceq is an amalgamation base (since
bdd(A) is interdefinable with acleq(A) for every set A ⊆ Ceq).

Corollary 2.10. Let T be a simple theory with elimination of hyper-
imaginaries and work in Ceq. Let d, a be some tuples (possibly infinite) and
let p ∈ S(d) be such that for c |= p, d ∈ dcl(c). Let

S = {c ∈ pC | c |̂
d
a}.

Then there exists c∗ ∈ S such that
⋂
c∈S acl(Cb(c/a)) = acl(Cb(c∗/a)).

Proof. Let ã = acl(a). Let Γã be the special partial type over ã defined
by the types r = tp(d, ã) and q = tp(c, d) for some c |= p. Note that
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{tp(c/ã) | c ∈ S} = {tp(c/ã) | c |= Γã}, and clearly S ⊆ Γ Cã . By Theorem
2.8, there is a weak canonical base of Γã, call it e. Let c′ |= Γã be such that

c′ |̂
e
a, and let e∗ = Cb(c′/a). Then by the definition of the usual canonical

base, e∗ ∈ bdd(e). By the observation above, there exists c∗ ∈ S such that
e∗ = Cb(c∗/a). Now, to finish the proof it will be sufficient to show that
e ∈ bdd(Cb(c/a)) for every c ∈ S. Indeed, let c ∈ S, then c |= Γã. Let

ec = Cb(c/a). Then c |̂
ec
a, and since e is a weak canonical base of Γã, we

conclude e ∈ bdd(ec).
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