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Cycles of links and fixed points for
orientation preserving homeomorphisms
of the open unit disk
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Juliana Xavier (Montevideo)

Abstract. Michael Handel proved the existence of a fixed point for an orientation
preserving homeomorphism of the open unit disk that can be extended to the closed disk,
provided that it has points whose orbits form an oriented cycle of links at infinity. More
recently, the author generalized Handel’s theorem to a wider class of cycles of links . In
this paper we complete this topic describing exactly which are all the cycles of links forcing
the existence of a fixed point.

1. Introduction. Handel’s fixed point theorem [7] has been of great
importance for the study of surface homeomorphisms. It guarantees the
existence of a fixed point for an orientation preserving homeomorphism f of
the unit disk D = {z € C: |z| < 1} provided that it can be extended to the
boundary S* = {z € C : |z| = 1} and that it has points whose orbits form an
oriented cycle of links at infinity. More precisely, there exist n points z; € D
such that

lim fk(zi):aieSl, lim fk(zi):wiesl,
k——o0 k—o00
i =1,...,n, where the 2n points {a;}, {w;} are different points in S and
have the following order property:

() ;41 is the only one among these points that lies in the open interval
in the oriented circle S' from w;_; to w;.

(Although this is not Handel’s original statement, it is an equivalent one
as already pointed out in [9].)

Le Calvez gave an alternative proof of this theorem [9], relying only on
Brouwer theory and plane topology, which allowed him to obtain a sharper
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result. Namely, he weakened the extension hypothesis by demanding the
homeomorphism to extend just to DU;cz/,7{ci,wi} and he strengthened
the conclusion by proving the existence of a simple closed curve of index 1.

The author generalized both Handel’s and Le Calvez’s results as follows
[13]. Let P C D be a compact convex n-gon. Let {v; : i € Z/nZ} be its set
of vertices, and for each i € Z/nZ, let e; be the edge joining v; and v;41.
We suppose that each e; is endowed with an orientation, so that we can tell
whether P is to the right or to the left of e;. We say that the orientations
of e; and e; coincide if P is to the right (or to the left) of both e; and e;,
i,j € Z/nZ.

We define the indez of P by

i(P):l—% > 6
1EL/NZ

where d; = 0 if the orientations of e;_1 and e; coincide, and §; = 1 otherwise.

We will denote by «; and w; the first, and respectively the last, point
where the straight line A; containing e; and inheriting its orientation inter-
sects OD.

We say that a homeomorphism f : D — D realizes P if there exists a
family (2;);cz/nz of points in D such that for all i € Z/nZ,

Hm f5(z) =,  lim ff(2) = w;.
k——o0 k—o0

THEOREM 1.1 ([13]). Let f : D — D be an orientation preserving homeo-
morphism which realizes a compact convexr polygon P C D where the points
i, wi, 1 € Z/nZ, are all different. Suppose that f can be extended to a hom-
eomorphism of DU U;ez nzics, wit. If i(P) # 0, then f has a fized point.
Furthermore, if i(P) = 1, then there exists a simple closed curve C C D of
index 1.

The two polygons appearing in Figure 1(a)&(b) satisfy the hypothesis
of this theorem. However, the polygon illustrated in (c) does not, as there
are coincidences among the points {o;}, {wi}, i € Z/nZ.

The purpose of this paper is to complete this topic: we assume that
there exist two families (a;)icz/nz, (Wi)icz/mz of points in S 1 and a family
(2i)icz/nz of points in D such that, for all i € Z/nZ,

lim fk(zz) = o, lim fk(zl) = w;,
k——o0 k—o0

and that f extends to a homeomorphism of D U ¢z nz{ci,wi}, and we
describe exactly which combinatorics of the points «;,w;, i € Z/nZ, force
the existence of a fixed point.
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(a) Handel’s index 1 polygon (b) Index —1 polygon

(C) Wi = Q42 Vi

Fig. 1. The hypothesis of Theorem [T.]]

A cycle of links of order n > 3 is a family of pairs of points on the circle

St
L= ((ai’wi))iEZ/nZ7

such that for all i € Z/nZ:

(1) a; # wi,

(2) @;1+1 and w;4q belong to different connected components of the set

Sl\{ai, wi}.
If £ is a cycle of links, we define the set
(= {a;,w;:i€Z/nZ} c St

of points in the circle which belong to a pair in the cycle.

If a,b € £, we write a — b if b follows a in the natural (positive) cyclic
order on S, and a — b if either a = b or a — b.

We say that a cycle of links £ is elliptic if for all ¢ € Z/nZ,

Wi—1 —> Qi1 — Wi

We say it is hyperbolic if n = 2k, k > 2, and for all ¢ € Z/nZ with i = 0
mod 2,
o — OG—1 — Wir1 — Wj — Q2.
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) w1 a3
[e%1 Qg Wo = @2 (o))
W
0 Wo
w1
(6%} a1 w3
(a) An elliptic cycle of links of (b) A hyperbolic cycle of links of or-
order 3 der 4

Finally, we say that £ is non-degenerate if
(ai,wi) el = (wi,ai) ¢ L.
Of course, we say it is degenerate if this condition is not satisfied. An example

is illustrated in Figure 2.

Q] = W3

wo = Q2 Qp = W2

w1 = Qa3

Fig. 2. A degenerate cycle of links

We say that a homeomorphism f : D — D realizes L if there exists a
family (2;)iez/nz of points in D such that, for all i € Z/nZ,

lim f*(z) =a;  lim f5(z) = w;.
k——o00 k—o0

The following theorem is the main result of this article.

THEOREM 1.2. Suppose that f : D — D s an orientation preserving
homeomorphism which realizes a cycle of links L and can be extended to a
homeomorphism of D U L. If L is either elliptic or hyperbolic, then f has
a fized point. Furthermore, if L is non-degenerate and elliptic, then there
exists a simple closed curve C C I of index 1.

It turns out that these results completely describe the combinatorics
giving rise to fixed points:



Cycles of links and fixed points 63

LEMMA 1.3. Given a family ((ci,w;))iez/mz of pairs of points in S1, one
of the following is true:

(1) there exists a subfamily of ((ci,w:))iez/nz forming an elliptic or hy-
perbolic cycle of links,

(2) the oriented straight lines from «; to w; bound a non-zero index poly-
gon P C D,

(3) there exists a fixed-point free orientation preserving homeomorphism
f:D — D and a family of points (zi)icz/mz in D such that for all
i €Z/nZ,

lim f¥(z) =a;, lim f*(z) = w;.
k——o0 k—o0
We finish this introduction with some remarks on Theorem [[.21

The elliptic non-degenerate case contains Le Calvez’s improvement of
Handel’s theorem. Indeed, if the points in ¢ are all different, then L is
non-degenerate. As the example in Figure 1(c) shows, our theorem is more
general even in this case.

The theorem contains the author’s result on mnon-zero index polygons.
Indeed, in [13] it is shown that if f realizes a non-zero index polygon where
the points a;,w;,i € Z/nZ are all different, then f realizes an elliptic or
hyperbolic cycle of links. Again, as coincidences in £ are allowed, our theorem
is more general even in this case.

The extension hypothesis is necessary. Indeed, if f : D — D is fixed-point
free, one can easily construct a homeomorphism A : D — D such that hfh~!
realizes any prescribed cycle of links.

Non-degeneracy is necessary to obtain the index result. Let f; be the
time-one map of the flow whose orbits are drawn in the figure below.

a1 = W3

Q2 = Wo op = Wy

a3 = Wi

As we will explain below, one can perturb f; to a homeomorphism f such
that:
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e Fix(f) = Fix(f1) = {z},
e f = f1 in a neighbourhood of z,
e [ realizes £ = ((vi,w:))iez/az-
We say that the set X is free if f(X)NX = 0.
One can find (by means of a transverse foliation, for example) free and
pairwise disjoint simple paths 5; and ~;, i € Z/47Z, such that:
e [(; joins z; and 2], where
lim fi*(z)=ca; and lim f(z]) = o,
k—o00 k—oco
1* =i+ 1 for even values of i, and i* = ¢ — 1 for odd values of 1,
e ~; joins fi(z!) and 2/, where p; > 0 and limy,_,o fF(2!) = wi,
e ; and f; are disjoint from the fi-orbits of all zj, 27, 2/ with i # j.
By thickening the paths {3;} and {7;}, one can find free, pairwise disjoint
open disks {D}} and {D/} such that the disks D] and D/ are disjoint from
the fi-orbits of the points zj, 27, 27 for i # j.
We construct a homeomorphism A : D — D such that:
e h=1d outside U;cz/47 D; U D,
o h(z) = 7,
o h(f{(z) =2
So, if we define f = h o f, we obtain
Hm f%(z) =a;  lm fF(z) = w;,
k—o00 k—o0
for all ¢ € Z/4Z. Clearly we can make this construction in such a way that

f = f1 in a neighbourhood of z. Moreover, as the disks {D/}} and {D/} are
free,

Fix(f) = Fix(f1) = {a}.
So, f realizes the elliptic cycle £, but there is no simple closed curve of
index 1.

w1 as

wo w2
a2

]
w3
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No negative-index fized point is gquaranteed by hyperbolicity. One could
think that when L is hyperbolic, a negative-index fixed point should be
obtained. For example, this would be the case if one had an oriented foliation
F in D\ Fix(f) whose leaves are Brouwer lines for f and simple paths ~;,
i € Z/nZ, joining «; and w; such that:

e cach ~; is positively transverse to F,
e the paths {7;} bound a compact disc in D.

(See the figure above.) Indeed, in this case, the Poincaré—Hopf formula would
give a singularity x of the foliation for which i(F,z) < 0. So, z € Fix(f)
and by a result of Le Calvez ([10]) one has i(f,x) = i(F,z) < 0.

However, this is not the case, as the following example shows. Let f; be
the time-one map of the flow whose orbits are drawn in the figure below.

=0

As we did in our preceding example, one can perturb f1 to a homeomorphism
f such that:

o Fix(f) = Fix(f1) = {«},
e f = f1 in a neighbourhood of z,
o [ realizes £ = ((,wi))iez/az-

So, f realizes the hyperbolic cycle £, but there is no fixed point of negative
index.

The structure of this article is the following. In Section [2]we introduce the
tools to be used (brick decompositions, Brouwer theory, repeller/attractor
configurations [13]) and we sum up the results from [9] and [13] that will be
used in the proofs. In Section [3| we state two lemmas that are key for the
contradiction argument in the proof of Theorem which is contained in
Section [dl The last Section [5] is devoted to the proof of Lemma which
shows that our results are optimal.
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2. Preliminaries

2.1. Brick decompositions. A brick decomposition D of an orientable
surface M is a one-dimensional singular submanifold X (D) (the skeleton
of the decomposition), with the property that the set of singularities V
is discrete and such that every ¢ € V has a neighbourhood U for which
UnN(X(D)\ V) has exactly three connected components. We have illus-
trated two brick decompositions in Figure 3. The bricks are the closures of
the connected components of M \ X'(D) and the edges are the closures of
the connected components of X(D)\ V. We will write E for the set of edges,
B for the set of bricks and finally D = (V, E, B) for a brick decomposition.

| | | / °7

—
[T T .

(a) M =R? (b) M =R2\ {0}

Fig. 3. Brick decompositions

Let D = (V, E, B) be a brick decomposition of M. We say that X C B
is connected if given two bricks b, b’ € X, there exists a sequence (b;)o<i<n
with bg = b, b, = b’ and such that b; and b;; 1 have non-empty intersection,
i €{0,...,n—1}. Whenever two bricks b and b’ have non-empty intersection,
we say that they are adjacent. Moreover, we say that a brick b is adjacent
to a subset X C B if b ¢ X but b is adjacent to one of the bricks in X. We
say that X C B is adjacent to X’ C B if X and X’ have no common bricks
but there exist b € X and b’ € X’ which are adjacent.

From now on we will identify a subset X of B with the closed subset of
M formed by the union of the bricks in X. This may lead to ambiguities
(for instance, two adjacent subsets of B have empty intersection in B and
non-empty intersection in M), but we will point out such cases explicitly.
We remark that 0X is a one-dimensional topological manifold and that the
connectedness of X C B is equivalent to the connectedness of X C M and
to the connectedness of Int(X) C M as well. We say that a decomposition
D' is a subdecomposition of D if X(D') C X (D).

If f: M — M is a homeomorphism, we define a map ¢ : P(B) — P(B)
as follows:

o(X)=1{be B: f(X)Nb#0).
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We remark that ¢(X) is connected whenever X is. We define analogously a

map ¢_ : P(B) — P(B):
o (X)={beB: f{(X)nb+#0}.
We define the future [b]> and the past [b]< of a brick b as follows:

B> = J "0}, <= o (b))

k>0 k>0

p({0})
e
I
\
We also define the strict future [b]> and the strict past [b]< of a brick b:

b = U eoh, e = U et
k>0 k>0
We say that a set X C B is an attractor if it satisfies ¢(X) C X; this
is equivalent in M to the inclusion f(X) C Int(X). A repeller is any set X
which satisfies p_(X) C X. In this way, the future of any brick is an at-
tractor, and the past of any brick is a repeller. We observe that X C B is a
repeller if and only if B\ X is an attractor.

REMARK 2.1. The following properties can be deduced from the fact
that X C B is an attractor if and only if f(X) C Int(X):

(1) if X C B is an attractor and b € X, then [b]> C X;if X C Bisa
repeller and b € X, then [b]< C X,

(2) if X C B is an attractor and b ¢ X, then [b]< N X =0; if X C B is
a repeller and b ¢ X, then [b]> N X =0,

(3) if b € B is adjacent to an attractor X C B, then [b]s N X # 0; if
b € B is adjacent to a repeller X C B, then [b]o N X # 0,

(4) two attractors are disjoint as subsets of B if and only if they are
disjoint as subsets of M ; in other words, two disjoint (in B) attractors
cannot be adjacent; also, two disjoint (in B) repellers cannot be
adjacent.

The following conditions are equivalent:
beb]s, [bl> =[b]>, bebl<, [bl< =[b<, [Bl<N[b]> #0, [B]l<N[b]> #0.
The existence of a brick b € B for which any of these conditions is

satisfied is equivalent to the existence of a closed chain of bricks, i.e. a
family (b;);ez/,z of bricks such that for all i € Z/rZ, ;> FEb) Nbiy # 0.
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In general, a chain for f € Homeo(M) is a family (X;)o<i<, of subsets
of M such that (J,~, f¥(X;) N X411 # 0 for all 0 < i < r — 1. We say that
the chain is closed if X, = Xj.

We say that a subset X C M is free if f(X)NX = 0.

We say that a brick decomposition D = (V, E, B) is free if every b € B
is a free subset of M. If f is fixed point free it is always possible, taking
sufficiently small bricks, to construct a free brick decomposition.

We recall the definition of mazimal free decomposition, which was in-
troduced by Sauzet in his doctoral thesis [I2]. Let f be a fixed point free
homeomorphism of a surface M. We say that D is a maximal free decompo-
sition if D is free and any strict subdecomposition is no longer free. Applying
Zorn’s lemma, it is always possible to prove the existence of a maximal free
subdecomposition of a given brick decomposition D.

2.2. Brouwer theory background. We say that I" : [0,1] — D is an
arc if it is continuous and injective. We say that an arc I" joins z € D to
y € D if I'(0) = = and I'(1) = y. We say that an arc I" joins X C D to
Y c D, if I joins some z € X to some y € Y.

Fix an f € Homeo™ (D). An arc v joining z ¢ Fix(f) to f(z) such that
f Ny ={z f(2)}if f2(2) = z, and f(y) Ny = {f(2)} otherwise, is called
a translation arc.

PROPOSITION 2.2 (Brouwer’s translation lemma, [I], [2], [4] or [6]). If
any of the following two hypotheses is satisfied:

(1) there exists a translation arc v joining z € Fix(f?) \ Fix(f) to f(z),
(2) there exists a translation arc vy joining z ¢ Fix(f?) to f(z) and an
integer k > 2 such that f*(y) N~y # 0,

then there exists a simple closed curve of index 1.

If z ¢ Fix(f), there exists a translation arc containing z; this is easy to
prove once one knows that the connected components of the complement
of Fix(f) are invariant. For this last fact, see [3] for a general proof in any
dimension, or [§] for an easy proof in dimension 2.

We deduce:

COROLLARY 2.3. If Per(f)\Fix(f) # 0, then there exists a simple closed
curve of index 1.

PROPOSITION 2.4 (Franks’ lemma [5]). If there exists a closed chain of
free, open and pairwise disjoint disks for f, then there exists a simple closed
curve of index 1.

Following Le Calvez [9], we will say that f is recurrent if there exists a
closed chain of free, open and pairwise disjoint disks for f.
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The following proposition is a refinement of Franks’ lemma due to Guillou
and Le Roux (see [IT], p. 39]).

PROPOSITION 2.5. Suppose there exists a closed chain (X;)iczrz for
f of free subsets whose interiors are pairwise disjoint and which have the
following property: given any two points z,z' € X; there exists an arc
joining z and 2" such that v\ {z, 2’} C Int(X;). Then f is recurrent.

We deduce:

PROPOSITION 2.6. Let D = (V, E,B) be a free brick decomposition of
D\ Fix(f). If there exists b € B such that b € [b]~, then f is recurrent.

2.3. Little bricks at infinity. Fix f € Homeo™ (D), different from
the identity map and non-recurrent. We will make use of the following two
propositions from [9] (both of them depend on the non-recurrent character
of f). The first one (Proposition 2.2 in [9]) is a refinement of a result already
appearing in [12]; the second one is Proposition 3.1 in [9].

ProrosiTION 2.7 ([12], [9]). Let D = (V, E, B) be a mazimal free brick
decomposition of D\ Fix(f). Then the sets [b]>, [b]>, [b]< and [b]< are con-
nected. In particular every connected component of an attractor is an attrac-
tor, and every connected component of a repeller is a repeller.

PROPOSITION 2.8 ([9]). If f satisfies the hypothesis of Theorem then
for all i € Z/nZ we can find a sequence (’Yf)kez of arcs such that:

e cach V¥ is a translation arc from f*(z;) to f**1(z),

o FOB)NAE =0 if K <F,

e the sequence (VF)r<o converges to {a;} in the Hausdorff topology,
e the sequence (VF)k>o converges to {w;} in the Hausdorff topology.

This result is a consequence of Brouwer’s translation lemma and the
hypothesis on the orbits of the points (2;);cz/nz- In particular, the extension
hypothesis of Theorem[I.2]is used. It allows us to construct a particular brick
decomposition suitable for our purposes:

LEMMA 2.9. For every i € Z/nZ, take U, a neighbourhood of c; in D
and U;r a neighbourhood of w; in D such that U N UiJr = (). There exist two
families (b;l)iez/nz’lg and (bgl)ieZ/nZ,lg—l of closed disks in D and a family
(li)icz/mz of integers such that:

(1) each b} is free and contained in U, (I < —1) or in U (I > 1),

Tnt (b)) NInt(b) =0 if | # 1,

for every k > 1 the sets (b})1<i<x and (V') _k<i<_1 are connected,
for all i € Z/nZ, dUez) j0y ! is a one-dimensional submanifold,
if v € D, then x belongs to at most two different disks in the family
(b)) 1e2\ {0}, ic2/nz

2
3
4

(
(
(
(5

— — — ~—
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(6) for alli € Z/nZ, f'+!(z) € Int (B} 1Y) for alll >0, and f~47! (%) €
Int (b1 for all 1 >0,

(7) fF(z) bl if and only if j =i and k =1; +1 — 1,

(8) the sequence (b);>1 converges to {w;} in the Hausdorff topology and
the sequence (b')j<_1 converges to {;} in the Hausdorff topology.

The idea is to construct trees T, C U, T;r C U;“, i € Z/nZ, by deleting
the loops of the curves [[,~_; vEn U, and [[,< vEN U;" respectively,
and then thickening these trees to obtain the families (bgl)iez /nz,1>1 and

(bgl)ieZ/nZ,lg—L We refer the reader to [I3] for a proof in English but we
remark that these results are contained in [9]. We have illustrated these
families in Figure 4.

Fig. 4. The families b/

REMARK 2.10. The fact that the sequence (b?);>1 converges in the Haus-
dorff topology to w;, implies we can find an arc I;" : [0,1] — Int(U;>o v U
{w;} such that I'"(1) = wj;, i € Z/nZ. Similarly, we can find an arc
Iy 0,1] = Int(Ups 8" U {es} such that I (1) = oy, i € Z/nZ.

2.4. Repeller/attractor configurations

2.4.1. Cyclic order at infinity. Let (a;)icz/nz be a family of non-empty,
pairwise disjoint, closed, connected subsets of I, such that @; N 0D # () and
U=D\ UieZ/nZ a; is a connected open set. As U is connected, and its
complementary set in C, namely

{zeC: 223U | a,
1€EZ/nZ
is also connected, U is simply connected.

With these hypotheses, there is a natural cyclic order on the sets {a;}.
Indeed, U is conformally isomorphic to the unit disc via the Riemann map
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@ : U — D, and one can consider the Carathéodory extension of ¢,
¢:U—D,

which is a homeomorphism between the prime ends completion U of U

and the closed unit disk D. The set J; of prime ends whose impression is

contained in a; is open and connected. It follows that the images J; = ¢(J;)

are pairwise disjoint open intervals in S, and are therefore cyclically ordered
following the positive orientation of the circle.

2.4.2. Repeller/attractor configurations. We recall the definition of re-
peller/attractor configuration that was introduced in [13].

We fix f € Homeo™ (D) together with a maximal free brick decomposition
D = (V,E,B) of D\ Fix(f).

Let (Ri)iez/nz and (A;)icz/mz be two families of connected, pairwise
disjoint subsets of B such that:

(1) For all i € Z/nZ,

(a) R; is a repeller and A; is an attractor,
(b) there exists non-empty, closed, connected subsets r; C Int(R;),
a; C Int(A;) of D such that 73 N ID # @ and a; N OD # 0,

(2) D\ U,ez/nz(ai Uri) is a connected open set.
We say that the pair ((Ri)iez/nz, (Ai)iez/nz) is a repeller/attractor con-
figuration of order n. We will write
E=A{R;,Ai:i€Z/nl}.
Property (2) in the previous definition allows us to give a cyclic order to
the sets r;, a;, i € Z/nZ (see the beginning of this section).

We say that a repeller/attractor configuration of order n > 3 is an elliptic
configuration if:

(1) the cyclic order of the sets r;,a;, i € Z/nZ, has the elliptic order
property:
ag — T —ay — - —> A — Ti42 — Qi1 — - — Qp—1 — T'1 — ag,
(2) for all i € Z/nZ there exists a brick b; € R; such that [b;]> N A; # 0.

We say that a repeller/attractor configuration is a hyperbolic configura-
tion if:
(1) the cyclic order of the sets r;, a;, i € Z/nZ, has the hyperbolic order
property:
rTo—ayg —> Ty —>a1 — - —> T — a4
7 Titl = Qi1 —7 00 = Tp—1 =7 Gn-1 — 70,
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(2) for all i € Z/nZ there exist two bricks bi,bi™' € R; such that
[0 N A; # 0 and [b s N Ajg # 0.

(a) An elliptic configuration (b) A hyperbolic configuration

We will make use of the following results from [13]:

PROPOSITION 2.11 ([13]). If there exists an elliptic configuration of order
n > 3, then f is recurrent.

PROPOSITION 2.12 ([13]). If there exists a hyperbolic configuration of
order n > 2, then Fix(f) # 0.

3. Two technical lemmas. In this section we give applications of
Propositions and that will be used in the proof of Theorem

We fix f € Homeo™ (D) together with a maximal free brick decomposition
D = (V,E,B) of D\ Fix(f), and we suppose that f is non-recurrent.

Let a;, i € Z/nZ, be non-empty, pairwise disjoint, closed, connected
subsets of D such that @; N 0D # () for all i € Z/nZ, and U = D\ Ucz/z @
is a connected open set. We consider the Riemann map ¢ : U — D, and
the open intervals on the circle J;, i € Z/nZ, defined in 2.4.1. We recall
that the interval .J; corresponds to the prime ends in U whose impression is
contained in a;.

Let (I;);ez/nz be the connected components of ST\ Uiez/nz Ji- So, each
I; is a closed interval, which may be reduced to a point.

REMARK 3.1. One can cyclically order the sets (ai)icz/nz, (7})icz/mz
where (7))icz/mz is any family of closed, connected and pairwise disjoint
subsets of U satisfying:

o 5 NOU #£0, j € Z/mZ,

o for all j € Z/mZ, there exists i; € Z/nZ such that (r;) N S' C I,
e the correspondence j + i; is injective.
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LEMMA 3.2. Suppose that:
(1) the cyclic order of the sets a;, i € Z/nZ, is

g —> A1 —> - = A = iyl — - — A1 — Ao,
(2) for alli € Z/nZ there exists b} € B such that a; C [b]]>,
(3) there exist three bricks (bg )scz/3z such that

s

(a) for all s € Z/3Z and all i € Z/nZ, one has b; C [b)]< (and so
[bs_]< C U)7
(b) [bs]<NOU # O for all s € Z/3Z,
(c) for every s € Z/3Z there exists is € Z/nZ such that
p(bs]<) NSt C Ly,

Then the correspondence s — is is not injective.

Qjo

Ry

Fig. 5. Lemma [3.2]

Proof. We will prove that if the correspondence s — iy is injective, then
we can construct an elliptic configuration of order 3. As we are assuming f
is not recurrent, this is not possible by Proposition [2.11

We begin by proving that [b;]< N [by ]< # 0 implies i5 = 4,. Indeed, if
[by ]<N[by < # O, then [b ]« U[b, |< is a connected set and o([bs |< U [by |<)
intersects both I;, and I; . If i5 # i,, then there exist jo,j1 € Z/nZ such
that any arc joining Jj, and Jj, separates I;_ from I; in D. Our hypothesis
(3)(a) allows us to take a crosscut 7 from aj, to aj, such that yNU C [b5].

So, p(yNU) is an arc joining Jj, and J;,, and

(N U) Np(b5]< U by l<) # 0.
This gives us

([bs 1< U b 1<) N [bs]> # 0,
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and as we are supposing that f is not recurrent,

b ]< N[bg]> # 0.
So,
[b5]< C [b]<,
which implies
p(bsl<)nS' c L, NI,
a contradiction.

So, if the correspondence s — is is injective, the sets [b; |< are pairwise
disjoint, and one can cyclically order the n + 3 sets a;, [b; |<, i € Z/nZ,
s € 7./37 (see Remark . We may suppose without loss of generality that

[bol< = [br]< = b2 ]< = [bg ]<-
For all s € Z/3Z, we can take j; € Z/3Z such that
[bol< = aj, = [b]< = aj, = [by]< = a5, = [bo]<
(see Figure 9 below).
For all s € Z/3Z, we define
Ry =1[b,]<, As:[b;;b‘
We want to show that

((RS)SEZ/3Z)7 (AS)SEZ/3Z)

is an elliptic configuration. It is enough to show that the sets Ag, Rq,
s € /37, are pairwise disjoint, because of the cyclic order of these sets , and
our hypothesis (3)(a). We already know that the sets R, s € Z/3Z, are pair-

. o e e . . +
wise disjoint. As we are supposing that f is not recurrent, and S by]>
for any s, in Z/37Z (see (3)(a)), we know that

b1 N )< =0

for all s,s" in Z/3Z. So, the sets {As} are disjoint from the sets {Rs}, and
we just have to show that the sets {A;} are pairwise disjoint to finish the
proof of the lemma.

Because of the symmetry of the problem it is enough to show that

AgNA; = .
If this is not so, then
AgU Ay = [b)]> U[b)]>

would be a connected set containing both a;, and a;,, and the cyclic order
would imply that

([b}]> U b} ]5) N[0} 1< # 0,
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by our hypothesis (3)(a). As we are supposing that f is not recurrent, we
have

1> N by )< # 0.

But this implies that [b;“l]> is a connected set containing both a;, and aj,.
Once again our hypothesis (3)(a) and the cyclic order give us

[b,]> N [b),]< # 0,
and we are done. =

For our next lemma, we keep the assumption on the cyclic order of the
sets aj, @ € Z/nl:

ag — a1 — > QA; —> Ajp1 —> 0 —> Ap—1 — AQ.

We define I; to be the connected component of S*\ Ujez/nz J; that follows
J;—1 in the natural cyclic order on § 1 so that we have

Jic1 — I — J;
for all i € Z/nZ.
LEMMA 3.3. If for all i € Z/nZ:

(1) there exists b € B such that a; C [b]]>,
(2) there exists b; € B such that b; C | ;r]<, je{i—1,i},

(3) [b; 1< C U, and [b; |« NOU # 0,
(4) el 1<) NSt C L,
then Fix(f) # 0.

[by 1<
-
ao
o~
[bf]< as
by )<
a1
(b5 ] '
2 1< a4
N rle
as

as
< [b3 )<

Fig. 6. Lemma with n =6
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Proof. By Proposition 2.12] it is enough to show that we can construct
a hyperbolic configuration.

We begin by proving that the sets {[b; |} are pairwise disjoint. Other-
wise, there exist i # j such that

[b; 1< N[bj]< # 0.

Then [b; ]<U[b; ]< is a connected set and ¢([b; |< U [b; ]<) intersects both I;
and I;. The cyclic order implies that any arc joining J;_1 and J; separates
Ii from Ij, 1 7& j

Our hypothesis (2) allows us to take a crosscut v from a;_1 to a; such
that

YNU C [b; ]>.
So, ¢(yNU) is an arc joining J;_1 and J;, and
e(yNU) Ne([b; ]« U by l<) # 0.

This gives us
(b < Ulbyl<) N b ] # 0,

and as we are supposing that f is not recurrent,
b 1< N b ]> # 0.
So, [b; ]< C [b} ]<, which implies

o([b; 1<) NS c N1y,
a contradiction.

So, we can cyclically order the 2n sets a;, [b; |<, i € Z/nZ (see Remark
. Moreover, for all ¢ € Z/nZ,

a;—1 — [bl_]< — Q;.

Define 4; = [bf]> and R; = [b; |< for i € Z/nZ. To finish the proof of
the lemma, it is enough to show that the sets R;, A;, i € Z/nZ, are pairwise
disjoint. Indeed, if this is true, our previous remark on the cyclic order,
and our hypothesis (2) imply that ((Ri)icz/nz, (Ai)icz/nz) is a hyperbolic
configuration.

We have already proved that the sets R;, i € Z/nZ, are pairwise disjoint.
We will also show that [bz-_]<ﬁ[b;“]> = () for any j € Z/nZ. By hypothesis (2),
[b;]< N [bf]> = 0, as we are supposing that f is not recurrent. If [b; ]« N
[b;r]> # ) for some j # 4, then [b;r]< C [b; <, j # i. Therefore, gp([b;r]<) N
St C I, j # i, which contradicts our hypothesis (4)

We have proved that the sets R; are disjoint from the sets A4;, i € Z/nZ.
So, in order to finish, we only have to prove that the sets A;, i € Z/nZ, are
pairwise disjoint.
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If this is not the case, there would exist i # j such that [b; ]~ N [b;r]> # .
So, [bf]> U [bj]> is a connected set containing a; U a;, and must therefore
intersect [b;]<, because of the cyclic order and hypothesis (2). We may of
course assume that [bj]> N[b] )< # 0. Now, we see that [bj]> is a connected
set containing a; Ua; and must therefore intersect [b;r]<. This contradiction
proves our claim. m

4. Proof of the main result. This section is devoted to the proof of
Theorem [1.2

We fix an orientation preserving homeomorphism f : D — I which
realizes a cycle of links £ = ((i, w;))iez/nz- We recall that this means that
there exists a family (z;);cz/nz of points in D such that for all i € Z/nZ,

m fF(z) =a;,  lim fF(z) = wi.
k——o0 k—o0

We also recall that
¢ ={aj,w;:icZ/nZ} C S,
and that we supppose that f can be extended to a homeomorphism of DU/.

4.1. The elliptic case. Let us state our first proposition:

PROPOSITION 4.1. If L is elliptic, then Fix(f) # (. Moreover, one of
the following holds:

(1) f is recurrent,
(2) L is a degenerate cycle.

As the proof is long, we will first describe our strategy. The first part
of the work consists in constructing a brick decomposition which is suitable
for our purposes. Once this is done, we show that if f is not recurrent,
then the elliptic order property gives rise to constraints on the order of the
cycle of links £. We will show (as a consequence of Lemma that the
only possibility for the order of £ is n = 4. The case n = 4 is special,
as degeneracies may occur (see Figure 2, and the introduction, where we
explain that non-degeneracy is necessary to obtain the index result). For
n = 4 we prove that Fix(f) # 0, and that if f is not recurrent, then £ is
degenerate.

1. Construction of the brick decomposition. We first note that we may
assume that n > 3: if n = 3, the definition of cycle of links implies automat-
ically that the points {«;}, {w;} are all different, and the proof follows from
Le Calvez’s improvement to Handel’s theorem. As we are dealing with the
elliptic case, the only possible coincidences among the points {a;}, {w;} are
of the form w;_2 = «a;. In particular, the points {w;} are all different and
for all i € Z/nZ we can take a neighbourhood U;" of w; in D in such a way
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that U;r N U]-Jr =0 if i # j. We define U;” = UitQ if a; = w;_o, and for all
i € Z/nZ such that «; # w;_o we take a neighbourhood U; of a; in D in
such a way that U, N U]?L = () for all j € Z/nZ, and U; NU; = { for all
i

We suppose from now on that f is not recurrent.

We apply Lemma and obtain families (b;l)leZ\{o},ieZ/nZ of closed
disks. So, the disks in (b} );>1,jez/nz have pairwise disjoint interiors.

Let Ieg be the set of ¢ € Z/nZ such that o; # w;—2, or such that
o; = w;_9 but there exists K > 0 such that

U mt(@if o) n [ Int(v7%) = 0.
E>K E>K
Let Iging be the complement of Ireg in Z/nZ.

After discarding a finite number of disks, we can suppose that the disks
bgl with [ > 1, i € Z/nZ, and b;_l with [ > 1, i € I,eg, have pairwise disjoint
interiors.

If i € Lging, then a; = w;—o and for all k > 0 there exist &' > k, j' > k
such that Int(b*',) N Int(b] ") # 0.

In the following lemma we refer to the family of integers (I;)icz/nz con-
structed in Lemma [2.9]

LEMMA 4.2. For i € ILsng, we can find sequences (c")m>0 of free closed
disks such that:

(1) " UL, =Ty,

(2) there exists an increasing sequence (k" )m>0 such that b;k_;g Nne #0
forpall m >0,

(3) (4525 0 N (B U ) =0 for all p £ m,

(4) there exists an increasing sequence (j™)m>o such that f=li=3"+1(z;)
€ for allm >0,

(5) the sequence (c[")m>0 converges to w;—o = o in the Hausdorff topol-
T I

(6) b, 5N is an arc for allm >0 (so, ¢]*Ub,", is a topological closed
disk),

(7) O(Up>1 vk, U Unso ) is a one-dimensional submanifold,
(8) if x € D, then x belongs to at most two different disks in the family
{bF,, ¢k >1, m >0},

Proof. Take i € Isng and consider the family (b;k_ 9)k>1 C Uf_Q of closed
disks. As i € Iging, there exists j? > 1 such that

Int(U b;’22> N Int(b;._j?) # 0.

k>1
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Fig. 7. The disks b}"73 and ¢

By Lemma (7)7 FEEEHD () € Int(b i )\ Ul>1 5. We take an arc
79 C Tt () \ Int(U bg_Q)
1>1
joining f(-l=3+1)(2;) and a point 20 € O U1 b} 5. We define £ > 1 by
/ko
) € b,
We define inductively for m > 0:
o U, C Ui't2 = U, a neighbourhood of w;_3 = «; in D such that
Up O (Int (b)) U Tnt(b; 7)) = 0,
K., > 0 such that for all k > K, b% , U™ € U,
_sm+1
j;”“ > K, such that Int(Ups g, 07 2) 0 Int(b; Y £,

ymtl Int(b/ i )\Ulsz b ,, an arc joining f(_li_j;n+1+1)(zi) and
+1 k

a point 7" € 0>k, Ui

kT > K, by

m+1 c b/km+l

The existence of K, comes from the fact that both sequences (b;_l)lzl
and (b ,);>1 converge to o; = w;_» in the Hausdorff topology; that of jm+1
from the fact that i € Igng; that of fym‘H from the choice of ]m+1 and the

fact that FCU—3"" 0 () € In() )\Ul>;< i 5, and that of z}"*!

and k:mJrl follows from the choice of ]m+1

By thickening these arcs {7/}, we can construct disks {c"} satisfying
all the conditions of the lemma. m

The proposition above allows us to construct a maximal free brick de-
composition (V, E, B) such that:
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e for all i € Z/nZ and | > 1, there exists bé € B such that b;l C bé,

e for all ¢ € e and [ > 1, there exists b;l € B such that b;fl C b;l,

e for allm > 0 and i € g, there exists b, )" ¢ B such that an cC b;ﬂ" )

I1. The “domino effect” of the elliptic order property

LEMMA 4.3. Take two indices i,j in Z/nZ, and two integers k and N.
If bk and bk o are contained in [bN]~., then there exists k' € Z such that bf/
is contamed in [bN]s for alll € Z/n’Z.

Proof. We will show that if bk and b 42 are contained in [b)]~, then
there exists k” such that both bk 71 and v 1.5 are contained in bN]~. If bk
and b . are contained in [b]-, then bl and bl .o are contained in [b] for
all [ > k: By Remark 2.10] we can ﬁnd an arc

v [0,1] = (0] U {wj, wjia}
joining w; and wji2. As n > 3, and the coincidences are of the form o; =
wi—2, we know that the points o1, wj, j43,wjto are all different. So, ~y
separates both ;1 from w;i1 and o413 from wj;y3. Hence, there exists

k" > 0 such that [b?ll]g N [bN]s # 0 and [b§l3]§ N [bN]s # 0. We are done

by induction, and by taking &’ large enough. =

In the following lemma we make reference to the sequences (kj"),,>0 and
(37)m>0 defined in Lemma

_iN
LEMMA 4.4. For every i € Igng, there exists N > 0 such that [b, Ji ]>
N

contains bfiz.

Proof. We will prove the following stronger statement which implies im-

—jN N

mediately that [b; ”* ]> contains bfiQ: there exists N > 0 such that f(c}¥) N
kN
bty # 0.

I. Let us begin by studying the local dynamics of the brick decomposi-
tion at o; = w;_2, © € Lsing. We define, for all m > 0,

Em
X = by U,

and we recall that every X, is a closed disk (see Lemma . Then, for all

m > 0, -
FrrRE T (2 g) O T () € X,
So, given any two positive integers m > p, one has
U AX)nXm#0 and | F(Xm) N X, # 0.
E>1 E>1

Moreover, X,,, N X, = 0 and X,, and X,, are topological closed disks. There-
fore, if we can find m > p > 0 such that both X, and X,, are free sets,
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then f would be recurrent by Proposition [2.5] Hence, we can suppose that
for all m > 0 the set X, is not free. So, as for all m > 0 both bgkm and ¢}

are free sets, we see that either f(b;k_:;) Nne™ #0, or f(ef')N bik_lz # 0. If
there exists m > 0 such that f(c") N b;ka # (), we are done. So, we may
assume that for all m > 0, f( ;k_:;) Nc™ # 0. Then f( fin;) N bi_j’m # ( for
all m > 0. In particular, [bfgb contains bé for all I > 0 and for all m > 0.

II. We will show that this implies that f is recurrent. As [bf?2]> contains
bF and b, for k > k", Lemma implies that for all m > 0 there exists

I, > 0 such that [bf12]> contains bé- for all j € Z/nZ and for all [ > I,.
In particular, Remark tells us that for all m > 0 there exists an arc

Tt [0,1] = [B5))s U {wizs, wiosl

joining w;_» and w;_4, which implies that I, separates a;_; from o;_3 in D
(see Figure 8(a) and observe that as n > 3 the points a;_3, w;—4, @1, w;—2
are all different). Since we are assuming that f is not recurrent, we deduce

that the closure of [bfz;]g cannot contain both points a;_; and a;_3.

(a) (b)

Fig. 8. The proof of Lemma [£4]

We will suppose that for all m > 0, the closure of [bfg;]g does not
contain one of the points «;_1 and «a;_3, and obtain a contradiction. As
m > p implies

kP km
[b;"ol< C b 5]<s
one of the points a;_1, a;_3 is not contained in the closure of any of the
sets [bf&]g, m > 0. Suppose that «;_3 is not contained in [b?g;]g for any

m > 0 (the other case is analogous). In particular, for all m > 0, [bﬁ;]g
does not contain any of the bricks containing the orbit of z;_35. We take a
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— 0
neighbourhood U of «;_3 in D such that U N [bfl o)< = 0 and such that
Un Ul>k0b _5 = 0. We also take j > 0 such that f~7(z;_3) € U, and an

arc 3:[0,1] — U joining a;—3 and f~ J(2;_3). Finally, we take a brick b € B
such that f77(z;—3) € b. As U5, ! 5 C [b]>, Remark allows us to take

an arc v : [0,1] — [b]> Uw;_3 joining f77(z;_3) and w;_3.
So, B.y separates a;_o from w;_o in D and

gy (U bz UL<) #0.

I>ko
which implies

ym(Ub LU b/2 );«é@,

I>ko

because of our choice of U (see Figure 8(b)). Hence,

b>nN U[béfzk # 0,

>0

which implies that for some m > 0,
s 1 1)< # 0.

Therefore, b € [b?{;]g, and [bfg;k contains a brick containing one point of
the orbit of z;_3. This contradiction finishes the proof of the lemma. =

LEMMA 4.5. There exists k > 0 such that for any pair of indices i,j in
Z/nZ, the attractor [b;*]s contains b;?.

Proof. For all i € Ieg, we know that (J;5, vt c Uisolb ']~ (note that
this is not necessarily the case if i € Igng). So, by Remark . there exists
an arc

I [0,1] = [ Jb; s U {ou, wi}

>0

joining «; and w;. Hence, I separates both «;_1 from w;_1 and «;41 from
wiy1 in . Therefore, there exists m > 0 such that [b; ™]s contains both
bt and b" . By Lemma [b; "]~ contains bé. for all j € Z/nZ, and [
large enough.

For all i € Iging, the previous lemma tells us that there exists N > 0 such
N N
that [b, i |> contains b 5. Clearly, [b- )5 also contains bf" and so once

again, Lemma 1mphes that [b, i |> contains bé» for all j € Z/nZ and [
large enough. We finish by taking k sufficiently large. =
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II1. Constraints on the order of the cycle of links L. We fix k > 0 such
that for any 7,7 in Z/nZ, [b; ¥]s contains b?. We define

a=(Uom)nrt, iez/mz
m>k
(see Remark for the definition of F,f) We may suppose that
U=D\ |J a
1€EZ/nZ
is simply connected. As a; C UmZk bi", and we are supposing that f is not
recurrent, we know that [b, ] c U for all i € Z/nZ.

1
Let ¢ : U — D be the Riemann map and consider the intervals J;,

i € Z/nZ, defined in 3.1. We define I; as to be the connected component of
S\ Uiez /nz Ji following J;_s in the natural (positive) cyclic order on St
So, each I; is a closed interval, and we have

Ji—g = I; = Ji—q
for all i € Z/nZ.
LEMMA 4.6. For alli € Z/nZ:

(1) there exists j; € Z/nZ such that w([b;kk) nstc i,

(2) ji € {i— 1,4},

(3) ’Lf (67 75 Wi;—92, then ]z =1.

Proof. (1) If there exists x € ¢([b; ¥]<) N J; for some j € Z/nZ, then
(b, ¥]< Naj # 0. As [b;*]< is closed in D, and as a; C I, we obtain [b; ¥ N
a; # 0, a contradiction. So, ¢([b;*]<) C Ujezmnz - If o([b;7"]<) intersects

I; and I, k # j, then there exist two different indices i and iy in Z/nZ such
that any arc joining J;, and J;, separates I; from Ij,. We take a crosscut ~y

from a;, to a;, such that v C [b7¥]s. So,

)

ey U) N(ib7*1<) # 9,
and consequently
b, *)> N [b; 1< # 0,
which contradicts our assumption that f is not recurrent.

(2) Take a crosscut v C [b;*]~ from a;_3 to a;—1. Then the elliptic
order property implies that a; belongs to the closure of only one of the
two connected components of U \ 7: the one to the right of . We use here
the fact that a; ¢ {w;_3,w;_1}. So, [b; ¥]< also belongs to the connected
component of U \ v which is to the right of 4. Consequently, ¢([b;” M)
belongs to the connected component of D\ ¢(y N U) which is to the right
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of o(yNU). As p(yNU) is an arc from J;_3 to J;_1, the closure of this
connected component only contains I; and I;_1. So, we obtain j; € {i—1,i}.

(3) If o # wi—2, we can apply exactly the same argument as in the
preceding item, but using a crosscut vy from a;_s to a;_1, obtaining j; = i. =

REMARK 4.7. If we set b; = b;k and b;“ = bf, then the bricks b;,
i € {ig, 11,12}, satisfy all the hypotheses of Lemma where g, 11,79 are
any three different indices in Z/nZ. Indeed, k is chosen so that (2) and (3)(a)
hold, (3)(b) is granted since «; C [b; |< for all i € Z/nZ, and (3)(c) is the
content of item (1) in Lemma

The second item in Lemma [4.6] gives us:
COROLLARY 4.8. If |i — 1| > 2, then j; # ji.
The constraint on the order £ follows:
LEMMA 4.9. The order of L is either 4 or 5.

Proof. If n > 6, the sets {i,i — 1}, i € {0,2,4}, are pairwise disjoint,
and so the three indices jo, j2,js4 given by Lemma [4.6] are different. This
contradicts Lemma [3.2] =

LEMMA 4.10. We have n = 4.

Proof. We show that n = 5 also contradicts Lemmal[3.2] If jo, jo, j3 are all
different, we are done because of Lemma Otherwise, the only possibility
is that jo = j3 = 2 (see Lemma . But then j1, j3 and j4 are different. m

LEMMA 4.11. L is degenerate.

Proof. We will show that if n = 4 and £ is non-degenerate, we can also
find a triplet ig, i1, 42 in Z/nZ such that the corresponding j;_, s € {0,1, 2},
are different.

For a non-degenerate cycle of links, there can be at most two coincidences
of the type o; = w;_2. Furthermore, if a; = w;—2 and a; = w;_s for some
i # j, then |i — j| = 1. Indeed, the points in ¢ are ordered as follows:

woi>a2—>w1i>a3—>w2i>a0—>w3i>a1—>wo,

and non-degeneracy means that we cannot have both w; = o;492 and w; s =
«;, for some i € Z/47. So, there exists | € Z/4Z such that a; # w;_o and
apr1 # wi—1. We can suppose without loss of generality that ag # we, and
a1 # ws (see Figure 9). Items (2) and (3) in Lemma imply that jo, j1,
and js are different, and we are done. m

The following lemma finishes the proof of Proposition [4.1

LEMMA 4.12. If n =4, then Fix(f) # 0.
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aq

Qo

as

Fig. 9. The case n =4

Proof. We will be done by constructing a hyperbolic repeller/attractor
configuration of order 2. We define

Ro=[bg"<, Ri=[b"lc, Ao=[t5>, Ai=[b]]>.

i cli_l

i,c; , contained in R,

By the choice of k, there exist two bricks ¢
i € Z/27Z, such that [c]]> NA; A0 if j € {i,i — 1}.

Moreover, the cyclic order of these sets is the following:

R0—>A0—>R1—>A1—>R0.

Indeed, we know that jo € {0, 3}, jo € {2,1}, and the cyclic order of the

intervals J;, I;, i € Z/AZ, is
Io—>J3—>11—>J0—>IQ—>J1—>13—>J2—>10.

So, we just have to show that the sets R;, A;, i € Z/27, are pairwise

disjoint. The choice of k implies that [b; ¥]. N [b;‘?]> =0 for all 4,7 in Z/4Z.

As a consequence, we just have to check Ry N Ry = ), and Ay N Ay = 0.

If this is not the case, [by*]< U [by"]< is a connected set separating [b¥]~

and [b§]>. Again by the choice of k we have
(oM< U b5 *1<) N [bg "> # 0,
and as we are supposing that f is not recurrent,
by "< N by *]s # 0.
But then
by "< N by "] # 0,

because [by ¥] contains [by*]< and therefore separates [b¥]s and [b5]~, both
of which are contained in [by"]s.
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Analogously, if AgN Ay # 0, then [b5]-U[b%]5 is a connected set separating
b;¥]< and [b7*]. Again by the choice of k we have
2 0

([B5)> U [b1]>) N [b5]< # 0,

and as we are supposing that f is not recurrent,

[bF]> N [B5]< # 0.
But then

[F]> N [bF]< # 0,
because [b¥]s contains [b%]s and therefore separates [by *]< and [b;*]<, both
of which are contained in [b}]. m

4.2. The hyperbolic case. Our next proposition finishes the proof of
Theorem

PROPOSITION 4.13. If L is hyperbolic, then Fix(f) # (.

We recall that the order of a hyperbolic cycle of links is an even number.
That is, from now on n = 2m, m > 2. The hyperbolic order property implies
that the only possible coincidences among the points «;,w;, ¢ € Z/nZ, are
of the form w;_o = a; for even values of 7, or w; 12 = a; for odd values of i.

As the points {w;} are all different, we can take a neighbourhood U;" of
w; in D in such a Way that that U+ N UJr = () if i # j. For even values of 1,
we define U, = 172 if oy = w;_9, and 1f o; # w;—o we take a neighbourhood
U of a; in D in such a way that U, ﬁU;r = () for any j, and U; NU; =10
if j # 4. Similarly, for odd values of ¢, we define U;” = U+2 if o = wiyo,
and if a; # wi42 we take a neighbourhood U;™ of a; in D in such a way that
Ui_ﬂUjJFZQ)for any j, and U NU; =0 if j # .

We keep the assumption that f is not recurrent.

We apply Lemma and obtain families (b;l)leZ\{o},ieZ /2mz of closed
disks. So, the disks in (b;l)lzl,z‘ez /2mz, have pairwise disjoint interiors.

Let I e be the set of even i € Z/2mZ such that o; ;é wj_2, or such that
o; = wj_g but there exists K > 0 such that Uk>K o MU ks i b~ k=,
together with the set of odd i € Z/2mZ such that a; # w;ya, or such that
@; = wito but there exists K > 0 such that (J - x bg”i2 NUpsx b;_k = 0. Let
ILsing be the complement of I e, in Z/2mZ.

We can suppose that all the disks in the families (bgl)lzl,iez /2mZs
(b;_l)lzue I.; have disjoint interiors.

We define i* = ¢ — 2 if 7 is even, and ¢* = ¢ + 2 if 7 is odd.

LEMMA 4.14. Ifi € Igng, then we can find sequences of free closed disks
(el )n>0 satisfying:

(1) B Cc UL =U;
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(2) there exists an increasing sequence (kj')p>0 such that b;’i? ne #0

for alln >0,
(3) (0 V) N O Ud) =0 for all n# p,
(4) there e:msts an increasing sequence (j")n>0 such that f=9i (z;) € c?
(5) t he sequence (c}')p>0 converges to wi= = «; in the Hausdorff topology,
(6) b « Nc} is an arc for alln >0,
(7) (Uk>1 bk U Unso€i') is a one-dimensional submanifold,
(8) if x € D, then = belongs to at most two different disks in the family
{bk ek >1,n>0}.

Proof. Note that the local dynamics in a neighbourhood of a point «;,
i € Lging, is exactly the same as that in the elliptic case. So, the same proof
we did for Lemma [£.2] works here as well. =

We construct a maximal free brick decomposition (V, E, B) such that:

e for all i € Z/2mZ and for all [ > 1, there exists b! € B such that

vl c bl
K3 1)

e for all i € I and for all [ > 1, there exists b; ! ¢ B such that
vt cb!
2 1 ? o

e for all n > 0 and for all i € Igng, there exists b; )i ¢ B such that
crCb .

_N
LEMMA 4.15. If i € Igng, then there exists N > 0 such that [b, Ji |>

N

contains bfﬁ )
Proof. Fix an even index i € Iging (the proof for odd indices is analogous).
The first part of the proof is identical to part I in the proof of Lemma [4.4]
Indeed, this proof is local, that is, it does not depend on how the rest of the

points in £ are ordered. So, there are two possibilities: either f(c; )ﬁb 22 £ 0

or f (bijg) Nl # (. In the first case we are done, as it implies immediately
the staternent of the lemma. As a consequence, we may assume that for all
n >0, [ ']~ contains bl for all [ > 0. We will show that this contradicts
the fact that f is not recurrent.

With this last assumption, for all n > 0 there exists an arc

kn
I, : [O, 1] — [bii2]> U {wi_g,wi}

joining w;_o and w; (see Remark . So, the arc I, separates «;_1 from
aj_3inD foralln >0 (see Figure 10, and note that the points a1, a;_3,
wi—2, w; are all different).

We deduce (as we are supposing that f is not recurrent) that for any

kn

n >0, [b »]< cannot contain both ;1 and ;3. So, one of the points ;1
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Q2

Qi1

Fig. 10. The proof of Lemma [.15]

or a;_3 is not contained in any of the sets [bfinQ]S, n > 0. We will suppose

that for all n > 0, aj—1 ¢ [bfinQ]S (the proof is analogous in the other case).
We fix n > 0 and consider the connected set

K= LJQQLJQE
>k}
We choose a neighbourhood U of aj—1 in D such that U N K = (). Then we
take j > 0 such that f=7(z;_1) € U, and b € B such that f~7(z;_1) € b. We
take an arc v C U joining a;_1 and f~7(z,_1), and an arc 8 C [b]> Uw;_1
joining f/(z;_1) and w;_1. We deduce that v.3N K # ), and as v C U,
we have 8N K # (). So, there exists [ > kI such that b € [b}_,]<, and

consequently a;_1 € [b_,]<. This contradiction finishes the proof of the
lemma.

LEMMA 4.16. There exists k > 0 such that for all even wvalues of i €
Z/2mZ, both attractors [b; *]s and [b;%]s contain bF for alll € {i —2,i —
1,4,i+1}.

Proof. If © € Igyg, the previous lemma tells us that there exists N > 0

—jN N
such that [b; ”* |> contains bfLQ. So, we can find an arc

r00,1] = b s U {wios, wid

joining w;_9 zind w;. This arc separates both «;_1 from w;—1 and a1
from w41 in D (see Figure 10). As a consequence, both (J;-[b ¥ ]< and
Ugs1[b ¥ 1]< intersect I', and so there exists k > 0 such that b¥ ; and b,

belong to [b, o Js. If i — 1 € Igng, we can show analogously that [b, 1_1]>
contains bk foralll € {i —2,i—1,4,7+ 1} and some k > 0.
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If i € I;eg, we can find an arc
r:[0,1] = b7 ') U {i, wi}
>0
joining a; and w;. So, I' separates (in D) both a;;1 from w;y1 and a;_1
from w;_1. Therefore, both Ukzl[bi’c—l]ﬁ and UkZI[bi’C—&—l]S intersect ", and
there exist &, N > 0 such that [b; V]> N[bF ;]< # 0 and [b; V] N [bE 4 ]< # 0.
Once b,_; and b, belong to [b; V=, we can find an arc

I [0, 1] — [b;N]> U {wi,l,wiﬂ}
joining w;_1 and w;;1. So, I'" separates c;_s from w;_5 in D, and one ob-
tains b¥ , € [b;N |s for some k > 0. We obtain the result by sufficiently
enlarging k. m
We fix k& > 0 as in Lemma [£.16]

LEMMA 4.17. There exists p > k such that [b;k]< N b;-l =0 foralli,j in
Z/2mZ and 1 > p.

Proof. Fix i € Z/2mZ even. There exists an arc

i+ [0,1] = [b;F]s> U {wig1, wio1}
joining w; 11 and w;—1. As the three points a;, w; 11, wi—1 are different, +; sep-
arates «; from any w; for j ¢ {i —2,i—1,i+ 1} (in D).

So, there exists I; > k such that ~; separates [bi_k]< from any b;.l with
I>1;and j ¢ {i —2,i—1,i+ 1}. Moreover, we already know that [b; ] N
[bé?']> =0ifje{i—2,i—1,i+1}, because [bl-_li]> contains bél In particular,
b« Nb? =0 for I >1; and j € {i —2,i— 1,i+1}.

If 7 is odd, we can use the same argument with an arc

Yie1 ¢ [0,1] = [b7 %5 U {wi, wia}
joining w; and w;_s.
We finish by taking p = max{l; : i € Z/2mZ}. =
Thanks to the two preceding lemmas we may fix k£ > 0 such that:

e both attractors [b;*]> and [b;"]> contain b} for all even values of i
and for all [ € {i — 2,4 —1,4,7 + 1},
o [b;*]<N¥! =0 foralli,j in Z/2mZ and | > k.
We define
a; = Fj N U b;l
>k
for all i € Z/2mZ. The cyclic order of the sets a; satisfies

;-2 — Qjr1 — Q4



90 J. Xavier

for all even values of . We may suppose that each a; is an arc, and so
U =D\ Uiez/amz @i is simply connected. Let ¢ : U — D be the Riemann
map and consider the intervals J; defined in [2.4.1]

For all even i, we define I; to be the connected component of S! \
Uiez/2mz Ji following J;—3 in the natural (positive) cyclic order on St We
define I;,1 to be the connected component of S\ Uiez JomZ J; following I;.
So, for all even i we have

Ji—o = L = Jiy1 — Liv1 — Jie

LEMMA 4.18. For all i € Z/2mZ:

(2) if i is even, then o([b;*]<) N S* C L; ULy, and go(bi__kk) nstc
LU,

(3) there exists j; such that p([b;¥]<) N S' C I, (so, for i even, j; €
fivi— 1}, i € i+ 1)).

Proof. (1) This is trivial because of the choice of k£ > 0.

(2) First, we show that o([b; ¥]<) C Ujez/omz Lj- Otherwise, there exists

z € o([b;*]<) N J; for some j € Z/2mZ. So, [b; *]< contains a point in a;.
As [b;¥]< is a closed subset of D, and a; C D, we obtain [b; *]- Na; # 0,
contradicting the previous item.

Fix i € Z/2mZ even. Take a crosscut v C [b;k]> from w;_1 to w;+1. So,
belongs to the closure of only one of the connected components of D\ 7: the
one to the right of 7. Hence, w([b;kk) belongs to the connected component
of D\ ¢(yNU) which is to the right of (yNU). As ¢(y N U) is an arc joining
Ji—1 and J;41, the cyclic order implies that p([b;*]<) N S* € I; U I;_;.

The statement for ¢ — 1 is proved analogously.

(3) Suppose i is even (as before, the other case is analogous). The
previous item implies that if o([b; k]<) intersects I; and I, j # [, then
{5,0y ={i,i -1}

Take a crosscut y C [b; *]s from w;_1 to w;_s. Then p(y N U) separates
I;—q from I; in D . This gives us

b« N (671> # 0,
a contradiction. m

REMARK 4.19. If we set @, = ag;, b; = by, and b} = bk, for all i €

Z./mZ, then a},b; b, i € Z/mZ, satisfy hypotheses (1)—(3) of Lemma

1?7 ) Ty 0

So, if we prove that jo; = 2i for all i € Z/mZ, then Fix(f) # 0. Indeed, the
sets af, i € Z/mZ, are cyclically ordered as follows:

ap —>ay —ay — - —a, o —a,_ 1 — ag.
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Moreover, if we set J! = Jy; for all i € Z/mZ, we have
J_y = Iy — J]
for all i € Z/2mZ, and so ja; = 2i is exactly hypothesis (4) of Lemma
We are now ready to prove Proposition

Proof of Proposition[].13 Because of the previous remark, it is enough
to show that jo; = 2i for all i € Z/mZ. We will show that if this is not the
case, we contradict Lemma [3.2

Lemmatells us that jo; € {2i,2i—1}. Let us assume that jo; = 2i—1.
This implies that jo; o, jo;—1, and jo; are different. Indeed, by Lemma [4.1§
Joi—o € {20 —3,2i — 2}, jo;i—1 € {2i,2i + 1}, and by assumption jg; = 2i — 1.
Moreover:

o [by]> contains b5, bk |, and bk, .,

o [by ] contains bk, bk, |, and b, .,

o [by ] contains both bk, , and b, .

So, as joj_9, joi—1, and jo; are different, if we show that [62_1-112]> also
contains b5, we contradict Lemma Take a crosscut v C [bQ_Zk_ o]> from

azi—2 to agi—4. Then p(y N U) separates I;—1 from Jo;. On the other hand,
©([bh]<) joins both these sets, as we are assuming jo; = 2i — 1, and by the

definition of Jo;. So, )
o([b5;]<) Np(yNU) # 0,

and we are done. =

5. Proof of Lemma|1.3] We finish by proving LemmalI.3] which shows
that our theorem is optimal.

We begin with a perturbation lemma.

Let (¢¢)ter be the flow in D whose orbits are drawn in the figure below:

We say that a flow (¢¢)ier in D is locally conjugate to (¢r)ier at zp if
there exist an open neighbourhood U of zg and a homeomorphism h : D — U
such that h(0) = zo and h~'g;h = ¢; for all t € R.
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If o : D — D is a homeomorphism, we write a(z,y) for the set of
accumulation points of the backward y-orbit of z, and w(z, ) for the set of
accumulation points of the forward ¢-orbit of x.

LEMMA 5.1. Let ¢ : D — D be the time-one map of the flow which is
locally congugate to (¢¢)ier at zo, and U an open neighbourhood of zy where
h=Yoh = ¢1. Then, for any x,y € U such that w(z,p) = 20 = a(y, @), there
exists an orientation preserving homeomorphism g : D — D supported in the
union of two free and disjoint open disks such that

a(z,pog) =a(r,e), wpog)=wy ).

Proof. Let A C D be the oriented straight line through 0 with tangent
unit vector ¢”™/4, and let L (resp. R) be the connected component of U\ h(A)
which is to the left (resp. to the right) of h(A).

Note that given two points z1, zo in the same connected component C'
of U\ h(A) that do not belong to the same orbit of (p;)ecr, there exists an
arc 6 C C joining 2o and 27 such that p(§) N é = (. Moreover, any x € U
such that w(z, ) = 29 belongs to L, and any y € U such that a(y,¢) = 2o
belongs to R. Moreover, there exist z € L and n > 0 such that ¢"(z) € R.

So, we can take a free arc §; C L joining x and z, and a free arc Jo C R
joining ¢"(z) and ¢~ (y). Moreover, we may suppose that

Sin{eF@) k>0 =6 n{*y) : k>0}
= (01Ud)N{e*(2):0< k< n}=0.

We thicken the §;’s to open free and disjoint disks Dy C L, Dy C R such
that

Din{e*@): k>0 =Dyn{L*(y): k >0}
= (D UDy)N{"(2): 0 <k <n}=0.

Finally, we construct an orientation preserving homeomorphism g:D— D
supported in Dj U Dy such that g(z) = z and g(¢"(2)) = ¢~ !(y). Then we
obtain

a(z,pog) =a(r,¢), w(@,pog)=w(y ),
as desired. m

REMARK 5.2. In fact, given a finite set of points x;,y; € U, i =1,...,n,
which belong to different orbits of (¢;):cr and such that w(z;) = 20 = a(y;),
1=1,...,n, there exists an orientation preserving homeomorphism g : D —D

supported in a finite union of free and disjoint open disks such that

Oé(l’i,@og) :CU(.’Ei,QO), w(xlagpog) :w(th%
i =1,...,n. Indeed, we choose different points z; € L and positive integers
n; > 0 such that " (z;) € R. Then we take pairwise disjoint arcs J; joining
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z; and z;, and 82 joining " (2;) and ¢~ '(y;) in such a way that all these
arcs are disjoint from the backward ¢-orbit of x;, the forward -orbit of y;
and the transitional orbits ¢(z;), ..., " "1(2;). This allows us to construct
the desired perturbation g.

Given a family K = ((a;,w;))icz/nz of pairs of points in S1. we denote by
A; the oriented segment joining «; and w;. We say that z € D is a multiple
point if z belongs to at least two different A;’s. Let z be a multiple point,
and let I = {i € Z/nZ : z € A;}. We say that a multiple point z € D has
zero index if there exists an oriented straight line A containing z such that
the algebraic intersection number A A A; equals 1 for all + € I. Note that
this is the case for any multiple point such that #1 = 2.

We say that a pair (ag,wy) € K is i-separated if aj and wy belong to
different connected components of St \ {ay,w;}.

A degeneracy of K is a pair of elements of the family, (o, w;) and (o, w;),
such that a; = w; and a; = w;. We say that a degeneracy is trivial if the
connected component of S\ {a;,w;} containing oy is independent of the
i-separated pair (o, wy) € K.

We will deduce Lemma from the following lemma.

LEMMA 5.3. Let K = ((vi,wi))icz/mz be a family of pairs of points in St
Suppose that:

(1) every multiple point is of zero index,

(2) every polygon P C D whose boundary is contained in UieZ/HZ A; has
zero index,

(3) every degeneracy is trivial.

Then there ezists a flow (¢¢)ier in D such that:

1) (p1)ter is locally conjugate to (¢r)ier at every singularity zo,

i) (¢ s locall ugate t t ngularit

(ii) for all i € Z/nZ there exist two points z; ,z; € D such that a(z;)
= a; and w(z) = w;,

iii) the 2n points z; ,z;", i € Z/nZ, are different.

(ili) the 2n points z; , z;, i € Z/nZ different

)

Proof. First suppose that there are no degeneracies in K. In this case,
the orientations of the A;’s induce a flow (¢1)ier on U;eznz Ai with a
singularity at each multiple point. By (1), we may extend this flow to a
neighbourhood of every multiple point in such a way that it is locally con-
jugate to (¢¢)ier. Moreover, by (2) we may extend (¢¢)icr to the rest of D
without singularities, and we are done.

If K contains one degeneracy (a;,w;) = (wj,a;), we “open it up” as
follows. We consider the family of segments J; ., InZ, kit Ag and a simple
curve 7; joining a; and w; such that:
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(a) v N A; = {ai,wi},

(b) v, N A ND # 0 if and only if (ag,wy) is j-separated, and in this
case #{v; N A, ND} =1,

(c) 7 does not intersect any multiple point.

Now, the orientations of the A;’s, i # j, and the orientation of v; induce
a flow (p¢)ier on UieZ/nZJ# A; Uy, with a singularity at each multiple
point of e,z i2; Ai and also at the intersection points of v; with the
Ai’S, 1 75 j

Note that as «; does not intersect any multiple point, we may extend
(pt)ter to a neighbourhood of every multiple point of UkEZ/nZ, ktj Ak in
such a way that it is locally conjugate to (¢;):cr. Moreover, a point zg € v;
belongs to at most one Ay, k # j, and the intersection is transversal by
item (b) above. So, we may as well extend (¢¢)tcr to a neighbourhood of
zp so as to have local conjugation with (¢¢)icr as well. As the degenera-
cies considered are trivial, we can extend (¢¢)ier to the rest of D without
singularities.

If more than one degeneracy occurs, triviality implies that they are dis-
joint. That is, if (o, w;) = (wj, ), and (oy, wg) = (wi, o), then (a4, w;) is
not k-separated. So, we can “open up” both degeneracies in such a way that
v; Ny =0, and construct our flow (¢;)¢cr analogously. =

We deduce:

COROLLARY 5.4. With the same hypothesis of the preceding lemma, there
exists a fixed-point free orientation preserving homeomorphism f : D — D
that realizes K.

Proof. Let ¢ be the time-one map of the flow given by the preceding
lemma. By simultaneous applications of Lemma [5.1] we can construct an
orientation preserving homeomorphism g : D — ID supported in disjoint
open free disks such that

lim (pog)*(z) =ai, lim (pog)(z)=w
k——o00 k—o00
(see also Remark [5.2).

Then the homeomorphism ¢ o g realizes K. Moreover, as we have local
conjugation to the flow (¢¢)ier at every singularity of ¢, and ¢ o g = ¢
in a neighbourhood of each singularity, we can further perturb ¢ o g into a
homeomorphism f : D — D realizing L and which is fixed point free. =

This last lemma finishes the proof of Lemma [T.3}

LEMMA 5.5. If a multiple point has non-zero index, then there exists a
subfamily of IC forming an elliptic cycle of links.
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Proof. Let x be a multiple point of non-zero index, and let
I={ie€Z/nZ:z e A}

As z has non-zero index, there exists indices i, j € I such that the oriented
interval in S! joining a; and a; contains wg, k € I. Then £ = (o), w))iez)3z
is an elliptic cycle of links, where

(ag,wé) = (ai7wi)7 (O/lvwll) - (aj7wj)7 (0/2,(,0’2) = (akvwk)- u
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