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Cycles of links and fixed points for
orientation preserving homeomorphisms

of the open unit disk
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Abstract. Michael Handel proved the existence of a fixed point for an orientation
preserving homeomorphism of the open unit disk that can be extended to the closed disk,
provided that it has points whose orbits form an oriented cycle of links at infinity. More
recently, the author generalized Handel’s theorem to a wider class of cycles of links . In
this paper we complete this topic describing exactly which are all the cycles of links forcing
the existence of a fixed point.

1. Introduction. Handel’s fixed point theorem [7] has been of great
importance for the study of surface homeomorphisms. It guarantees the
existence of a fixed point for an orientation preserving homeomorphism f of
the unit disk D = {z ∈ C : |z| < 1} provided that it can be extended to the
boundary S1 = {z ∈ C : |z| = 1} and that it has points whose orbits form an
oriented cycle of links at infinity. More precisely, there exist n points zi ∈ D
such that

lim
k→−∞

fk(zi) = αi ∈ S1, lim
k→∞

fk(zi) = ωi ∈ S1,

i = 1, . . . , n, where the 2n points {αi}, {ωi} are different points in S1 and
have the following order property:

(∗) αi+1 is the only one among these points that lies in the open interval
in the oriented circle S1 from ωi−1 to ωi.

(Although this is not Handel’s original statement, it is an equivalent one
as already pointed out in [9].)

Le Calvez gave an alternative proof of this theorem [9], relying only on
Brouwer theory and plane topology, which allowed him to obtain a sharper
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result. Namely, he weakened the extension hypothesis by demanding the
homeomorphism to extend just to D∪⋃i∈Z/nZ{αi, ωi} and he strengthened
the conclusion by proving the existence of a simple closed curve of index 1.

The author generalized both Handel’s and Le Calvez’s results as follows
[13]. Let P ⊂ D be a compact convex n-gon. Let {vi : i ∈ Z/nZ} be its set
of vertices, and for each i ∈ Z/nZ, let ei be the edge joining vi and vi+1.
We suppose that each ei is endowed with an orientation, so that we can tell
whether P is to the right or to the left of ei. We say that the orientations
of ei and ej coincide if P is to the right (or to the left) of both ei and ej ,
i, j ∈ Z/nZ.

We define the index of P by

i(P ) = 1− 1

2

∑
i∈Z/nZ

δi,

where δi = 0 if the orientations of ei−1 and ei coincide, and δi = 1 otherwise.

We will denote by αi and ωi the first, and respectively the last, point
where the straight line ∆i containing ei and inheriting its orientation inter-
sects ∂D.

We say that a homeomorphism f : D → D realizes P if there exists a
family (zi)i∈Z/nZ of points in D such that for all i ∈ Z/nZ,

lim
k→−∞

fk(zi) = αi, lim
k→∞

fk(zi) = ωi.

Theorem 1.1 ([13]). Let f : D→ D be an orientation preserving homeo-
morphism which realizes a compact convex polygon P ⊂ D where the points
αi, ωi, i ∈ Z/nZ, are all different. Suppose that f can be extended to a hom-
eomorphism of D ∪ ⋃i∈Z/nZ{αi, ωi}. If i(P ) 6= 0, then f has a fixed point.

Furthermore, if i(P ) = 1, then there exists a simple closed curve C ⊂ D of
index 1.

The two polygons appearing in Figure 1(a)&(b) satisfy the hypothesis
of this theorem. However, the polygon illustrated in (c) does not, as there
are coincidences among the points {αi}, {ωi}, i ∈ Z/nZ.

The purpose of this paper is to complete this topic: we assume that
there exist two families (αi)i∈Z/nZ, (ωi)i∈Z/nZ of points in S1 and a family
(zi)i∈Z/nZ of points in D such that, for all i ∈ Z/nZ,

lim
k→−∞

fk(zi) = αi, lim
k→∞

fk(zi) = ωi,

and that f extends to a homeomorphism of D ∪ ⋃i∈Z/nZ{αi, ωi}, and we

describe exactly which combinatorics of the points αi, ωi, i ∈ Z/nZ, force
the existence of a fixed point.



Cycles of links and fixed points 61

(a) Handel’s index 1 polygon (b) Index −1 polygon

(c) ωi = αi+2 ∀i

Fig. 1. The hypothesis of Theorem 1.1

A cycle of links of order n ≥ 3 is a family of pairs of points on the circle
S1,

L = ((αi, ωi))i∈Z/nZ,

such that for all i ∈ Z/nZ:

(1) αi 6= ωi,
(2) αi+1 and ωi+1 belong to different connected components of the set

S1\{αi, ωi}.
If L is a cycle of links, we define the set

` = {αi, ωi : i ∈ Z/nZ} ⊂ S1

of points in the circle which belong to a pair in the cycle.
If a, b ∈ `, we write a → b if b follows a in the natural (positive) cyclic

order on S1, and a
=−→ b if either a = b or a→ b.

We say that a cycle of links L is elliptic if for all i ∈ Z/nZ,

ωi−1
=−→ αi+1 → ωi.

We say it is hyperbolic if n = 2k, k ≥ 2, and for all i ∈ Z/nZ with i = 0
mod 2,

αi → αi−1
=−→ ωi+1 → ωi

=−→ αi+2.
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(a) An elliptic cycle of links of
order 3
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(b) A hyperbolic cycle of links of or-
der 4

Finally, we say that L is non-degenerate if

(αi, ωi) ∈ L ⇒ (ωi, αi) /∈ L.
Of course, we say it is degenerate if this condition is not satisfied. An example
is illustrated in Figure 2.
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Fig. 2. A degenerate cycle of links

We say that a homeomorphism f : D → D realizes L if there exists a
family (zi)i∈Z/nZ of points in D such that, for all i ∈ Z/nZ,

lim
k→−∞

fk(zi) = αi, lim
k→∞

fk(zi) = ωi.

The following theorem is the main result of this article.

Theorem 1.2. Suppose that f : D → D is an orientation preserving
homeomorphism which realizes a cycle of links L and can be extended to a
homeomorphism of D ∪ `. If L is either elliptic or hyperbolic, then f has
a fixed point. Furthermore, if L is non-degenerate and elliptic, then there
exists a simple closed curve C ⊂ D of index 1.

It turns out that these results completely describe the combinatorics
giving rise to fixed points:
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Lemma 1.3. Given a family ((αi, ωi))i∈Z/nZ of pairs of points in S1, one
of the following is true:

(1) there exists a subfamily of ((αi, ωi))i∈Z/nZ forming an elliptic or hy-
perbolic cycle of links,

(2) the oriented straight lines from αi to ωi bound a non-zero index poly-
gon P ⊂ D,

(3) there exists a fixed-point free orientation preserving homeomorphism
f : D → D and a family of points (zi)i∈Z/nZ in D such that for all
i ∈ Z/nZ,

lim
k→−∞

fk(zi) = αi, lim
k→∞

fk(zi) = ωi.

We finish this introduction with some remarks on Theorem 1.2.

The elliptic non-degenerate case contains Le Calvez’s improvement of
Handel’s theorem. Indeed, if the points in ` are all different, then L is
non-degenerate. As the example in Figure 1(c) shows, our theorem is more
general even in this case.

The theorem contains the author’s result on non-zero index polygons.
Indeed, in [13] it is shown that if f realizes a non-zero index polygon where
the points αi, ωi, i ∈ Z/nZ are all different, then f realizes an elliptic or
hyperbolic cycle of links. Again, as coincidences in ` are allowed, our theorem
is more general even in this case.

The extension hypothesis is necessary. Indeed, if f : D→ D is fixed-point
free, one can easily construct a homeomorphism h : D→ D such that hfh−1

realizes any prescribed cycle of links.

Non-degeneracy is necessary to obtain the index result. Let f1 be the
time-one map of the flow whose orbits are drawn in the figure below.

α1 = ω3

α2 = ω0

α3 = ω1

α0 = ω2
x

As we will explain below, one can perturb f1 to a homeomorphism f such
that:
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• Fix(f) = Fix(f1) = {x},
• f = f1 in a neighbourhood of x,
• f realizes L = ((αi, ωi))i∈Z/4Z.

We say that the set X is free if f(X) ∩X = ∅.
One can find (by means of a transverse foliation, for example) free and

pairwise disjoint simple paths βi and γi, i ∈ Z/4Z, such that:

• βi joins zi and z′i, where

lim
k→∞

f−k1 (zi) = αi and lim
k→∞

fk1 (z′i) = αi∗ ,

i∗ = i+ 1 for even values of i, and i∗ = i− 1 for odd values of i,
• γi joins fpi1 (z′i) and z′′i , where pi > 0 and limk→∞ fk1 (z′′i ) = ωi,
• γi and βi are disjoint from the f1-orbits of all zj , z

′
j , z
′′
j with i 6= j.

By thickening the paths {βi} and {γi}, one can find free, pairwise disjoint
open disks {D′i} and {D′′i } such that the disks D′i and D′′i are disjoint from
the f1-orbits of the points zj , z

′
j , z
′′
j for i 6= j.

We construct a homeomorphism h : D→ D such that:

• h = Id outside
⋃
i∈Z/4ZD

′
i ∪D′′i ,

• h(zi) = z′i,
• h(fp1 (z′i)) = z′′i .

So, if we define f = h ◦ f1, we obtain

lim
k→∞

f−k(zi) = αi, lim
k→∞

fk(zi) = ωi,

for all i ∈ Z/4Z. Clearly we can make this construction in such a way that
f = f1 in a neighbourhood of x. Moreover, as the disks {D′i} and {D′′i } are
free,

Fix(f) = Fix(f1) = {x}.
So, f realizes the elliptic cycle L, but there is no simple closed curve of
index 1.

α0

α3ω1

ω0

α2

α1
ω3

ω2
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No negative-index fixed point is guaranteed by hyperbolicity. One could
think that when L is hyperbolic, a negative-index fixed point should be
obtained. For example, this would be the case if one had an oriented foliation
F in D \ Fix(f) whose leaves are Brouwer lines for f and simple paths γi,
i ∈ Z/nZ, joining αi and ωi such that:

• each γi is positively transverse to F ,
• the paths {γi} bound a compact disc in D.

(See the figure above.) Indeed, in this case, the Poincaré–Hopf formula would
give a singularity x of the foliation for which i(F , x) < 0. So, x ∈ Fix(f)
and by a result of Le Calvez ([10]) one has i(f, x) = i(F , x) < 0.

However, this is not the case, as the following example shows. Let f1 be
the time-one map of the flow whose orbits are drawn in the figure below.

α0

α3ω1

ω0

α2

α1 ω3

ω2
x

As we did in our preceding example, one can perturb f1 to a homeomorphism
f such that:

• Fix(f) = Fix(f1) = {x},
• f = f1 in a neighbourhood of x,
• f realizes L = ((αi, ωi))i∈Z/4Z.

So, f realizes the hyperbolic cycle L, but there is no fixed point of negative
index.

The structure of this article is the following. In Section 2 we introduce the
tools to be used (brick decompositions, Brouwer theory, repeller/attractor
configurations [13]) and we sum up the results from [9] and [13] that will be
used in the proofs. In Section 3 we state two lemmas that are key for the
contradiction argument in the proof of Theorem 1.2, which is contained in
Section 4. The last Section 5 is devoted to the proof of Lemma 1.3, which
shows that our results are optimal.
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2. Preliminaries

2.1. Brick decompositions. A brick decomposition D of an orientable
surface M is a one-dimensional singular submanifold Σ(D) (the skeleton
of the decomposition), with the property that the set of singularities V
is discrete and such that every σ ∈ V has a neighbourhood U for which
U ∩ (Σ(D) \ V ) has exactly three connected components. We have illus-
trated two brick decompositions in Figure 3. The bricks are the closures of
the connected components of M \ Σ(D) and the edges are the closures of
the connected components of Σ(D)\V . We will write E for the set of edges,
B for the set of bricks and finally D = (V,E,B) for a brick decomposition.

(a) M = R2 (b) M = R2 \ {0}

Fig. 3. Brick decompositions

Let D = (V,E,B) be a brick decomposition of M . We say that X ⊂ B
is connected if given two bricks b, b′ ∈ X, there exists a sequence (bi)0≤i≤n
with b0 = b, bn = b′ and such that bi and bi+1 have non-empty intersection,
i ∈ {0, . . . , n−1}. Whenever two bricks b and b′ have non-empty intersection,
we say that they are adjacent. Moreover, we say that a brick b is adjacent
to a subset X ⊂ B if b /∈ X but b is adjacent to one of the bricks in X. We
say that X ⊂ B is adjacent to X ′ ⊂ B if X and X ′ have no common bricks
but there exist b ∈ X and b′ ∈ X ′ which are adjacent.

From now on we will identify a subset X of B with the closed subset of
M formed by the union of the bricks in X. This may lead to ambiguities
(for instance, two adjacent subsets of B have empty intersection in B and
non-empty intersection in M), but we will point out such cases explicitly.
We remark that ∂X is a one-dimensional topological manifold and that the
connectedness of X ⊂ B is equivalent to the connectedness of X ⊂ M and
to the connectedness of Int(X) ⊂ M as well. We say that a decomposition
D′ is a subdecomposition of D if Σ(D′) ⊂ Σ(D).

If f : M → M is a homeomorphism, we define a map ϕ : P(B)→ P(B)
as follows:

ϕ(X) = {b ∈ B : f(X) ∩ b 6= ∅}.
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We remark that ϕ(X) is connected whenever X is. We define analogously a
map ϕ− : P(B)→ P(B):

ϕ−(X) = {b ∈ B : f−1(X) ∩ b 6= ∅}.
We define the future [b]≥ and the past [b]≤ of a brick b as follows:

[b]≥ =
⋃
k≥0

ϕk({b}), [b]≤ =
⋃
k≥0

ϕk−({b}).

b

f(b)

ϕ({b})

We also define the strict future [b]> and the strict past [b]< of a brick b:

[b]> =
⋃
k>0

ϕk({b}), [b]< =
⋃
k>0

ϕk−({b}).

We say that a set X ⊂ B is an attractor if it satisfies ϕ(X) ⊂ X; this
is equivalent in M to the inclusion f(X) ⊂ Int(X). A repeller is any set X
which satisfies ϕ−(X) ⊂ X. In this way, the future of any brick is an at-
tractor, and the past of any brick is a repeller. We observe that X ⊂ B is a
repeller if and only if B \X is an attractor.

Remark 2.1. The following properties can be deduced from the fact
that X ⊂ B is an attractor if and only if f(X) ⊂ Int(X):

(1) if X ⊂ B is an attractor and b ∈ X, then [b]≥ ⊂ X; if X ⊂ B is a
repeller and b ∈ X, then [b]≤ ⊂ X,

(2) if X ⊂ B is an attractor and b /∈ X, then [b]≤ ∩X = ∅; if X ⊂ B is
a repeller and b /∈ X, then [b]≥ ∩X = ∅,

(3) if b ∈ B is adjacent to an attractor X ⊂ B, then [b]> ∩ X 6= ∅; if
b ∈ B is adjacent to a repeller X ⊂ B, then [b]< ∩X 6= ∅,

(4) two attractors are disjoint as subsets of B if and only if they are
disjoint as subsets ofM ; in other words, two disjoint (inB) attractors
cannot be adjacent; also, two disjoint (in B) repellers cannot be
adjacent.

The following conditions are equivalent:

b ∈ [b]>, [b]> = [b]≥, b ∈ [b]<, [b]< = [b]≤, [b]< ∩ [b]≥ 6= ∅, [b]≤ ∩ [b]> 6= ∅.
The existence of a brick b ∈ B for which any of these conditions is

satisfied is equivalent to the existence of a closed chain of bricks, i.e. a
family (bi)i∈Z/rZ of bricks such that for all i ∈ Z/rZ,

⋃
k≥1 f

k(bi)∩ bi+1 6= ∅.
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In general, a chain for f ∈ Homeo(M) is a family (Xi)0≤i≤r of subsets
of M such that

⋃
k≥1 f

k(Xi) ∩Xi+1 6= ∅ for all 0 ≤ i ≤ r − 1. We say that
the chain is closed if Xr = X0.

We say that a subset X ⊂M is free if f(X) ∩X = ∅.
We say that a brick decomposition D = (V,E,B) is free if every b ∈ B

is a free subset of M . If f is fixed point free it is always possible, taking
sufficiently small bricks, to construct a free brick decomposition.

We recall the definition of maximal free decomposition, which was in-
troduced by Sauzet in his doctoral thesis [12]. Let f be a fixed point free
homeomorphism of a surface M . We say that D is a maximal free decompo-
sition if D is free and any strict subdecomposition is no longer free. Applying
Zorn’s lemma, it is always possible to prove the existence of a maximal free
subdecomposition of a given brick decomposition D.

2.2. Brouwer theory background. We say that Γ : [0, 1] → D is an
arc if it is continuous and injective. We say that an arc Γ joins x ∈ D to
y ∈ D if Γ (0) = x and Γ (1) = y. We say that an arc Γ joins X ⊂ D to
Y ⊂ D, if Γ joins some x ∈ X to some y ∈ Y .

Fix an f ∈ Homeo+(D). An arc γ joining z /∈ Fix(f) to f(z) such that
f(γ)∩ γ = {z, f(z)} if f2(z) = z, and f(γ)∩ γ = {f(z)} otherwise, is called
a translation arc.

Proposition 2.2 (Brouwer’s translation lemma, [1], [2], [4] or [6]). If
any of the following two hypotheses is satisfied:

(1) there exists a translation arc γ joining z ∈ Fix(f2) \ Fix(f) to f(z),
(2) there exists a translation arc γ joining z /∈ Fix(f2) to f(z) and an

integer k ≥ 2 such that fk(γ) ∩ γ 6= ∅,
then there exists a simple closed curve of index 1.

If z /∈ Fix(f), there exists a translation arc containing z; this is easy to
prove once one knows that the connected components of the complement
of Fix(f) are invariant. For this last fact, see [3] for a general proof in any
dimension, or [8] for an easy proof in dimension 2.

We deduce:

Corollary 2.3. If Per(f)\Fix(f) 6= ∅, then there exists a simple closed
curve of index 1.

Proposition 2.4 (Franks’ lemma [5]). If there exists a closed chain of
free, open and pairwise disjoint disks for f , then there exists a simple closed
curve of index 1.

Following Le Calvez [9], we will say that f is recurrent if there exists a
closed chain of free, open and pairwise disjoint disks for f .
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The following proposition is a refinement of Franks’ lemma due to Guillou
and Le Roux (see [11, p. 39]).

Proposition 2.5. Suppose there exists a closed chain (Xi)i∈Z/rZ for
f of free subsets whose interiors are pairwise disjoint and which have the
following property: given any two points z, z′ ∈ Xi there exists an arc γ
joining z and z′ such that γ \ {z, z′} ⊂ Int(Xi). Then f is recurrent.

We deduce:

Proposition 2.6. Let D = (V,E,B) be a free brick decomposition of
D \ Fix(f). If there exists b ∈ B such that b ∈ [b]>, then f is recurrent.

2.3. Little bricks at infinity. Fix f ∈ Homeo+(D), different from
the identity map and non-recurrent. We will make use of the following two
propositions from [9] (both of them depend on the non-recurrent character
of f). The first one (Proposition 2.2 in [9]) is a refinement of a result already
appearing in [12]; the second one is Proposition 3.1 in [9].

Proposition 2.7 ([12], [9]). Let D = (V,E,B) be a maximal free brick
decomposition of D \Fix(f). Then the sets [b]≥, [b]>, [b]≤ and [b]< are con-
nected. In particular every connected component of an attractor is an attrac-
tor, and every connected component of a repeller is a repeller.

Proposition 2.8 ([9]). If f satisfies the hypothesis of Theorem 1.2, then
for all i ∈ Z/nZ we can find a sequence (γki )k∈Z of arcs such that:

• each γki is a translation arc from fk(zi) to fk+1(zi),
• f(γki ) ∩ γk′i = ∅ if k′ < k,
• the sequence (γki )k≤0 converges to {αi} in the Hausdorff topology,

• the sequence (γki )k≥0 converges to {ωi} in the Hausdorff topology.

This result is a consequence of Brouwer’s translation lemma and the
hypothesis on the orbits of the points (zi)i∈Z/nZ. In particular, the extension
hypothesis of Theorem 1.2 is used. It allows us to construct a particular brick
decomposition suitable for our purposes:

Lemma 2.9. For every i ∈ Z/nZ, take U−i a neighbourhood of αi in D
and U+

i a neighbourhood of ωi in D such that U−i ∩U+
i = ∅. There exist two

families (b′li )i∈Z/nZ, l≥1 and (b′li )i∈Z/nZ, l≤−1 of closed disks in D and a family
(li)i∈Z/nZ of integers such that:

(1) each b′li is free and contained in U−i (l ≤ −1) or in U+
i (l ≥ 1),

(2) Int(b′li ) ∩ Int(b′l
′
i ) = ∅ if l 6= l′,

(3) for every k > 1 the sets (b′li )1≤l≤k and (b′li )−k≤l≤−1 are connected,

(4) for all i ∈ Z/nZ, ∂
⋃
l∈Z\{0} b

′l
i is a one-dimensional submanifold,

(5) if x ∈ D, then x belongs to at most two different disks in the family
(b′li )l∈Z\{0}, i∈Z/nZ,
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(6) for all i ∈ Z/nZ, f li+l(zi) ∈ Int(b′l+1
i ) for all l ≥ 0, and f−li−l(zi) ∈

Int(b′−l−1i ) for all l ≥ 0,
(7) fk(zj) ∈ b′li if and only if j = i and k = li + l − 1,
(8) the sequence (b′li )l≥1 converges to {ωi} in the Hausdorff topology and

the sequence (b′li )l≤−1 converges to {αi} in the Hausdorff topology.

The idea is to construct trees T−i ⊂ U−i , T+
i ⊂ U+

i , i ∈ Z/nZ, by deleting

the loops of the curves
∏
k≥−1 γ

k
i ∩ U−i and

∏
k≤1 γ

k
i ∩ U+

i respectively,

and then thickening these trees to obtain the families (b′li )i∈Z/nZ, l≥1 and

(b′li )i∈Z/nZ, l≤−1. We refer the reader to [13] for a proof in English but we
remark that these results are contained in [9]. We have illustrated these
families in Figure 4.
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Fig. 4. The families b′li

Remark 2.10. The fact that the sequence (b′li )l≥1 converges in the Haus-
dorff topology to ωi, implies we can find an arc Γ+

i : [0, 1]→ Int(
⋃
l≥0 b

′l
i ) ∪

{ωi} such that Γ+
i (1) = ωi, i ∈ Z/nZ. Similarly, we can find an arc

Γ−i : [0, 1]→ Int(
⋃
l≥0 b

′−l
i ) ∪ {αi} such that Γ−i (1) = αi, i ∈ Z/nZ.

2.4. Repeller/attractor configurations

2.4.1. Cyclic order at infinity. Let (ai)i∈Z/nZ be a family of non-empty,
pairwise disjoint, closed, connected subsets of D, such that ai ∩ ∂D 6= ∅ and
U = D \ ⋃i∈Z/nZ ai is a connected open set. As U is connected, and its
complementary set in C, namely

{z ∈ C : |z| ≥ 1} ∪
⋃

i∈Z/nZ
ai,

is also connected, U is simply connected.
With these hypotheses, there is a natural cyclic order on the sets {ai}.

Indeed, U is conformally isomorphic to the unit disc via the Riemann map
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ϕ : U → D, and one can consider the Carathéodory extension of ϕ,

ϕ̂ : Û → D,
which is a homeomorphism between the prime ends completion Û of U
and the closed unit disk D. The set Ĵi of prime ends whose impression is
contained in ai is open and connected. It follows that the images Ji = ϕ̂(Ĵi)
are pairwise disjoint open intervals in S1, and are therefore cyclically ordered
following the positive orientation of the circle.

2.4.2. Repeller/attractor configurations. We recall the definition of re-
peller/attractor configuration that was introduced in [13].

We fix f ∈ Homeo+(D) together with a maximal free brick decomposition
D = (V,E,B) of D \ Fix(f).

Let (Ri)i∈Z/nZ and (Ai)i∈Z/nZ be two families of connected, pairwise
disjoint subsets of B such that:

(1) For all i ∈ Z/nZ,

(a) Ri is a repeller and Ai is an attractor,
(b) there exists non-empty, closed, connected subsets ri ⊂ Int(Ri),

ai ⊂ Int(Ai) of D such that ri ∩ ∂D 6= ∅ and ai ∩ ∂D 6= ∅,
(2) D \⋃i∈Z/nZ(ai ∪ ri) is a connected open set.

We say that the pair ((Ri)i∈Z/nZ, (Ai)i∈Z/nZ) is a repeller/attractor con-
figuration of order n. We will write

E = {Ri, Ai : i ∈ Z/nZ}.
Property (2) in the previous definition allows us to give a cyclic order to

the sets ri, ai, i ∈ Z/nZ (see the beginning of this section).

We say that a repeller/attractor configuration of order n ≥ 3 is an elliptic
configuration if:

(1) the cyclic order of the sets ri, ai, i ∈ Z/nZ, has the elliptic order
property :

a0 → r2 → a1 → · · · → ai → ri+2 → ai+1 → · · · → an−1 → r1 → a0,

(2) for all i ∈ Z/nZ there exists a brick bi ∈ Ri such that [bi]≥ ∩Ai 6= ∅.
We say that a repeller/attractor configuration is a hyperbolic configura-

tion if:

(1) the cyclic order of the sets ri, ai, i ∈ Z/nZ, has the hyperbolic order
property :

r0 → a0 → r1 → a1 → · · · → ri → ai

→ ri+1 → ai+1 → · · · → rn−1 → an−1 → r0,
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(2) for all i ∈ Z/nZ there exist two bricks bii, b
i−1
i ∈ Ri such that

[bii]> ∩Ai 6= ∅ and [bi−1i ]> ∩Ai−1 6= ∅.

R1

A0

R2

A1

R0

A2

(a) An elliptic configuration

R0

A0

R1

A1

R2 A2

R3

A3

(b) A hyperbolic configuration

We will make use of the following results from [13]:

Proposition 2.11 ([13]). If there exists an elliptic configuration of order
n ≥ 3, then f is recurrent.

Proposition 2.12 ([13]). If there exists a hyperbolic configuration of
order n ≥ 2, then Fix(f) 6= ∅.

3. Two technical lemmas. In this section we give applications of
Propositions 2.11 and 2.12 that will be used in the proof of Theorem 1.2.

We fix f ∈ Homeo+(D) together with a maximal free brick decomposition
D = (V,E,B) of D \ Fix(f), and we suppose that f is non-recurrent.

Let ai, i ∈ Z/nZ, be non-empty, pairwise disjoint, closed, connected
subsets of D such that ai ∩ ∂D 6= ∅ for all i ∈ Z/nZ, and U = D \⋃i∈Z/nZ ai
is a connected open set. We consider the Riemann map ϕ : U → D, and
the open intervals on the circle Ji, i ∈ Z/nZ, defined in 2.4.1. We recall
that the interval Ji corresponds to the prime ends in U whose impression is
contained in ai.

Let (Ii)i∈Z/nZ be the connected components of S1 \⋃i∈Z/nZ Ji. So, each
Ii is a closed interval, which may be reduced to a point.

Remark 3.1. One can cyclically order the sets (ai)i∈Z/nZ, (rj)i∈Z/mZ,
where (rj)i∈Z/mZ is any family of closed, connected and pairwise disjoint
subsets of U satisfying:

• rj ∩ ∂U 6= ∅, j ∈ Z/mZ,

• for all j ∈ Z/mZ, there exists ij ∈ Z/nZ such that ϕ(rj) ∩ S1 ⊂ Iij ,
• the correspondence j 7→ ij is injective.
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Lemma 3.2. Suppose that:

(1) the cyclic order of the sets ai, i ∈ Z/nZ, is

a0 → a1 → · · · → ai → ai+1 → · · · → an−1 → a0,

(2) for all i ∈ Z/nZ there exists b+i ∈ B such that ai ⊂ [b+i ]>,
(3) there exist three bricks (b−s )s∈Z/3Z such that

(a) for all s ∈ Z/3Z and all i ∈ Z/nZ, one has b−s ⊂ [b+i ]< (and so
[b−s ]< ⊂ U),

(b) [b−s ]< ∩ ∂U 6= ∅ for all s ∈ Z/3Z,
(c) for every s ∈ Z/3Z there exists is ∈ Z/nZ such that

ϕ([b−s ]<) ∩ S1 ⊂ Iis ,
Then the correspondence s 7→ is is not injective.

[b−0 ]<[b−1 ]<

[b−2 ]<

aj0

aj2

A2

A0

A1

aj1

R0R1

R2

Fig. 5. Lemma 3.2

Proof. We will prove that if the correspondence s 7→ is is injective, then
we can construct an elliptic configuration of order 3. As we are assuming f
is not recurrent, this is not possible by Proposition 2.11.

We begin by proving that [b−s ]< ∩ [b−r ]< 6= ∅ implies is = ir. Indeed, if

[b−s ]<∩ [b−r ]< 6= ∅, then [b−s ]<∪ [b−r ]< is a connected set and ϕ([b−s ]< ∪ [b−r ]<)
intersects both Iis and Iir . If is 6= ir, then there exist j0, j1 ∈ Z/nZ such
that any arc joining Jj0 and Jj1 separates Iir from Iis in D. Our hypothesis
(3)(a) allows us to take a crosscut γ from aj0 to aj1 such that γ∩U ⊂ [b−s ]>.

So, ϕ(γ ∩ U) is an arc joining Jj0 and Jj1 , and

ϕ(γ ∩ U) ∩ ϕ([b−s ]< ∪ [b−r ]<) 6= ∅.
This gives us

([b−s ]< ∪ [b−r ]<) ∩ [b−s ]> 6= ∅,
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and as we are supposing that f is not recurrent,

[b−r ]< ∩ [b−s ]> 6= ∅.
So,

[b−s ]< ⊂ [b−r ]<,

which implies

ϕ([b−s ]<) ∩ S1 ⊂ Iis ∩ Iir ,
a contradiction.

So, if the correspondence s 7→ is is injective, the sets [b−s ]< are pairwise
disjoint, and one can cyclically order the n + 3 sets ai, [b

−
s ]<, i ∈ Z/nZ,

s ∈ Z/3Z (see Remark 3.1). We may suppose without loss of generality that

[b−0 ]< → [b−1 ]< → [b−2 ]< → [b−0 ]<.

For all s ∈ Z/3Z, we can take js ∈ Z/3Z such that

[b0]
−
< → aj2 → [b−1 ]< → aj0 → [b−2 ]< → aj1 → [b0]

−
<

(see Figure 9 below).

For all s ∈ Z/3Z, we define

Rs = [b−s ]<, As = [b+js ]>.

We want to show that

((Rs)s∈Z/3Z), (As)s∈Z/3Z)

is an elliptic configuration. It is enough to show that the sets As, Rs,
s ∈ Z/3Z, are pairwise disjoint, because of the cyclic order of these sets , and
our hypothesis (3)(a). We already know that the sets Rs, s ∈ Z/3Z, are pair-
wise disjoint. As we are supposing that f is not recurrent, and b+js ∈ [b−s′ ]>
for any s, s′ in Z/3Z (see (3)(a)), we know that

[b+js ]> ∩ [b−s′ ]< = ∅
for all s, s′ in Z/3Z. So, the sets {As} are disjoint from the sets {Rs}, and
we just have to show that the sets {As} are pairwise disjoint to finish the
proof of the lemma.

Because of the symmetry of the problem it is enough to show that

A0 ∩A1 = ∅.
If this is not so, then

A0 ∪A1 = [b+j0 ]> ∪ [b+j1 ]>

would be a connected set containing both aj1 and aj0 , and the cyclic order
would imply that

([b+j0 ]> ∪ [b+j1 ]>) ∩ [b+j0 ]< 6= ∅,
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by our hypothesis (3)(a). As we are supposing that f is not recurrent, we
have

[b+j1 ]> ∩ [b+j0 ]< 6= ∅.
But this implies that [b+j1 ]> is a connected set containing both aj1 and aj0 .
Once again our hypothesis (3)(a) and the cyclic order give us

[b+j1 ]> ∩ [b+j1 ]< 6= ∅,
and we are done.

For our next lemma, we keep the assumption on the cyclic order of the
sets ai, i ∈ Z/nZ:

a0 → a1 → · · · → ai → ai+1 → · · · → an−1 → a0.

We define Ii to be the connected component of S1 \⋃j∈Z/nZ Jj that follows

Ji−1 in the natural cyclic order on S1, so that we have

Ji−1 → Ii → Ji

for all i ∈ Z/nZ.

Lemma 3.3. If for all i ∈ Z/nZ:

(1) there exists b+i ∈ B such that ai ⊂ [b+i ]>,
(2) there exists b−i ∈ B such that b−i ⊂ [b+j ]<, j ∈ {i− 1, i},
(3) [b−i ]< ⊂ U , and [b−i ]< ∩ ∂U 6= ∅,
(4) ϕ([b−i ]<) ∩ S1 ⊂ Ii,

then Fix(f) 6= ∅.

[b−0 ]<

[b−1 ]<

[b−2 ]<

[b−3 ]<

[b−4 ]<

[b−5 ]<

a4

a5

a0

a1

a2
a3

Fig. 6. Lemma 3.3 with n = 6
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Proof. By Proposition 2.12 it is enough to show that we can construct
a hyperbolic configuration.

We begin by proving that the sets {[b−i ]<} are pairwise disjoint. Other-
wise, there exist i 6= j such that

[b−i ]< ∩ [b−j ]< 6= ∅.

Then [b−i ]<∪ [b−j ]< is a connected set and ϕ([b−i ]< ∪ [b−j ]<) intersects both Ii
and Ij . The cyclic order implies that any arc joining Ji−1 and Ji separates
Ii from Ij , i 6= j.

Our hypothesis (2) allows us to take a crosscut γ from ai−1 to ai such
that

γ ∩ U ⊂ [b−i ]>.

So, ϕ(γ ∩ U) is an arc joining Ji−1 and Ji, and

ϕ(γ ∩ U) ∩ ϕ([b−i ]< ∪ [b−j ]<) 6= ∅.
This gives us

([b−i ]< ∪ [b−j ]<) ∩ [b−i ]> 6= ∅,
and as we are supposing that f is not recurrent,

[b−j ]< ∩ [b−i ]> 6= ∅.
So, [b−i ]< ⊂ [b−j ]<, which implies

ϕ([b−i ]<) ∩ S1 ⊂ Ii ∩ Ij ,
a contradiction.

So, we can cyclically order the 2n sets ai, [b−i ]<, i ∈ Z/nZ (see Remark
3.1). Moreover, for all i ∈ Z/nZ,

ai−1 → [b−i ]< → ai.

Define Ai = [b+i ]> and Ri = [b−i ]< for i ∈ Z/nZ. To finish the proof of
the lemma, it is enough to show that the sets Ri, Ai, i ∈ Z/nZ, are pairwise
disjoint. Indeed, if this is true, our previous remark on the cyclic order,
and our hypothesis (2) imply that ((Ri)i∈Z/nZ, (Ai)i∈Z/nZ) is a hyperbolic
configuration.

We have already proved that the sets Ri, i ∈ Z/nZ, are pairwise disjoint.
We will also show that [b−i ]<∩[b+j ]> = ∅ for any j ∈ Z/nZ. By hypothesis (2),

[b−i ]< ∩ [b+i ]> = ∅, as we are supposing that f is not recurrent. If [b−i ]< ∩
[b+j ]> 6= ∅ for some j 6= i, then [b+j ]< ⊂ [b−i ]<, j 6= i. Therefore, ϕ([b+j ]<) ∩
S1 ⊂ Ii, j 6= i, which contradicts our hypothesis (4)

We have proved that the sets Ri are disjoint from the sets Ai, i ∈ Z/nZ.
So, in order to finish, we only have to prove that the sets Ai, i ∈ Z/nZ, are
pairwise disjoint.
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If this is not the case, there would exist i 6= j such that [b+i ]>∩ [b+j ]> 6= ∅.
So, [b+i ]> ∪ [b+j ]> is a connected set containing ai ∪ aj , and must therefore

intersect [b+i ]<, because of the cyclic order and hypothesis (2). We may of
course assume that [b+j ]>∩ [b+i ]< 6= ∅. Now, we see that [b+j ]> is a connected

set containing aj ∪ ai and must therefore intersect [b+j ]<. This contradiction
proves our claim.

4. Proof of the main result. This section is devoted to the proof of
Theorem 1.2.

We fix an orientation preserving homeomorphism f : D → D which
realizes a cycle of links L = ((αi, ωi))i∈Z/nZ. We recall that this means that
there exists a family (zi)i∈Z/nZ of points in D such that for all i ∈ Z/nZ,

lim
k→−∞

fk(zi) = αi, lim
k→∞

fk(zi) = ωi.

We also recall that

` = {αi, ωi : i ∈ Z/nZ} ⊂ S1,

and that we supppose that f can be extended to a homeomorphism of D∪`.
4.1. The elliptic case. Let us state our first proposition:

Proposition 4.1. If L is elliptic, then Fix(f) 6= ∅. Moreover, one of
the following holds:

(1) f is recurrent,
(2) L is a degenerate cycle.

As the proof is long, we will first describe our strategy. The first part
of the work consists in constructing a brick decomposition which is suitable
for our purposes. Once this is done, we show that if f is not recurrent,
then the elliptic order property gives rise to constraints on the order of the
cycle of links L. We will show (as a consequence of Lemma 3.2) that the
only possibility for the order of L is n = 4. The case n = 4 is special,
as degeneracies may occur (see Figure 2, and the introduction, where we
explain that non-degeneracy is necessary to obtain the index result). For
n = 4 we prove that Fix(f) 6= ∅, and that if f is not recurrent, then L is
degenerate.

I. Construction of the brick decomposition. We first note that we may
assume that n > 3: if n = 3, the definition of cycle of links implies automat-
ically that the points {αi}, {ωi} are all different, and the proof follows from
Le Calvez’s improvement to Handel’s theorem. As we are dealing with the
elliptic case, the only possible coincidences among the points {αi}, {ωi} are
of the form ωi−2 = αi. In particular, the points {ωi} are all different and
for all i ∈ Z/nZ we can take a neighbourhood U+

i of ωi in D in such a way
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that U+
i ∩ U+

j = ∅ if i 6= j. We define U−i = U+
i−2 if αi = ωi−2, and for all

i ∈ Z/nZ such that αi 6= ωi−2 we take a neighbourhood U−i of αi in D in
such a way that U−i ∩ U+

j = ∅ for all j ∈ Z/nZ, and U−i ∩ U−j = ∅ for all
i 6= j.

We suppose from now on that f is not recurrent.
We apply Lemma 2.9 and obtain families (b′li )l∈Z\{0}, i∈Z/nZ of closed

disks. So, the disks in (b′li )l≥1, i∈Z/nZ have pairwise disjoint interiors.
Let Ireg be the set of i ∈ Z/nZ such that αi 6= ωi−2, or such that

αi = ωi−2 but there exists K > 0 such that⋃
k>K

Int(b′ki−2) ∩
⋃
k>K

Int(b′−ki ) = ∅.

Let Ising be the complement of Ireg in Z/nZ.
After discarding a finite number of disks, we can suppose that the disks

b′li with l ≥ 1, i ∈ Z/nZ, and b′−li with l ≥ 1, i ∈ Ireg, have pairwise disjoint
interiors.

If i ∈ Ising, then αi = ωi−2 and for all k > 0 there exist k′ > k, j′ > k

such that Int(b′k
′

i−2) ∩ Int(b′−j
′

i ) 6= ∅.
In the following lemma we refer to the family of integers (li)i∈Z/nZ con-

structed in Lemma 2.9.

Lemma 4.2. For i ∈ Ising, we can find sequences (cmi )m≥0 of free closed
disks such that:

(1) cmi ⊂ U+
i−2 = U−i ,

(2) there exists an increasing sequence (kmi )m≥0 such that b
′kmi
i−2 ∩ cmi 6= ∅

for all m ≥ 0,

(3) (b
′kpi
i−2 ∪ c

p
i ) ∩ (b

′kmi
i−2 ∪ cmi ) = ∅ for all p 6= m,

(4) there exists an increasing sequence (jmi )m≥0 such that f−li−j
m
i +1(zi)

∈ cmi for all m ≥ 0,
(5) the sequence (cmi )m≥0 converges to ωi−2 = αi in the Hausdorff topol-

ogy,

(6) b
′kmi
i−2 ∩ cmi is an arc for all m ≥ 0 (so, cmi ∪ b

′kmi
i−2 is a topological closed

disk),
(7) ∂(

⋃
k≥1 b

′k
i−2 ∪

⋃
m≥0 c

m
i ) is a one-dimensional submanifold,

(8) if x ∈ D, then x belongs to at most two different disks in the family
{b′ki−2, cmi : k ≥ 1, m ≥ 0}.

Proof. Take i ∈ Ising and consider the family (b′ki−2)k≥1 ⊂ U+
i−2 of closed

disks. As i ∈ Ising, there exists j0i > 1 such that

Int
(⋃
k≥1

b′ki−2
)
∩ Int(b

′−j0i
i ) 6= ∅.
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.. .
.ωi−2 = αi

b′kmi−2

cmi

Fig. 7. The disks b′km
i−2 and cmi

By Lemma 2.9(7), f (−li−j
0
i +1)(zi) ∈ Int(b

′−j0i
i ) \⋃l≥1 b

′l
i−2. We take an arc

γ0i ⊂ Int(b
′−j0i
i ) \ Int

(⋃
l≥1

b′li−2
)

joining f (−li−j
0
i +1)(zi) and a point x0i ∈ ∂

⋃
l≥1 b

′l
i−2. We define k0i ≥ 1 by

x0i ∈ b
′k0i
i−2.

We define inductively for m ≥ 0:

• Um ⊂ U+
i−2 = U−i , a neighbourhood of ωi−2 = αi in D such that

Um ∩ (Int(b
′kmi
i−2) ∪ Int(b

′−jmi
i )) = ∅,

• Km > 0 such that for all k ≥ Km, b′ki−2 ∪ b′−ki ⊂ Um,

• jm+1
i > Km such that Int(

⋃
k≥Km

b′ki−2) ∩ Int(b
′−jm+1

i
i ) 6= ∅,

• γm+1
i ⊂ Int(b

′−jm+1
i

i )\⋃l≥Km
b′li−2, an arc joining f (−li−j

m+1
i +1)(zi) and

a point xm+1
i ∈ ∂⋃k≥Km

b′ki−2,
• km+1

i > Km by

xm+1
i ∈ b′k

m+1
i

i−2 .

The existence of Km comes from the fact that both sequences (b′−li )l≥1
and (b′li−2)l≥1 converge to αi = ωi−2 in the Hausdorff topology; that of jm+1

i

from the fact that i ∈ Ising; that of γm+1
i from the choice of jm+1

i and the

fact that f (−li−j
m+1
i +1)(zi) ∈ Int(b

′−jm+1
i

i ) \ ⋃l≥Km
b′li−2, and that of xm+1

i

and km+1
i follows from the choice of jm+1

i .
By thickening these arcs {γmi }, we can construct disks {cmi } satisfying

all the conditions of the lemma.

The proposition above allows us to construct a maximal free brick de-
composition (V,E,B) such that:
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• for all i ∈ Z/nZ and l ≥ 1, there exists bli ∈ B such that b′li ⊂ bli,
• for all i ∈ Ireg and l ≥ 1, there exists b−li ∈ B such that b′−li ⊂ b−li ,

• for all m ≥ 0 and i ∈ Ising, there exists b
−jmi
i ∈ B such that cmi ⊂ b

−jmi
i .

II. The “domino effect” of the elliptic order property

Lemma 4.3. Take two indices i, j in Z/nZ, and two integers k and N .
If bkj and bkj+2 are contained in [bNi ]>, then there exists k′ ∈ Z such that bk

′
l

is contained in [bNi ]> for all l ∈ Z/nZ.

Proof. We will show that if bkj and bkj+2 are contained in [bNi ]>, then

there exists k′′ such that both bk
′′
j+1 and bk

′′
j+3 are contained in [bNi ]>. If bkj

and bkj+2 are contained in [bNi ]>, then blj and blj+2 are contained in [bNi ]> for
all l ≥ k. By Remark 2.10, we can find an arc

γ : [0, 1]→ [bNi ]> ∪ {ωj , ωj+2}
joining ωj and ωj+2. As n > 3, and the coincidences are of the form αi =
ωi−2, we know that the points αj+1, ωj , αj+3, ωj+2 are all different. So, γ
separates both αj+1 from ωj+1 and αj+3 from ωj+3. Hence, there exists

k′′ > 0 such that [bk
′′
j+1]≤ ∩ [bNi ]> 6= ∅ and [bk

′′
j+3]≤ ∩ [bNi ]> 6= ∅. We are done

by induction, and by taking k′ large enough.

In the following lemma we make reference to the sequences (kmi )m≥0 and
(jmi )m≥0 defined in Lemma 4.2.

Lemma 4.4. For every i ∈ Ising, there exists N > 0 such that [b
−jNi
i ]≥

contains b
kNi
i−2.

Proof. We will prove the following stronger statement which implies im-

mediately that [b
−jNi
i ]≥ contains b

kNi
i−2: there exists N > 0 such that f(cNi ) ∩

b
′kNi
i−2 6= ∅.

I. Let us begin by studying the local dynamics of the brick decomposi-
tion at αi = ωi−2, i ∈ Ising. We define, for all m ≥ 0,

Xm = b
′kmi
i−2 ∪ cmi ,

and we recall that every Xm is a closed disk (see Lemma 4.2). Then, for all
m ≥ 0,

f li−2+k
m
i −1(zi−2) ∪ f−li−j

m
i −jmi (zi) ∈ Xm.

So, given any two positive integers m > p, one has⋃
k≥1

fk(Xp) ∩Xm 6= ∅ and
⋃
k≥1

fk(Xm) ∩Xp 6= ∅.

Moreover, Xm∩Xp = ∅ and Xm and Xp are topological closed disks. There-
fore, if we can find m > p ≥ 0 such that both Xp and Xm are free sets,
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then f would be recurrent by Proposition 2.5. Hence, we can suppose that
for all m ≥ 0 the set Xm is not free. So, as for all m ≥ 0 both b′kmi and cmi
are free sets, we see that either f(b

′kmi
i−2) ∩ cmi 6= ∅, or f(cmi ) ∩ b′k

m
i

i−2 6= ∅. If

there exists m > 0 such that f(cmi ) ∩ b′k
m
i

i−2 6= ∅, we are done. So, we may

assume that for all m ≥ 0, f(b
′kmi
i−2) ∩ cmi 6= ∅. Then f(b

kmi
i−2) ∩ b

−jmi
i 6= ∅ for

all m ≥ 0. In particular, [b
kmi
i−2]> contains bli for all l > 0 and for all m ≥ 0.

II. We will show that this implies that f is recurrent. As [b
kmi
i−2]> contains

bki and bki−2 for k > kmi , Lemma 4.3 implies that for all m ≥ 0 there exists

lm > 0 such that [b
kmi
i−2]> contains blj for all j ∈ Z/nZ and for all l ≥ lm.

In particular, Remark 2.10 tells us that for all m ≥ 0 there exists an arc

Γm : [0, 1]→ [b
kmi
i−2]> ∪ {ωi−2, ωi−4}

joining ωi−2 and ωi−4, which implies that Γm separates αi−1 from αi−3 in D
(see Figure 8(a) and observe that as n > 3 the points αi−3, ωi−4, αi−1, ωi−2
are all different). Since we are assuming that f is not recurrent, we deduce

that the closure of [b
kmi
i−2]≤ cannot contain both points αi−1 and αi−3.

ωi−2 = αi

αi−1

αi−3

ωi−4
Γm

(a)

U

(b)

Fig. 8. The proof of Lemma 4.4

We will suppose that for all m ≥ 0, the closure of [b
kmi
i−2]≤ does not

contain one of the points αi−1 and αi−3, and obtain a contradiction. As
m > p implies

[b
kpi
i−2]≤ ⊂ [b

kmi
i−2]≤,

one of the points αi−1, αi−3 is not contained in the closure of any of the

sets [b
kmi
i−2]≤, m ≥ 0. Suppose that αi−3 is not contained in [b

kmi
i−2]≤ for any

m ≥ 0 (the other case is analogous). In particular, for all m ≥ 0, [b
kmi
i−2]≤

does not contain any of the bricks containing the orbit of zi−3. We take a
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neighbourhood U of αi−3 in D such that U ∩ [b
k0i
i−2]≤ = ∅ and such that

U ∩ ⋃l>k0i
bli−2 = ∅. We also take j > 0 such that f−j(zi−3) ∈ U , and an

arc β : [0, 1]→ U joining αi−3 and f−j(zi−3). Finally, we take a brick b ∈ B
such that f−j(zi−3) ∈ b. As

⋃
l≥1 b

′l
i−3 ⊂ [b]≥, Remark 2.10 allows us to take

an arc γ : [0, 1]→ [b]≥ ∪ ωi−3 joining f−j(zi−3) and ωi−3.
So, β.γ separates αi−2 from ωi−2 in D and

β.γ ∩
( ⋃
l>k0

bli−2 ∪ [b
k0i
i−2]≤

)
6= ∅,

which implies

γ ∩
( ⋃
l>k0

bli−2 ∪ [b
k0i
i−2]≤

)
6= ∅,

because of our choice of U (see Figure 8(b)). Hence,

b≥ ∩
⋃
l>0

[bli−2]< 6= ∅,

which implies that for some m ≥ 0,

[b]≥ ∩ [bmi−2]< 6= ∅.

Therefore, b ∈ [b
kmi
i−2]≤, and [b

kmi
i−2]≤ contains a brick containing one point of

the orbit of zi−3. This contradiction finishes the proof of the lemma.

Lemma 4.5. There exists k > 0 such that for any pair of indices i, j in
Z/nZ, the attractor [b−ki ]> contains bkj .

Proof. For all i ∈ Ireg, we know that
⋃
l≥1 b

′−l
i ⊂ ⋃l>0[b

−l
i ]> (note that

this is not necessarily the case if i ∈ Ising). So, by Remark 2.10, there exists
an arc

Γi : [0, 1]→
⋃
l>0

[b−li ]> ∪ {αi, ωi}

joining αi and ωi. Hence, Γi separates both αi−1 from ωi−1 and αi+1 from
ωi+1 in D. Therefore, there exists m > 0 such that [b−mi ]> contains both
bmi+1 and bmi−1. By Lemma 4.3, [b−mi ]> contains blj for all j ∈ Z/nZ, and l
large enough.

For all i ∈ Ising, the previous lemma tells us that there exists N > 0 such

that [b
−jNi
i ]≥ contains b

kNi
i−2. Clearly, [b

−jNi
i ]≥ also contains b

kNi
i and so once

again, Lemma 4.3 implies that [b
−jNi
i ]≥ contains blj for all j ∈ Z/nZ and l

large enough. We finish by taking k sufficiently large.
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III. Constraints on the order of the cycle of links L. We fix k > 0 such
that for any i, j in Z/nZ, [b−ki ]> contains bkj . We define

ai =
( ⋃
m≥k

bmi

)
∩ Γ+

i , i ∈ Z/nZ

(see Remark 2.10 for the definition of Γ+
i ). We may suppose that

U = D \
⋃

i∈Z/nZ
ai

is simply connected. As ai ⊂
⋃
m≥k b

m
i , and we are supposing that f is not

recurrent, we know that [b−ki ]< ⊂ U for all i ∈ Z/nZ.

Let ϕ : U → D be the Riemann map and consider the intervals Ji,
i ∈ Z/nZ, defined in 3.1. We define Ii as to be the connected component of
S1 \ ⋃l∈Z/nZ Jl following Ji−2 in the natural (positive) cyclic order on S1.
So, each Ii is a closed interval, and we have

Ji−2 → Ii → Ji−1

for all i ∈ Z/nZ.

Lemma 4.6. For all i ∈ Z/nZ:

(1) there exists ji ∈ Z/nZ such that ϕ([b−ki ]<) ∩ S1 ⊂ Iji,
(2) ji ∈ {i− 1, i},
(3) if αi 6= ωi−2, then ji = i.

Proof. (1) If there exists x ∈ ϕ([b−ki ]<) ∩ Jj for some j ∈ Z/nZ, then

[b−ki ]< ∩ aj 6= ∅. As [b−ki ]< is closed in D, and as aj ⊂ D, we obtain [b−ki ]< ∩
aj 6= ∅, a contradiction. So, ϕ([b−ki ]<) ⊂ ⋃j∈Z/nZ Ij . If ϕ([b−ki ]<) intersects

Ij and Ik, k 6= j, then there exist two different indices i0 and i1 in Z/nZ such
that any arc joining Ji0 and Ji1 separates Ij from Ik. We take a crosscut γ

from ai0 to ai1 such that γ ⊂ [b−ki ]>. So,

ϕ(γ ∩ U) ∩ ϕ([b−ki ]<) 6= ∅,
and consequently

[b−ki ]> ∩ [b−ki ]< 6= ∅,
which contradicts our assumption that f is not recurrent.

(2) Take a crosscut γ ⊂ [b−ki ]> from ai−3 to ai−1. Then the elliptic
order property implies that αi belongs to the closure of only one of the
two connected components of U \ γ: the one to the right of γ. We use here
the fact that αi /∈ {ωi−3, ωi−1}. So, [b−ki ]< also belongs to the connected

component of U \ γ which is to the right of γ. Consequently, ϕ([b−ki ]<)
belongs to the connected component of D \ ϕ(γ ∩ U) which is to the right
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of ϕ(γ ∩ U). As ϕ(γ ∩ U) is an arc from Ji−3 to Ji−1, the closure of this
connected component only contains Ii and Ii−1. So, we obtain ji ∈ {i−1, i}.

(3) If αi 6= ωi−2, we can apply exactly the same argument as in the
preceding item, but using a crosscut γ from ai−2 to ai−1, obtaining ji = i.

Remark 4.7. If we set b−i = b−ki and b+i = bki , then the bricks b−i ,
i ∈ {i0, i1, i2}, satisfy all the hypotheses of Lemma 3.2, where i0, i1, i2 are
any three different indices in Z/nZ. Indeed, k is chosen so that (2) and (3)(a)

hold, (3)(b) is granted since αi ⊂ [b−i ]< for all i ∈ Z/nZ, and (3)(c) is the
content of item (1) in Lemma 4.6.

The second item in Lemma 4.6 gives us:

Corollary 4.8. If |i− l| ≥ 2, then ji 6= jl.

The constraint on the order L follows:

Lemma 4.9. The order of L is either 4 or 5.

Proof. If n ≥ 6, the sets {i, i − 1}, i ∈ {0, 2, 4}, are pairwise disjoint,
and so the three indices j0, j2, j4 given by Lemma 4.6 are different. This
contradicts Lemma 3.2.

Lemma 4.10. We have n = 4.

Proof. We show that n = 5 also contradicts Lemma 3.2. If j0, j2, j3 are all
different, we are done because of Lemma 3.2. Otherwise, the only possibility
is that j2 = j3 = 2 (see Lemma 4.6). But then j1, j3 and j4 are different.

Lemma 4.11. L is degenerate.

Proof. We will show that if n = 4 and L is non-degenerate, we can also
find a triplet i0, i1, i2 in Z/nZ such that the corresponding jis , s ∈ {0, 1, 2},
are different.

For a non-degenerate cycle of links, there can be at most two coincidences
of the type αi = ωi−2. Furthermore, if αi = ωi−2 and αj = ωj−2 for some
i 6= j, then |i− j| = 1. Indeed, the points in ` are ordered as follows:

ω0
=−→ α2 → ω1

=−→ α3 → ω2
=−→ α0 → ω3

=−→ α1 → ω0,

and non-degeneracy means that we cannot have both ωi = αi+2 and ωi+2 =
αi, for some i ∈ Z/4Z. So, there exists l ∈ Z/4Z such that αl 6= ωl−2 and
αl+1 6= ωl−1. We can suppose without loss of generality that α0 6= ω2, and
α1 6= ω3 (see Figure 9). Items (2) and (3) in Lemma 4.6 imply that j0, j1,
and j3 are different, and we are done.

The following lemma finishes the proof of Proposition 4.1.

Lemma 4.12. If n = 4, then Fix(f) 6= ∅.
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Fig. 9. The case n = 4

Proof. We will be done by constructing a hyperbolic repeller/attractor
configuration of order 2. We define

R0 = [b−k0 ]<, R1 = [b−k2 ]<, A0 = [bk3]>, A1 = [bk1]>.

By the choice of k, there exist two bricks cii, c
i−1
i , contained in Ri,

i ∈ Z/2Z, such that [cji ]> ∩Aj 6= ∅ if j ∈ {i, i− 1}.
Moreover, the cyclic order of these sets is the following:

R0 → A0 → R1 → A1 → R0.

Indeed, we know that j0 ∈ {0, 3}, j2 ∈ {2, 1}, and the cyclic order of the
intervals Ji, Ii, i ∈ Z/4Z, is

I0 → J3 → I1 → J0 → I2 → J1 → I3 → J2 → I0.

So, we just have to show that the sets Ri, Ai, i ∈ Z/2Z, are pairwise
disjoint. The choice of k implies that [b−ki ]< ∩ [bkj ]> = ∅ for all i, j in Z/4Z.
As a consequence, we just have to check R0 ∩R1 = ∅, and A0 ∩A1 = ∅.

If this is not the case, [b−k0 ]< ∪ [b−k2 ]< is a connected set separating [bk1]>
and [bk3]>. Again by the choice of k we have

([b−k0 ]< ∪ [b−k2 ]<) ∩ [b−k0 ]> 6= ∅,
and as we are supposing that f is not recurrent,

[b−k2 ]< ∩ [b−k0 ]> 6= ∅.
But then

[b−k2 ]< ∩ [b−k2 ]> 6= ∅,
because [b−k2 ]< contains [b−k0 ]< and therefore separates [bk1]> and [bk3]>, both

of which are contained in [b−k2 ]>.
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Analogously, ifA0∩A1 6= ∅, then [bk3]>∪[bk1]> is a connected set separating
[b−k2 ]< and [b−k0 ]<. Again by the choice of k we have

([bk3]> ∪ [bk1]>) ∩ [bk3]< 6= ∅,
and as we are supposing that f is not recurrent,

[bk1]> ∩ [bk3]< 6= ∅.
But then

[bk1]> ∩ [bk1]< 6= ∅,
because [bk1]> contains [bk3]> and therefore separates [b−k0 ]< and [b−k2 ]<, both
of which are contained in [bk1]<.

4.2. The hyperbolic case. Our next proposition finishes the proof of
Theorem 1.2:

Proposition 4.13. If L is hyperbolic, then Fix(f) 6= ∅.
We recall that the order of a hyperbolic cycle of links is an even number.

That is, from now on n = 2m, m ≥ 2. The hyperbolic order property implies
that the only possible coincidences among the points αi, ωi, i ∈ Z/nZ, are
of the form ωi−2 = αi for even values of i, or ωi+2 = αi for odd values of i.

As the points {ωi} are all different, we can take a neighbourhood U+
i of

ωi in D in such a way that that U+
i ∩ U+

j = ∅ if i 6= j. For even values of i,

we define U−i = U+
i−2 if αi = ωi−2, and if αi 6= ωi−2 we take a neighbourhood

U−i of αi in D in such a way that U−i ∩U+
j = ∅ for any j, and U−i ∩U−j = ∅

if j 6= i. Similarly, for odd values of i, we define U−i = U+
i+2 if αi = ωi+2,

and if αi 6= ωi+2 we take a neighbourhood U−i of αi in D in such a way that
U−i ∩ U+

j = ∅ for any j, and U−i ∩ U−j = ∅ if j 6= i.
We keep the assumption that f is not recurrent.
We apply Lemma 2.9 and obtain families (b′li )l∈Z\{0}, i∈Z/2mZ of closed

disks. So, the disks in (b′li )l≥1, i∈Z/2mZ have pairwise disjoint interiors.
Let Ireg be the set of even i ∈ Z/2mZ such that αi 6= ωi−2, or such that

αi = ωi−2 but there exists K > 0 such that
⋃
k>K b

′k
i−2 ∩

⋃
k>K b

′−k
i = ∅,

together with the set of odd i ∈ Z/2mZ such that αi 6= ωi+2, or such that
αi = ωi+2 but there exists K > 0 such that

⋃
k>K b

′k
i+2 ∩

⋃
k>K b

′−k
i = ∅. Let

Ising be the complement of Ireg in Z/2mZ.
We can suppose that all the disks in the families (b′li )l≥1, i∈Z/2mZ,

(b′−li )l≥1, i∈Ireg have disjoint interiors.
We define i∗ = i− 2 if i is even, and i∗ = i+ 2 if i is odd.

Lemma 4.14. If i ∈ Ising, then we can find sequences of free closed disks
(cni )n≥0 satisfying:

(1) cni ⊂ U+
i∗ = U−i ,
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(2) there exists an increasing sequence (kni )n≥0 such that b
′kni
i∗ ∩ cni 6= ∅

for all n ≥ 0,

(3) (b
′kni
i∗ ∪ cni ) ∩ (b

′kpi
i∗ ∪ c

p
i ) = ∅ for all n 6= p,

(4) there exists an increasing sequence (jni )n≥0 such that f−j
n
i (zi) ∈ cni ,

(5) the sequence (cni )n≥0 converges to ωi∗ = αi in the Hausdorff topology,

(6) b
′kni
i∗ ∩ cni is an arc for all n ≥ 0,

(7) ∂(
⋃
k≥1 b

′k
i∗ ∪

⋃
n≥0 c

n
i ) is a one-dimensional submanifold,

(8) if x ∈ D, then x belongs to at most two different disks in the family
{b′ki∗ , cni : k ≥ 1, n ≥ 0}.

Proof. Note that the local dynamics in a neighbourhood of a point αi,
i ∈ Ising, is exactly the same as that in the elliptic case. So, the same proof
we did for Lemma 4.2 works here as well.

We construct a maximal free brick decomposition (V,E,B) such that:

• for all i ∈ Z/2mZ and for all l ≥ 1, there exists bli ∈ B such that
b′li ⊂ bli,
• for all i ∈ Ireg and for all l ≥ 1, there exists b−li ∈ B such that

b′−li ⊂ b−li ,

• for all n ≥ 0 and for all i ∈ Ising, there exists b
−jni
i ∈ B such that

cni ⊂ b
−jni
i .

Lemma 4.15. If i ∈ Ising, then there exists N > 0 such that [b
−jNi
i ]≥

contains b
kNi
i∗ .

Proof. Fix an even index i ∈ Ising (the proof for odd indices is analogous).
The first part of the proof is identical to part I in the proof of Lemma 4.4.
Indeed, this proof is local, that is, it does not depend on how the rest of the

points in ` are ordered. So, there are two possibilities: either f(cNi )∩b′k
N
i

i−2 6= ∅
or f(b

′kNi
i−2)∩ cNi 6= ∅. In the first case we are done, as it implies immediately

the statement of the lemma. As a consequence, we may assume that for all

n ≥ 0, [b
kni
i−2]> contains bli for all l > 0. We will show that this contradicts

the fact that f is not recurrent.

With this last assumption, for all n ≥ 0 there exists an arc

Γn : [0, 1]→ [b
kni
i−2]> ∪ {ωi−2, ωi}

joining ωi−2 and ωi (see Remark 2.10). So, the arc Γn separates αi−1 from
αi−3 in D for all n > 0 (see Figure 10, and note that the points αi−1, αi−3,
ωi−2, ωi are all different).

We deduce (as we are supposing that f is not recurrent) that for any

n > 0, [b
kni
i−2]≤ cannot contain both αi−1 and αi−3. So, one of the points αi−1
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ωi−2 = αi

αi−1

αi−2

ωi

Γn

ωi−1

ωi+1

αi+1

Fig. 10. The proof of Lemma 4.15

or αi−3 is not contained in any of the sets [b
kni
i−2]≤, n > 0. We will suppose

that for all n > 0, αi−1 /∈ [b
kni
i−2]≤ (the proof is analogous in the other case).

We fix n > 0 and consider the connected set

K =
⋃
l≥kni

bli−2 ∪ [b
kni
i−2]≤.

We choose a neighbourhood U of αi−1 in D such that U ∩K = ∅. Then we
take j > 0 such that f−j(zi−1) ∈ U , and b ∈ B such that f−j(zi−1) ∈ b. We
take an arc γ ⊂ U joining αi−1 and f−j(zi−1), and an arc β ⊂ [b]≥ ∪ ωi−1
joining f−j(zi−1) and ωi−1. We deduce that γ.β ∩ K 6= ∅, and as γ ⊂ U ,
we have β ∩ K 6= ∅. So, there exists l ≥ kni such that b ∈ [bli−2]≤, and

consequently αi−1 ∈ [bli−2]≤. This contradiction finishes the proof of the
lemma.

Lemma 4.16. There exists k > 0 such that for all even values of i ∈
Z/2mZ, both attractors [b−ki ]> and [b−ki−1]> contain bkl for all l ∈ {i − 2, i −
1, i, i+ 1}.

Proof. If i ∈ Ising, the previous lemma tells us that there exists N > 0

such that [b
−jNi
i ]≥ contains b

kNi
i−2. So, we can find an arc

Γ : [0, 1]→ [b
−jNi
i ]> ∪ {ωi−2, ωi}

joining ωi−2 and ωi. This arc separates both αi−1 from ωi−1 and αi+1

from ωi+1 in D (see Figure 10). As a consequence, both
⋃
k≥1[b

k
i−1]≤ and⋃

k≥1[b
k
i+1]≤ intersect Γ , and so there exists k > 0 such that bki−1 and bki+1

belong to [b
−jNi
i ]>. If i − 1 ∈ Ising, we can show analogously that [b

−jNi−1

i−1 ]>
contains bkl for all l ∈ {i− 2, i− 1, i, i+ 1} and some k > 0.
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If i ∈ Ireg, we can find an arc

Γ : [0, 1]→
⋃
l>0

[b−li ]> ∪ {αi, ωi}

joining αi and ωi. So, Γ separates (in D) both αi+1 from ωi+1 and αi−1
from ωi−1. Therefore, both

⋃
k≥1[b

k
i−1]≤ and

⋃
k≥1[b

k
i+1]≤ intersect Γ , and

there exist k,N > 0 such that [b−Ni ]>∩ [bki−1]≤ 6= ∅ and [b−Ni ]>∩ [bki+1]≤ 6= ∅.
Once bli−1 and bli+1 belong to [b−Ni ]>, we can find an arc

Γ ′ : [0, 1]→ [b−Ni ]> ∪ {ωi−1, ωi+1}
joining ωi−1 and ωi+1. So, Γ ′ separates αi−2 from ωi−2 in D, and one ob-
tains bki−2 ∈ [b−Ni ]> for some k > 0. We obtain the result by sufficiently
enlarging k.

We fix k > 0 as in Lemma 4.16.

Lemma 4.17. There exists p > k such that [b−ki ]< ∩ b′lj = ∅ for all i, j in
Z/2mZ and l ≥ p.

Proof. Fix i ∈ Z/2mZ even. There exists an arc

γi : [0, 1]→ [b−ki ]> ∪ {ωi+1, ωi−1}
joining ωi+1 and ωi−1. As the three points αi, ωi+1, ωi−1 are different, γi sep-
arates αi from any ωj for j /∈ {i− 2, i− 1, i+ 1} (in D).

So, there exists li > k such that γi separates [b−ki ]< from any b′lj with

l > li and j /∈ {i− 2, i− 1, i+ 1}. Moreover, we already know that [b−lii ]< ∩
[blij ]> = ∅ if j ∈ {i−2, i−1, i+1}, because [b−lii ]> contains blij . In particular,

[b−lii ]< ∩ b′lj = ∅ for l ≥ li and j ∈ {i− 2, i− 1, i+ 1}.
If i is odd, we can use the same argument with an arc

γi−1 : [0, 1]→ [b−ki ]> ∪ {ωi, ωi−2}
joining ωi and ωi−2.

We finish by taking p = max{li : i ∈ Z/2mZ}.
Thanks to the two preceding lemmas we may fix k > 0 such that:

• both attractors [b−ki ]> and [b−ki−1]> contain bkl for all even values of i
and for all l ∈ {i− 2, i− 1, i, i+ 1},
• [b−ki ]< ∩ b′lj = ∅ for all i, j in Z/2mZ and l ≥ k.

We define

ai = Γ+
i ∩

⋃
l≥k

b′li

for all i ∈ Z/2mZ. The cyclic order of the sets ai satisfies

ai−2 → ai+1 → ai
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for all even values of i. We may suppose that each ai is an arc, and so
U = D \⋃i∈Z/2mZ ai is simply connected. Let ϕ : U → D be the Riemann
map and consider the intervals Ji defined in 2.4.1.

For all even i, we define Ii to be the connected component of S1 \⋃
l∈Z/2mZ Jl following Ji−2 in the natural (positive) cyclic order on S1. We

define Ii+1 to be the connected component of S1 \⋃l∈Z/2mZ Jl following Ii.
So, for all even i we have

Ji−2 → Ii → Ji+1 → Ii+1 → Ji.

Lemma 4.18. For all i ∈ Z/2mZ:

(1) [b−ki ]< ⊂ U ,

(2) if i is even, then ϕ([b−ki ]<) ∩ S1 ⊂ Ii ∪ Ii−1, and ϕ(b−ki−1<) ∩ S1 ⊂
Ii ∪ Ii+1,

(3) there exists ji such that ϕ([b−ki ]<) ∩ S1 ⊂ Iji (so, for i even, ji ∈
{i, i− 1}, ji−1 ∈ {i, i+ 1}).

Proof. (1) This is trivial because of the choice of k > 0.

(2) First, we show that ϕ([b−ki ]<) ⊂ ⋃j∈Z/2mZ Ij . Otherwise, there exists

x ∈ ϕ([b−ki ]<) ∩ Jj for some j ∈ Z/2mZ. So, [b−ki ]< contains a point in aj .

As [b−ki ]< is a closed subset of D, and aj ⊂ D, we obtain [b−ki ]< ∩ aj 6= ∅,
contradicting the previous item.

Fix i ∈ Z/2mZ even. Take a crosscut γ ⊂ [b−ki ]> from ωi−1 to ωi+1. So, αi
belongs to the closure of only one of the connected components of D\γ: the
one to the right of γ. Hence, ϕ([b−ki ]<) belongs to the connected component

of D\ϕ(γ∩U) which is to the right of ϕ(γ∩U). As ϕ(γ ∩ U) is an arc joining

Ji−1 and Ji+1, the cyclic order implies that ϕ([b−ki ]<) ∩ S1 ⊂ Ii ∪ Ii−1.
The statement for i− 1 is proved analogously.
(3) Suppose i is even (as before, the other case is analogous). The

previous item implies that if ϕ([b−ki ]<) intersects Ij and Il, j 6= l, then
{j, l} = {i, i− 1}.

Take a crosscut γ ⊂ [b−ki ]> from ωi−1 to ωi−2. Then ϕ(γ ∩ U) separates
Ii−1 from Ii in D . This gives us

[b−ki ]< ∩ [b−ki ]> 6= ∅,
a contradiction.

Remark 4.19. If we set a′i = a2i, b
−
i = b−k2i , and b+i = bk2i for all i ∈

Z/mZ, then a′i, b
−
i , b

+
i , i ∈ Z/mZ, satisfy hypotheses (1)–(3) of Lemma 3.3.

So, if we prove that j2i = 2i for all i ∈ Z/mZ, then Fix(f) 6= ∅. Indeed, the
sets a′i, i ∈ Z/mZ, are cyclically ordered as follows:

a′0 → a′1 → a′2 → · · · → a′m−2 → a′m−1 → a′0.
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Moreover, if we set J ′i = J2i for all i ∈ Z/mZ, we have

J ′i−1 → I2i → J ′i
for all i ∈ Z/2mZ, and so j2i = 2i is exactly hypothesis (4) of Lemma 3.3.

We are now ready to prove Proposition 4.13:

Proof of Proposition 4.13. Because of the previous remark, it is enough
to show that j2i = 2i for all i ∈ Z/mZ. We will show that if this is not the
case, we contradict Lemma 3.2.

Lemma 4.18 tells us that j2i ∈ {2i, 2i−1}. Let us assume that j2i = 2i−1.
This implies that j2i−2, j2i−1, and j2i are different. Indeed, by Lemma 4.18,
j2i−2 ∈ {2i− 3, 2i− 2}, j2i−1 ∈ {2i, 2i+ 1}, and by assumption j2i = 2i− 1.
Moreover:

• [b−k2i ]> contains bk2i, b
k
2i−1, and bk2i−2,

• [b−k2i−1]> contains bk2i, b
k
2i−1, and bk2i−2,

• [b−k2i−2]> contains both bk2i−2 and bk2i−1.

So, as j2i−2, j2i−1, and j2i are different, if we show that [b−k2i−2]> also

contains bk2i, we contradict Lemma 3.2. Take a crosscut γ ⊂ [b−k2i−2]> from

a2i−2 to a2i−4. Then ϕ(γ ∩ U) separates I2i−1 from J2i. On the other hand,

ϕ([bk2i]<) joins both these sets, as we are assuming j2i = 2i− 1, and by the
definition of J2i. So,

ϕ([bk2i]<) ∩ ϕ(γ ∩ U) 6= ∅,
and we are done.

5. Proof of Lemma 1.3. We finish by proving Lemma 1.3, which shows
that our theorem is optimal.

We begin with a perturbation lemma.
Let (φt)t∈R be the flow in D whose orbits are drawn in the figure below:

0

We say that a flow (ϕt)t∈R in D is locally conjugate to (φt)t∈R at z0 if
there exist an open neighbourhood U of z0 and a homeomorphism h : D→ U
such that h(0) = z0 and h−1ϕth = φt for all t ∈ R.
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If ϕ : D → D is a homeomorphism, we write α(x, ϕ) for the set of
accumulation points of the backward ϕ-orbit of x, and ω(x, ϕ) for the set of
accumulation points of the forward ϕ-orbit of x.

Lemma 5.1. Let ϕ : D → D be the time-one map of the flow which is
locally conjugate to (φt)t∈R at z0, and U an open neighbourhood of z0 where
h−1ϕh = φ1. Then, for any x, y ∈ U such that ω(x, ϕ) = z0 = α(y, ϕ), there
exists an orientation preserving homeomorphism g : D→ D supported in the
union of two free and disjoint open disks such that

α(x, ϕ ◦ g) = α(x, ϕ), ω(x, ϕ ◦ g) = ω(y, ϕ).

Proof. Let ∆ ⊂ D be the oriented straight line through 0 with tangent
unit vector eiπ/4, and let L (resp. R) be the connected component of U \h(∆)
which is to the left (resp. to the right) of h(∆).

Note that given two points z1, z2 in the same connected component C
of U \ h(∆) that do not belong to the same orbit of (ϕt)t∈R, there exists an
arc δ ⊂ C joining z0 and z1 such that ϕ(δ) ∩ δ = ∅. Moreover, any x ∈ U
such that ω(x, ϕ) = z0 belongs to L, and any y ∈ U such that α(y, ϕ) = z0
belongs to R. Moreover, there exist z ∈ L and n > 0 such that ϕn(z) ∈ R.

So, we can take a free arc δ1 ⊂ L joining x and z, and a free arc δ2 ⊂ R
joining ϕn(z) and ϕ−1(y). Moreover, we may suppose that

δ1 ∩ {ϕ−k(x) : k > 0} = δ2 ∩ {ϕk(y) : k ≥ 0}
= (δ1 ∪ δ2) ∩ {ϕk(z) : 0 < k < n} = ∅.

We thicken the δi’s to open free and disjoint disks D1 ⊂ L, D2 ⊂ R such
that

D1 ∩ {ϕ−k(x) : k > 0} = D2 ∩ {ϕk(y) : k ≥ 0}
= (D1 ∪D2) ∩ {ϕk(z) : 0 < k < n} = ∅.

Finally, we construct an orientation preserving homeomorphism g :D→D
supported in D1 ∪D2 such that g(x) = z and g(ϕn(z)) = ϕ−1(y). Then we
obtain

α(x, ϕ ◦ g) = α(x, ϕ), ω(x, ϕ ◦ g) = ω(y, ϕ),

as desired.

Remark 5.2. In fact, given a finite set of points xi, yi ∈ U , i = 1, . . . , n,
which belong to different orbits of (ϕt)t∈R and such that ω(xi) = z0 = α(yi),
i=1, . . . , n, there exists an orientation preserving homeomorphism g : D→D
supported in a finite union of free and disjoint open disks such that

α(xi, ϕ ◦ g) = α(xi, ϕ), ω(xi, ϕ ◦ g) = ω(yi, ϕ),

i = 1, . . . , n. Indeed, we choose different points zi ∈ L and positive integers
ni > 0 such that ϕni(zi) ∈ R. Then we take pairwise disjoint arcs δ1i joining
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xi and zi, and δ2i joining ϕni(zi) and ϕ−1(yi) in such a way that all these
arcs are disjoint from the backward ϕ-orbit of xi, the forward ϕ-orbit of yi
and the transitional orbits ϕ(zi), . . . , ϕ

ni−1(zi). This allows us to construct
the desired perturbation g.

Given a family K = ((αi, ωi))i∈Z/nZ of pairs of points in S1, we denote by
∆i the oriented segment joining αi and ωi. We say that z ∈ D is a multiple
point if z belongs to at least two different ∆i’s. Let z be a multiple point,
and let I = {i ∈ Z/nZ : z ∈ ∆i}. We say that a multiple point z ∈ D has
zero index if there exists an oriented straight line ∆ containing z such that
the algebraic intersection number ∆ ∧ ∆i equals 1 for all i ∈ I. Note that
this is the case for any multiple point such that #I = 2.

We say that a pair (αk, ωk) ∈ K is i-separated if αk and ωk belong to
different connected components of S1 \ {αi, ωi}.

A degeneracy of K is a pair of elements of the family, (αi, ωi) and (αj , ωj),
such that αj = ωi and αi = ωj . We say that a degeneracy is trivial if the
connected component of S1 \ {αi, ωi} containing αk is independent of the
i-separated pair (αk, ωk) ∈ K.

We will deduce Lemma 1.3 from the following lemma.

Lemma 5.3. Let K = ((αi, ωi))i∈Z/nZ be a family of pairs of points in S1.
Suppose that:

(1) every multiple point is of zero index,
(2) every polygon P ⊂ D whose boundary is contained in

⋃
i∈Z/nZ∆i has

zero index,
(3) every degeneracy is trivial.

Then there exists a flow (ϕt)t∈R in D such that:

(i) (ϕt)t∈R is locally conjugate to (φt)t∈R at every singularity z0,
(ii) for all i ∈ Z/nZ there exist two points z−i , z

+
i ∈ D such that α(z−i )

= αi and ω(z+i ) = ωi,
(iii) the 2n points z−i , z

+
i , i ∈ Z/nZ, are different.

Proof. First suppose that there are no degeneracies in K. In this case,
the orientations of the ∆i’s induce a flow (ϕt)t∈R on

⋃
i∈Z/nZ∆i with a

singularity at each multiple point. By (1), we may extend this flow to a
neighbourhood of every multiple point in such a way that it is locally con-
jugate to (φt)t∈R. Moreover, by (2) we may extend (ϕt)t∈R to the rest of D
without singularities, and we are done.

If K contains one degeneracy (αi, ωi) = (ωj , αj), we “open it up” as
follows. We consider the family of segments

⋃
k∈Z/nZ, k 6=j ∆k and a simple

curve γj joining αj and ωj such that:
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(a) γj ∩∆i = {αi, ωi},
(b) γj ∩ ∆k ∩ D 6= ∅ if and only if (αk, ωk) is j-separated, and in this

case #{γj ∩∆k ∩ D} = 1,
(c) γj does not intersect any multiple point.

Now, the orientations of the ∆i’s, i 6= j, and the orientation of γj induce
a flow (ϕt)t∈R on

⋃
i∈Z/nZ, i 6=j ∆i ∪ γj with a singularity at each multiple

point of
⋃
i∈Z/nZ, i 6=j ∆i and also at the intersection points of γj with the

∆i’s, i 6= j.

Note that as γj does not intersect any multiple point, we may extend
(ϕt)t∈R to a neighbourhood of every multiple point of

⋃
k∈Z/nZ, k 6=j ∆k in

such a way that it is locally conjugate to (φt)t∈R. Moreover, a point z0 ∈ γj
belongs to at most one ∆k, k 6= j, and the intersection is transversal by
item (b) above. So, we may as well extend (ϕt)t∈R to a neighbourhood of
z0 so as to have local conjugation with (φt)t∈R as well. As the degenera-
cies considered are trivial, we can extend (ϕt)t∈R to the rest of D without
singularities.

If more than one degeneracy occurs, triviality implies that they are dis-
joint. That is, if (αi, ωi) = (ωj , αj), and (αk, ωk) = (ωl, αl), then (αi, ωi) is
not k-separated. So, we can “open up” both degeneracies in such a way that
γj ∩ γl = ∅, and construct our flow (ϕt)t∈R analogously.

We deduce:

Corollary 5.4. With the same hypothesis of the preceding lemma, there
exists a fixed-point free orientation preserving homeomorphism f : D → D
that realizes K.

Proof. Let ϕ be the time-one map of the flow given by the preceding
lemma. By simultaneous applications of Lemma 5.1, we can construct an
orientation preserving homeomorphism g : D → D supported in disjoint
open free disks such that

lim
k→−∞

(ϕ ◦ g)k(z−i ) = αi, lim
k→∞

(ϕ ◦ g)k(z−i ) = ωi

(see also Remark 5.2).

Then the homeomorphism ϕ ◦ g realizes K. Moreover, as we have local
conjugation to the flow (φt)t∈R at every singularity of ϕ, and ϕ ◦ g = ϕ
in a neighbourhood of each singularity, we can further perturb ϕ ◦ g into a
homeomorphism f : D→ D realizing K and which is fixed point free.

This last lemma finishes the proof of Lemma 1.3:

Lemma 5.5. If a multiple point has non-zero index, then there exists a
subfamily of K forming an elliptic cycle of links.
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Proof. Let x be a multiple point of non-zero index, and let

I = {i ∈ Z/nZ : x ∈ ∆i}.

As x has non-zero index, there exists indices i, j ∈ I such that the oriented
interval in S1 joining αi and αj contains ωk, k ∈ I. Then L = (α′l, ω

′
l)l∈Z/3Z

is an elliptic cycle of links, where

(α′0, ω
′
0) = (αi, ωi), (α′1, ω

′
1) = (αj , ωj), (α′2, ω

′
2) = (αk, ωk).
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rème de Poincaré–Birkhoff, Topology 33 (1994), 331–351.

[7] M. Handel, A fixed-point theorem for planar homeomorphisms, Topology 38 (1999),
235–264.

[8] P. Le Calvez, Periodic orbits of Hamiltonian homeomorphisms of surfaces, Duke
Math. J. 133 (2006), 125–184.

[9] P. Le Calvez, Une nouvelle preuve du théorème de point fixe de Handel, Geom.
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