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Model-theoretic consequences of
a theorem of Campana and Fujiki

by

Anand Pillay (Urbana, IL, and Berlin)

Abstract. We give a model-theoretic interpretation of a result by Campana and
Fujiki on the algebraicity of certain spaces of cycles on compact complex spaces. The
model-theoretic interpretation is in the language of canonical bases, and says that if b, c are
tuples in an elementary extension A∗ of the structure A of compact complex manifolds,
and b is the canonical base of tp(c/b), then tp(b/c) is internal to the sort (P1)∗. The
Zilber dichotomy in A∗ follows immediately (a type of U -rank 1 is locally modular or
nonorthogonal to the field C∗), as well as the “algebraicity” of any subvariety X of a
group G definable in A∗ such that Stab(X) is trivial.

1. Introduction. This paper concerns the interaction between com-
plex-geometric notions and model-theoretic notions in the structure theory
of compact complex spaces. It has been known for some time that model-
theoretic ideas yield a rather striking dichotomy for simple compact complex
manifolds M : either M is algebraic, or else there is no “2-parameter” family
of finite-to-finite analytic correspondences between M and itself. But, up to
now, the only proof of this of which I was aware went through the results
on Zariski geometries and their validity for compact complex manifolds,
together with some other ingredients (see [6], [7] and [11]). It turns out
that the dichotomy above and more are almost immediate consequences of
a theorem proved independently by Campana [1] and Fujiki [3]. They prove,
roughly speaking, that if S is a compact space of cycles (Zs : s ∈ S) on
a compact complex space X then the natural morphism from the graph
({x, s) : x ∈ Zs, s ∈ S}) of S to X is a Moishezon map. Via a translation
established by Moosa ([9], [10]), this yields the following striking statement
in the language of canonical bases (to be read in a saturated elementary
extension A∗ of the many-sorted structure A of compact complex spaces):

(∗) for any b, c, tp(Cb(tp(c/b))/c) is “algebraic”, that is, internal to C∗.
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The statement (∗) (or the original Campana–Fujiki statement) yields the
dichotomy for U -rank 1 types in A∗: they are modular or “algebraic”. Also
the algebraicity of suitable subvarieties of meromorphic groups and homo-
geneous spaces follows directly, subsuming results of Ueno [15] as well as
results from [8]. I guess that the benefit of the model-theoretic translation
(∗) lies in being able to work directly with bimeromorphic objects without
worrying about specific compactifications. As the reader might surmise, the
statement (∗), when suitably re-interpreted, is also directly provable (using
suitable jet spaces) in other algebraic/model-theoretic structures of interest,
such as differential and difference fields. (See [14].)

The details of the observations above are given in the next section.

2. Results. For the theory of compact complex spaces see [4]. For the
model-theoretic treatment of this subject see [11].

Let us work towards stating the Campana–Fujiki theorem. Let X be
a reduced, irreducible, compact complex space. There are two notions of
cycle spaces on X. The Douady space D(X) parametrizes pure-dimensional
analytic subsets of X. The Barlet space C(X) parametrizes integral linear
combinations of irreducible analytic subsets (of the same dimension) of X.
Campana works with Barlet spaces and Fujiki with Douady spaces. A mor-
phism f : Y → X of compact complex spaces is said to be projective if
there is a coherent analytic sheaf F over X and an embedding (over X) h
of Y into the projective linear space P(F) over X associated with F such
that π ◦ h = f , where π : P(F) → X is the map realizing P(F) as a fibre
space over X. A morphism f : Y → X is said to be Moishezon if it is
bimeromorphic (over X) to a projective morphism f ′ : Y ′ → X. Campana
proves:

Fact 2.1. Let S be an irreducible, compact , analytic subset of C(X).
Let Zs denote the cycle parameterized by s ∈ S. Assume that for general
s ∈ S, Zs is irreducible. Let Y = {(x, s) ∈ X × S : x ∈ Zs, s ∈ S}, and let
f : Y → X be the projection to the first coordinate. Then f is a Moishezon
map.

In fact the above statement comes from [2] (Theorem 3.6). The original
theorem in [1] states that f factors through an embedding in a suitable
Grassmannian of F over X, where F is the coherent analytic sheaf of germs
of differential operators of suitably bounded order. Such an f is Moishezon.
In Fujiki’s statement, C(X) is replaced by D(X).

We now work towards the model-theoretic interpretation. A is the many-
sorted structure of compact complex spaces Xi with predicates for analytic
subvarieties of Cartesian products Xi1× . . .×Xin . Note that with this “lan-
guage”, all elements of all sorts in A are named by constants. Th(A) has
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quantifier elimination, elimination of imaginaries and is stable with finite
Morley rank (sort-by-sort). A∗ will be a very saturated elementary exten-
sion of A. Among the sorts in A is the projective line P1 over C. There is no
harm (via Chow’s theorem) in identifying this sort with the complex field C
equipped with addition, multiplication, and constants for all elements (they
are bi-interpretable). C∗ denotes the “extension” of this sort in A∗. Let b, c
be tuples from A∗. Following [9], [10], we will say that tp(c/b) is Moishezon
if tp(c/acl(b)) is internal to C∗, or equivalently if there is some finite tuple b′

including b and independent of c over b such that c ∈ dcl(d, b′) for some tuple
d from C∗. (Note that tp(c/b) is Moishezon just if every stationarization of
it is Moishezon.) Moosa [10] observes the following:

Fact 2.2. Suppose that X,Y are irreducible compact complex spaces and
that f : Y → X is a Moishezon map. Let c ∈ Y ∗ be a generic point of Y
(over A). Then tp(c/f(c)) is Moishezon.

We can now obtain:

Theorem 2.3. Let b, c be finite tuples from A∗. Assume that tp(c/b) is
stationary and that b = Cb(tp(c/b)). Then tp(b/c) is Moishezon.

Proof. Let X, S, Z be irreducible compact complex spaces of which c, b
and (c, b) respectively are generic points (overA). Then Zb is irreducible with
generic point c, and moreover b is a canonical parameter for Zb (by quantifier
elimination). Replacing S by a suitable modification, we may assume that
the projection π : Z → S is flat. The universal properties of the Douady
spaceD(X) ofX yield a morphism p : S → D(X) such that p(s) corresponds
to Zs. Then p(S) is a compact irreducible analytic subset of D(X). Also, by
compactness, there is a Zariski open subset U of S such that for s1, s2 ∈ U ,
Zs1 = Zs2 iff s1 = s2. Thus p : S → p(S) is a modification. The end result
is that, after replacing b by something interdefinable with it (which we can
do), we may assume that S is a compact analytic subspace of D(X) and that
Z is the associated subspace of X × S. By Fact 2.1 (working with Douady
spaces), the canonical morphism f : Z → X is Moishezon. By 2.2, tp(b, c/c)
is Moishezon, and thus tp(b/c) is Moishezon.

Remark 2.4. Let b, c be as in the above theorem. Then for any tuple a
from A∗, tp(b/ca) is Moishezon.

Proof. The conclusion of Theorem 2.3 tells us that there is some set C
of parameters containing c and such that b is independent of C over c and
b ∈ dcl(C, d) for some tuple d from C∗. Without loss of generality (that is,
by automorphism) C is independent of a over bc, so independent of bca over
c, and so independent of b over ca.

Let us now give some applications.
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Corollary 2.5. Let p(x) be a stationary type of U -rank 1 over some
set in A∗. Then p is either modular or nonorthogonal to (the generic type
of ) C∗.

Proof. As A∗ has finite Morley rank (sort-by-sort) we may assume that
p(x) is over a finite tuple a of parameters. If p were not modular then
by 2.2.6 of [12] there would be a tuple c of realizations of p (in fact a pair is
sufficient) and some tuple b such that b = Cb(tp(c/ba)) and b 6∈ acl(ca). By
Remark 2.4, tp(b/ca) is Moishezon. In particular tp(b/ca) is nonorthogonal
to the generic type of C∗. But b lives in peq, and thus p is nonorthogonal
to C∗.

The next application concerns definable subsets of groups and homoge-
neous spaces. Definable groups in A have naturally the structure of “mero-
morphic groups” (see [13] and [8]). A definable group inA∗ can be considered
as the generic fibre of a meromorphic family of meromorphic groups.

Let us start with a general lemma about stable groups.

Lemma 2.6. Let G be a connected group (type)-definable in a saturated
stable structure M . Let c ∈ G be such that p(x) = tp(c) is stationary. Let
H be the left stabilizer of p. Let a ∈ G be generic over c. Let c/H denote
Hc as an element of the right coset space H\G. Then c/H is interdefinable
over a with Cb(tp(a/ca)). (Similarly with left and right interchanged.)

Proof. So H\G denotes the space {Hg : g ∈ G} of right cosets of H in G,
and as above we write Hg as g/H when we want to treat it as an element
rather than a definable set. Some more notation: given a stationary type q
over ∅ of some element of G, and given a ∈ G, by qa we mean the restriction
to a of the translate q′a of q′ by a where q′ is the global nonforking extension
of q. Note that qa is stationary and q′a is its global nonforking extension.
Moreover qa= tp(da/a) for d realizing q|a.

Now let us make some observations.

(i) a realizes p−1ca.

This is because c−1 realizes p−1, and (as a is generic in G over c), ca is
generic over c−1 so independent of c−1.

(ii) ca/H is interdefinable with Cb(p−1ca).

Indeed, H is the left stabilizer of p so the right stabilizer of p−1, which
clearly yields (ii): an automorphism f fixes ca/H iff p−1ca is parallel to
f(p−1ca) = p−1f(ca).

Note that c/H and ca/H are interdefinable over a. So by (i) and (ii) we
deduce that c/H and Cb(tp(a/ca)) are interdefinable over a.

Remark 2.7. Note that Lemma 2.6 includes the old result [5] that in
modular (or 1-based) groups any stationary type is a translate of the generic
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type of a subgroup: if Cb(tp(a/ca)) ∈ acl(a) then c/H ∈ acl(∅) and so tp(c)
is a translate of the generic type of H.

Lemma 2.6 applies to groups definable in A∗. So together with Theo-
rem 2.3 we obtain:

Corollary 2.8. Let G be a group definable in A∗. Work over some
algebraically closed set of parameters A over which G is definable. Let c ∈ G
and let H be the left stabilizer of tp(c/A). Then tp((c/H)/A) is Moishezon.

For groups definable in A, that is, meromorphic groups, Corollary 2.9
below gives a more geometric looking statement. As a matter of notation,
if X and Y are complex (not necessarily compact) spaces definable in A,
we will say that X and Y are meromorphically isomorphic if there is a
bihomolorphic map between X and Y which is also definable in A.

Corollary 2.9. Let G be an arbitrary meromorphic group (not nec-
essarily commutative). Let X be an irreducible meromorphic subvariety of
G, and let H = {g ∈ G : g · X = X} be the set-theoretic left stabilizer of
X in G. Let H\X denote the Zariski closure of H\X in the meromorphic
homogeneous space H\G of right cosets Hg (g ∈ G). Then H\X is mero-
morphically isomorphic to an algebraic variety. (Likewise with left and right
interchanged.)

Proof. Let p = tp(c/A) be the generic type of X. (So c ∈ X∗ ⊆ G∗.)
Then H (or rather its extension H∗) as defined in the statement to be proved
identifies with the left stabilizer of p. By Corollary 2.8, tp((c/H∗)/A) is
Moishezon. As A is a model, this is witnessed over A, namely c/H∗ ∈ dcl(d)
for some tuple from C∗. It follows that c/H∗ is interdefinable with some
tuple in C∗. But c/H∗ is a generic point over A of (H\X)∗ ⊆ (H\G)∗.
As H\G is a homogeneous space it follows that H\X is meromorphically
isomorphic to an algebraic variety.
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[1] F. Campana, Algébricité et compacité dans l’espace des cycles d’un espace analytique
complexe, Math. Ann. 251 (1980), 7–18.

[2] F. Campana and T. Peternell, Cycle spaces, in [4], 319–349.
[3] A. Fujiki, On the Douady space of a compact complex space in the category A,

Nagoya Math. J. 85 (1982), 189–211.
[4] H. Grauert, T. Peternell and R. Remmert (eds.), Several Complex Variables VII ,

Springer, 1994.
[5] E. Hrushovski and A. Pillay, Weakly normal groups, in: Logic Colloquium ’85,

North-Holland, 1987, 233–244.
[6] E. Hrushovski and B. Zilber, Zariski geometries, Bull. Amer. Math. Soc. 28 (1993),

315–323.



192 A. Pillay

[7] E. Hrushovski and B. Zilber, Zariski geometries, J. Amer. Math. Soc. 9 (1996),
1–56.

[8] P. Kowalski and A. Pillay, Subvarieties of commutative meromorphic groups,
preprint, 2001.

[9] R. Moosa, Saturated compact complex spaces, preprint, 2001.
[10] —, Contributions to the model theory of fields and compact complex spaces, Ph.D.

thesis, Univ. of Illinois, 2001.
[11] A. Pillay, Some model theory of compact complex spaces, in: Hilbert’s 10th Problem,

Contemp. Math. 270, Amer. Math. Soc., 2000, 323–338.
[12] A. Pillay, Geometric Stability Theory , Oxford Univ. Press, 1996.
[13] A. Pillay and T. Scanlon, Meromorphic groups, preprint, 2000.
[14] A. Pillay and M. Ziegler, Jet spaces of varieties over differential and difference fields

I , preprint, 2001.
[15] K. Ueno, Classification Theory of Algebraic Varieties and Compact Complex Spaces,

Lecture Notes in Math. 439, Springer, 1975.

Department of Mathematics Institut für Mathematik
University of Illinois at Urbana-Champaign Humboldt Universität
Altgeld Hall D-10099 Berlin, Germany
1409 W. Green St.
Urbana, IL 61801, U.S.A.
E-mail: pillay@math.uiuc.edu

Received 15 November 2001;
in revised form 19 March 2002


