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Abstract. An escape time Sierpiński map is a rational map drawn from the Mc-
Mullen family z 7→ zn +λ/zn with escaping critical orbits and Julia set homeomorphic to
the Sierpiński curve continuum.

We address the problem of characterizing postcritically finite escape time Sierpiński
maps in a combinatorial way. To accomplish this, we define a combinatorial model given
by a planar tree whose vertices come with a pair of combinatorial data that encodes
the dynamics of critical orbits. We show that each escape time Sierpiński map realizes
a subgraph of the combinatorial tree and the combinatorial information is a complete
conjugacy invariant.

1. Introduction. In this paper we consider the McMullen family of
rational maps

Fλ(z) = zn + λ/zn

with λ ∈ C \ {0} and n ≥ 2. These maps were first considered by McMullen
[10] and have been extensively studied by Devaney and coauthors (see for
example [5], [3] and the references therein), and more recently by Roesch
[13], Steinmetz [14], Qiu et al. [12], among others.

Due to the symmetries exhibited by these maps (and discussed in more
detail in the following section), these maps have essentially a single free
critical orbit. Indeed, a straightforward computation shows the existence
of 2n finite, nonzero critical points given by the roots λ1/2n and only two
critical values given by 2λ1/2. The orbits of the critical values may collide
into a single orbit or behave symmetrically since Fλ(−z) = (−1)nFλ(z).

The point at infinity is a superattracting fixed point for any n and any λ.
When critical orbits are trapped by its basin, the Escape Trichotomy Theo-
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rem completely determines the topology of the Julia set [7]. In particular, if
the critical values take more than one iteration to enter the immediate basin
of infinity, then the Julia set is homeomorphic to the Sierpiński curve con-
tinuum. That is, it is a locally connected plane continuum whose boundary
components are Jordan curves that are pairwise disjoint [15].

If λ is a parameter for which the critical values of Fλ take τ ≥ 2 iterations
to enter for the first time the immediate basin of infinity, we say that λ
is an escape time Sierpiński parameter (or ETS parameter) and call τ its
escape time. According to [8] and [13], there are (n − 1)(2n)τ−2 hyperbolic
components of ETS parameters in the parameter space. Each component
(called a Sierpiński domain) contains a single parameter λ (known as the
center of the hyperbolic component) that satisfies the equation F τλ (c) = 0,

for c any root of λ1/2n. See Figure 1 for several examples of parameter spaces
when n = 2, 3, 4 and 5.

An interesting problem is to determine when two Sierpiński parameters
belong to the same (topological) conjugacy class when their maps are re-
stricted to their Julia sets. It is known that maps within the same hyperbolic
domain are quasiconformally conjugate [10], and that τ itself is a conjugacy
invariant [8]. So the question reduces to know when two parameter values
drawn from distinct Sierpiński domains belong to the same conjugacy class.
The Escape Time Conjugacy Theorem (also found in [8]) provides an al-
gebraic relation among those parameters in the same conjugacy class. We
summarize it in the following result.

Theorem 1.1. For a fixed n ≥ 2, let λ and µ be the centers of two
distinct Sierpiński domains with the same escape time τ ≥ 2. Then Fλ and
Fµ are topologically conjugate on their Julia sets if and only if the parameters
satisfy

(1.1) λ = β2jµ or λ = β2jµ̄,

for β an (n− 1)th primitive root of unity and some integer j. Moreover, if
λ and µ are ETS maps drawn from distinct Sierpiński domains of the same
escape time, then Fλ and Fµ are topologically conjugate on their Julia sets
if and only if the centers of those domains satisfy (1.1).

As a consequence of the Escape Time Conjugacy Theorem, the authors
derived a precise count of the number of conjugacy classes, given by

(2n)τ−2 if n is odd,(1.2)

(2n)τ−2

2
+ 2τ−3 if n is even.(1.3)

In this paper we construct a combinatorial model for ETS maps con-
sisting of a planar tree with combinatorial information on its vertices, and
show that for each center of a Sierpiński domain, its associated map realizes
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(a) Parameter space of z 7→ z2 + λ/z2 (b) Parameter space of z 7→ z3 + λ/z3

(c) Parameter space of z 7→ z4 + λ/z4 (d) Parameter space of z 7→ z5 + λ/z5

Fig. 1. Parameters in hues of grey are associated to escaping critical orbits. With the
exception of the central bounded domain in (b), (c) and (d), the rest of the bounded
regions correspond to Sierpiński domains.

a minimal tree in the dynamical plane which is homeomorphic to a subtree
of the combinatorial model. Each vertex in the combinatorial model comes
with a pair of combinatorial data that encodes the dynamics of critical or-
bits. We also show that this information is a full combinatorial invariant
for ETS maps, thus giving us a combinatorial version of the Escape Time
Conjugacy Theorem and an alternative way to count conjugacy classes. Our
work is mostly done for postcritically finite ETS maps, although the results
extend to ETS parameters in general.

1.1. Statements of the results. In order to state our main results,
let us introduce a few definitions and notation. A k-tree is a planar tree,
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Tk = (Vk, Ek), that exhibits 2n rotational symmetry and comes equipped
with a coloring map, c : Vk → AKS, where AKS denotes a set of finite
words in 4n symbols. The description of AKS and the realization of a k-
tree as a geometric object are presented in §3.4 and §4. Similarly, we denote
by Tk = (Vk,Ek) a planar tree in the dynamical plane of a postcritically
finite ETS map. Its set of vertices are the points in the backward orbit of
the origin up to the (k − 1)-preimage, while its set of edges is given by the
arcs of extended rays (defined in §3.3). To each point z in the backward
orbit of the origin we can associate a kneading sequence, κ(z), which is a
finite word in the set AKS (see §3.4). Denote by z0k a vertex in Tk with
kneading sequence 0k, a word of k zeros, and for 0 < α < 1/4, the number
1 + α+ · · ·+ αk−1 denotes a vertex in Tk.

Theorem 1 (Dynamical k-tree). For each positive integer k ≤ τ −1 for
which Tk−1 is a (k − 1)-tree and critical values do not lie in it, we have:

(1) The set

Tk := T0 ∪ F−1λ (Tk−1)

is a connected planar tree whose set of vertices

Vk :=

k+1⋃
j=0

F−jλ (0)

has cardinality ((2n)k+2 − 1)/(2n− 1) and V∗k = Vk − {0} is colored
by the kneading sequences of its elements.

(2) There exists a homeomorphism of rooted trees

ϕk : (Tk, z0k)→ (Tk, 1 + α+ · · ·+ αk−1)

that preserves the rotational ordering of edges and sends Vk to Vk in
such a way that ϕk(z0k) = 1 + · · ·+ αk−1.

Moreover, ϕk can be chosen to be compatible with the colorings, so for each
vertex v ∈ V∗k, c ◦ ϕk(v) = κ(v).

Denote by Tλ the smallest dynamical tree whose set of vertices contains
the critical values of Fλ. Let ϕλ denote the homeomorphism of rooted trees
from Tλ to the combinatorial model Tτ−2 (or to a subgraph of the tree,
see Proposition 5.6). We write vλ for a preferred critical value which is
determined by a basic configuration of critical values and fixed points of Fλ
as described in §3.1. Moreover let

κλ = κ(vλ) ∈ AKS
denote the kneading sequence of that critical value and

δλ = δ1 . . . δt ∈ AKS



A combinatorial invariant 103

denote the direction of the vertex ϕλ(vλ) along Tτ−2 (δλ essentially identifies
the position of vλ in a rooted k-tree, see Definition 4.4). The pair (κλ, δλ) is
the combinatorial information of the map Fλ.

Our main result is the following.

Theorem 2 (Realization Theorem). Fix any n ≥ 2 and k ≥ 0. Let Tk
denote the k-tree with 2n rotational symmetry and color map c. For any
given vertex z ∈ Vk − {0}, let c(z) and δ(z) denote its color and direction.
Then (c(z), δ(z)) is realized as the combinatorial information (with respect
to the basic configuration) of a postcritically finite ETS map of degree 2n if
and only if δ1 = bn/2c.

As a consequence of the Realization Theorem, we provide a combinatorial
version of Theorem 1.1.

Theorem 3 (Conjugacy invariant). Let Fλ and Fµ be two postcritically
finite ETS maps of same degree n ≥ 2. Then the maps are topologically con-
jugate on their Julia sets if and only if the maps have the same combinatorial
information, that is, δλ = δµ (and thus κλ = κµ).

In Corollary 6.6 we provide an alternative derivation of formulas (1.2)
and (1.3) by counting all those vertices in the combinatorial model that can
be realized by ETS maps.

The presentation of this paper is the following: we review some essential
properties of the McMullen family in §2, then we describe in §3 a partition of
parameter and dynamical spaces that allow us to define kneading sequences
of critical orbits. We also discuss the basic configuration of critical values
and fixed points that define a marking within the 2n degree families. §4
explains the construction of the combinatorial model, while §5 shows how
to construct dynamical k-trees and provides the proof of Theorem 1. The
proofs of Theorems 2 and 3 are given in §6, while §7 contains some final
remarks and open questions.

2. Preliminaries. The proofs of most of the results presented here can
be found in [3], which is itself a good reference and a starting point in the
study of the dynamics and topology of the McMullen family.

Each map Fλ(z) = zn+λ/zn has a critical point of order n−1 at z =∞.
There exist 2n distinct, finite, nonzero and simple critical points given by the
2nth roots of λ. As the fate of their orbits is determined by the parameter,
we call them free critical points. For ξ ∈ R/Z, let arg(λ) = 2πξ and ω be
the primitive 2nth root of unity with the smallest positive argument. Then
for each j = 0, 1, . . . , 2n− 1,

cj = |λ|1/2n exp(iπξ/n)ωj
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is a free critical point. These points map alternately to two distinct critical
values, namely

Fλ(cj) = (−1)j2|λ|1/2 exp(iπξ/n).

Denote by v+ and v− the critical values Fλ(cj) when j is even and odd,
respectively. Observe that v− = −v+ and since Fλ(v−) = (−1)nFλ(v+), we
say Fλ is essentially a unicritical rational map as the 2n free critical orbits
merge into a single orbit or become two symmetrically behaving orbits,
depending on the parity of n.

Fλ exhibits several symmetries: 2n-fold symmetry that for all j,

Fλ(ωjz) = ωjnFλ(z),

and the involution symmetries. That is, if Iλ(z) denotes one of the n branches
of z 7→ λ1/nz−1, then Fλ(Iλ(z)) = Fλ(z) for all z. Depending on the branch
selected, each involution fixes a line containing two free critical points and
reflects the plane through the critical circle

Cλ = {z | |z| = |λ|1/2n}.
The point at infinity is also a superattracting fixed point; denote by

Bλ = Bλ(∞) its immediate basin. The origin is a pole of order n and
there exist 2n prepoles lying on the critical circle Cλ and given by the roots
(−λ)1/2n. Denote by w0 the prepole whose principal argument is the small-
est in absolute value. Then, label the rest of the prepoles in increasing order
while traversing Cλ in a positive (counterclockwise) direction.

If the free critical points do not lie in Bλ, it is known that F−1λ (Bλ)
consists of two simply connected components, namelyBλ itself and Tλ, which
contains the pole at the origin and maps n-to-1 onto Bλ. If the critical orbits
eventually escape, they must enter Tλ before mapping into Bλ, thus Tλ is
commonly known as the trap door of the basin of attraction.

Let us concentrate on escaping free critical orbits.

Theorem 2.1 (Escape Trichotomy Theorem [7]). Suppose the orbits of
the free critical points of Fλ tend to infinity.

(1) If one of the critical values lies in Bλ, then Jλ is a Cantor set and
Fλ|Jλ is a one-sided shift on 2n symbols. Otherwise Jλ is connected
and the preimage Tλ is disjoint from Bλ.

(2) If one of the critical values lies in Tλ, then Jλ is a Cantor set of
simple closed curves (quasicircles).

(3) If one of the critical values lies in a preimage of Tλ, then Jλ is a
Sierpiński curve.

Definition 2.2. A parameter value satisfying the last condition in the
Escape Trichotomy Theorem will be called an escape time Sierpiński param-
eter, or succinctly, an ETS parameter. Analogously we say Fλ is an ETS
map.
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As was mentioned in the introduction, the integer τ stands for the escape
time of the free critical orbits, more precisely, τ represents the number of
iterations required for the critical points to enter Bλ for the first time. The
escape time is an open condition that defines simply connected (Sierpiński)
domains in the parameter space. Each domain has a unique center, that is,
a parameter value that is a simple zero of the equation F τλ (c) = 0 for c any

root λ1/2n. In terms of the critical values, this equation becomes

F τ−1λ (v) = 0 for v = v+, v−.

For each τ ≥ 0 define the set

Hτ = {λ ∈ C | F τλ (v) ∈ Bλ where v is either v+ or v−}.
When τ ≥ 2, Hτ consists of (n− 1)(2n)τ−2 Sierpiński domains [8]. The set
H0 represents the Cantor locus of the family, that is, the set of parameter
values satisfying the first condition in the Escape Trichotomy Theorem. If
n ≥ 3, the set H1 consists of a single simply connected component known
as the McMullen domain [7]. When n = 2, it follows from the Grötzsch
inequality that H1 is empty [10].

If λ belongs to the connectedness locus of the family of rational maps
of degree 2n, then standard techniques in holomorphic dynamics show that
Bλ is a simply connected domain whose Böttcher uniformization

ϕλ : Bλ → Ĉ \ D
conjugates the action of Fλ|Bλ with z 7→ zn in Ĉ \ D. Observe that ϕλ is
unique up to multiplication by a (n − 1)th root of unity. Giving an angle
θ ∈ R/Z, the external ray of angle θ is defined as the set

Rθ(t) = ϕ−1λ (t exp(i2πθ)), t > 1.

If the limit of Rθ(t) exists as t decreases to 1 and equals p, we say the
ray lands at p. If θ is a rational angle, standard arguments in the theory
of external rays can be applied to show Rθ(t) lands at a point in ∂Bλ.
Moreover, if θ is periodic under θ 7→ nθ mod 1, then p is a periodic point
for Fλ (see, for example, [11]).

Finally, when λ is an ETS parameter, the Fatou set coincides with the
basin of the point at infinity and the Julia set, denoted by Jλ, is given by

Jλ = Ĉ−
⋃
j≥0

F jλ(Bλ).

3. Partitions and kneading sequences. Our aim in this section is to
describe a partition of the Riemann sphere through pullbacks of a forward
Fλ-invariant curve containing a Cantor set of points in the Julia set. This
partition will generate a suitable labeling of Fatou components, so (free)
critical orbits can be combinatorially described by kneading sequences.
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3.1. Partitions and markings. We begin by defining a partition of
the parameter space into n−1 rotationally symmetric open sectors given by

(3.1) Sj =

{
λ ∈ C

∣∣∣∣ j

n− 1
<

arg(λ)

2π
<
j + 1

n− 1

}
,

with j = 0, 1, . . . , n−2 and 0 ≤ arg(λ) < 2π. Denote the left- and right-hand
boundaries of Sj by ∂−Sj and ∂+Sj respectively.

Let k0 ≥ 1 be equal to the integer bn/2c. Observe that the negative
real line has nonempty intersection with Sk0−1 (whenever n is even) or
∂−Sk0−1 = R− (if n odd). Moreover, ∂−S0 = R+, regardless of the par-
ity of n.

Lemma 3.1. For n ≥ 2 and any 0 ≤ j ≤ n − 2, no ETS parameter lies
in the boundary of Sj.

Proof. By rotational symmetry it suffices to show that no ETS param-
eter lies in R+. If λ > 0 then c0 ∈ R+ and Fλ|R+ is a unicritical map that
leaves invariant the positive real line. In particular, Fλ maps (0,+∞) onto
[v+,+∞). Thus, for any λ ∈ R+ and τ ≥ 2, the equation F τ−1λ (v+) = 0 has
no solution, implying that λ cannot be an ETS parameter.

Now we define a static partition of the dynamical plane for any λ ∈
Sj \H0 and any j. This partition will be modified in Section 5 to adjust it
to the dynamics of Fλ. For each free critical point ck, its critical ray is given
by ηk(t) = tck, with t ≥ 0. Similarly, denote by `±(t) = tv± with t ≥ 1 the
critical value rays. As is customary, we let ηk and `± denote the curves they
parametrize.

The critical rays divide the dynamical plane into 2n rotationally sym-
metric open sectors

(3.2) Sk =

{
z ∈ C

∣∣∣∣ ξ + k − 1

2n
<

arg(z)

2π
<
ξ + k

2n

}
for k = 0, . . . , 2n− 1, where 0 ≤ arg(z) < 2π.

Since Jλ is connected, by the conjugacy of Fλ with z 7→ zn in Bλ and the
landing of external rays with rational angles, there exist n− 1 fixed points
in ∂Bλ that correspond to the landing points of Rθk(t) for the angles θk =
k/(n−1), k = 1, . . . , n−1, which in turn are fixed by θ 7→ nθ mod 1. Denote
by p0 the fixed point whose principal argument is the smallest in absolute
value. Then, label the rest of the fixed points in increasing order by following
the cyclic order of external rays. Observe p0 ∈ R+ if and only if λ ∈ R−.

The location of critical values and fixed points in ∂Bλ with respect to the
partition Sk is relevant for our construction. On one hand, each of them lies
in its own sector, thus defining a configuration of these points with respect
to the partition (Lemma 3.2). On the other hand, each pk gives rise to an
invariant Cantor set in the Julia set [5]. When n = 2, 3 there exists a single
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invariant Cantor set, but when n ≥ 4, we need to make a choice of the fixed
point (and thus, the Cantor set) to be used in the partition (Lemma 3.4).
Each lemma is followed by an example that computes the configuration
(Example 3.3) and the choice of a fixed point in Sj (Example 3.6).

Lemma 3.2 (Location of critical values and fixed points). Let λ ∈ C∗
and n ≥ 2.

(1) If λ /∈ R+, the critical values lie each in sectors Si and Si+n for some
0 < i < n.

(2) λ ∈ Sk if and only if i = k + 1. The sectors S+ := Sk+1 and S− :=
Sk+1+n are called the critical value sectors for Sk.

(3) p0 ∈ S0 for all λ /∈ R+. And for each λ ∈ Sk, each fixed point in ∂Bλ
lies in a sector Sj where j satisfies one of the following conditions:

• j is even and either 0 < j < k + 1 or k + 1 + n < j < 2n− 1.
• j is odd and k + 1 < j < k + 1 + n.

(4) A sector that contains a fixed point in ∂Bλ contains only one of them
and it is disjoint from the critical value sectors.

Proof. Due to the symmetries of the critical values, it is sufficient to
work with one of them. Assume first λ /∈ R+. Working out the inequalities
in (3.2), v+ lies in S0 if and only if

ζ + 2n− 1

2n
<
ζ

2
<

ζ

2n
.

This inequality is equivalent to ζ − 1 < nζ < ζ, and this holds if and only if
ζ = 0, so the first claim follows.

Similarly, from (3.1), λ ∈ Sk if and only if

k + ζ

2n
<
ζ

2
<
k + 1 + ζ

2n
,

that is, v+ ∈ Sk+1. From rotational symmetry, v− lies in Sk+1+n and the
second assertion follows.

To see the third, let λ /∈ R+ and observe that Fλ maps each sector Sj
onto C−`±. By (1), there exist two sectors that contain a critical value each
and fail to completely cover themselves under Fλ. Hence, we discard these
sectors in our analysis below and work with the 2n− 2 remaining sectors.

The critical circle Cλ subdivides each Sj into two domains, one bounded
and one unbounded; denote the unbounded domain by Suj . We want to
show that exactly n − 1 unbounded domains contain a fixed point located
in ∂Bλ. To do so, notice that Fλ(Cλ) is a straight line segment connecting
the critical points and passing through the origin, so the boundaries of each
Suk are mapped onto the straight ray `+ ∪ Fλ(Cλ) ∪ `−. Let H− and H+

denote the open left and right half-planes defined by the complement of the
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ray. Then Fλ|Suj is a conformal homeomorphism mapping Suj onto either

H− or H+, depending on the parity of j (indeed, Su0 is mapped onto H+,
Su1 maps onto H− and so on).

Thus, if Sj is compactly contained in H+ and j is even, then Suj ⊂
Fλ(Suj ) = H+. If

Guj : H+ → Suj

denotes the inverse branch of Fλ taking values in Suj , its covering map G̃uj :
D → D is a strict contraction in the Poincaré metric. Thus Guj has an
attracting fixed point in Suj .

By reflection symmetry with respect to the critical circle, we deduce that
Suj ∩ ∂Bλ 6= ∅. And since Suj ∩ ∂Bλ covers itself, it must contain a repelling

fixed point for Fλ. In particular, for any λ /∈ R+, p0 ∈ Su0 .
Now let λ ∈ Sk. Then S+ = Sk−1 and S− = Sk+1+n by (2). Thus the

integers j for which Suj lies in H+ and cover themselves are those integers
that satisfy 0 < j < k+ 1 or k+ 1 +n < j < 2n− 1. The case when j is odd
follows similarly. By the conjugacy of Fλ with z 7→ zn in a neighborhood
of infinity, we deduce the existence of exactly n− 1 unbounded sectors that
cover themselves and give rise to n− 1 fixed points in ∂Bλ.

From the above analysis, none of the sectors containing a fixed point is
a critical value sector.

In the next lemma we show that the configuration of critical values and
fixed points with respect to the static partition is the same for each sector
Sj up to a rotation. The configuration defined for any λ ∈ Sk0−1 will be
called the basic configuration. Let us give an example first.

Example 3.3 (Basic configuration for z 7→ z7 + λ/z7). Let n = 7, so
k0 = 3. The basic configuration realized by any λ ∈ S2 is the following. From
Lemma 3.2(2) the critical values lie in Sj for j ∈ {3, 10}. And Lemma 3.2(3)
implies that the fixed points p0, . . . , p5 ∈ ∂Bλ lie each on Sj for some j ∈
{0, 2, 5, 7, 9, 12}. See Figure 2.

p0

p1
v+

p2

p3

p4
v−

p5

0

1

2
34

5

6

7

8

9
10 11

12

13

Fig. 2. For the family of maps z 7→ z7 + λ/z7, the basic configuration of fixed points and
critical values with respect to p0 (or p3) and with positive orientation
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Lemma 3.4. Let λ ∈ Sk. Then, whenever i is an integer so that

(3.3) i =

{
k + 1− k0 mod 2n and is even, or

k + 1 + n− k0 mod 2n and is odd,
or

(3.4) i =

{
k + 1 + k0 mod 2n and is odd, or

k + 1 + n+ k0 mod 2n and is even,

there exists a fixed point pλ ∈ Si that realizes the basic configuration by
setting S0 = Si and relabeling the sectors in a positive or negative orientation
if i is given by (3.3) or (3.4), respectively.

If n is even, pλ is unique and realizes the basic configuration with both
orientations. Otherwise, both pλ and −pλ realize the configuration with re-
spect to a single orientation.

Proof. First, note that k + 1 + k0 and k + 1 − k0 have the same parity
(the same holds for k+ 1 + n+ k0 and k+ 1 + n− k0). Thus at least one of
these four integers satisfies one of the above conditions. If i is one of these
values, Lemma 3.2(3) implies that Si is a fixed point sector.

By the rotational symmetries of the sectors, pλ ∈ Si and −pλ ∈ Si+n
realize the basic configuration, but −pλ is a fixed point only when n is
odd. Thus pλ is unique when n is even. Finally, one or both orientations
are realized depending on the parity of n. Indeed, without loss of generality,
assume the negative orientation is realized. Then the number of sectors away
from Si to the critical value sectors is either k and k+n, or k and k−n. So
when n is even, k and k ± n have the same parity, implying that Si lies the
same number of sectors away from the S± sectors, and thus the configuration
is realized also in the positive orientation. For n odd, k has different parity
from k± n so pλ (and thus −pλ) realize the configuration only with respect
to the negative orientation.

Thus, it does not matter which parameter sector λ lies in, as long as the
partition {Sk} is relabeled with respect to pλ as determined by the above
lemma.

Definition 3.5 (Markings). The marked fixed point in Sj is the point pλ
(or −pλ) that realizes the basic configuration with respect to the orientations
(or orientation) given in Lemma 3.4.

Example 3.6 (Marked fixed point for λ ∈ S0 and n = 7). Let λ ∈ S0.
With the initial labeling of sectors, Lemma 3.2(2)&(3) implies that S+ = S1,
S− = S8 and Sj is a fixed point sector for j ∈ {0, 3, 5, 7, 10, 12}. Since n is
odd, there are two marked fixed points that realize the basic configuration
with respect to the positive orientation, namely p2 ∈ S5 and p5 ∈ S12. If
we select pλ = p2, the sectors are relabeled in the positive orientation as
Sj := Sj+2 for j = 0, . . . , 13 with addition mod 14.
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Standing Assumption. From now on, we work solely with parameters
in Sk0−1. In this way,

• the marked fixed point is pλ = p0, which lies in S0,
• the sectors Sj are labeled as in (3.2) in the positive orientation, and
• the critical value sectors are Sk0 and Sk0+n.

3.2. Invariant Cantor sets. With the standing assumption in mind,
we describe the main ideas to construct the (marked) forward-invariant
Cantor set associated to Fλ. Fix n = 2k0 or n = 2k0 + 1 for some integer
0 < k0 < n and consider any parameter λ ∈ Sk0−1. By the previous lemmas,
the marked fixed point pλ = p0 lies in the interior of a sector S0, while Sk0
and Sk0+n are the critical value sectors S+ and S− respectively.

Select a Böttcher level curve C ⊂ Bλ and denote by Cb and Cu the com-
ponents in F−1λ (C) that lie in the bounded and unbounded complementary
components of C, respectively. We may choose C so that Cb and Cu cut each
critical ray in exactly one point. Let A denote the compact annular domain
bounded by Cb and Cu and define W0 = A ∩ S0 and Wn = A ∩ Sn. Clearly,
W0 and Wn are compact domains that map onto a closed, double-slit topo-
logical disk bounded by C with the slits corresponding to segments along `±.
Moreover W0 ∪Wn ⊂ Int(Fλ(Wi)) for each i = 0, n. Denote by Σ = {0, n}N
the space of infinite sequences endowed with the product topology and de-
note by σ : Σ → Σ the right-hand shift. Standard arguments, like those
given in Lemma 3.2, establish the following result (cf. [5]).

Lemma 3.7. For any n ≥ 2 and any λ ∈ Sj, there exists a forward
invariant Cantor set Γ ⊂ Int(W0 ∪Wn) and a homeomorphism hλ : Γ → Σ
that conjugates the action of Fλ|Γ with σ|Σ. In particular pλ ∈ Γ and the
homeomorphism can be chosen so that hλ(pλ) = 0̄.

We stress the marking of the Cantor set given above by writing Γλ.

3.3. Extended rays. Fix an ETS parameter λ ∈ Sk0−1 and select the

uniformization of the immediate basin of infinity ϕλ : Bλ → Ĉ \ D that is
tangent to the identity at infinity. Since every ETS map is hyperbolic, ϕλ
has a continuous extension to the boundary of Bλ. Furthermore, its Julia
set is locally connected, so for each θ ∈ R/Z the external ray Rθ(t) lands
at a single point in ∂Bλ. In particular, the external rays of angle θ = 0 and
θ = 1/2 land at pλ and −pλ respectively.

For j = 0, n, the inverse map Guj defined in Lemma 3.2 has an analytic
extension

Gj : C \ (`+ ∪ `−)→ Sj

taking values over noncritical sectors. For any finite string s1 . . . sr of el-
ements si ∈ {0, n}, denote by Gs1...sr the composition of inverse maps
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Gs1 ◦ · · · ◦ Gsn taking values in Ss1 . And since S0 and Sn are compactly
contained in C \ (`+ ∪ `−), for each r ≥ 1 the set

(3.5) Cs1...sr :=
⋃

i,j∈{0,n}
Gs1...sr−1i(Sj)

is a chain of 2r+1 topological closed disks in Ĉ with either pairwise empty
intersection or with trivial intersection at some points in the backward orbit
of z =∞. Observe that Cs1...sr ⊂ Cs1...sr−1 . Then the set C∞ =

⋂
r≥1Cs1...sr

is a continuum in Ĉ which is forward invariant under Fλ and contains ∞, 0,
and its backward orbit restricted to S0∪Sn. Moreover, the forward invariance
of C∞ implies that Γλ, R0 and Rn are all contained in C∞.

We claim that C∞ is a circle-like continuum. To see this, we use the
following characterization given in [2].

Theorem 3.8. A continuum X is a circle-like continuum if and only if
any open cover U of X with at most four elements has an open refinement
V = {V1, . . . , Vm} with Vi ∩ Vj 6= ∅ if and only if |i− j| ≤ 1 or i, j ∈ {1,m}.

Thus, if U is a given open cover of C∞, then for N > 0 sufficiently large,
the chain Cs1...sN is also covered by U . To construct an open refinement,
denote by D0 and Dn the open ε-neighborhoods of S0 and Sn, respectively.
The value ε is selected to be small enough so D0 ∩Dn 6= ∅ and D0 ∪Dn is
disjoint from `±. If V denotes the collection of pullbacks under Gs1...sN of D0

and Dn, then their properties guarantee that V is the sought-for refinement.
Thus, we have shown

Proposition 3.9. The set C∞ ⊂ Ĉ is a continuous image of a circle
that passes through the origin and the point at infinity.

The set C∞ is known as the extended ray of angle 0. A rather different
construction was given in [4], where extended rays for the maps z 7→ zn +
λ/zn were first introduced. For our purposes, we modify the definition of an
extended ray as follows.

Definition 3.10. The extended 0-ray, denoted byR0, is the set C∞∩S0,
where S0 contains the marked fixed point pλ. Analogously, the extended j-
ray, denoted by Rj , is ωjR0 for each j = 1, . . . , 2n − 1. Each extended ray
can be decomposed into two components, one bounded and one unbounded.
The set

Rbj = Rj ∩ Sbj
defines the bounded part of Rj .

3.4. Kneading sequences. For any ETS map, the critical values be-
long to the backward orbit of the origin, so we are interested in recording
their passing from a Fatou component to another before mapping into the
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trap door. We begin with those preimages of zero in R0 ∪ Rn. From the
previous discussion, observe the inverse maps G0 and Gn take values over
S0 and Sn, so for each m ≥ 1 and each choice of sj ∈ {0, n}, Gs1...sm(0) is
the unique point in F−mλ (0) that lies in C∞.

Definition 3.11. The kneading sequence of a point z ∈ F−mλ (0) is the

finite word s1 . . . sm, with sj ∈ {0, n}, if and only if F j−1λ (z) ∈ Ssj for each
j = 1, . . . ,m. In other words, z = Gs1...sm(0). We write κ(z) = s1 . . . sm to
denote the kneading sequence of z. For short, we also write zs1...sm .

To associate a kneading sequence to a preimage of zero in any given
extended k-ray, we observe that from the symmetries of the map, Fλ(Rk) =
Fλ(ωkR0) = ωknFλ(R0). Thus for u ∈ Rk such that Fmλ (u) = 0, there exists
a point z ∈ R0 so that u = ωkz. Then, if κ(z) = 0s2 . . . sm, the kneading
sequence of u is

(3.6) κ(u) =

{
k(s2 + kn)s3 . . . sm if n is even,

k(s2 + kn) . . . (sm + kn) if n is odd,

with addition mod 2n and k ∈ A := {0, 1, . . . , 2n− 1}.
Finally, to associate a kneading sequence to preimages of the origin not in⋃2n−1

k=0 Rk, observe that the complement of this union consists of 2n rotation-
ally symmetric open sectors, each containing a free critical point. To avoid
introducing a new set of 2n symbols, we use again the set A and underline
its elements whenever the iterates of z belong to a sector in Ĉ \⋃2n−1

k=0 Rk.
For k ∈ A, let Ek be the extended ray sector containing the critical point
ck and whose boundaries are Rk and Rk+1. With this convention, for any
point z ∈ Ek such that FNλ (z) = 0 for some N ≥ 2, its kneading sequence is
written as

κ(z) = a1 . . . arks2 . . . sm,

where N = m + r, r ≥ 1, m ≥ 1 (if m = 1 then s1 = k), ai, k ∈ A and
sj ∈ {0, n}, so that F iλ(z) ∈ Eai for i = 0, . . . , r and the point F r+1

λ (z) ∈ Rk
has kneading sequence ks2 . . . sm.

3.5. Admissible rules. Observe that not every word of the form

a1 . . . arks2 . . . sm

with aj , k ∈ A and sj ∈ {0, n} is realized by a rational map Fλ. For example,
the word 00 is not admissible since the 2n preimages of the prepole w0 ∈ R0

lie on
⋃2n−1
k=0 Rk, while E0 is a connected component in Ĉ \⋃2n−1

k=0 Rk.
We use the notation a 7→ b to denote an admissible rule, so the word ab is

realized by the dynamics of Fλ. A straightforward analysis of the dynamics
of extended rays (and thus of sectors Ea, a ∈ A) gives the following rules:
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(1) 0 7→ n and n 7→ 0.
(2) For any k ∈ A, k 7→ 0 and k 7→ n.
(3) Let a, k ∈ A. Then a 7→ k if and only if

(a) a = 2j and k = 1, . . . , n− 1.
(b) a = 2j + 1 and k = n+ 1, . . . , 2n− 1.

(4) Let a, b ∈ A . Then a 7→ b if and only if

(a) a = 2j and b = 0, 1, . . . , n− 1.
(b) a = 2j + 1 and b = n, . . . , 2n− 1.

The set of all admissible words a1 . . . arks2 . . . sm under the rules de-
scribed above is denoted by the mnemonic AKS.

Remark 3.12. Combining Lemma 3.2 and the injectivity of the rotation
z 7→ ωkz, we easily deduce the existence of a unique point in F−mλ (0) ∩ Rk
that realizes ks2 . . . sm as a kneading sequence, and vice versa. In contrast,
as each sector Eaj contains a free critical point, it must map into a simply

connected component of C \ C∞ in a two-to-one fashion. Thus, a sequence
a1 . . . arks1 . . . sm is associated to 2r points lying in FNλ (0)∩Ea1 . In Figure 3
we display the Fatou components associated to 001 and 01 along the Julia
set of a degree four ETS map.

Tλ

c0

1

0

01

01

001

001

001

001

R1

R0

E0

Fig. 3. For Fλ(z) = z2 + λ/z2 and a choice of λ ∈ H3 (so that F 3
λ(±v) ∈ Bλ), we

display the critical point c0, the trap door Tλ and several Fatou components labeled by
the kneading sequence of preimages of the origin. Lines indicate the extended rays R0 and
R1 cutting through the Julia and Fatou sets and joined at the origin. E0 is bounded by
the extended rays.
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In the following section we introduce the concept of a k-tree, a topological
model that will allow us to identify in a combinatorial way each preimage
of the origin with the same kneading sequence.

4. The model. In this section we construct for each n ≥ 2 a family of
2n-rotationally symmetrical trees whose vertices are labeled by finite words
in 4n symbols. We also provide each vertex with a direction which determines
uniquely its position along the branches of the tree.

4.1. k-Trees. Fix n ≥ 2. For each k ≥ 0 we define in a recursive way
a planar graph Tk = (Vk, Ek) as follows. Let L := [0, 1] ⊂ C and recall
ω = exp(2πi/2n). Then the 0-tree is defined as the set

T0 :=

2n−1⋃
j=0

ωjL.

T0 is a graph in the complex plane with V0 = {0, 1, ω, . . . , ω2n−1} as its set
of vertices and E0 = {ej = ωjL | 0 ≤ j ≤ 2n − 1} its set of edges. Clearly,
|V0| = 2n+ 1, |E0| = 2n, the origin is its unique vertex of degree 2n (we call
it a junction point of the tree), while the rest of the vertices have degree 1
(we call them simple vertices).

Let k ≥ 1 and denote by αT the contraction of a set T by a constant
factor α, with 0 < α < 1/4. Recursively, the k-tree is the plane graph given
by

Tk := T0 ∪
2n−1⋃
j=0

(αTk−1 + ωj),

where αTk−1 + ωj denotes the algebraic sum (as sets in C) of αTk−1 and
the set {ωj}. Each αTk−1 + ωj is called jth branch of the k-tree and it is

denoted by tjk. The factor α can be taken sufficiently small so the added
copies αTk−1 do not intersect each other. Consequently, a simple vertex in
αTk−1 may remain simple or become a vertex of degree 2 in Tk. We call a
vertex of degree 2 double.

If the contraction factor is sufficiently small, we can guarantee that for
each j = 0, . . . , 2n− 1, tjk lies inside the sector

2j − 1

4n
<

arg(z)

2π
<

2j + 1

4n
.

See Figure 4.

The set Vk can be written as the union of the subsets Ξk, ∆k and Σk
consisting of the junction, double and simple vertices in Tk. The following
relations among the cardinalities of these sets can be derived by counting
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Fig. 4. The 0-, 1- and 2-trees for n = 2

the number of simple and double vertices generated from Tk−1 to Tk:

|Σk| = (2n− 1)|Σk−1|+ (2n− 1)|∆k−1|,
|∆k| = |Σk−1|+ |∆k−1|,
|Ξk| = |Ξk−1|+ |Σk−1|+ |∆k−1|.

Since the cardinality of Vk is the sum of the cardinalities of Ξk, ∆k and
Σk, it follows from the above equations that

(4.1) |Vk| = |Vk−1|+ 2n(|Σk−1|+ |∆k−1|).
Solving the recursive equation by using |V0| = 2n, |Ξ0| = 1, |∆0| = 0 and
|Σ0| = 2n, we obtain

(4.2) |Vk| =
k+1∑
m=0

(2n)m.

Moreover, |Ξk| =
∑k

m=0(2n)m and the total number of simple and double
vertices in Tk is

(4.3) |Σk|+ |∆k| = (2n)k+1.

4.2. Coloring vertices of k-trees. Let n ≥ 2 be fixed. For each k-tree,
we color (or label) the set of vertices V ∗k := Vk − {(0, 0)} by finite words
taken from the set of admissible words AKS and describe the coloring map
c : V ∗k → AKS in a recursive fashion. Since the coloring of a k-tree will
depend on the parity of n, the description of c will be subdivided into two
cases. We remark that the vertex at the origin is not labeled.

Starting with the 0-tree, color the vertices of V ∗0 = {ωk}k∈A by the rule

(4.4) c(ωk) := k

for k = 0, 1, . . . , 2n− 1. To color vertices in T1, consider first the vertices in
the 0-branch t01 = αT0 + 1 given by Vert(t01) = {αωk + 1 | k ∈ A} ∪ {1}. If
v = αωk + 1 then

(4.5) c(v) :=


0k if k ∈ {0, n},
0k if 1 ≤ k ≤ n− 1,

2n− 1k if n+ 1 ≤ k ≤ 2n− 1.
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The coloring of the remaining vertices in V1 − V0 is given by the following
relation. For any v ∈ V1−V0, there exists and integer m ≥ 0 for which ω−mv
is a colored vertex in Vert(t01). If c(ω−mv) = t0t1 ∈ AKS, then

(4.6) c(v) = (t0 +m)(t1 +mn)

with addition mod 2n.
The coloring of a k-tree can now be defined in a recursive way. First,

begin with a vertex v ∈ Vk − Vk−1 in the 0-branch t0k = αTk−1 + 1. Then
there exists u ∈ Vk−1−Vk−2 so that v = αu+1. If c(u) = t0t1 . . . tk−1 (which
has been defined in the previous step) the coloring of v is given by

(4.7) c(v) :=



0t0t1 . . . tk−1 if t0 = 0, n,

0t0t1 . . . tk−1 if 1 ≤ t0 ≤ n− 1

or 1 ≤ t0 ≤ n− 1,

2n− 1t0t1 . . . tk−1 if n+ 1 ≤ t0 ≤ 2n− 1

or n+ 1 ≤ t0 ≤ 2n− 1.

In this way, all vertices in the branch t0k are done. To color the remaining

vertices in Vk − Vk−1, observe that for each vertex v in the branch tjk =
αTk−1+ωj , the vertex ω−jv is in t0k and has a well defined color. If c(ω−jv) =
st0 . . . tk−1, then for n even, let

(4.8) c(v) := (s+ j)(t0 + jn)t1 . . . tk−1,

and for n odd, set

(4.9) c(v) := (s+ j)(t0 + jn)(t1 + jn) . . . (tk−1 + jn),

with addition mod 2n. Compare this definition with the one of kneading
sequences given in (3.6).

Example 4.1. Let us derive the coloring map for the 1-tree when n = 2.
In this case, ω = exp(πi/2) and the set of symbols is A = {0, 1, 2, 3}. The
vertices in V ∗0 are given by 1, i,−1 and −i and by (4.4), their colorings are

c(1) = 0, c(i) = 1, c(−1) = 2, c(−i) = 3.

In order to assign colors to vertices in T1, we start by coloring the vertices
in the 0-branch t01 = αT0 + 1. Its set of vertices is

Vert(t01) = {1} ∪ {αωk + 1}k∈A = {1, 1 + α, 1 + iα, 1− α, 1− iα},
we know c(1) = 0, so by (4.5) the remaining colorings are

c(1 + α) = 00, c(1 + iα) = 01, c(1− α) = 02, c(1− iα) = 33.

The remaining vertices in V1 − V0 are now derived from the formula in
(4.6). For example, the vertices in the 2-branch t21 = αT0 + i are obtained
by multiplying each αωk + 1, k ∈ A, by ωm = i, that is, m = 1. Thus, we
obtain

i(1 + α), −α+ i, i(1− α), α+ i,
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and their colorings are

c(i(1 + α)) = 12, c(−α+ i) = 13, c(i(1− α)) = 10, c(α+ i) = 01.

The colorings for the 2-tree when n = 2 are presented in Figure 5.
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Fig. 5. The 2-tree and coloring of its vertices for n = 2

4.3. Paths and directions. Given a color a1 . . . arks2 . . . sm ∈ AKS of
length r+m ≥ 1, its class consists of all those vertices in TN , N ≥ r+m−1,
that share the same color. We write va1...arks2...sm to denote a vertex in this
class. It is not difficult to see that for any N -tree, each color ks2 . . . sm has
a unique vertex in its class, while a1 . . . arks2 . . . sm has exactly 2r vertices.
In order to distinguish among vertices in the same class, we introduce the
notions of a path from the origin and its direction along a tree.

Definition 4.2. Consider an N -tree TN = (VN , EN ) and a vertex v in
the class of a1 . . . arks2 . . . sm with r + m − 1 ≤ N . A path from the origin
to the vertex v is a directed graph γ(0, v) = (Vγ , Eγ) for which the set of
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vertices, Vγ ⊂ VN , always contains the origin and v. Moreover, the set of
edges Eγ , given by the collection of edges {e1, . . . , et} ⊂ EN satisfy:

(1) The first edge is given by e1 = (0, y1) with y1 ∈ V ∗j for some 0 ≤ j ≤
N .

(2) Given ei = (xi, yi), then xi = yi−1.
(3) If ei = (xi, yi) and xi ∈ Vj , then yi ∈ VN − Vj .
Example 4.3. Consider a path from the origin to the vertex v110 ∈ V2

that branches out of the vertex v10 in Figure 5. By the above definition, the
path γ(0, v110) has only two edges instead of three. Indeed, these edges are
e1 = (0, v10) and e2 = (v10, v110), so we have discarded the edge (0, v100).

Definition 4.4. Given n ≥ 2, a k-tree Tk and a path from the origin
γ(0, v) ⊂ Tk with t edges, the direction of v along Tk is a finite word δ =
δ1 . . . δt so that δi = j if and only if, by translating the vertex xi of ei =
(xi, yi) ∈ Eγ to the origin, the angle that ei makes with the positive real
line is πj/n, for j = 0, . . . , 2n− 1.

Example 4.5. Let n = 2 and consider the color 001. The tree T2 contains
22 vertices in the same class of this color. The four paths from the origin to
a vertex v001 are uniquely distinguished by the set of directions, namely

δ ∈ {001, 010, 10, 103}.
The direction of v110 given in the previous example is δ = 10.

5. Dynamical k-trees. As stated in Remark 3.12, a kneading sequence
a1 . . . arks2 . . . sm is associated to 2r preimages of the origin, and so this
combinatorial information is not enough to identify an ETS map Fλ unless
r = 0. In this section we derive further combinatorial information about
critical orbits. The key observation is that, if r > 0 and r+m ≤ τ − 1, then
the 2r preimages of the origin with kneading sequence a1 . . . arks2 . . . sm are
arranged as vertices of k-trees that arise from pullbacks of the extended
rays Rj .

Let Fλ be an ETS map with marked point pλ ∈ S0. From the construction
of extended rays given at the end of Section 3.2, we immediately see that
R0 − {0,∞} is contained in S0. From Definition 3.10, the set

T0 :=
2n−1⋃
j=0

Rbj

is a tree-like continuum with 2n+ 1 distinguished points or vertices: namely
the origin (which is a vertex of degree 2n) and 2n simple vertices at the
prepoles. Denote by V0 = {0, w0, . . . , w2n−1} the set of vertices and define
V∗0 = V0 − {0}. Also denote by E0 = {e0, . . . , e2n−1} the set of edges of T0

where ej = Rbj . It is not hard to see that T0 is topologically isomorphic (and
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thus homeomorphic) to a 0-tree. Most important, we can select such a hom-
eomorphism so that the kneading sequences of the prepoles coincide with
the coloring in T0. In that case, we say the homeomorphism is compatible
with the colorings.

Indeed, consider a homeomorphism ϕ : Rb0 → [0, 1] sending the origin to
the origin and w0 (the prepole that is the endpoint of Rb0) to 1. Defining
ϕ0(Rbj) := ωjϕ(Rb0) for each j = 0, . . . , 2n− 1, we obtain a homeomorphism
ϕ0 : T0 → T0 that preserves the rotational order of edges. Moreover, since
c ◦ ϕ0(w0) = c(1) = 0 and κ(w0) = 0, for each j = 1, . . . , 2n− 1 we have

c ◦ ϕ0(wj) = c ◦ (ωjϕ0(w0)) = c(ωj) = j = κ(wj).

We have shown

Lemma 5.1 (Dynamical 0-tree). There exists a homeomorphism of rooted
trees

ϕ0 : (T0, w0)→ (T0, 1)

that preserves the rotational ordering of edges and sends V0 to V0 in such a
way that ϕ0(w0) = 1. Moreover, ϕ0 can be chosen to be compatible with the
colorings, that is, for all j = 0, . . . , 2n− 1,

c ◦ ϕ0(wj) = κ(wj).

Next, we show how to extend the above homeomorphism to subdivisions
of 0-trees, that is, graphs with more vertices and only 2n branches that
run along the extended rays Rk. Let zks2...sm be the unique point in Rk
that is a preimage of the origin with kneading sequence ks2 . . . sm, where
k ∈ A = {0, . . . , 2n− 1}, sj ∈ {0, n}. Denote by 0m the word of m zeros.

For any given m ≥ 1, let [0, z0m ] denote the arc along R0 with endpoints
at the origin and z0m . Let

V0,m :=
( 2n−1⋃
k=0

ωk[0, z0m ]
)
∩
( m⋃
j=0

F−jλ (0)
)
,

and denote by E0,m the finite collection of all arcs e = (u, v) so that

(1) e ⊂ ωk[0, z0m ] for some k ∈ A, u, v ∈ V0,m, and
(2) if p ∈ e− {u, v} then p /∈ V0,m.

Lemma 5.2 (Subdivision of 0-trees). The set T0,m = (V0,m,E0,m) is a
planar tree homeomorphic to a subgraph of Tm given by

T0,m := Tm ∩
2n−1⋃
k=0

ωk[0,∞).

The homeomorphism ϕ0,m can be chosen to be compatible with the colorings,
that is, for all u ∈ V0,m, c ◦ ϕ0,m(u) = κ(u).
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Proof. From the definition of V0,m and E0,m it is enough to verify that
|V0,m| = |E0,m|+1 to conclude this is a planar tree. Observe that the number
of preimages of the origin lying on the arc [0, z0m ] is given by

1 +

m∑
j=0

2j = 2m+1,

since each j-preimage is surrounded by two (j + 1)-preimages for each 0 ≤
j ≤ m. Since they are 2m+1 vertices along the arc [0, z0m ], by (1) and (2)
above, there has to be exactly 2m+1− 1 subarcs between these points. From
rotational symmetry and after subtracting the extra 2n − 1 copies of the
origin, we obtain

|V0,m| = 2n · 2m+1 − (2n− 1) = 2n(2m+1 − 1) + 1 = |E0,m|+ 1.

To construct a homeomorphism of rooted trees of the form

ϕ0,m : (T0,m, z0m)→ (T0,m, 1 + · · ·+ αm−1),

it is enough to provide its definition along the arc [0, z0m ] and extend it
through the rotational symmetries. We proceed by induction on m ≥ 1.
If m = 1, ϕ0,1 = ϕ0. Now assume ϕ0,m−1 has been constructed. Let ϕ0,m

coincide with ϕ0,m−1 on V0,m−1 and define

ϕ0,m([z0m−1 , z0m ]) = [1 + · · ·+ αm−2, 1 + · · ·+ αm−1]

in the natural way. As a graph, T0,m contains a subdivision of T0,m−1, so for
each edge e = (u1, u2) ∈ E0,m−1 there exists a unique point p ∈ V0,m−V0,m−1
such that p lies in e.

It follows from (3.5) that the arc [0, z0m ] is covered by 2m topological
disks in C0s2...sm , each disk containing a single point in F−mλ (0) ∩ R0. In

particular, for the pair of vertices w1, w2 ∈ V0,m−1 given by wi = ϕ−10,m−1(ui),
there exists a unique q ∈ V0,m − V0,m−1, so we set ϕ0,m(q) = p. Clearly,
ϕ0,m|[0, z0m ] is compatible with the colorings and its extension to T0,m can
be achieved so as to respect the rotational ordering of the j-branches.

Regardless of the value of m ≥ 1, the sets T0,m and T0,m will be called
0-trees with the understanding that an extra index indicates a subdivision
at level m (that is, it contains vertices whose coloring has length m). Under
some technical considerations, we generalize Lemma 5.1 in order to construct
k-trees in the dynamical plane as follows.

Theorem 5.3 (Dynamical k-tree). For each positive integer k ≤ τ − 1
for which Tk−1 is a (k − 1)-tree and v+ /∈ Tk−1, we have:

(1) The set

(5.1) Tk := T0 ∪ F−1λ (Tk−1)

is a connected plane tree whose set of vertices
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(5.2) Vk :=

k+1⋃
j=0

F−jλ (0)

has cardinality ((2n)k+2 − 1)/(2n− 1) and V∗k = Vk − {0} is colored
by the kneading sequences of its elements.

(2) There exists a homeomorphism of rooted trees

(5.3) ϕk : (Tk, z0k)→ (Tk, 1 + α+ · · ·+ αk−1)

that preserves the rotational ordering of edges and sends Vk to Vk in
such a way that ϕk(z0k) = 1 + · · ·+ αk−1.

Moreover, ϕk can be chosen to be compatible with the colorings, so for each
vertex v ∈ V∗k, c ◦ ϕk(v) = κ(v).

To prove the first part, assume Tk−1 is a (k − 1)-tree and critical values
do not lie in it. That is, v+, v− do not belong to either Vk−1 or Ek−1. We
want to show first that

T0 ∪ F−1λ (Tk−1)
is a connected set that defines a planar tree. If the critical value rays `±
have nonempty intersection with Tk−1, we cannot guarantee that F−1λ (Tk−1)
consists of 2n connected components, as each inverse branch Gj has C \
(`+ ∪ `−) as its domain. This technical issue can be solved by redefining the
partition Sj as follows.

Let Pλ denote the postcritical set of Fλ, that is,

Pλ =
⋃
i>0

2n−1⋃
j=1

F iλ(cj).

By the Escape Trichotomy Theorem, for each n ≥ 2 and each postcritically
finite ETS parameter λ, 4 ≤ |Pλ| <∞. Clearly, Fλ : Ĉ−F−1λ (Pλ)→ Ĉ−Pλ
is an unramified covering map acting on hyperbolic domains, so each curve
in Ĉ− Pλ has 2n lifts.

Proposition 5.4 (Dynamical partition). Let 0 ≤ k ≤ τ − 1 be the
minimal integer for which Tk is a k-tree that does not contain critical values
and has nonempty intersection with `+. Then there exists a curve ˜̀

+ joining

v+ and z = ∞ and homotopic to `+ in Ĉ − Pλ. The lifts of ˜̀
+,−˜̀

+ define
a partition of the plane into rotationally symmetric open sectors S̃j so that

Tk − {0} ⊂
2n−1⋃
j=0

S̃j .

In particular, the inverse image of Tk with respect to the new partition con-
sists of 2n connected components, each one contained in a sector S̃j.
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Proof. Let S+ denote the critical value sector that contains v+ as defined
in Lemma 3.2. Since Tk has a tree-like structure and Pλ is finite, S+ −
(Tk∪Pλ) is an open and connected set, hence pathwise connected. Thus, we
can define a continuous curve ˜̀

+ joining v+ and infinity with the following
properties:

(a) off its endpoints, ˜̀
+ is homotopic to `+ in S+ − (Tk ∪ Pλ),

(b) ˜̀
+ = `+ in Bλ.

Let ˜̀− := −˜̀
+. The lifts of ˜̀

+ ∪ ˜̀− are 2n curves η̃j joining the origin
to the point at infinity and passing through a free critical point cj . Due to
the symmetries of Fλ, these new critical rays divide the plane into 2n open
sectors S̃j that remain rotationally symmetric.

Now, Tk − {0} lies in the union of the new sectors. For otherwise, if
there exists a point q ∈ Tk ∩ ∂S̃j for some j, then Fλ(q) ∈ Tk−1 ∪ R0 ∪ Rn
and at the same time, Fλ(q) ∈ ˜̀

+ ∪ ˜̀−. By hypothesis, Fλ(q) cannot lie in
Tk−1. Moreover, the 0- and n-extended rays are contained in the closure of
S0 ∪ Sn, while by properties (a) and (b), ˜̀

+ ⊂ S+. Lemma 3.2 implies that
Fλ(q) =∞ and thus the origin is the only point of intersection between Tk
and the closure of the new sectors S̃j .

Finally, the inverse branches of Fλ, denoted by G̃j , are now defined over

C− (˜̀
+∪ ˜̀−) and take values in S̃j . Clearly, Tk ⊂ C− (˜̀

+∪ ˜̀−) and for each

j = 0, . . . , 2n− 1, G̃j(Tk) is a connected set properly contained in S̃j .

The next result shows that for the dynamical sectors, those properties
described in Lemma 3.2 remain the same.

Corollary 5.5. If pλ lies in S0 then it lies in S̃0. In particular, for
each j, Rj−{0,∞} is contained in S̃j. If Sj is a fixed point sector, so is S̃j.

Moreover, λ ∈ Sk0−1 if and only if v+ ∈ S̃+ := S̃k0 and v− ∈ S̃− := S̃k0+n.

Proof. The first statement can be derived from (b) above. Indeed, this
property implies that S̃j coincides with Sj in Bλ, so in particular pλ and

Ru0−{∞} lies in S̃0. Moreover, any fixed point in Sj∩Bλ also lies in S̃j∩Bλ.

Now assume there exists a point q ∈ Rb0∩∂S̃0; then Fλ(q) must lie inR0∪Rn
and in ˜̀

+∪ ˜̀−. The same argument given in Proposition 5.4 shows that p = 0
and thus R0 − {0,∞} ⊂ S0. Rotational symmetries of the new sectors and
extended rays imply the general case.

To see the final statement, let S̃+ = S̃k0 and recall from Lemma 3.2(2)
that λ ∈ Sk0−1 if and only if S+ = Sk0 and S− = Sk0+n. It is enough to
show that v+ ∈ S+ ∩ S̃+.

Observe that ∂S+ is a simple closed curve in Ĉ that surrounds v+. By
property (a), the curves ˜̀

+ ∪ `+ and ˜̀− ∪ `− separate the plane into finitely
many domains. Since ˜̀

+ ∪ ˜̀− is homotopic to `+ ∪ `− rel Pλ, there exists
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a curve, β, that joins Fλ(v+) and the origin and is disjoint from all criti-
cal value curves. Since Rk0 lies in S̃+ ∩ S+, this intersection contains the
prepole wk0 , and hence the lift of β that joins wk0 to v+, as needed.

To avoid introducing more notation, we denote by Sj , `± and Gj the
(static or dynamical) partition, critical value rays and inverse branch of Fλ
that guarantees that, for k as in Proposition 5.4, Gj(Tk) is a connected set
completely contained in Sj for each j = 0, . . . , 2n− 1.

Returning to the proof of part (1) of Theorem 5.3, we can now assume
Tk−1∩`± = ∅. Thus each Gj(Tk−1) lies in a sector Sj . And since Gj is a strict
contraction, Gj(Tk−1) is a connected set homeomorphic to a (k − 1)-tree,
where 0 ∈ Tk−1 is sent to wj for each j = 0, . . . , 2n− 1. Thus, the set

Tk := T0 ∪ F−1λ (Tk−1)
is a connected plane graph. Moreover, its set of vertices, Vk, is given by the
origin and all its preimages up to order k+ 1. Thus, the cardinality of Vk is

k+1∑
j=0

(2n)j =
(2n)k+2 − 1

2n− 1
.

Since the origin and every one of its preimages up to order k is a junction
point (and thus contributes 2n edges), the cardinality of Ek is

2n
k∑
j=0

(2n)j = |Vk| − 1.

Hence, Tk is a planar tree. Finally, each point in V∗k has a well-defined
kneading sequence as described in Section 3.4.

To show the existence of a homeomorphism between the rooted trees Tk
and Tk that is compatible with colorings, consider the homeomorphism

ϕk−1 : (Tk−1, z0k−1
)→ (Tk−1, 1 + · · ·+ αk−2)

and proceed as in Lemma 5.2. By hypothesis, ϕk−1 has been chosen to
be compatible with the colorings in Vk−1. In particular, ϕk−1(0) = 0. Set
ϕk = ϕk−1 on Vk−1. The set Vk−Vk−1 consists of simple and double vertices
in Tk that share an edge with a simple or double vertex in Tk−1. Thus, we
define ϕk in a recursive way: there are 2n vertices in Vk − Vk−1 that share
an edge with z0k−1

∈ Vk−1. One of them is z0k , the root of Tk so we set

ϕk(z0k) = 1 + α + · · · + αk−1. Then, define ϕk at the remaining 2n − 1
vertices by assigning a vertex in Tk adjacent to 1 + · · · + αk−2 in positive
order.

To see that ϕk is compatible, observe that the 2n vertices we have consid-
ered before are simple vertices in G0k(T0). Label them in positive rotational
order as vj , j ∈ A, so that v0 = z0k . Hence, the kneading sequences of those
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points are

κ(vj) :=


0m−1j if j ∈ {0, n},
0m−1j if 1 ≤ j ≤ n− 1,

2n− 1m−1j if n+ 1 ≤ j ≤ 2n− 1,

which coincides with the coloring for Tm given in (4.5). Similarly, by using
the symmetries on both Tk and Tk, we can define ϕk at the vertices adjacent
to each ωjz0k for j = 1, . . . , 2n − 1, and so on. This concludes the proof of
the theorem.

Proposition 5.6 (Subdivision of dynamical k-trees). Assume 0 ≤ k <
τ − 1 is the smallest integer for which Tk contains for the first time both
critical values not as vertices, but as points along two of its edges. Then there
exists a subdivision of Tk, namely Tk,τ−1, that is homeomorphic (as rooted
trees) to a subtree of Tτ−1 in such a way critical values become vertices in
Tk,τ−1 with well defined directions.

The homeomorphism can be chosen so as to preserve the rotational or-
dering of edges at every junction point and to be compatible with colorings.

Proof. This is a consequence of Theorem 5.3 applied to the subdivision
tree T0,i, with i = τ − 1 − k. In more detail, first assume critical values lie
in T0 but not in V0. If κ(v+) is of the form ks2 . . . sm, then it lies along the
set
⋃2n
j=0Rj , so there exist subgraphs of the subdivision trees T0,m and T0,m

that are homeomorphic as rooted trees via ϕ0,m.

Now assume critical values do not lie in the extended rays Rj , so 0 <
k < τ − 1, and assume T0,i has been computed. Clearly, critical values do
not lie in this 0-tree, so we can compute

T1,i+1 = T0,i ∪ F−1λ (T0,i),

which is homeomorphic to a 1-tree with subdivision at level i+ 1. In partic-
ular, T1,i+1 is homeomorphic to a subgraph of Ti+1. In a recursive manner,
we can compute Tj,i+j for each 0 ≤ j < k, as critical values do not lie in
any of these sets. Finally, the set

Tk,τ−1 = T0,i ∪ F−1λ (Tk−1,i+k−1)

becomes a dynamical k-tree with subdivisions at level τ − 1, hence the crit-
ical values must belong to its set of vertices. The homeomorphism between
Tk,τ−1 and the subgraph Tk,τ−1 ⊂ Tτ−1 is derived from Lemma 5.2 and
Theorem 5.3.

6. Combinatorial invariant. The results in the previous sections lead
to the definition of the combinatorial information of a postcritically finite
ETS map.
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Consider a center ETS parameter λ of escape time τ ≥ 2 on any of the
parameter sectors Sj . If pλ denotes the marked fixed point in Sj , then by
Lemma 3.4, the sectors Sk have been relabeled with respect to pλ in the
orientation described there. Denote vλ := v+ ∈ Sk0 and −vλ ∈ Sk0+n.

From the results leading to Proposition 5.6 above, there exist integers
0 ≤ k ≤ τ − 1 and i ≥ 0, with k + i = τ − 1, so that Tk,k+i is the smallest
k-tree with subdivisions at level τ − 1 that contains the critical values as
vertices for the first time. We denote this dynamical tree by Tλ from now
on. Analogously, denote by ϕλ the homeomorphism of rooted trees from Tλ
to either the (τ − 2)-tree Tτ−2 or to its subgraph Tk,τ−1 with subdivisions
at level τ − 1.

Definition 6.1 (Combinatorial information). For Tλ given as above,
we write

κλ = κ(vλ)

to denote the kneading sequence of the critical value vλ. If γ(0, vλ) is a path
in Tλ joining 0 and vλ, then

δλ = δ1 . . . δt

denotes the direction of the vertex ϕλ(vλ) along Tk,i. The pair (κλ, δλ) is the
combinatorial information of Fλ.

Remark 6.2. Observe that whenever δ(v) = δ(u), then u = v and thus
they have the same coloring. On the other hand, if the colorings are the
same, the directions may be different. Yet, if κ(v) 6= κ(u) then δ(v) 6= δ(u).

Our next result shows the existence of a bijective correspondence between
postcritically finite ETS parameters and a subset of Vk,τ−1 for some k ≥ 0.

Recall from §4 that tjk denotes the jth branch of a k-tree; it is a (k− 1)-tree

itself whenever k > 0, while tj0 is just the vertex ωj . Denote by Vert(tjk) the

set of vertices of tjk.

Theorem 6.3 (Realization Theorem). Fix any n ≥ 2 and k ≥ 0. Let
Tk denote the k-tree with 2n rotational symmetry and color map c. For
any given vertex z ∈ V ∗k , let c(z) denote its color and δ(z) = δ1 . . . δt the
direction of z. Then (c(z), δ(z)) is realized as the combinatorial information
(with respect to the basic configuration) of an ETS map of degree 2n if and
only if δ1 = k0.

Proof. The necessity can be seen as follows. If Fλ is a 2n degree map
that realizes (c(z), δ(z)) as its combinatorial pair with respect to pλ, then by
Lemma 3.4, v+ ∈ Sk0 . By Theorem 5.3 (and in particular Proposition 5.4),
the branch of the dynamical tree where v+ lies is completely contained in Sk0 .
Thus δ1 = k0.
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Now assume the pair (c(z), δ(z)) has been given and δ1 = k0. Let c(z) =
a1 . . . ark0s2 . . . sm, so it has length r + m ≥ 1, as r ≥ 0 and m ≥ 1 (see
Section 4.2). Let τ = r+m+1. We show the existence of a bijection between
the set

Λτ = {λ ∈ Hτ ∩ Sk0−1 | F τ−1λ (v±) = 0}
and the subset of vertices in the branch tk0k colored by words of length r+m,
that is,

Zr+m = {v ∈ Vert(tk0k ) | |c(v)| = r +m}.
For any k ≥ 0, each simple or double vertex in the tree Tk is colored by

a word of length k + 1, and these vertices become junction points in Tk+1.
Thus, to compute the number of simple and double vertices in Tk, we use
the formula (4.3) to obtain

|Σr+m−1|+ |∆r+m−1| = (2n)r+m.

Since there are 2n branches in Tr+m−1, the number of vertices in Zr+m is
exactly (2n)r+m−1.

On the other hand, it was shown in [8] that the number of center ETS
parameters of escape time τ in the 2n degree family is (n−1)(2n)τ−2. Thus,
on each sector Sj we have exactly (2n)τ−2 = (2n)r+m−1 of these parameters.
Hence Λτ and Zr+m have the same cardinality.

Let ψ : Λτ → Zr+m be defined by ψ(λ) = ϕλ(vλ), where ϕλ is the
homeomorphism between the dynamical tree Tλ and (a subtree of) Tr+m−1.
In other words, ψ assigns to each parameter in Λτ a simple or double vertex
in the branch tk0r+m−1 that defines the direction of its critical value vλ = v+,
that is, δλ = δ(ψ(λ)). We show that ψ is one-to-one.

Assume λ, µ ∈ Λτ are given, so that ψ(λ) = ψ(µ) = z ∈ Zr+m. In
particular, this implies that critical values vλ and vµ have the same kneading
sequence, κ(z), and the same direction, δ(z). If this is the case, then Fλ
and Fµ have to be combinatorially equivalent, that is, there exists a pair of

orientation preserving homeomorphisms θ0, θ1 : (Ĉ,Pλ) → (Ĉ,Pµ) so that
θ0 ◦ Fλ = Fµ ◦ θ1 and θ0 is isotopic to θ1 rel Pλ.

To see this, assume without loss of generality that both ϕλ and ϕµ are
orientation preserving homeomorphisms. Then there exists an orientation
preserving homeomorphism h : Tλ → Tµ given by h = ϕ−1µ ϕλ and such that
h(vλ) = vµ. Moreover, h preserves the ordering of edges at each junction
point in Tλ. Thus, by Theorem 1 in [1], h can be extended to an orientation

preserving homeomorphism of the sphere, H : Ĉ → Ĉ, that agrees with h
on the dynamical trees. In fact, since H ◦ Fλ(vλ) = Fµ ◦ H(vλ) = Fµ(vµ),
H conjugates Fλ and Fµ on their postcritical sets. That is, Fλ and Fµ are
combinatorially equivalent. By Theorem 1.1, this implies that λ = β2jµ (or
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λ = β2jµ̄ in the orientation reversing case) for some j ∈ Z. Then again, as
λ, µ ∈ Λτ , we conclude λ = µ (or λ = µ̄ in the orientation reversing case).

Since ψ is a bijection between Λτ and Zr+m, given (c(z), δ(z)) for a vertex
z ∈ Zr+m, there exists a unique parameter λz = ψ−1(z) ∈ Λτ so that Fλz
realizes (c(z), δ(z)) as its combinatorial pair.

The correspondence just defined implies that (κλ, δλ) is a full invariant
of topological conjugacy. Its proof is based on the algebraic characterization
of conjugacy classes given in Theorem 1.1.

Theorem 6.4 (Conjugacy invariant). Let Fλ and Fµ be two postcriti-
cally finite ETS maps of the same degree n ≥ 2. Then the maps are topo-
logically conjugate on their Julia sets if and only if the maps have the same
combinatorial information, that is, δλ = δµ (and thus κλ = κµ).

Proof. Assume first that Fλ and Fµ are conjugate on their Julia sets
under an orientation preserving homeomorphism. As shown in [8], this hom-
eomorphism can be extended to the sphere, and in particular Fλ and Fµ are

conjugate in Ĉ by a Möbius transformation of the form M(z) = βjz, where
βn−1 = 1 and j ∈ Z. From the conjugacy equation

M ◦ Fλ(z) = Fµ ◦M(z)

one can derive that µ = β2jλ. Moreover, the marked fixed point pλ ∈ ∂Bλ
is sent to M(pλ) = βjpλ, which is clearly a fixed point in ∂Bµ. In fact,
M(pλ) realizes the basic configuration for µ. Indeed, since vµ = 2

√
µ =

2
√
β2jλ = αjvλ = M(vλ) (and thus −vµ = −βvλ), the sectors containing

pλ and vλ,−vλ are sent to the sectors containing M(pλ) and vµ,−vµ. By
Lemma 3.4, βjpλ realizes the basic configuration for µ with (at least) the
same orientation selected for λ. Thus pµ = M(pλ) if n is even, otherwise we
may also have the possibility that pµ = −M(pλ).

Because M(vλ) = vµ, by the Realization Theorem (and regardless of
the parameter sector they belong to), both parameters correspond to the
same vertex in Zr+m. Thus the ETS maps have the same combinatorial
information with respect to their marked fixed points.

Now assume Fλ and Fµ realize the same combinatorial information. That
means they have the same escape time τ = r + m + 1 ≥ 2. From the proof
of the Realization Theorem, Fλ and Fµ are combinatorially equivalent by
an orientation preserving (or reversing) homeomorphism that preserves the
postcritical sets. Thus, µ = β2jλ (or µ = β2j λ̄) for some j ∈ Z.

As pointed out in the Introduction, maps associated to parameters in
the same Sierpiński domain are quasiconformally conjugate on their Julia
sets, so they belong to the same conjugacy class of its domain center. By
associating to each parameter in a Sierpiński domain the same kneading se-



128 M. Moreno Rocha

quence and directions defined for its center parameter, we have the following
result.

Corollary 6.5. Let Fλ and Fµ be two ETS maps of the same degree.

(1) If λ and µ belong to the same Sierpiński domain, then δλ = δµ (and
thus κλ = κµ).

(2) If λ and µ belong to Sierpiński domains of distinct escape time, then
κλ 6= κµ (and thus δλ 6= δµ).

Each Sj is a sector of angular width 2π/(n − 1) and β is a primitive
(n − 1)th root of unity, so for any λ ∈ Sj , the parameter β2jλ (or β2j λ̄)
belongs to Sj if and only if β2j = 1. Counting the number of topological
conjugacy classes of maps of escape time τ in any given sector Sj is thus
equivalent to counting the number of parameters in Λτ/∼ where λ ∼ µ if
and only if µ = λ̄. In terms of the set Zr+m, this is the same as counting
the number of vertices in Zr+m/∼, where u ∼ v if and only if u = −v̄.

Recall from the description of the combinatorial model in Section 4 that
the branch tk0r+m−1 lies inside the sector

2k0 − 1

4n
<

arg(z)

2π
<

2k0 + 1

4n
.

When n = 2k0 + 1, then tk0r+m−1 lies in the first quadrant, so there are no
identifications in Zr+m under z 7→ −z̄, and we conclude

|Zr+m/∼| = (2n)τ−2.

If n = 2k0, the k0-branch runs along the imaginary axis since ωk0 [0, 1 +
· · · + αr+m−2] ⊂ tk0τ−1 and ωk0 = i. So the only vertices that are identified
are half of those lying outside the imaginary axis. Adding the number of
vertices of Zr+m in ωk0 [0, 1 + · · ·+ αr+m−2], we obtain

|Zr+m/∼| =
(2n)τ−2

2
+ 2τ−3,

as desired. We have derived

Corollary 6.6. The number of distinct topological conjugacy classes
of ETS maps of escape time τ is (2n)τ−2 if n is odd, and (2n)τ−2/2 + 2τ−3

if n is even.

7. Final remarks. From the bijection constructed in the Realization
Theorem, we can identify each Sierpiński component U ∈ Sj of escape time
τ with the color and direction assigned to a unique vertex in the branch
tk0τ−2.

Now consider a map Fλ such that, after a finite number of iterates, the
critical orbit lies on the forward invariant Cantor set Γλ. Both Proposi-
tion 5.4 and Corollary 5.5 remain valid with the new assumption. Thus,
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we can associate to Fλ a kneading sequence with periodic s-part (that is,
a1 . . . ark0s2 . . . sl) or with infinite s-part (a1 . . . ark0s2s3 . . .). We can also
find the smallest dynamical tree Tλ that contains for the first time criti-
cal values along its edges. Similarly, there exists a homeomorphism ϕλ be-
tween Tλ and a tree Tr+1, so if the edge (u,w) ⊂ Eλ contains vλ, then
κ(u) = a1 . . . ark0 and κ(w) = a1 . . . ark0s2. Finally, the direction δλ is de-
fined as the direction of the vertex ϕλ(w) ∈ Tr+1.

Thus, the necessity of the Realization Theorem holds true for these pa-
rameters. We do not attempt to show the sufficiency, although we expect
it to be true. We conjecture that parameter values for which the kneading
sequence of the map can be associated to words with only infinite a-part
(that is, κ(vλ) = a1a2 . . .) correspond to buried points in the connectedness
locus of the family. It is not hard to show that critical orbits must also be
buried in the Julia set.

It has been shown in [5] that there exist Cantor necklaces in the parame-
ter plane, so our results suggest that Sierpiński components and parameters
whose critical orbits have kneading sequences with infinite s-part, are ar-
ranged in the parameter plane following a tree-like structure. A result in
this direction can be found in [6] for the case n = 2.
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Nacional de Ciencia y Tecnoloǵıa del Estado de Guanajuato (grant CB-
2006-01, 07-02-K622-069 A02) and Consejo Nacional de Ciencia y Tecnoloǵıa
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curve Julia sets, Fund. Math. 202 (2009), 181–198.

[9] A. Douady and J. H. Hubbard, A proof of Thurston’s topological characterization
of rational functions, Acta Math. 171 (1993), 263–297.

[10] C. McMullen, Automorphisms of rational maps, in: Holomorphic Functions and
Moduli, Vol. I (Berkeley, CA, 1986), Math. Sci. Res. Inst. Publ. 10, Springer, New
York, 1988, 31–60.

[11] C. L. Petersen and G. Ryd, Convergence of rational rays in parameter spaces, in: The
Mandelbrot Set, Theme and Variations, L. Tan (ed.), London Math. Soc. Lecture
Note Ser. 274, Cambridge Univ. Press, Cambridge, 2000, 161–172.

[12] W. Y. Qiu, X. G. Wang and Y. C. Yin, Dynamics of McMullen maps, Adv. Math.
229 (2012), 2525–2577.

[13] P. Roesch, On capture zones for the family f(z) = z2 + λ/z2, in: Dynamics on
the Riemann Sphere: A Bodil Branner Festschrift, P. G. Hjorth and C. L. Petersen
(eds.), Eur. Math. Soc., 2006, 121–130.
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