Cycles of links and fixed points for orientation preserving homeomorphisms of the open unit disk

by
Juliana Xavier (Montevideo)

Abstract

Michael Handel proved the existence of a fixed point for an orientation preserving homeomorphism of the open unit disk that can be extended to the closed disk, provided that it has points whose orbits form an oriented cycle of links at infinity. More recently, the author generalized Handel's theorem to a wider class of cycles of links. In this paper we complete this topic describing exactly which are all the cycles of links forcing the existence of a fixed point.

1. Introduction. Handel's fixed point theorem [7] has been of great importance for the study of surface homeomorphisms. It guarantees the existence of a fixed point for an orientation preserving homeomorphism f of the unit disk $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ provided that it can be extended to the boundary $S^{1}=\{z \in \mathbb{C}:|z|=1\}$ and that it has points whose orbits form an oriented cycle of links at infinity. More precisely, there exist n points $z_{i} \in \mathbb{D}$ such that

$$
\lim _{k \rightarrow-\infty} f^{k}\left(z_{i}\right)=\alpha_{i} \in S^{1}, \quad \lim _{k \rightarrow \infty} f^{k}\left(z_{i}\right)=\omega_{i} \in S^{1},
$$

$i=1, \ldots, n$, where the $2 n$ points $\left\{\alpha_{i}\right\},\left\{\omega_{i}\right\}$ are different points in S^{1} and have the following order property:
(*) α_{i+1} is the only one among these points that lies in the open interval in the oriented circle S^{1} from ω_{i-1} to ω_{i}.
(Although this is not Handel's original statement, it is an equivalent one as already pointed out in [9].)

Le Calvez gave an alternative proof of this theorem [9, relying only on Brouwer theory and plane topology, which allowed him to obtain a sharper

2010 Mathematics Subject Classification: 37B20, 54H20, 37E30.
Key words and phrases: cycles of links, surface homeomorphisms, brick decompositions, free disks chain.
result. Namely, he weakened the extension hypothesis by demanding the homeomorphism to extend just to $\mathbb{D} \cup \bigcup_{i \in \mathbb{Z} / n \mathbb{Z}}\left\{\alpha_{i}, \omega_{i}\right\}$ and he strengthened the conclusion by proving the existence of a simple closed curve of index 1 .

The author generalized both Handel's and Le Calvez's results as follows [13]. Let $P \subset \mathbb{D}$ be a compact convex n-gon. Let $\left\{v_{i}: i \in \mathbb{Z} / n \mathbb{Z}\right\}$ be its set of vertices, and for each $i \in \mathbb{Z} / n \mathbb{Z}$, let e_{i} be the edge joining v_{i} and v_{i+1}. We suppose that each e_{i} is endowed with an orientation, so that we can tell whether P is to the right or to the left of e_{i}. We say that the orientations of e_{i} and e_{j} coincide if P is to the right (or to the left) of both e_{i} and e_{j}, $i, j \in \mathbb{Z} / n \mathbb{Z}$.

We define the index of P by

$$
i(P)=1-\frac{1}{2} \sum_{i \in \mathbb{Z} / n \mathbb{Z}} \delta_{i},
$$

where $\delta_{i}=0$ if the orientations of e_{i-1} and e_{i} coincide, and $\delta_{i}=1$ otherwise.
We will denote by α_{i} and ω_{i} the first, and respectively the last, point where the straight line Δ_{i} containing e_{i} and inheriting its orientation intersects $\partial \mathbb{D}$.

We say that a homeomorphism $f: \mathbb{D} \rightarrow \mathbb{D}$ realizes P if there exists a family $\left(z_{i}\right)_{i \in \mathbb{Z} / n \mathbb{Z}}$ of points in \mathbb{D} such that for all $i \in \mathbb{Z} / n \mathbb{Z}$,

$$
\lim _{k \rightarrow-\infty} f^{k}\left(z_{i}\right)=\alpha_{i}, \quad \lim _{k \rightarrow \infty} f^{k}\left(z_{i}\right)=\omega_{i} .
$$

Theorem 1.1 ([13]). Let $f: \mathbb{D} \rightarrow \mathbb{D}$ be an orientation preserving homeomorphism which realizes a compact convex polygon $P \subset \mathbb{D}$ where the points $\alpha_{i}, \omega_{i}, i \in \mathbb{Z} / n \mathbb{Z}$, are all different. Suppose that f can be extended to a homeomorphism of $\mathbb{D} \cup \bigcup_{i \in \mathbb{Z} / n \mathbb{Z}}\left\{\alpha_{i}, \omega_{i}\right\}$. If $i(P) \neq 0$, then f has a fixed point. Furthermore, if $i(P)=1$, then there exists a simple closed curve $C \subset \mathbb{D}$ of index 1.

The two polygons appearing in Figure 1(a)\&(b) satisfy the hypothesis of this theorem. However, the polygon illustrated in (c) does not, as there are coincidences among the points $\left\{\alpha_{i}\right\},\left\{\omega_{i}\right\}, i \in \mathbb{Z} / n \mathbb{Z}$.

The purpose of this paper is to complete this topic: we assume that there exist two families $\left(\alpha_{i}\right)_{i \in \mathbb{Z} / n \mathbb{Z}},\left(\omega_{i}\right)_{i \in \mathbb{Z} / n \mathbb{Z}}$ of points in S^{1} and a family $\left(z_{i}\right)_{i \in \mathbb{Z} / n \mathbb{Z}}$ of points in \mathbb{D} such that, for all $i \in \mathbb{Z} / n \mathbb{Z}$,

$$
\lim _{k \rightarrow-\infty} f^{k}\left(z_{i}\right)=\alpha_{i}, \quad \lim _{k \rightarrow \infty} f^{k}\left(z_{i}\right)=\omega_{i}
$$

and that f extends to a homeomorphism of $\mathbb{D} \cup \bigcup_{i \in \mathbb{Z} / n \mathbb{Z}}\left\{\alpha_{i}, \omega_{i}\right\}$, and we describe exactly which combinatorics of the points $\alpha_{i}, \omega_{i}, i \in \mathbb{Z} / n \mathbb{Z}$, force the existence of a fixed point.

Fig. 1. The hypothesis of Theorem 1.1

A cycle of links of order $n \geq 3$ is a family of pairs of points on the circle S^{1},

$$
\mathcal{L}=\left(\left(\alpha_{i}, \omega_{i}\right)\right)_{i \in \mathbb{Z} / n \mathbb{Z}}
$$

such that for all $i \in \mathbb{Z} / n \mathbb{Z}$:
(1) $\alpha_{i} \neq \omega_{i}$,
(2) α_{i+1} and ω_{i+1} belong to different connected components of the set $S^{1} \backslash\left\{\alpha_{i}, \omega_{i}\right\}$.
If \mathcal{L} is a cycle of links, we define the set

$$
\ell=\left\{\alpha_{i}, \omega_{i}: i \in \mathbb{Z} / n \mathbb{Z}\right\} \subset S^{1}
$$

of points in the circle which belong to a pair in the cycle.
If $a, b \in \ell$, we write $a \rightarrow b$ if b follows a in the natural (positive) cyclic order on S^{1}, and $a \xrightarrow{=} b$ if either $a=b$ or $a \rightarrow b$.

We say that a cycle of links \mathcal{L} is elliptic if for all $i \in \mathbb{Z} / n \mathbb{Z}$,

$$
\omega_{i-1} \xrightarrow{=} \alpha_{i+1} \rightarrow \omega_{i} .
$$

We say it is hyperbolic if $n=2 k, k \geq 2$, and for all $i \in \mathbb{Z} / n \mathbb{Z}$ with $i=0$ $\bmod 2$,

$$
\alpha_{i} \rightarrow \alpha_{i-1} \xrightarrow{=} \omega_{i+1} \rightarrow \omega_{i} \xrightarrow{=} \alpha_{i+2} .
$$

Finally, we say that \mathcal{L} is non-degenerate if

$$
\left(\alpha_{i}, \omega_{i}\right) \in \mathcal{L} \Rightarrow\left(\omega_{i}, \alpha_{i}\right) \notin \mathcal{L} .
$$

Of course, we say it is degenerate if this condition is not satisfied. An example is illustrated in Figure 2.

Fig. 2. A degenerate cycle of links
We say that a homeomorphism $f: \mathbb{D} \rightarrow \mathbb{D}$ realizes \mathcal{L} if there exists a family $\left(z_{i}\right)_{i \in \mathbb{Z} / n \mathbb{Z}}$ of points in \mathbb{D} such that, for all $i \in \mathbb{Z} / n \mathbb{Z}$,

$$
\lim _{k \rightarrow-\infty} f^{k}\left(z_{i}\right)=\alpha_{i}, \quad \lim _{k \rightarrow \infty} f^{k}\left(z_{i}\right)=\omega_{i} .
$$

The following theorem is the main result of this article.
Theorem 1.2. Suppose that $f: \mathbb{D} \rightarrow \mathbb{D}$ is an orientation preserving homeomorphism which realizes a cycle of links \mathcal{L} and can be extended to a homeomorphism of $\mathbb{D} \cup \ell$. If \mathcal{L} is either elliptic or hyperbolic, then f has a fixed point. Furthermore, if \mathcal{L} is non-degenerate and elliptic, then there exists a simple closed curve $C \subset \mathbb{D}$ of index 1 .

It turns out that these results completely describe the combinatorics giving rise to fixed points:

Lemma 1.3. Given a family $\left(\left(\alpha_{i}, \omega_{i}\right)\right)_{i \in \mathbb{Z} / n \mathbb{Z}}$ of pairs of points in S^{1}, one of the following is true:
(1) there exists a subfamily of $\left(\left(\alpha_{i}, \omega_{i}\right)\right)_{i \in \mathbb{Z} / n \mathbb{Z}}$ forming an elliptic or hyperbolic cycle of links,
(2) the oriented straight lines from α_{i} to ω_{i} bound a non-zero index polygon $P \subset \mathbb{D}$,
(3) there exists a fixed-point free orientation preserving homeomorphism $f: \mathbb{D} \rightarrow \mathbb{D}$ and a family of points $\left(z_{i}\right)_{i \in \mathbb{Z} / n \mathbb{Z}}$ in \mathbb{D} such that for all $i \in \mathbb{Z} / n \mathbb{Z}$,

$$
\lim _{k \rightarrow-\infty} f^{k}\left(z_{i}\right)=\alpha_{i}, \quad \lim _{k \rightarrow \infty} f^{k}\left(z_{i}\right)=\omega_{i}
$$

We finish this introduction with some remarks on Theorem 1.2 ,
The elliptic non-degenerate case contains Le Calvez's improvement of Handel's theorem. Indeed, if the points in ℓ are all different, then \mathcal{L} is non-degenerate. As the example in Figure 1(c) shows, our theorem is more general even in this case.

The theorem contains the author's result on non-zero index polygons. Indeed, in [13] it is shown that if f realizes a non-zero index polygon where the points $\alpha_{i}, \omega_{i}, i \in \mathbb{Z} / n \mathbb{Z}$ are all different, then f realizes an elliptic or hyperbolic cycle of links. Again, as coincidences in ℓ are allowed, our theorem is more general even in this case.

The extension hypothesis is necessary. Indeed, if $f: \mathbb{D} \rightarrow \mathbb{D}$ is fixed-point free, one can easily construct a homeomorphism $h: \mathbb{D} \rightarrow \mathbb{D}$ such that $h f h^{-1}$ realizes any prescribed cycle of links.

Non-degeneracy is necessary to obtain the index result. Let f_{1} be the time-one map of the flow whose orbits are drawn in the figure below.

As we will explain below, one can perturb f_{1} to a homeomorphism f such that:

- $\operatorname{Fix}(f)=\operatorname{Fix}\left(f_{1}\right)=\{x\}$,
- $f=f_{1}$ in a neighbourhood of x,
- f realizes $\mathcal{L}=\left(\left(\alpha_{i}, \omega_{i}\right)\right)_{i \in \mathbb{Z} / 4 \mathbb{Z}}$.

We say that the set X is free if $f(X) \cap X=\emptyset$.
One can find (by means of a transverse foliation, for example) free and pairwise disjoint simple paths β_{i} and $\gamma_{i}, i \in \mathbb{Z} / 4 \mathbb{Z}$, such that:

- β_{i} joins z_{i} and z_{i}^{\prime}, where

$$
\lim _{k \rightarrow \infty} f_{1}^{-k}\left(z_{i}\right)=\alpha_{i} \quad \text { and } \quad \lim _{k \rightarrow \infty} f_{1}^{k}\left(z_{i}^{\prime}\right)=\alpha_{i^{*}}
$$

$i^{*}=i+1$ for even values of i, and $i^{*}=i-1$ for odd values of i,

- γ_{i} joins $f_{1}^{p_{i}}\left(z_{i}^{\prime}\right)$ and $z_{i}^{\prime \prime}$, where $p_{i}>0$ and $\lim _{k \rightarrow \infty} f_{1}^{k}\left(z_{i}^{\prime \prime}\right)=\omega_{i}$,
- γ_{i} and β_{i} are disjoint from the f_{1}-orbits of all $z_{j}, z_{j}^{\prime}, z_{j}^{\prime \prime}$ with $i \neq j$.

By thickening the paths $\left\{\beta_{i}\right\}$ and $\left\{\gamma_{i}\right\}$, one can find free, pairwise disjoint open disks $\left\{D_{i}^{\prime}\right\}$ and $\left\{D_{i}^{\prime \prime}\right\}$ such that the disks D_{i}^{\prime} and $D_{i}^{\prime \prime}$ are disjoint from the f_{1}-orbits of the points $z_{j}, z_{j}^{\prime}, z_{j}^{\prime \prime}$ for $i \neq j$.

We construct a homeomorphism $h: \mathbb{D} \rightarrow \mathbb{D}$ such that:

- $h=\operatorname{Id}$ outside $\bigcup_{i \in \mathbb{Z} / 4 \mathbb{Z}} D_{i}^{\prime} \cup D_{i}^{\prime \prime}$,
- $h\left(z_{i}\right)=z_{i}^{\prime}$,
- $h\left(f_{1}^{p}\left(z_{i}^{\prime}\right)\right)=z_{i}^{\prime \prime}$.

So, if we define $f=h \circ f_{1}$, we obtain

$$
\lim _{k \rightarrow \infty} f^{-k}\left(z_{i}\right)=\alpha_{i}, \quad \lim _{k \rightarrow \infty} f^{k}\left(z_{i}\right)=\omega_{i}
$$

for all $i \in \mathbb{Z} / 4 \mathbb{Z}$. Clearly we can make this construction in such a way that $f=f_{1}$ in a neighbourhood of x. Moreover, as the disks $\left\{D_{i}^{\prime}\right\}$ and $\left\{D_{i}^{\prime \prime}\right\}$ are free,

$$
\operatorname{Fix}(f)=\operatorname{Fix}\left(f_{1}\right)=\{x\}
$$

So, f realizes the elliptic cycle \mathcal{L}, but there is no simple closed curve of index 1.

No negative-index fixed point is guaranteed by hyperbolicity. One could think that when \mathcal{L} is hyperbolic, a negative-index fixed point should be obtained. For example, this would be the case if one had an oriented foliation \mathcal{F} in $\mathbb{D} \backslash \operatorname{Fix}(f)$ whose leaves are Brouwer lines for f and simple paths γ_{i}, $i \in \mathbb{Z} / n \mathbb{Z}$, joining α_{i} and ω_{i} such that:

- each γ_{i} is positively transverse to \mathcal{F},
- the paths $\left\{\gamma_{i}\right\}$ bound a compact disc in \mathbb{D}.
(See the figure above.) Indeed, in this case, the Poincaré-Hopf formula would give a singularity x of the foliation for which $i(\mathcal{F}, x)<0$. So, $x \in \operatorname{Fix}(f)$ and by a result of Le Calvez $([10])$ one has $i(f, x)=i(\mathcal{F}, x)<0$.

However, this is not the case, as the following example shows. Let f_{1} be the time-one map of the flow whose orbits are drawn in the figure below.

As we did in our preceding example, one can perturb f_{1} to a homeomorphism f such that:

- $\operatorname{Fix}(f)=\operatorname{Fix}\left(f_{1}\right)=\{x\}$,
- $f=f_{1}$ in a neighbourhood of x,
- f realizes $\mathcal{L}=\left(\left(\alpha_{i}, \omega_{i}\right)\right)_{i \in \mathbb{Z} / 4 \mathbb{Z}}$.

So, f realizes the hyperbolic cycle \mathcal{L}, but there is no fixed point of negative index.

The structure of this article is the following. In Section 2 we introduce the tools to be used (brick decompositions, Brouwer theory, repeller/attractor configurations [13]) and we sum up the results from [9] and [13] that will be used in the proofs. In Section 3 we state two lemmas that are key for the contradiction argument in the proof of Theorem 1.2, which is contained in Section 4. The last Section 5 is devoted to the proof of Lemma 1.3 , which shows that our results are optimal.

2. Preliminaries

2.1. Brick decompositions. A brick decomposition \mathcal{D} of an orientable surface M is a one-dimensional singular submanifold $\Sigma(\mathcal{D})$ (the skeleton of the decomposition), with the property that the set of singularities V is discrete and such that every $\sigma \in V$ has a neighbourhood U for which $U \cap(\Sigma(\mathcal{D}) \backslash V)$ has exactly three connected components. We have illustrated two brick decompositions in Figure 3. The bricks are the closures of the connected components of $M \backslash \Sigma(\mathcal{D})$ and the edges are the closures of the connected components of $\Sigma(\mathcal{D}) \backslash V$. We will write E for the set of edges, B for the set of bricks and finally $\mathcal{D}=(V, E, B)$ for a brick decomposition.

Fig. 3. Brick decompositions

Let $\mathcal{D}=(V, E, B)$ be a brick decomposition of M. We say that $X \subset B$ is connected if given two bricks $b, b^{\prime} \in X$, there exists a sequence $\left(b_{i}\right)_{0 \leq i \leq n}$ with $b_{0}=b, b_{n}=b^{\prime}$ and such that b_{i} and b_{i+1} have non-empty intersection, $i \in\{0, \ldots, n-1\}$. Whenever two bricks b and b^{\prime} have non-empty intersection, we say that they are adjacent. Moreover, we say that a brick b is adjacent to a subset $X \subset B$ if $b \notin X$ but b is adjacent to one of the bricks in X. We say that $X \subset B$ is adjacent to $X^{\prime} \subset B$ if X and X^{\prime} have no common bricks but there exist $b \in X$ and $b^{\prime} \in X^{\prime}$ which are adjacent.

From now on we will identify a subset X of B with the closed subset of M formed by the union of the bricks in X. This may lead to ambiguities (for instance, two adjacent subsets of B have empty intersection in B and non-empty intersection in M), but we will point out such cases explicitly. We remark that ∂X is a one-dimensional topological manifold and that the connectedness of $X \subset B$ is equivalent to the connectedness of $X \subset M$ and to the connectedness of $\operatorname{Int}(X) \subset M$ as well. We say that a decomposition \mathcal{D}^{\prime} is a subdecomposition of \mathcal{D} if $\Sigma\left(\mathcal{D}^{\prime}\right) \subset \Sigma(\mathcal{D})$.

If $f: M \rightarrow M$ is a homeomorphism, we define a map $\varphi: \mathcal{P}(\mathcal{B}) \rightarrow \mathcal{P}(\mathcal{B})$ as follows:

$$
\varphi(X)=\{b \in B: f(X) \cap b \neq \emptyset\}
$$

We remark that $\varphi(X)$ is connected whenever X is. We define analogously a $\operatorname{map} \varphi_{-}: \mathcal{P}(\mathcal{B}) \rightarrow \mathcal{P}(\mathcal{B})$:

$$
\varphi_{-}(X)=\left\{b \in B: f^{-1}(X) \cap b \neq \emptyset\right\} .
$$

We define the future $[b]_{\geq}$and the past $[b] \leq$ of a brick b as follows:

$$
[b]_{\geq}=\bigcup_{k \geq 0} \varphi^{k}(\{b\}), \quad[b]_{\leq}=\bigcup_{k \geq 0} \varphi_{-}^{k}(\{b\}) .
$$

We also define the strict future $[b]_{>}$and the strict past $[b]_{<}$of a brick b :

$$
[b]_{>}=\bigcup_{k>0} \varphi^{k}(\{b\}), \quad[b]_{<}=\bigcup_{k>0} \varphi_{-}^{k}(\{b\}) .
$$

We say that a set $X \subset B$ is an attractor if it satisfies $\varphi(X) \subset X$; this is equivalent in M to the inclusion $f(X) \subset \operatorname{Int}(X)$. A repeller is any set X which satisfies $\varphi_{-}(X) \subset X$. In this way, the future of any brick is an attractor, and the past of any brick is a repeller. We observe that $X \subset B$ is a repeller if and only if $B \backslash X$ is an attractor.

Remark 2.1. The following properties can be deduced from the fact that $X \subset B$ is an attractor if and only if $f(X) \subset \operatorname{Int}(X)$:
(1) if $X \subset B$ is an attractor and $b \in X$, then $[b] \geq \subset X$; if $X \subset B$ is a repeller and $b \in X$, then $[b]_{\leq} \subset X$,
(2) if $X \subset B$ is an attractor and $b \notin X$, then $[b] \leq \cap X=\emptyset$; if $X \subset B$ is a repeller and $b \notin X$, then $[b] \geq \cap X=\emptyset$,
(3) if $b \in B$ is adjacent to an attractor $X \subset B$, then $[b]>\cap X \neq \emptyset$; if $b \in B$ is adjacent to a repeller $X \subset B$, then $[b]_{<} \cap X \neq \emptyset$,
(4) two attractors are disjoint as subsets of B if and only if they are disjoint as subsets of M; in other words, two disjoint (in B) attractors cannot be adjacent; also, two disjoint (in B) repellers cannot be adjacent.
The following conditions are equivalent: $b \in[b]_{>},[b]_{>}=[b]_{\geq}, b \in[b]_{<}, \quad[b]_{<}=[b]_{\leq},[b]_{<} \cap[b]_{\geq} \neq \emptyset, \quad[b]_{\leq} \cap[b]_{>} \neq \emptyset$.

The existence of a brick $b \in B$ for which any of these conditions is satisfied is equivalent to the existence of a closed chain of bricks, i.e. a family $\left(b_{i}\right)_{i \in \mathbb{Z} / r \mathbb{Z}}$ of bricks such that for all $i \in \mathbb{Z} / r \mathbb{Z}, \bigcup_{k \geq 1} f^{k}\left(b_{i}\right) \cap b_{i+1} \neq \emptyset$.

In general, a chain for $f \in \operatorname{Homeo}(M)$ is a family $\left(X_{i}\right)_{0 \leq i \leq r}$ of subsets of M such that $\bigcup_{k \geq 1} f^{k}\left(X_{i}\right) \cap X_{i+1} \neq \emptyset$ for all $0 \leq i \leq r-1$. We say that the chain is closed if $X_{r}=X_{0}$.

We say that a subset $X \subset M$ is free if $f(X) \cap X=\emptyset$.
We say that a brick decomposition $\mathcal{D}=(V, E, B)$ is free if every $b \in B$ is a free subset of M. If f is fixed point free it is always possible, taking sufficiently small bricks, to construct a free brick decomposition.

We recall the definition of maximal free decomposition, which was introduced by Sauzet in his doctoral thesis [12]. Let f be a fixed point free homeomorphism of a surface M. We say that \mathcal{D} is a maximal free decomposition if \mathcal{D} is free and any strict subdecomposition is no longer free. Applying Zorn's lemma, it is always possible to prove the existence of a maximal free subdecomposition of a given brick decomposition \mathcal{D}.
2.2. Brouwer theory background. We say that $\Gamma:[0,1] \rightarrow \overline{\mathbb{D}}$ is an arc if it is continuous and injective. We say that an arc Γ joins $x \in \overline{\mathbb{D}}$ to $y \in \overline{\mathbb{D}}$ if $\Gamma(0)=x$ and $\Gamma(1)=y$. We say that an arc Γ joins $X \subset \overline{\mathbb{D}}$ to $Y \subset \overline{\mathbb{D}}$, if Γ joins some $x \in X$ to some $y \in Y$.

Fix an $f \in \operatorname{Homeo}^{+}(\mathbb{D})$. An arc γ joining $z \notin \operatorname{Fix}(f)$ to $f(z)$ such that $f(\gamma) \cap \gamma=\{z, f(z)\}$ if $f^{2}(z)=z$, and $f(\gamma) \cap \gamma=\{f(z)\}$ otherwise, is called a translation arc.

Proposition 2.2 (Brouwer's translation lemma, [1], 2], 4] or 6]). If any of the following two hypotheses is satisfied:
(1) there exists a translation arc γ joining $z \in \operatorname{Fix}\left(f^{2}\right) \backslash \operatorname{Fix}(f)$ to $f(z)$,
(2) there exists a translation arc γ joining $z \notin \operatorname{Fix}\left(f^{2}\right)$ to $f(z)$ and an integer $k \geq 2$ such that $f^{k}(\gamma) \cap \gamma \neq \emptyset$,
then there exists a simple closed curve of index 1.
If $z \notin \operatorname{Fix}(f)$, there exists a translation arc containing z; this is easy to prove once one knows that the connected components of the complement of $\operatorname{Fix}(f)$ are invariant. For this last fact, see [3] for a general proof in any dimension, or [8] for an easy proof in dimension 2.

We deduce:
Corollary 2.3. If $\operatorname{Per}(f) \backslash \operatorname{Fix}(f) \neq \emptyset$, then there exists a simple closed curve of index 1 .

Proposition 2.4 (Franks' lemma [5]). If there exists a closed chain of free, open and pairwise disjoint disks for f, then there exists a simple closed curve of index 1 .

Following Le Calvez [9], we will say that f is recurrent if there exists a closed chain of free, open and pairwise disjoint disks for f.

The following proposition is a refinement of Franks' lemma due to Guillou and Le Roux (see [11, p. 39]).

Proposition 2.5. Suppose there exists a closed chain $\left(X_{i}\right)_{i \in \mathbb{Z} / r \mathbb{Z}}$ for f of free subsets whose interiors are pairwise disjoint and which have the following property: given any two points $z, z^{\prime} \in X_{i}$ there exists an arc γ joining z and z^{\prime} such that $\gamma \backslash\left\{z, z^{\prime}\right\} \subset \operatorname{Int}\left(X_{i}\right)$. Then f is recurrent.

We deduce:
Proposition 2.6. Let $\mathcal{D}=(V, E, B)$ be a free brick decomposition of $\mathbb{D} \backslash \operatorname{Fix}(f)$. If there exists $b \in B$ such that $b \in[b]_{>}$, then f is recurrent.
2.3. Little bricks at infinity. Fix $f \in \operatorname{Homeo}^{+}(\mathbb{D})$, different from the identity map and non-recurrent. We will make use of the following two propositions from [9] (both of them depend on the non-recurrent character of f). The first one (Proposition 2.2 in [9]) is a refinement of a result already appearing in [12]; the second one is Proposition 3.1 in [9].

Proposition 2.7 ([12, [9]). Let $\mathcal{D}=(V, E, B)$ be a maximal free brick decomposition of $\mathbb{D} \backslash \operatorname{Fix}(f)$. Then the sets $[b]_{\geq},[b]_{>},[b]_{\leq}$and $[b]_{<}$are connected. In particular every connected component of an attractor is an attractor, and every connected component of a repeller is a repeller.

Proposition 2.8 ([9]). If f satisfies the hypothesis of Theorem 1.2 , then for all $i \in \mathbb{Z} / n \mathbb{Z}$ we can find a sequence $\left(\gamma_{i}^{k}\right)_{k \in \mathbb{Z}}$ of arcs such that:

- each γ_{i}^{k} is a translation arc from $f^{k}\left(z_{i}\right)$ to $f^{k+1}\left(z_{i}\right)$,
- $f\left(\gamma_{i}^{k}\right) \cap \gamma_{i}^{k^{\prime}}=\emptyset$ if $k^{\prime}<k$,
- the sequence $\left(\gamma_{i}^{k}\right)_{k \leq 0}$ converges to $\left\{\alpha_{i}\right\}$ in the Hausdorff topology,
- the sequence $\left(\gamma_{i}^{k}\right)_{k \geq 0}$ converges to $\left\{\omega_{i}\right\}$ in the Hausdorff topology.

This result is a consequence of Brouwer's translation lemma and the hypothesis on the orbits of the points $\left(z_{i}\right)_{i \in \mathbb{Z} / n \mathbb{Z}}$. In particular, the extension hypothesis of Theorem 1.2 is used. It allows us to construct a particular brick decomposition suitable for our purposes:

Lemma 2.9. For every $i \in \mathbb{Z} / n \mathbb{Z}$, take U_{i}^{-}a neighbourhood of α_{i} in $\overline{\mathbb{D}}$ and U_{i}^{+}a neighbourhood of ω_{i} in $\overline{\mathbb{D}}$ such that $U_{i}^{-} \cap U_{i}^{+}=\emptyset$. There exist two families $\left(b_{i}^{\prime l}\right)_{i \in \mathbb{Z} / n \mathbb{Z}, l \geq 1}$ and $\left(b_{i}^{\prime l}\right)_{i \in \mathbb{Z} / n \mathbb{Z}, l \leq-1}$ of closed disks in \mathbb{D} and a family $\left(l_{i}\right)_{i \in \mathbb{Z} / n \mathbb{Z}}$ of integers such that:
(1) each $b_{i}^{\prime l}$ is free and contained in $U_{i}^{-}(l \leq-1)$ or in $U_{i}^{+}(l \geq 1)$,
(2) $\operatorname{Int}\left(b_{i}^{\prime l}\right) \cap \operatorname{Int}\left(b_{i}^{\prime^{\prime}}\right)=\emptyset$ if $l \neq l^{\prime}$,
(3) for every $k>1$ the sets $\left(b_{i}^{\prime l}\right)_{1 \leq l \leq k}$ and $\left(b_{i}^{\prime l}\right)_{-k \leq l \leq-1}$ are connected,
(4) for all $i \in \mathbb{Z} / n \mathbb{Z}, \partial \bigcup_{l \in \mathbb{Z} \backslash\{0\}} b_{i}^{\prime l}$ is a one-dimensional submanifold,
(5) if $x \in \mathbb{D}$, then x belongs to at most two different disks in the family $\left(b_{i}^{\prime l}\right)_{l \in \mathbb{Z} \backslash\{0\}, i \in \mathbb{Z} / n \mathbb{Z}}$,
(6) for all $i \in \mathbb{Z} / n \mathbb{Z}, f^{l_{i}+l}\left(z_{i}\right) \in \operatorname{Int}\left(b_{i}^{l+1}\right)$ for all $l \geq 0$, and $f^{-l_{i}-l}\left(z_{i}\right) \in$ $\operatorname{Int}\left(b_{i}^{\prime-l-1}\right)$ for all $l \geq 0$,
(7) $f^{k}\left(z_{j}\right) \in b_{i}^{\prime l}$ if and only if $j=i$ and $k=l_{i}+l-1$,
(8) the sequence $\left(b_{i}^{\prime l}\right)_{l \geq 1}$ converges to $\left\{\omega_{i}\right\}$ in the Hausdorff topology and the sequence $\left(b_{i}^{\prime l}\right)_{l \leq-1}$ converges to $\left\{\alpha_{i}\right\}$ in the Hausdorff topology.
The idea is to construct trees $T_{i}^{-} \subset U_{i}^{-}, T_{i}^{+} \subset U_{i}^{+}, i \in \mathbb{Z} / n \mathbb{Z}$, by deleting the loops of the curves $\prod_{k \geq-1} \gamma_{i}^{k} \cap U_{i}^{-}$and $\prod_{k \leq 1} \gamma_{i}^{k} \cap U_{i}^{+}$respectively, and then thickening these trees to obtain the families $\left(b_{i}^{\prime l}\right)_{i \in \mathbb{Z} / n \mathbb{Z}, l \geq 1}$ and $\left(b_{i}^{\prime l}\right)_{i \in \mathbb{Z} / n \mathbb{Z}, l \leq-1}$. We refer the reader to [13] for a proof in English but we remark that these results are contained in [9]. We have illustrated these families in Figure 4.

Fig. 4. The families $b_{i}^{\prime l}$

Remark 2.10. The fact that the sequence $\left(b_{i}^{\prime l}\right)_{l \geq 1}$ converges in the Hausdorff topology to ω_{i}, implies we can find an $\operatorname{arc} \Gamma_{i}^{+}:[0,1] \rightarrow \operatorname{Int}\left(\bigcup_{l \geq 0} b_{i}^{\prime l}\right) \cup$ $\left\{\omega_{i}\right\}$ such that $\Gamma_{i}^{+}(1)=\omega_{i}, i \in \mathbb{Z} / n \mathbb{Z}$. Similarly, we can find an arc $\Gamma_{i}^{-}:[0,1] \rightarrow \operatorname{Int}\left(\bigcup_{l \geq 0} b_{i}^{\prime-l}\right) \cup\left\{\alpha_{i}\right\}$ such that $\Gamma_{i}^{-}(1)=\alpha_{i}, i \in \mathbb{Z} / n \mathbb{Z}$.

2.4. Repeller/attractor configurations

2.4.1. Cyclic order at infinity. Let $\left(a_{i}\right)_{i \in \mathbb{Z} / n \mathbb{Z}}$ be a family of non-empty, pairwise disjoint, closed, connected subsets of \mathbb{D}, such that $\bar{a}_{i} \cap \partial \mathbb{D} \neq \emptyset$ and $U=\mathbb{D} \backslash \bigcup_{i \in \mathbb{Z} / n \mathbb{Z}} a_{i}$ is a connected open set. As U is connected, and its complementary set in \mathbb{C}, namely

$$
\{z \in \mathbb{C}:|z| \geq 1\} \cup \bigcup_{i \in \mathbb{Z} / n \mathbb{Z}} a_{i}
$$

is also connected, U is simply connected.
With these hypotheses, there is a natural cyclic order on the sets $\left\{a_{i}\right\}$. Indeed, U is conformally isomorphic to the unit disc via the Riemann map
$\varphi: U \rightarrow \mathbb{D}$, and one can consider the Carathéodory extension of φ,

$$
\hat{\varphi}: \hat{U} \rightarrow \overline{\mathbb{D}}
$$

which is a homeomorphism between the prime ends completion \hat{U} of U and the closed unit disk $\overline{\mathbb{D}}$. The set \hat{J}_{i} of prime ends whose impression is contained in a_{i} is open and connected. It follows that the images $J_{i}=\hat{\varphi}\left(\hat{J}_{i}\right)$ are pairwise disjoint open intervals in S^{1}, and are therefore cyclically ordered following the positive orientation of the circle.
2.4.2. Repeller/attractor configurations. We recall the definition of repeller/attractor configuration that was introduced in [13].

We fix $f \in \mathrm{Homeo}^{+}(\mathbb{D})$ together with a maximal free brick decomposition $\mathcal{D}=(V, E, B)$ of $\mathbb{D} \backslash \operatorname{Fix}(f)$.

Let $\left(R_{i}\right)_{i \in \mathbb{Z} / n \mathbb{Z}}$ and $\left(A_{i}\right)_{i \in \mathbb{Z} / n \mathbb{Z}}$ be two families of connected, pairwise disjoint subsets of B such that:
(1) For all $i \in \mathbb{Z} / n \mathbb{Z}$,
(a) R_{i} is a repeller and A_{i} is an attractor,
(b) there exists non-empty, closed, connected subsets $r_{i} \subset \operatorname{Int}\left(R_{i}\right)$, $a_{i} \subset \operatorname{Int}\left(A_{i}\right)$ of \mathbb{D} such that $\overline{r_{i}} \cap \partial \mathbb{D} \neq \emptyset$ and $\overline{a_{i}} \cap \partial \mathbb{D} \neq \emptyset$,
(2) $\mathbb{D} \backslash \bigcup_{i \in \mathbb{Z} / n \mathbb{Z}}\left(a_{i} \cup r_{i}\right)$ is a connected open set.

We say that the pair $\left(\left(R_{i}\right)_{i \in \mathbb{Z} / n \mathbb{Z}},\left(A_{i}\right)_{i \in \mathbb{Z} / n \mathbb{Z}}\right)$ is a repeller/attractor configuration of order n. We will write

$$
\mathcal{E}=\left\{R_{i}, A_{i}: i \in \mathbb{Z} / n \mathbb{Z}\right\} .
$$

Property (2) in the previous definition allows us to give a cyclic order to the sets $r_{i}, a_{i}, i \in \mathbb{Z} / n \mathbb{Z}$ (see the beginning of this section).

We say that a repeller/attractor configuration of order $n \geq 3$ is an elliptic configuration if:
(1) the cyclic order of the sets $r_{i}, a_{i}, i \in \mathbb{Z} / n \mathbb{Z}$, has the elliptic order property:

$$
a_{0} \rightarrow r_{2} \rightarrow a_{1} \rightarrow \cdots \rightarrow a_{i} \rightarrow r_{i+2} \rightarrow a_{i+1} \rightarrow \cdots \rightarrow a_{n-1} \rightarrow r_{1} \rightarrow a_{0},
$$

(2) for all $i \in \mathbb{Z} / n \mathbb{Z}$ there exists a brick $b_{i} \in R_{i}$ such that $\left[b_{i}\right] \geq \cap A_{i} \neq \emptyset$.

We say that a repeller/attractor configuration is a hyperbolic configuration if:
(1) the cyclic order of the sets $r_{i}, a_{i}, i \in \mathbb{Z} / n \mathbb{Z}$, has the hyperbolic order property:

$$
\begin{aligned}
r_{0} \rightarrow a_{0} \rightarrow r_{1} \rightarrow a_{1} & \rightarrow \cdots \rightarrow r_{i} \rightarrow a_{i} \\
& \rightarrow r_{i+1} \rightarrow a_{i+1} \rightarrow \cdots \rightarrow r_{n-1} \rightarrow a_{n-1} \rightarrow r_{0}
\end{aligned}
$$

(2) for all $i \in \mathbb{Z} / n \mathbb{Z}$ there exist two bricks $b_{i}^{i}, b_{i}^{i-1} \in R_{i}$ such that $\left[b_{i}^{i}\right]_{>} \cap A_{i} \neq \emptyset$ and $\left[b_{i}^{i-1}\right]_{>} \cap A_{i-1} \neq \emptyset$.

We will make use of the following results from [13]:
Proposition 2.11 ([13]). If there exists an elliptic configuration of order $n \geq 3$, then f is recurrent.

Proposition 2.12 ([13]). If there exists a hyperbolic configuration of order $n \geq 2$, then $\operatorname{Fix}(f) \neq \emptyset$.
3. Two technical lemmas. In this section we give applications of Propositions 2.11 and 2.12 that will be used in the proof of Theorem 1.2 .

We fix $f \in$ Homeo $^{+}(\mathbb{D})$ together with a maximal free brick decomposition $\mathcal{D}=(V, E, B)$ of $\mathbb{D} \backslash \operatorname{Fix}(f)$, and we suppose that f is non-recurrent.

Let $a_{i}, i \in \mathbb{Z} / n \mathbb{Z}$, be non-empty, pairwise disjoint, closed, connected subsets of \mathbb{D} such that $\bar{a}_{i} \cap \partial \mathbb{D} \neq \emptyset$ for all $i \in \mathbb{Z} / n \mathbb{Z}$, and $U=\mathbb{D} \backslash \bigcup_{i \in \mathbb{Z} / n \mathbb{Z}} a_{i}$ is a connected open set. We consider the Riemann map $\varphi: U \rightarrow \mathbb{D}$, and the open intervals on the circle $J_{i}, i \in \mathbb{Z} / n \mathbb{Z}$, defined in 2.4.1. We recall that the interval J_{i} corresponds to the prime ends in U whose impression is contained in a_{i}.

Let $\left(I_{i}\right)_{i \in \mathbb{Z} / n \mathbb{Z}}$ be the connected components of $S^{1} \backslash \bigcup_{i \in \mathbb{Z} / n \mathbb{Z}} J_{i}$. So, each I_{i} is a closed interval, which may be reduced to a point.

REmARK 3.1. One can cyclically order the sets $\left(a_{i}\right)_{i \in \mathbb{Z} / n \mathbb{Z}},\left(r_{j}\right)_{i \in \mathbb{Z} / m \mathbb{Z}}$, where $\left(r_{j}\right)_{i \in \mathbb{Z} / m \mathbb{Z}}$ is any family of closed, connected and pairwise disjoint subsets of U satisfying:

- $\overline{r_{j}} \cap \partial U \neq \emptyset, j \in \mathbb{Z} / m \mathbb{Z}$,
- for all $j \in \mathbb{Z} / m \mathbb{Z}$, there exists $i_{j} \in \mathbb{Z} / n \mathbb{Z}$ such that $\overline{\varphi\left(r_{j}\right)} \cap S^{1} \subset I_{i_{j}}$,
- the correspondence $j \mapsto i_{j}$ is injective.

Lemma 3.2. Suppose that:
(1) the cyclic order of the sets $a_{i}, i \in \mathbb{Z} / n \mathbb{Z}$, is

$$
a_{0} \rightarrow a_{1} \rightarrow \cdots \rightarrow a_{i} \rightarrow a_{i+1} \rightarrow \cdots \rightarrow a_{n-1} \rightarrow a_{0}
$$

(2) for all $i \in \mathbb{Z} / n \mathbb{Z}$ there exists $b_{i}^{+} \in B$ such that $a_{i} \subset\left[b_{i}^{+}\right]_{>}$,
(3) there exist three bricks $\left(b_{s}^{-}\right)_{s \in \mathbb{Z} / 3 \mathbb{Z}}$ such that
(a) for all $s \in \mathbb{Z} / 3 \mathbb{Z}$ and all $i \in \mathbb{Z} / n \mathbb{Z}$, one has $b_{s}^{-} \subset\left[b_{i}^{+}\right]_{<}$(and so
(b) $\left.\frac{\left[b_{s}^{-}\right]_{<}}{\left[b_{s}^{-}\right]_{<}} \cap \partial U\right), ~$ for all $s \in \mathbb{Z} / 3 \mathbb{Z}$,
(c) for every $s \in \mathbb{Z} / 3 \mathbb{Z}$ there exists $i_{s} \in \mathbb{Z} / n \mathbb{Z}$ such that

$$
\overline{\varphi\left(\left[b_{s}^{-}\right]_{<}\right)} \cap S^{1} \subset I_{i_{s}}
$$

Then the correspondence $s \mapsto i_{s}$ is not injective.

Fig. 5. Lemma 3.2

Proof. We will prove that if the correspondence $s \mapsto i_{s}$ is injective, then we can construct an elliptic configuration of order 3 . As we are assuming f is not recurrent, this is not possible by Proposition 2.11.

We begin by proving that $\left[b_{s}^{-}\right]_{<} \cap\left[b_{r}^{-}\right]_{<} \neq \emptyset$ implies $i_{s}=i_{r}$. Indeed, if $\left[b_{s}^{-}\right]_{<} \cap\left[b_{r}^{-}\right]_{<} \neq \emptyset$, then $\left[b_{s}^{-}\right]_{<} \cup\left[b_{r}^{-}\right]_{<}$is a connected set and $\overline{\varphi\left(\left[b_{s}^{-}\right]_{<} \cup\left[b_{r}^{-}\right]_{<}\right)}$ intersects both $I_{i_{s}}$ and $I_{i_{r}}$. If $i_{s} \neq i_{r}$, then there exist $j_{0}, j_{1} \in \mathbb{Z} / n \mathbb{Z}$ such that any arc joining $J_{j_{0}}$ and $J_{j_{1}}$ separates $I_{i_{r}}$ from $I_{i_{s}}$ in $\overline{\mathbb{D}}$. Our hypothesis (3)(a) allows us to take a crosscut γ from $a_{j_{0}}$ to $a_{j_{1}}$ such that $\gamma \cap U \subset\left[b_{s}^{-}\right]_{>}$. So, $\overline{\varphi(\gamma \cap U)}$ is an arc joining $J_{j_{0}}$ and $J_{j_{1}}$, and

$$
\overline{\varphi(\gamma \cap U)} \cap \varphi\left(\left[b_{s}^{-}\right]_{<} \cup\left[b_{r}^{-}\right]_{<}\right) \neq \emptyset
$$

This gives us

$$
\left(\left[b_{s}^{-}\right]_{<} \cup\left[b_{r}^{-}\right]_{<}\right) \cap\left[b_{s}^{-}\right]_{>} \neq \emptyset
$$

and as we are supposing that f is not recurrent,

$$
\left[b_{r}^{-}\right]_{<} \cap\left[b_{s}^{-}\right]_{>} \neq \emptyset
$$

So,

$$
\left[b_{s}^{-}\right]_{<} \subset\left[b_{r}^{-}\right]_{<}
$$

which implies

$$
\overline{\varphi\left(\left[b_{s}^{-}\right]_{<}\right)} \cap S^{1} \subset I_{i_{s}} \cap I_{i_{r}}
$$

a contradiction.
So, if the correspondence $s \mapsto i_{s}$ is injective, the sets $\left[b_{s}^{-}\right]_{<}$are pairwise disjoint, and one can cyclically order the $n+3$ sets $a_{i},\left[b_{s}^{-}\right]_{<}, i \in \mathbb{Z} / n \mathbb{Z}$, $s \in \mathbb{Z} / 3 \mathbb{Z}$ (see Remark 3.1). We may suppose without loss of generality that

$$
\left[b_{0}^{-}\right]_{<} \rightarrow\left[b_{1}^{-}\right]_{<} \rightarrow\left[b_{2}^{-}\right]_{<} \rightarrow\left[b_{0}^{-}\right]_{<}
$$

For all $s \in \mathbb{Z} / 3 \mathbb{Z}$, we can take $j_{s} \in \mathbb{Z} / 3 \mathbb{Z}$ such that

$$
\left[b_{0}\right]_{<}^{-} \rightarrow a_{j_{2}} \rightarrow\left[b_{1}^{-}\right]_{<} \rightarrow a_{j_{0}} \rightarrow\left[b_{2}^{-}\right]_{<} \rightarrow a_{j_{1}} \rightarrow\left[b_{0}\right]_{<}^{-}
$$

(see Figure 9 below).
For all $s \in \mathbb{Z} / 3 \mathbb{Z}$, we define

$$
R_{s}=\left[b_{s}^{-}\right]_{<}, \quad A_{s}=\left[b_{j_{s}}^{+}\right]_{>} .
$$

We want to show that

$$
\left.\left(\left(R_{s}\right)_{s \in \mathbb{Z} / 3 \mathbb{Z}}\right),\left(A_{s}\right)_{s \in \mathbb{Z} / 3 \mathbb{Z}}\right)
$$

is an elliptic configuration. It is enough to show that the sets A_{s}, R_{s}, $s \in \mathbb{Z} / 3 \mathbb{Z}$, are pairwise disjoint, because of the cyclic order of these sets, and our hypothesis (3)(a). We already know that the sets $R_{s}, s \in \mathbb{Z} / 3 \mathbb{Z}$, are pairwise disjoint. As we are supposing that f is not recurrent, and $b_{j_{s}}^{+} \in\left[b_{s^{\prime}}^{-}\right]_{>}$ for any s, s^{\prime} in $\mathbb{Z} / 3 \mathbb{Z}$ (see (3)(a)), we know that

$$
\left[b_{j_{s}}^{+}\right]_{>} \cap\left[b_{s^{\prime}}^{-}\right]_{<}=\emptyset
$$

for all s, s^{\prime} in $\mathbb{Z} / 3 \mathbb{Z}$. So, the sets $\left\{A_{s}\right\}$ are disjoint from the sets $\left\{R_{s}\right\}$, and we just have to show that the sets $\left\{A_{s}\right\}$ are pairwise disjoint to finish the proof of the lemma.

Because of the symmetry of the problem it is enough to show that

$$
A_{0} \cap A_{1}=\emptyset
$$

If this is not so, then

$$
A_{0} \cup A_{1}=\left[b_{j_{0}}^{+}\right]_{>} \cup\left[b_{j_{1}}^{+}\right]_{>}
$$

would be a connected set containing both $a_{j_{1}}$ and $a_{j_{0}}$, and the cyclic order would imply that

$$
\left(\left[b_{j_{0}}^{+}\right]_{>} \cup\left[b_{j_{1}}^{+}\right]_{>}\right) \cap\left[b_{j_{0}}^{+}\right]_{<} \neq \emptyset
$$

by our hypothesis (3)(a). As we are supposing that f is not recurrent, we have

$$
\left[b_{j_{1}}^{+}\right]_{>} \cap\left[b_{j_{0}}^{+}\right]_{<} \neq \emptyset
$$

But this implies that $\left[b_{j_{1}}^{+}\right]_{>}$is a connected set containing both $a_{j_{1}}$ and $a_{j_{0}}$. Once again our hypothesis (3)(a) and the cyclic order give us

$$
\left[b_{j_{1}}^{+}\right]_{>} \cap\left[b_{j_{1}}^{+}\right]_{<} \neq \emptyset,
$$

and we are done.
For our next lemma, we keep the assumption on the cyclic order of the sets $a_{i}, i \in \mathbb{Z} / n \mathbb{Z}$:

$$
a_{0} \rightarrow a_{1} \rightarrow \cdots \rightarrow a_{i} \rightarrow a_{i+1} \rightarrow \cdots \rightarrow a_{n-1} \rightarrow a_{0}
$$

We define I_{i} to be the connected component of $S^{1} \backslash \bigcup_{j \in \mathbb{Z} / n \mathbb{Z}} J_{j}$ that follows J_{i-1} in the natural cyclic order on S^{1}, so that we have

$$
J_{i-1} \rightarrow I_{i} \rightarrow J_{i}
$$

for all $i \in \mathbb{Z} / n \mathbb{Z}$.
Lemma 3.3. If for all $i \in \mathbb{Z} / n \mathbb{Z}$:
(1) there exists $b_{i}^{+} \in B$ such that $a_{i} \subset\left[b_{i}^{+}\right]_{>}$,
(2) there exists $b_{i}^{-} \in B$ such that $b_{i}^{-} \subset\left[b_{j}^{+}\right]_{<}, j \in\{i-1, i\}$,
(3) $\left[b_{i}^{-}\right]_{<} \subset U$, and $\overline{\left[b_{i}^{-}\right]_{<}} \cap \partial U \neq \emptyset$,
(4) $\overline{\varphi\left(\left[b_{i}^{-}\right]_{<}\right)} \cap S^{1} \subset I_{i}$,
then $\operatorname{Fix}(f) \neq \emptyset$.

Fig. 6. Lemma 3.3 with $n=6$

Proof. By Proposition 2.12 it is enough to show that we can construct a hyperbolic configuration.

We begin by proving that the sets $\left\{\left[b_{i}^{-}\right]_{<}\right\}$are pairwise disjoint. Otherwise, there exist $i \neq j$ such that

$$
\left[b_{i}^{-}\right]_{<} \cap\left[b_{j}^{-}\right]_{<} \neq \emptyset
$$

Then $\left[b_{i}^{-}\right]_{<} \cup\left[b_{j}^{-}\right]_{<}$is a connected set and $\overline{\varphi\left(\left[b_{i}^{-}\right]_{<} \cup\left[b_{j}^{-}\right]_{<}\right)}$intersects both I_{i} and I_{j}. The cyclic order implies that any arc joining J_{i-1} and J_{i} separates I_{i} from $I_{j}, i \neq j$.

Our hypothesis (2) allows us to take a crosscut γ from a_{i-1} to a_{i} such that

$$
\gamma \cap U \subset\left[b_{i}^{-}\right]_{>}
$$

So, $\overline{\varphi(\gamma \cap U)}$ is an arc joining J_{i-1} and J_{i}, and

$$
\overline{\varphi(\gamma \cap U)} \cap \varphi\left(\left[b_{i}^{-}\right]_{<} \cup\left[b_{j}^{-}\right]_{<}\right) \neq \emptyset .
$$

This gives us

$$
\left(\left[b_{i}^{-}\right]_{<} \cup\left[b_{j}^{-}\right]_{<}\right) \cap\left[b_{i}^{-}\right]_{>} \neq \emptyset
$$

and as we are supposing that f is not recurrent,

$$
\left.\left[b_{j}^{-}\right]_{<\cap\left[b_{i}^{-}\right.}\right]_{>} \neq \emptyset
$$

So, $\left[b_{i}^{-}\right]_{<} \subset\left[b_{j}^{-}\right]_{<}$, which implies

$$
\overline{\varphi\left(\left[b_{i}^{-}\right]_{<}\right)} \cap S^{1} \subset I_{i} \cap I_{j}
$$

a contradiction.
So, we can cyclically order the $2 n$ sets $a_{i},\left[b_{i}^{-}\right]_{<}, i \in \mathbb{Z} / n \mathbb{Z}$ (see Remark 3.1). Moreover, for all $i \in \mathbb{Z} / n \mathbb{Z}$,

$$
a_{i-1} \rightarrow\left[b_{i}^{-}\right]_{<} \rightarrow a_{i}
$$

Define $A_{i}=\left[b_{i}^{+}\right]_{>}$and $R_{i}=\left[b_{i}^{-}\right]_{<}$for $i \in \mathbb{Z} / n \mathbb{Z}$. To finish the proof of the lemma, it is enough to show that the sets $R_{i}, A_{i}, i \in \mathbb{Z} / n \mathbb{Z}$, are pairwise disjoint. Indeed, if this is true, our previous remark on the cyclic order, and our hypothesis (2) imply that $\left(\left(R_{i}\right)_{i \in \mathbb{Z} / n \mathbb{Z}},\left(A_{i}\right)_{i \in \mathbb{Z} / n \mathbb{Z}}\right)$ is a hyperbolic configuration.

We have already proved that the sets $R_{i}, i \in \mathbb{Z} / n \mathbb{Z}$, are pairwise disjoint. We will also show that $\left[b_{i}^{-}\right]_{<} \cap\left[b_{j}^{+}\right]_{>}=\emptyset$ for any $j \in \mathbb{Z} / n \mathbb{Z}$. By hypothesis (2), $\left[b_{i}^{-}\right]_{<} \cap\left[b_{i}^{+}\right]_{>}=\emptyset$, as we are supposing that f is not recurrent. If $\left[b_{i}^{-}\right]_{<} \cap$ $\left[b_{j}^{+}\right]_{>} \neq \emptyset$ for some $j \neq i$, then $\left[b_{j}^{+}\right]_{<} \subset\left[b_{i}^{-}\right]_{<,} j \neq i$. Therefore, $\overline{\varphi\left(\left[b_{j}^{+}\right]_{<}\right)} \cap$ $S^{1} \subset I_{i}, j \neq i$, which contradicts our hypothesis (4)

We have proved that the sets R_{i} are disjoint from the sets $A_{i}, i \in \mathbb{Z} / n \mathbb{Z}$. So, in order to finish, we only have to prove that the sets $A_{i}, i \in \mathbb{Z} / n \mathbb{Z}$, are pairwise disjoint.

If this is not the case, there would exist $i \neq j$ such that $\left[b_{i}^{+}\right]_{>} \cap\left[b_{j}^{+}\right]_{>} \neq \emptyset$. So, $\left[b_{i}^{+}\right]_{>} \cup\left[b_{j}^{+}\right]_{>}$is a connected set containing $a_{i} \cup a_{j}$, and must therefore intersect $\left[b_{i}^{+}\right]_{<}$, because of the cyclic order and hypothesis (2). We may of course assume that $\left[b_{j}^{+}\right]_{>} \cap\left[b_{i}^{+}\right]_{<} \neq \emptyset$. Now, we see that $\left[b_{j}^{+}\right]_{>}$is a connected set containing $a_{j} \cup a_{i}$ and must therefore intersect $\left[b_{j}^{+}\right]_{<}$. This contradiction proves our claim.
4. Proof of the main result. This section is devoted to the proof of Theorem 1.2,

We fix an orientation preserving homeomorphism $f: \mathbb{D} \rightarrow \mathbb{D}$ which realizes a cycle of links $\mathcal{L}=\left(\left(\alpha_{i}, \omega_{i}\right)\right)_{i \in \mathbb{Z} / n \mathbb{Z}}$. We recall that this means that there exists a family $\left(z_{i}\right)_{i \in \mathbb{Z} / n \mathbb{Z}}$ of points in \mathbb{D} such that for all $i \in \mathbb{Z} / n \mathbb{Z}$,

$$
\lim _{k \rightarrow-\infty} f^{k}\left(z_{i}\right)=\alpha_{i}, \quad \lim _{k \rightarrow \infty} f^{k}\left(z_{i}\right)=\omega_{i}
$$

We also recall that

$$
\ell=\left\{\alpha_{i}, \omega_{i}: i \in \mathbb{Z} / n \mathbb{Z}\right\} \subset S^{1}
$$

and that we supppose that f can be extended to a homeomorphism of $\mathbb{D} \cup \ell$.
4.1. The elliptic case. Let us state our first proposition:

Proposition 4.1. If \mathcal{L} is elliptic, then $\operatorname{Fix}(f) \neq \emptyset$. Moreover, one of the following holds:
(1) f is recurrent,
(2) \mathcal{L} is a degenerate cycle.

As the proof is long, we will first describe our strategy. The first part of the work consists in constructing a brick decomposition which is suitable for our purposes. Once this is done, we show that if f is not recurrent, then the elliptic order property gives rise to constraints on the order of the cycle of links \mathcal{L}. We will show (as a consequence of Lemma 3.2) that the only possibility for the order of \mathcal{L} is $n=4$. The case $n=4$ is special, as degeneracies may occur (see Figure 2, and the introduction, where we explain that non-degeneracy is necessary to obtain the index result). For $n=4$ we prove that $\operatorname{Fix}(f) \neq \emptyset$, and that if f is not recurrent, then \mathcal{L} is degenerate.
I. Construction of the brick decomposition. We first note that we may assume that $n>3$: if $n=3$, the definition of cycle of links implies automatically that the points $\left\{\alpha_{i}\right\},\left\{\omega_{i}\right\}$ are all different, and the proof follows from Le Calvez's improvement to Handel's theorem. As we are dealing with the elliptic case, the only possible coincidences among the points $\left\{\alpha_{i}\right\},\left\{\omega_{i}\right\}$ are of the form $\omega_{i-2}=\alpha_{i}$. In particular, the points $\left\{\omega_{i}\right\}$ are all different and for all $i \in \mathbb{Z} / n \mathbb{Z}$ we can take a neighbourhood U_{i}^{+}of ω_{i} in $\overline{\mathbb{D}}$ in such a way
that $U_{i}^{+} \cap U_{j}^{+}=\emptyset$ if $i \neq j$. We define $U_{i}^{-}=U_{i-2}^{+}$if $\alpha_{i}=\omega_{i-2}$, and for all $i \in \mathbb{Z} / n \mathbb{Z}$ such that $\alpha_{i} \neq \omega_{i-2}$ we take a neighbourhood U_{i}^{-}of α_{i} in $\overline{\mathbb{D}}$ in such a way that $U_{i}^{-} \cap U_{j}^{+}=\emptyset$ for all $j \in \mathbb{Z} / n \mathbb{Z}$, and $U_{i}^{-} \cap U_{j}^{-}=\emptyset$ for all $i \neq j$.

We suppose from now on that f is not recurrent.
We apply Lemma 2.9 and obtain families $\left(b_{i}^{\prime l}\right)_{l \in \mathbb{Z} \backslash\{0\}, i \in \mathbb{Z} / n \mathbb{Z}}$ of closed disks. So, the disks in $\left(b_{i}^{l l}\right)_{l \geq 1, i \in \mathbb{Z} / n \mathbb{Z}}$ have pairwise disjoint interiors.

Let $I_{\text {reg }}$ be the set of $\bar{i} \in \mathbb{Z} / n \mathbb{Z}$ such that $\alpha_{i} \neq \omega_{i-2}$, or such that $\alpha_{i}=\omega_{i-2}$ but there exists $K>0$ such that

$$
\bigcup_{k>K} \operatorname{Int}\left(b_{i-2}^{\prime k}\right) \cap \bigcup_{k>K} \operatorname{Int}\left(b_{i}^{\prime-k}\right)=\emptyset .
$$

Let $I_{\text {sing }}$ be the complement of $I_{\text {reg }}$ in $\mathbb{Z} / n \mathbb{Z}$.
After discarding a finite number of disks, we can suppose that the disks $b_{i}^{\prime l}$ with $l \geq 1, i \in \mathbb{Z} / n \mathbb{Z}$, and $b_{i}^{\prime-l}$ with $l \geq 1, i \in I_{\mathrm{reg}}$, have pairwise disjoint interiors.

If $i \in I_{\text {sing }}$, then $\alpha_{i}=\omega_{i-2}$ and for all $k>0$ there exist $k^{\prime}>k, j^{\prime}>k$ such that $\operatorname{Int}\left(b_{i-2}^{\prime k^{\prime}}\right) \cap \operatorname{Int}\left(b_{i}^{\prime-j^{\prime}}\right) \neq \emptyset$.

In the following lemma we refer to the family of integers $\left(l_{i}\right)_{i \in \mathbb{Z} / n \mathbb{Z}}$ constructed in Lemma 2.9.

Lemma 4.2. For $i \in I_{\text {sing }}$, we can find sequences $\left(c_{i}^{m}\right)_{m \geq 0}$ of free closed disks such that:
(1) $c_{i}^{m} \subset U_{i-2}^{+}=U_{i}^{-}$,
(2) there exists an increasing sequence $\left(k_{i}^{m}\right)_{m \geq 0}$ such that $b_{i-2}^{\prime k_{i}^{m}} \cap c_{i}^{m} \neq \emptyset$ for all $m \geq 0$,
(3) $\left(b_{i-2}^{\prime k_{i}^{p}} \cup c_{i}^{p}\right) \cap\left(b_{i-2}^{\prime k_{i}^{m}} \cup c_{i}^{m}\right)=\emptyset$ for all $p \neq m$,
(4) there exists an increasing sequence $\left(j_{i}^{m}\right)_{m \geq 0}$ such that $f^{-l_{i}-j_{i}^{m}+1}\left(z_{i}\right)$ $\in c_{i}^{m}$ for all $m \geq 0$,
(5) the sequence $\left(c_{i}^{m}\right)_{m \geq 0}$ converges to $\omega_{i-2}=\alpha_{i}$ in the Hausdorff topology,
(6) $b_{i-2}^{\prime k_{i}^{m}} \cap c_{i}^{m}$ is an arc for all $m \geq 0$ (so, $c_{i}^{m} \cup b_{i-2}^{\prime k_{i}^{m}}$ is a topological closed disk),
(7) $\partial\left(\bigcup_{k \geq 1} b_{i-2}^{\prime k} \cup \bigcup_{m \geq 0} c_{i}^{m}\right)$ is a one-dimensional submanifold,
(8) if $x \in \mathbb{D}$, then x bèlongs to at most two different disks in the family $\left\{b_{i-2}^{\prime k}, c_{i}^{m}: k \geq 1, m \geq 0\right\}$.

Proof. Take $i \in I_{\text {sing }}$ and consider the family $\left(b_{i-2}^{\prime k}\right)_{k \geq 1} \subset U_{i-2}^{+}$of closed disks. As $i \in I_{\text {sing }}$, there exists $j_{i}^{0}>1$ such that

$$
\operatorname{Int}\left(\bigcup_{k \geq 1} b_{i-2}^{\prime k}\right) \cap \operatorname{Int}\left(b_{i}^{\prime-j_{i}^{0}}\right) \neq \emptyset
$$

Fig. 7. The disks $b_{i-2}^{\prime k_{m}}$ and c_{i}^{m}
By Lemma $2.9(7), f^{\left(-l_{i}-j_{i}^{0}+1\right)}\left(z_{i}\right) \in \operatorname{Int}\left(b_{i}^{\prime-j_{i}^{0}}\right) \backslash \bigcup_{l \geq 1} b_{i-2}^{\prime l}$. We take an arc

$$
\gamma_{i}^{0} \subset \operatorname{Int}\left(b_{i}^{\prime-j_{i}^{0}}\right) \backslash \operatorname{Int}\left(\bigcup_{l \geq 1} b_{i-2}^{\prime l}\right)
$$

joining $f^{\left(-l_{i}-j_{i}^{0}+1\right)}\left(z_{i}\right)$ and a point $x_{i}^{0} \in \partial \bigcup_{l \geq 1} b_{i-2}^{\prime l}$. We define $k_{i}^{0} \geq 1$ by

$$
x_{i}^{0} \in b_{i-2}^{\prime k_{i}^{0}} .
$$

We define inductively for $m \geq 0$:

- $U_{m} \subset U_{i-2}^{+}=U_{i}^{-}$, a neighbourhood of $\omega_{i-2}=\alpha_{i}$ in $\overline{\mathbb{D}}$ such that

$$
\overline{U_{m}} \cap\left(\operatorname{Int}\left(b_{i-2}^{\prime k_{i}^{m}}\right) \cup \operatorname{Int}\left(b_{i}^{\prime-j_{i}^{m}}\right)\right)=\emptyset,
$$

- $K_{m}>0$ such that for all $k \geq K_{m}, b_{i-2}^{\prime k} \cup b_{i}^{\prime-k} \subset U_{m}$,
- $j_{i}^{m+1}>K_{m}$ such that $\operatorname{Int}\left(\bigcup_{k \geq K_{m}} b_{i-2}^{\prime k}\right) \cap \operatorname{Int}\left(b_{i}^{\prime-j_{i}^{m+1}}\right) \neq \emptyset$,
- $\gamma_{i}^{m+1} \subset \operatorname{Int}\left(b_{i}^{\prime-j_{i}^{m+1}}\right) \backslash \bigcup_{l \geq K_{m}} b_{i-2}^{\prime l}$, an arc joining $f^{\left(-l_{i}-j_{i}^{m+1}+1\right)}\left(z_{i}\right)$ and a point $x_{i}^{m+1} \in \partial \bigcup_{k \geq K_{m}} b_{i-2}^{\prime k}$,
- $k_{i}^{m+1}>K_{m}$ by

$$
x_{i}^{m+1} \in b_{i-2}^{\prime k_{i}^{m+1}}
$$

The existence of K_{m} comes from the fact that both sequences $\left(b_{i}^{\prime-l}\right)_{l \geq 1}$ and $\left(b_{i-2}^{\prime l}\right)_{l \geq 1}$ converge to $\alpha_{i}=\omega_{i-2}$ in the Hausdorff topology; that of j_{i}^{m+1} from the fact that $i \in I_{\text {sing }}$; that of γ_{i}^{m+1} from the choice of j_{i}^{m+1} and the fact that $f^{\left(-l_{i}-j_{i}^{m+1}+1\right)}\left(z_{i}\right) \in \operatorname{Int}\left(b_{i}^{\prime-j_{i}^{m+1}}\right) \backslash \bigcup_{l \geq K_{m}} b_{i-2}^{\prime l}$, and that of x_{i}^{m+1} and k_{i}^{m+1} follows from the choice of j_{i}^{m+1}.

By thickening these $\operatorname{arcs}\left\{\gamma_{i}^{m}\right\}$, we can construct disks $\left\{c_{i}^{m}\right\}$ satisfying all the conditions of the lemma.

The proposition above allows us to construct a maximal free brick decomposition (V, E, B) such that:

- for all $i \in \mathbb{Z} / n \mathbb{Z}$ and $l \geq 1$, there exists $b_{i}^{l} \in B$ such that $b_{i}^{\prime l} \subset b_{i}^{l}$,
- for all $i \in I_{\mathrm{reg}}$ and $l \geq 1$, there exists $b_{i}^{-l} \in B$ such that $b_{i}^{\prime-l} \subset b_{i}^{-l}$,
- for all $m \geq 0$ and $i \in I_{\text {sing }}$, there exists $b_{i}^{-j_{i}^{m}} \in B$ such that $c_{i}^{m} \subset b_{i}^{-j_{i}^{m}}$.
II. The "domino effect" of the elliptic order property

Lemma 4.3. Take two indices i, j in $\mathbb{Z} / n \mathbb{Z}$, and two integers k and N. If b_{j}^{k} and b_{j+2}^{k} are contained in $\left[b_{i}^{N}\right]_{>}$, then there exists $k^{\prime} \in \mathbb{Z}$ such that $b_{l}^{k^{\prime}}$ is contained in $\left[b_{i}^{N}\right]_{>}$for all $l \in \mathbb{Z} / n \mathbb{Z}$.

Proof. We will show that if b_{j}^{k} and b_{j+2}^{k} are contained in $\left[b_{i}^{N}\right]_{>}$, then there exists $k^{\prime \prime}$ such that both $b_{j+1}^{k^{\prime \prime}}$ and $b_{j+3}^{k^{\prime \prime}}$ are contained in $\left[b_{i}^{N}\right]_{>}$. If b_{j}^{k} and b_{j+2}^{k} are contained in $\left[b_{i}^{N}\right]_{>}$, then b_{j}^{l} and b_{j+2}^{l} are contained in $\left[b_{i}^{N}\right]_{>}$for all $l \geq k$. By Remark 2.10, we can find an arc

$$
\gamma:[0,1] \rightarrow\left[b_{i}^{N}\right]_{>} \cup\left\{\omega_{j}, \omega_{j+2}\right\}
$$

joining ω_{j} and ω_{j+2}. As $n>3$, and the coincidences are of the form $\alpha_{i}=$ ω_{i-2}, we know that the points $\alpha_{j+1}, \omega_{j}, \alpha_{j+3}, \omega_{j+2}$ are all different. So, γ separates both α_{j+1} from ω_{j+1} and α_{j+3} from ω_{j+3}. Hence, there exists $k^{\prime \prime}>0$ such that $\left.\left[b_{j+1}^{k^{\prime \prime}}\right]_{\leq \cap[} b_{i}^{N}\right]_{>} \neq \emptyset$ and $\left[b_{j+3}^{k^{\prime \prime}}\right]_{\leq \cap[}\left[b_{i}^{N}\right]_{>} \neq \emptyset$. We are done by induction, and by taking k^{\prime} large enough.

In the following lemma we make reference to the sequences $\left(k_{i}^{m}\right)_{m \geq 0}$ and $\left(j_{i}^{m}\right)_{m \geq 0}$ defined in Lemma 4.2 .

Lemma 4.4. For every $i \in I_{\text {sing }}$, there exists $N>0$ such that $\left[b_{i}^{-j_{i}^{N}}\right]_{\geq}$ contains $b_{i-2}^{k_{i}^{N}}$.

Proof. We will prove the following stronger statement which implies immediately that $\left[b_{i}^{-j_{i}^{N}}\right]_{\geq}$contains $b_{i-2}^{k_{i}^{N}}$: there exists $N>0$ such that $f\left(c_{i}^{N}\right) \cap$ $b_{i-2}^{\prime k_{i}^{N}} \neq \emptyset$.
I. Let us begin by studying the local dynamics of the brick decomposition at $\alpha_{i}=\omega_{i-2}, i \in I_{\text {sing }}$. We define, for all $m \geq 0$,

$$
X_{m}=b_{i-2}^{\prime k_{i}^{m}} \cup c_{i}^{m}
$$

and we recall that every X_{m} is a closed disk (see Lemma 4.2). Then, for all $m \geq 0$,

$$
f^{l_{i-2}+k_{i}^{m}-1}\left(z_{i-2}\right) \cup f^{-l_{i}-j_{i}^{m}-j_{i}^{m}}\left(z_{i}\right) \in X_{m}
$$

So, given any two positive integers $m>p$, one has

$$
\bigcup_{k \geq 1} f^{k}\left(X_{p}\right) \cap X_{m} \neq \emptyset \quad \text { and } \quad \bigcup_{k \geq 1} f^{k}\left(X_{m}\right) \cap X_{p} \neq \emptyset
$$

Moreover, $X_{m} \cap X_{p}=\emptyset$ and X_{m} and X_{p} are topological closed disks. Therefore, if we can find $m>p \geq 0$ such that both X_{p} and X_{m} are free sets,
then f would be recurrent by Proposition 2.5. Hence, we can suppose that for all $m \geq 0$ the set X_{m} is not free. So, as for all $m \geq 0$ both $b_{i}^{\prime k_{m}}$ and c_{i}^{m} are free sets, we see that either $f\left(b_{i-2}^{\prime k_{i}^{m}}\right) \cap c_{i}^{m} \neq \emptyset$, or $f\left(c_{i}^{m}\right) \cap b_{i-2}^{\prime k_{i}^{m}} \neq \emptyset$. If there exists $m>0$ such that $f\left(c_{i}^{m}\right) \cap b_{i-2}^{\prime k_{i}^{m}} \neq \emptyset$, we are done. So, we may assume that for all $m \geq 0, f\left(b_{i-2}^{\prime k_{i}^{m}}\right) \cap c_{i}^{m} \neq \emptyset$. Then $f\left(b_{i-2}^{k_{i}^{m}}\right) \cap b_{i}^{-j_{i}^{m}} \neq \emptyset$ for all $m \geq 0$. In particular, $\left[b_{i-2}^{k_{i}^{m}}\right]_{>}$contains b_{i}^{l} for all $l>0$ and for all $m \geq 0$.
II. We will show that this implies that f is recurrent. As $\left[b_{i-2}^{k_{i}^{m}}\right]_{>}$contains b_{i}^{k} and b_{i-2}^{k} for $k>k_{i}^{m}$, Lemma 4.3 implies that for all $m \geq 0$ there exists $l_{m}>0$ such that $\left[b_{i-2}^{k_{i}^{m}}\right]_{>}$contains b_{j}^{l} for all $j \in \mathbb{Z} / n \mathbb{Z}$ and for all $l \geq l_{m}$.

In particular, Remark 2.10 tells us that for all $m \geq 0$ there exists an arc

$$
\Gamma_{m}:[0,1] \rightarrow\left[b_{i-2}^{k_{i}^{m}}\right]_{>} \cup\left\{\omega_{i-2}, \omega_{i-4}\right\}
$$

joining ω_{i-2} and ω_{i-4}, which implies that Γ_{m} separates α_{i-1} from α_{i-3} in $\overline{\mathbb{D}}$ (see Figure 8(a) and observe that as $n>3$ the points $\alpha_{i-3}, \omega_{i-4}, \alpha_{i-1}, \omega_{i-2}$ are all different). Since we are assuming that f is not recurrent, we deduce that the closure of $\left[b_{i-2}^{k_{i}^{m}}\right]_{\leq}$cannot contain both points α_{i-1} and α_{i-3}.

Fig. 8. The proof of Lemma 4.4
We will suppose that for all $m \geq 0$, the closure of $\left[b_{i-2}^{k_{i}^{m}}\right]_{\leq}$does not contain one of the points α_{i-1} and α_{i-3}, and obtain a contradiction. As $m>p$ implies

$$
\left[b_{i-2}^{k_{i}^{p}}\right]_{\leq} \subset\left[b_{i-2}^{k_{i}^{m}}\right]_{\leq}
$$

one of the points $\alpha_{i-1}, \alpha_{i-3}$ is not contained in the closure of any of the sets $\left[b_{i-2}^{k_{i}^{m}}\right]_{\leq}, m \geq 0$. Suppose that α_{i-3} is not contained in $\overline{\left[b_{i-2}^{k_{i}^{m}}\right]_{\leq}}$for any $m \geq 0$ (the other case is analogous). In particular, for all $m \geq 0,\left[b_{i-2}^{k_{i}^{m}}\right]_{\leq}$ does not contain any of the bricks containing the orbit of z_{i-3}. We take a
neighbourhood U of α_{i-3} in $\overline{\mathbb{D}}$ such that $U \cap\left[b_{i-2}^{k_{i}^{0}}\right]_{\leq}=\emptyset$ and such that $U \cap \bigcup_{l>k_{i}^{0}} b_{i-2}^{l}=\emptyset$. We also take $j>0$ such that $f^{-j}\left(z_{i-3}\right) \in U$, and an $\operatorname{arc} \beta:[0,1] \rightarrow U$ joining α_{i-3} and $f^{-j}\left(z_{i-3}\right)$. Finally, we take a brick $b \in B$ such that $f^{-j}\left(z_{i-3}\right) \in b$. As $\bigcup_{l \geq 1} b_{i-3}^{\prime l} \subset[b]_{\geq}$, Remark 2.10 allows us to take an arc $\gamma:[0,1] \rightarrow[b]_{\geq} \cup \omega_{i-3}$ joining $f^{-j}\left(z_{i-3}\right)$ and ω_{i-3}.

So, $\beta . \gamma$ separates α_{i-2} from ω_{i-2} in $\overline{\mathbb{D}}$ and

$$
\beta \cdot \gamma \cap\left(\bigcup_{l>k_{0}} b_{i-2}^{l} \cup\left[b_{i-2}^{k_{i}^{0}}\right]_{\leq}\right) \neq \emptyset
$$

which implies

$$
\gamma \cap\left(\bigcup_{l>k_{0}} b_{i-2}^{l} \cup\left[b_{i-2}^{k_{i}^{0}}\right]_{\leq}\right) \neq \emptyset
$$

because of our choice of U (see Figure 8(b)). Hence,

$$
b \geq \cap \bigcup_{l>0}\left[b_{i-2}^{l}\right]_{<} \neq \emptyset
$$

which implies that for some $m \geq 0$,

$$
[b]_{\geq} \cap\left[b_{i-2}^{m}\right]_{<} \neq \emptyset
$$

Therefore, $b \in\left[b_{i-2}^{k_{i}^{m}}\right]_{\leq}$, and $\left[b_{i-2}^{k_{i}^{m}}\right]_{\leq}$contains a brick containing one point of the orbit of z_{i-3}. This contradiction finishes the proof of the lemma.

Lemma 4.5. There exists $k>0$ such that for any pair of indices i, j in $\mathbb{Z} / n \mathbb{Z}$, the attractor $\left[b_{i}^{-k}\right]_{>}$contains b_{j}^{k}.

Proof. For all $i \in I_{\text {reg }}$, we know that $\bigcup_{l>1} b_{i}^{\prime-l} \subset \bigcup_{l>0}\left[b_{i}^{-l}\right]_{>}$(note that this is not necessarily the case if $i \in I_{\text {sing }}$). So, by Remark 2.10, there exists an arc

$$
\Gamma_{i}:[0,1] \rightarrow \bigcup_{l>0}\left[b_{i}^{-l}\right]_{>} \cup\left\{\alpha_{i}, \omega_{i}\right\}
$$

joining α_{i} and ω_{i}. Hence, Γ_{i} separates both α_{i-1} from ω_{i-1} and α_{i+1} from ω_{i+1} in $\overline{\mathbb{D}}$. Therefore, there exists $m>0$ such that $\left[b_{i}^{-m}\right]_{>}$contains both b_{i+1}^{m} and b_{i-1}^{m}. By Lemma 4.3, $\left[b_{i}^{-m}\right]_{>}$contains b_{j}^{l} for all $j \in \mathbb{Z} / n \mathbb{Z}$, and l large enough.

For all $i \in I_{\text {sing }}$, the previous lemma tells us that there exists $N>0$ such that $\left[b_{i}^{-j_{i}^{N}}\right]_{\geq}$contains $b_{i-2}^{k_{i}^{N}}$. Clearly, $\left[b_{i}^{-j_{i}^{N}}\right]_{\geq}$also contains $b_{i}^{k_{i}^{N}}$ and so once again, Lemma 4.3 implies that $\left[b_{i}^{-j_{i}^{N}}\right]_{\geq}$contains b_{j}^{l} for all $j \in \mathbb{Z} / n \mathbb{Z}$ and l large enough. We finish by taking k sufficiently large.
III. Constraints on the order of the cycle of links \mathcal{L}. We fix $k>0$ such that for any i, j in $\mathbb{Z} / n \mathbb{Z},\left[b_{i}^{-k}\right]_{>}$contains b_{j}^{k}. We define

$$
a_{i}=\left(\bigcup_{m \geq k} b_{i}^{m}\right) \cap \Gamma_{i}^{+}, \quad i \in \mathbb{Z} / n \mathbb{Z}
$$

(see Remark 2.10 for the definition of Γ_{i}^{+}). We may suppose that

$$
U=\mathbb{D} \backslash \bigcup_{i \in \mathbb{Z} / n \mathbb{Z}} a_{i}
$$

is simply connected. As $a_{i} \subset \bigcup_{m \geq k} b_{i}^{m}$, and we are supposing that f is not recurrent, we know that $\left[b_{i}^{-k}\right]_{<} \subset U$ for all $i \in \mathbb{Z} / n \mathbb{Z}$.

Let $\varphi: U \rightarrow \mathbb{D}$ be the Riemann map and consider the intervals J_{i}, $i \in \mathbb{Z} / n \mathbb{Z}$, defined in 3.1. We define I_{i} as to be the connected component of $S^{1} \backslash \bigcup_{l \in \mathbb{Z} / n \mathbb{Z}} J_{l}$ following J_{i-2} in the natural (positive) cyclic order on S^{1}. So, each I_{i} is a closed interval, and we have

$$
J_{i-2} \rightarrow I_{i} \rightarrow J_{i-1}
$$

for all $i \in \mathbb{Z} / n \mathbb{Z}$.
Lemma 4.6. For all $i \in \mathbb{Z} / n \mathbb{Z}$:
(1) there exists $j_{i} \in \mathbb{Z} / n \mathbb{Z}$ such that $\overline{\varphi\left(\left[b_{i}^{-k}\right]_{<}\right)} \cap S^{1} \subset I_{j_{i}}$,
(2) $j_{i} \in\{i-1, i\}$,
(3) if $\alpha_{i} \neq \omega_{i-2}$, then $j_{i}=i$.

Proof. (1) If there exists $x \in \overline{\varphi\left(\left[b_{i}^{-k}\right]_{<}\right)} \cap J_{j}$ for some $j \in \mathbb{Z} / n \mathbb{Z}$, then $\overline{\left[b_{i}^{-k}\right]_{<}} \cap a_{j} \neq \emptyset$. As $\left[b_{i}^{-k}\right]_{<}$is closed in \mathbb{D}, and as $a_{j} \subset \mathbb{D}$, we obtain $\left[b_{i}^{-k}\right]_{<} \cap$ $a_{j} \neq \emptyset$, a contradiction. So, $\overline{\varphi\left(\left[b_{i}^{-k}\right]_{<}\right)} \subset \bigcup_{j \in \mathbb{Z} / n \mathbb{Z}} I_{j}$. If $\overline{\varphi\left(\left[b_{i}^{-k}\right]_{<}\right)}$intersects I_{j} and $I_{k}, k \neq j$, then there exist two different indices i_{0} and i_{1} in $\mathbb{Z} / n \mathbb{Z}$ such that any arc joining $J_{i_{0}}$ and $J_{i_{1}}$ separates I_{j} from I_{k}. We take a crosscut γ from $a_{i_{0}}$ to $a_{i_{1}}$ such that $\gamma \subset\left[b_{i}^{-k}\right]_{>}$. So,

$$
\varphi(\gamma \cap U) \cap \varphi\left(\left[b_{i}^{-k}\right]_{<}\right) \neq \emptyset,
$$

and consequently

$$
\left[b_{i}^{-k}\right]_{>} \cap\left[b_{i}^{-k}\right]_{<} \neq \emptyset,
$$

which contradicts our assumption that f is not recurrent.
(2) Take a crosscut $\gamma \subset\left[b_{i}^{-k}\right]_{>}$from a_{i-3} to a_{i-1}. Then the elliptic order property implies that α_{i} belongs to the closure of only one of the two connected components of $U \backslash \gamma$: the one to the right of γ. We use here the fact that $\alpha_{i} \notin\left\{\omega_{i-3}, \omega_{i-1}\right\}$. So, $\left[b_{i}^{-k}\right]_{<}$also belongs to the connected component of $U \backslash \gamma$ which is to the right of γ. Consequently, $\varphi\left(\left[b_{i}^{-k}\right]_{<}\right)$ belongs to the connected component of $\mathbb{D} \backslash \varphi(\gamma \cap U)$ which is to the right
of $\varphi(\gamma \cap U)$. As $\overline{\varphi(\gamma \cap U)}$ is an arc from J_{i-3} to J_{i-1}, the closure of this connected component only contains I_{i} and I_{i-1}. So, we obtain $j_{i} \in\{i-1, i\}$.
(3) If $\alpha_{i} \neq \omega_{i-2}$, we can apply exactly the same argument as in the preceding item, but using a crosscut γ from a_{i-2} to a_{i-1}, obtaining $j_{i}=i$.

REMARK 4.7. If we set $b_{i}^{-}=b_{i}^{-k}$ and $b_{i}^{+}=b_{i}^{k}$, then the bricks b_{i}^{-}, $i \in\left\{i_{0}, i_{1}, i_{2}\right\}$, satisfy all the hypotheses of Lemma 3.2, where i_{0}, i_{1}, i_{2} are any three different indices in $\mathbb{Z} / n \mathbb{Z}$. Indeed, k is chosen so that (2) and (3)(a) hold, (3)(b) is granted since $\alpha_{i} \subset \overline{\left[b_{i}^{-}\right]_{<}}$for all $i \in \mathbb{Z} / n \mathbb{Z}$, and (3)(c) is the content of item (1) in Lemma 4.6 .

The second item in Lemma 4.6 gives us:
Corollary 4.8. If $|i-l| \geq 2$, then $j_{i} \neq j_{l}$.
The constraint on the order \mathcal{L} follows:
Lemma 4.9. The order of \mathcal{L} is either 4 or 5.
Proof. If $n \geq 6$, the sets $\{i, i-1\}, i \in\{0,2,4\}$, are pairwise disjoint, and so the three indices j_{0}, j_{2}, j_{4} given by Lemma 4.6 are different. This contradicts Lemma 3.2.

Lemma 4.10. We have $n=4$.
Proof. We show that $n=5$ also contradicts Lemma 3.2. If j_{0}, j_{2}, j_{3} are all different, we are done because of Lemma 3.2 . Otherwise, the only possibility is that $j_{2}=j_{3}=2$ (see Lemma 4.6). But then j_{1}, j_{3} and j_{4} are different.

Lemma 4.11. \mathcal{L} is degenerate.
Proof. We will show that if $n=4$ and \mathcal{L} is non-degenerate, we can also find a triplet i_{0}, i_{1}, i_{2} in $\mathbb{Z} / n \mathbb{Z}$ such that the corresponding $j_{i_{s}}, s \in\{0,1,2\}$, are different.

For a non-degenerate cycle of links, there can be at most two coincidences of the type $\alpha_{i}=\omega_{i-2}$. Furthermore, if $\alpha_{i}=\omega_{i-2}$ and $\alpha_{j}=\omega_{j-2}$ for some $i \neq j$, then $|i-j|=1$. Indeed, the points in ℓ are ordered as follows:

$$
\omega_{0} \xrightarrow{=} \alpha_{2} \rightarrow \omega_{1} \xrightarrow{=} \alpha_{3} \rightarrow \omega_{2} \xrightarrow{=} \alpha_{0} \rightarrow \omega_{3} \xrightarrow{=} \alpha_{1} \rightarrow \omega_{0},
$$

and non-degeneracy means that we cannot have both $\omega_{i}=\alpha_{i+2}$ and $\omega_{i+2}=$ α_{i}, for some $i \in \mathbb{Z} / 4 \mathbb{Z}$. So, there exists $l \in \mathbb{Z} / 4 \mathbb{Z}$ such that $\alpha_{l} \neq \omega_{l-2}$ and $\alpha_{l+1} \neq \omega_{l-1}$. We can suppose without loss of generality that $\alpha_{0} \neq \omega_{2}$, and $\alpha_{1} \neq \omega_{3}$ (see Figure 9). Items (2) and (3) in Lemma 4.6 imply that j_{0}, j_{1}, and j_{3} are different, and we are done.

The following lemma finishes the proof of Proposition 4.1.
Lemma 4.12. If $n=4$, then $\operatorname{Fix}(f) \neq \emptyset$.

α_{3}
Fig. 9. The case $n=4$

Proof. We will be done by constructing a hyperbolic repeller/attractor configuration of order 2 . We define

$$
R_{0}=\left[b_{0}^{-k}\right]_{<}, \quad R_{1}=\left[b_{2}^{-k}\right]_{<}, \quad A_{0}=\left[b_{3}^{k}\right]_{>}, \quad A_{1}=\left[b_{1}^{k}\right]_{>}
$$

By the choice of k, there exist two bricks c_{i}^{i}, c_{i}^{i-1}, contained in R_{i}, $i \in \mathbb{Z} / 2 \mathbb{Z}$, such that $\left[c_{i}^{j}\right]_{>} \cap A_{j} \neq \emptyset$ if $j \in\{i, i-1\}$.

Moreover, the cyclic order of these sets is the following:

$$
R_{0} \rightarrow A_{0} \rightarrow R_{1} \rightarrow A_{1} \rightarrow R_{0}
$$

Indeed, we know that $j_{0} \in\{0,3\}, j_{2} \in\{2,1\}$, and the cyclic order of the intervals $J_{i}, I_{i}, i \in \mathbb{Z} / 4 \mathbb{Z}$, is

$$
I_{0} \rightarrow J_{3} \rightarrow I_{1} \rightarrow J_{0} \rightarrow I_{2} \rightarrow J_{1} \rightarrow I_{3} \rightarrow J_{2} \rightarrow I_{0}
$$

So, we just have to show that the sets $R_{i}, A_{i}, i \in \mathbb{Z} / 2 \mathbb{Z}$, are pairwise disjoint. The choice of k implies that $\left[b_{i}^{-k}\right]_{<} \cap\left[b_{j}^{k}\right]_{>}=\emptyset$ for all i, j in $\mathbb{Z} / 4 \mathbb{Z}$. As a consequence, we just have to check $R_{0} \cap R_{1}=\emptyset$, and $A_{0} \cap A_{1}=\emptyset$.

If this is not the case, $\left[b_{0}^{-k}\right]_{<} \cup\left[b_{2}^{-k}\right]_{<}$is a connected set separating $\left[b_{1}^{k}\right]_{>}$ and $\left[b_{3}^{k}\right]_{>}$. Again by the choice of k we have

$$
\left(\left[b_{0}^{-k}\right]_{<} \cup\left[b_{2}^{-k}\right]_{<}\right) \cap\left[b_{0}^{-k}\right]_{>} \neq \emptyset
$$

and as we are supposing that f is not recurrent,

$$
\left[b_{2}^{-k}\right]_{<} \cap\left[b_{0}^{-k}\right]_{>} \neq \emptyset
$$

But then

$$
\left[b_{2}^{-k}\right]_{<} \cap\left[b_{2}^{-k}\right]_{>} \neq \emptyset
$$

because $\left[b_{2}^{-k}\right]_{<}$contains $\left[b_{0}^{-k}\right]_{<}$and therefore separates $\left[b_{1}^{k}\right]_{>}$and $\left[b_{3}^{k}\right]_{>}$, both of which are contained in $\left[b_{2}^{-k}\right]_{>}$.

Analogously, if $A_{0} \cap A_{1} \neq \emptyset$, then $\left[b_{3}^{k}\right]>\cup\left[b_{1}^{k}\right]>$ is a connected set separating $\left[b_{2}^{-k}\right]_{<}$and $\left[b_{0}^{-k}\right]_{<}$. Again by the choice of k we have

$$
\left(\left[b_{3}^{k}\right]_{>} \cup\left[b_{1}^{k}\right]_{>}\right) \cap\left[b_{3}^{k}\right]_{<} \neq \emptyset,
$$

and as we are supposing that f is not recurrent,

$$
\left[b_{1}^{k}\right]_{>} \cap\left[b_{3}^{k}\right]_{<} \neq \emptyset .
$$

But then

$$
\left[b_{1}^{k}\right]_{>} \cap\left[b_{1}^{k}\right]_{<} \neq \emptyset,
$$

because $\left[b_{1}^{k}\right]_{>}$contains $\left[b_{3}^{k}\right]_{>}$and therefore separates $\left[b_{0}^{-k}\right]_{<}$and $\left[b_{2}^{-k}\right]_{<}$, both of which are contained in $\left[b_{1}^{k}\right]_{<}$.
4.2. The hyperbolic case. Our next proposition finishes the proof of Theorem 1.2 ,

Proposition 4.13. If \mathcal{L} is hyperbolic, then $\operatorname{Fix}(f) \neq \emptyset$.
We recall that the order of a hyperbolic cycle of links is an even number. That is, from now on $n=2 m, m \geq 2$. The hyperbolic order property implies that the only possible coincidences among the points $\alpha_{i}, \omega_{i}, i \in \mathbb{Z} / n \mathbb{Z}$, are of the form $\omega_{i-2}=\alpha_{i}$ for even values of i, or $\omega_{i+2}=\alpha_{i}$ for odd values of i.

As the points $\left\{\omega_{i}\right\}$ are all different, we can take a neighbourhood U_{i}^{+}of ω_{i} in $\overline{\mathbb{D}}$ in such a way that that $U_{i}^{+} \cap U_{j}^{+}=\emptyset$ if $i \neq j$. For even values of i, we define $U_{i}^{-}=U_{i-2}^{+}$if $\alpha_{i}=\omega_{i-2}$, and if $\alpha_{i} \neq \omega_{i-2}$ we take a neighbourhood U_{i}^{-}of α_{i} in $\overline{\mathbb{D}}$ in such a way that $U_{i}^{-} \cap U_{j}^{+}=\emptyset$ for any j, and $U_{i}^{-} \cap U_{j}^{-}=\emptyset$ if $j \neq i$. Similarly, for odd values of i, we define $U_{i}^{-}=U_{i+2}^{+}$if $\alpha_{i}=\omega_{i+2}$, and if $\alpha_{i} \neq \omega_{i+2}$ we take a neighbourhood U_{i}^{-}of α_{i} in $\overline{\mathbb{D}}$ in such a way that $U_{i}^{-} \cap U_{j}^{+}=\emptyset$ for any j, and $U_{i}^{-} \cap U_{j}^{-}=\emptyset$ if $j \neq i$.

We keep the assumption that f is not recurrent.
We apply Lemma 2.9 and obtain families $\left(b_{i}^{l l}\right)_{l \in \mathbb{Z} \backslash\{0\}, i \in \mathbb{Z} / 2 m \mathbb{Z}}$ of closed disks. So, the disks in $\left(b_{i}^{\prime \prime}\right)_{l \geq 1, i \in \mathbb{Z} / 2 m \mathbb{Z}}$ have pairwise disjoint interiors.

Let I_{reg} be the set of even $i \in \mathbb{Z} / 2 m \mathbb{Z}$ such that $\alpha_{i} \neq \omega_{i-2}$, or such that $\alpha_{i}=\omega_{i-2}$ but there exists $K>0$ such that $\bigcup_{k>K} b_{i-2}^{\prime k} \cap \bigcup_{k>K} b_{i}^{\prime-k}=\emptyset$, together with the set of odd $i \in \mathbb{Z} / 2 m \mathbb{Z}$ such that $\alpha_{i} \neq \omega_{i+2}$, or such that $\alpha_{i}=\omega_{i+2}$ but there exists $K>0$ such that $\bigcup_{k>K} b_{i+2}^{\prime k} \cap \bigcup_{k>K} b_{i}^{\prime-k}=\emptyset$. Let $I_{\text {sing }}$ be the complement of $I_{\text {reg }}$ in $\mathbb{Z} / 2 m \mathbb{Z}$.

We can suppose that all the disks in the families $\left(b_{i}^{\prime l}\right)_{l \geq 1, i \in \mathbb{Z} / 2 m \mathbb{Z}}$, $\left(b_{i}^{\prime-l}\right)_{l \geq 1, i \in I_{\text {reg }}}$ have disjoint interiors.

We define $i^{*}=i-2$ if i is even, and $i^{*}=i+2$ if i is odd.
Lemma 4.14. If $i \in I_{\text {sing }}$, then we can find sequences of free closed disks $\left(c_{i}^{n}\right)_{n \geq 0}$ satisfying:
(1) $c_{i}^{n} \subset U_{i^{*}}^{+}=U_{i}^{-}$,
(2) there exists an increasing sequence $\left(k_{i}^{n}\right)_{n \geq 0}$ such that $b_{i^{*}}^{\prime k_{i}^{n}} \cap c_{i}^{n} \neq \emptyset$ for all $n \geq 0$,
(3) $\left(b_{i^{*}}^{\prime k_{i}^{n}} \cup c_{i}^{n}\right) \cap\left(b_{i^{*}}^{\prime k_{i}^{p}} \cup c_{i}^{p}\right)=\emptyset$ for all $n \neq p$,
(4) there exists an increasing sequence $\left(j_{i}^{n}\right)_{n \geq 0}$ such that $f^{-j_{i}^{n}}\left(z_{i}\right) \in c_{i}^{n}$,
(5) the sequence $\left(c_{i}^{n}\right)_{n \geq 0}$ converges to $\omega_{i^{*}}=\alpha_{i}$ in the Hausdorff topology,
(6) $b_{i^{*}}^{\prime k_{i}^{n}} \cap c_{i}^{n}$ is an arc for all $n \geq 0$,
(7) $\partial\left(\bigcup_{k \geq 1} b_{i^{*}}^{\prime k} \cup \bigcup_{n \geq 0} c_{i}^{n}\right)$ is a one-dimensional submanifold,
(8) if $x \in \mathbb{D}$, then x belongs to at most two different disks in the family $\left\{b_{i^{*}}^{\prime k}, c_{i}^{n}: k \geq 1, n \geq 0\right\}$.

Proof. Note that the local dynamics in a neighbourhood of a point α_{i}, $i \in I_{\text {sing }}$, is exactly the same as that in the elliptic case. So, the same proof we did for Lemma 4.2 works here as well.

We construct a maximal free brick decomposition (V, E, B) such that:

- for all $i \in \mathbb{Z} / 2 m \mathbb{Z}$ and for all $l \geq 1$, there exists $b_{i}^{l} \in B$ such that $b_{i}^{\prime l} \subset b_{i}^{l}$,
- for all $i \in I_{\text {reg }}$ and for all $l \geq 1$, there exists $b_{i}^{-l} \in B$ such that $b_{i}^{\prime-l} \subset b_{i}^{-l}$,
- for all $n \geq 0$ and for all $i \in I_{\text {sing }}$, there exists $b_{i}^{-j_{i}^{n}} \in B$ such that $c_{i}^{n} \subset b_{i}^{-j_{i}^{n}}$.
Lemma 4.15. If $i \in I_{\text {sing }}$, then there exists $N>0$ such that $\left[b_{i}^{-j_{i}^{N}}\right]_{\geq}$ contains $b_{i^{*}}^{k_{i}^{N}}$.

Proof. Fix an even index $i \in I_{\text {sing }}$ (the proof for odd indices is analogous). The first part of the proof is identical to part I in the proof of Lemma 4.4 . Indeed, this proof is local, that is, it does not depend on how the rest of the points in ℓ are ordered. So, there are two possibilities: either $f\left(c_{i}^{N}\right) \cap b_{i-2}^{\prime k_{i}^{N}} \neq \emptyset$ or $f\left(b_{i-2}^{\prime k_{i}^{N}}\right) \cap c_{i}^{N} \neq \emptyset$. In the first case we are done, as it implies immediately the statement of the lemma. As a consequence, we may assume that for all $n \geq 0,\left[b_{i-2}^{k_{i}^{n}}\right]_{>}$contains b_{i}^{l} for all $l>0$. We will show that this contradicts the fact that f is not recurrent.

With this last assumption, for all $n \geq 0$ there exists an arc

$$
\Gamma_{n}:[0,1] \rightarrow\left[b_{i-2}^{k_{i}^{n}}\right]_{>} \cup\left\{\omega_{i-2}, \omega_{i}\right\}
$$

joining ω_{i-2} and ω_{i} (see Remark 2.10). So, the arc Γ_{n} separates α_{i-1} from α_{i-3} in $\overline{\mathbb{D}}$ for all $n>0$ (see Figure 10, and note that the points $\alpha_{i-1}, \alpha_{i-3}$, ω_{i-2}, ω_{i} are all different).

We deduce (as we are supposing that f is not recurrent) that for any $n>0, \overline{\left[b_{i-2}^{k_{i}^{n}}\right]_{\leq}}$cannot contain both α_{i-1} and α_{i-3}. So, one of the points α_{i-1}

Fig. 10. The proof of Lemma 4.15
or α_{i-3} is not contained in any of the sets $\overline{\left[b_{i-2}^{k_{i}^{n}}\right]_{\leq}}, n>0$. We will suppose that for all $n>0, \alpha_{i-1} \notin \overline{\left[b_{i-2}^{k_{i}^{n}}\right]} \leq$ (the proof is analogous in the other case). We fix $n>0$ and consider the connected set

$$
K=\bigcup_{l \geq k_{i}^{n}} b_{i-2}^{l} \cup\left[b_{i-2}^{k_{i}^{n}}\right]_{\leq}
$$

We choose a neighbourhood U of α_{i-1} in $\overline{\mathbb{D}}$ such that $U \cap K=\emptyset$. Then we take $j>0$ such that $f^{-j}\left(z_{i-1}\right) \in U$, and $b \in B$ such that $f^{-j}\left(z_{i-1}\right) \in b$. We take an arc $\gamma \subset U$ joining α_{i-1} and $f^{-j}\left(z_{i-1}\right)$, and an arc $\beta \subset[b]_{\geq} \cup \omega_{i-1}$ joining $f^{-j}\left(z_{i-1}\right)$ and ω_{i-1}. We deduce that $\gamma \cdot \beta \cap K \neq \emptyset$, and as $\gamma \subset U$, we have $\beta \cap K \neq \emptyset$. So, there exists $l \geq k_{i}^{n}$ such that $b \in\left[b_{i-2}^{l}\right]_{\leq}$, and consequently $\alpha_{i-1} \in \overline{\left[b_{i-2}^{l}\right]^{l}}$. This contradiction finishes the proof of the lemma.

LEMMA 4.16. There exists $k>0$ such that for all even values of $i \in$ $\mathbb{Z} / 2 m \mathbb{Z}$, both attractors $\left[b_{i}^{-k}\right]_{>}$and $\left[b_{i-1}^{-k}\right]_{>}$contain b_{l}^{k} for all $l \in\{i-2, i-$ $1, i, i+1\}$.

Proof. If $i \in I_{\text {sing }}$, the previous lemma tells us that there exists $N>0$ such that $\left[b_{i}^{-j_{i}^{N}}\right]_{\geq \text {contains }}^{b_{i-2}^{N}}$. So, we can find an arc

$$
\Gamma:[0,1] \rightarrow\left[b_{i}^{-j_{i}^{N}}\right]_{>} \cup\left\{\omega_{i-2}, \omega_{i}\right\}
$$

joining ω_{i-2} and ω_{i}. This arc separates both α_{i-1} from ω_{i-1} and α_{i+1} from ω_{i+1} in $\overline{\mathbb{D}}$ (see Figure 10). As a consequence, both $\bigcup_{k \geq 1}\left[b_{i-1}^{k}\right] \leq$ and $\bigcup_{k \geq 1}\left[b_{i+1}^{k}\right]_{\leq}$intersect Γ, and so there exists $k>0$ such that b_{i-1}^{k} and b_{i+1}^{k} belong to $\left[b_{i}^{-j_{i}^{N}}\right]_{>}$. If $i-1 \in I_{\text {sing }}$, we can show analogously that $\left[b_{i-1}^{-j_{i-1}^{N}}\right]_{>}$ contains b_{l}^{k} for all $l \in\{i-2, i-1, i, i+1\}$ and some $k>0$.

If $i \in I_{\text {reg }}$, we can find an arc

$$
\Gamma:[0,1] \rightarrow \bigcup_{l>0}\left[b_{i}^{-l}\right]_{>} \cup\left\{\alpha_{i}, \omega_{i}\right\}
$$

joining α_{i} and ω_{i}. So, Γ separates (in $\overline{\mathbb{D}}$) both α_{i+1} from ω_{i+1} and α_{i-1} from ω_{i-1}. Therefore, both $\bigcup_{k \geq 1}\left[b_{i-1}^{k}\right]_{\leq}$and $\bigcup_{k \geq 1}\left[b_{i+1}^{k}\right]_{\leq}$intersect Γ, and there exist $k, N>0$ such that $\left[b_{i}^{-N}\right]_{>} \cap\left[b_{i-1}^{k}\right]_{\leq} \neq \bar{\emptyset}$ and $\left[b_{i}^{-N}\right]_{>} \cap\left[b_{i+1}^{k}\right]_{\leq} \neq \emptyset$. Once b_{i-1}^{l} and b_{i+1}^{l} belong to $\left[b_{i}^{-N}\right]_{>}$, we can find an arc

$$
\Gamma^{\prime}:[0,1] \rightarrow\left[b_{i}^{-N}\right]_{>} \cup\left\{\omega_{i-1}, \omega_{i+1}\right\}
$$

joining ω_{i-1} and ω_{i+1}. So, Γ^{\prime} separates α_{i-2} from ω_{i-2} in $\overline{\mathbb{D}}$, and one obtains $b_{i-2}^{k} \in\left[b_{i}^{-N}\right]_{>}$for some $k>0$. We obtain the result by sufficiently enlarging k.

We fix $k>0$ as in Lemma 4.16,
LEMMA 4.17. There exists $p>k$ such that $\left[b_{i}^{-k}\right]_{<} \cap b_{j}^{\prime l}=\emptyset$ for all i, j in $\mathbb{Z} / 2 m \mathbb{Z}$ and $l \geq p$.

Proof. Fix $i \in \mathbb{Z} / 2 m \mathbb{Z}$ even. There exists an arc

$$
\gamma_{i}:[0,1] \rightarrow\left[b_{i}^{-k}\right]_{>} \cup\left\{\omega_{i+1}, \omega_{i-1}\right\}
$$

joining ω_{i+1} and ω_{i-1}. As the three points $\alpha_{i}, \omega_{i+1}, \omega_{i-1}$ are different, γ_{i} separates α_{i} from any ω_{j} for $j \notin\{i-2, i-1, i+1\}$ (in $\overline{\mathbb{D}}$).

So, there exists $l_{i}>k$ such that γ_{i} separates $\left[b_{i}^{-k}\right]_{<}$from any $b_{j}^{\prime l}$ with $l>l_{i}$ and $j \notin\{i-2, i-1, i+1\}$. Moreover, we already know that $\left[b_{i}^{-l_{i}}\right]_{<} \cap$ $\left[b_{j}^{l_{i}}\right]_{>}=\emptyset$ if $j \in\{i-2, i-1, i+1\}$, because $\left[b_{i}^{-l_{i}}\right]_{>}$contains $b_{j}^{l_{i}}$. In particular, $\left[b_{i}^{-l_{i}}\right]_{<} \cap b_{j}^{\prime l}=\emptyset$ for $l \geq l_{i}$ and $j \in\{i-2, i-1, i+1\}$.

If i is odd, we can use the same argument with an arc

$$
\gamma_{i-1}:[0,1] \rightarrow\left[b_{i}^{-k}\right]_{>} \cup\left\{\omega_{i}, \omega_{i-2}\right\}
$$

joining ω_{i} and ω_{i-2}.
We finish by taking $p=\max \left\{l_{i}: i \in \mathbb{Z} / 2 m \mathbb{Z}\right\}$.
Thanks to the two preceding lemmas we may fix $k>0$ such that:

- both attractors $\left[b_{i}^{-k}\right]_{>}$and $\left[b_{i-1}^{-k}\right]_{>}$contain b_{l}^{k} for all even values of i and for all $l \in\{i-2, i-1, i, i+1\}$,
- $\left[b_{i}^{-k}\right]_{<} \cap b_{j}^{\prime l}=\emptyset$ for all i, j in $\mathbb{Z} / 2 m \mathbb{Z}$ and $l \geq k$.

We define

$$
a_{i}=\Gamma_{i}^{+} \cap \bigcup_{l \geq k} b_{i}^{l l}
$$

for all $i \in \mathbb{Z} / 2 m \mathbb{Z}$. The cyclic order of the sets a_{i} satisfies

$$
a_{i-2} \rightarrow a_{i+1} \rightarrow a_{i}
$$

for all even values of i. We may suppose that each a_{i} is an arc, and so $U=\mathbb{D} \backslash \bigcup_{i \in \mathbb{Z} / 2 m \mathbb{Z}} a_{i}$ is simply connected. Let $\varphi: U \rightarrow \mathbb{D}$ be the Riemann map and consider the intervals J_{i} defined in 2.4.1.

For all even i, we define I_{i} to be the connected component of $S^{1} \backslash$ $\bigcup_{l \in \mathbb{Z} / 2 m \mathbb{Z}} J_{l}$ following J_{i-2} in the natural (positive) cyclic order on S^{1}. We define I_{i+1} to be the connected component of $S^{1} \backslash \bigcup_{l \in \mathbb{Z} / 2 m \mathbb{Z}} J_{l}$ following I_{i}. So, for all even i we have

$$
J_{i-2} \rightarrow I_{i} \rightarrow J_{i+1} \rightarrow I_{i+1} \rightarrow J_{i} .
$$

Lemma 4.18. For all $i \in \mathbb{Z} / 2 m \mathbb{Z}$:
(1) $\left[b_{i}^{-k}\right]_{<} \subset U$,
(2) if i is even, then $\overline{\varphi\left(\left[b_{i}^{-k}\right]_{<}\right)} \cap S^{1} \subset I_{i} \cup I_{i-1}$, and $\overline{\varphi\left(b_{i-1_{<}}^{-k}\right)} \cap S^{1} \subset$ $I_{i} \cup I_{i+1}$,
(3) there exists j_{i} such that $\overline{\varphi\left(\left[b_{i}^{-k}\right]_{<}\right)} \cap S^{1} \subset I_{j_{i}}$ (so, for i even, $j_{i} \in$ $\left.\{i, i-1\}, j_{i-1} \in\{i, i+1\}\right)$.
Proof. (1) This is trivial because of the choice of $k>0$.
(2) First, we show that $\overline{\varphi\left(\left[b_{i}^{-k}\right]_{<}\right)} \subset \bigcup_{j \in \mathbb{Z} / 2 m \mathbb{Z}} I_{j}$. Otherwise, there exists $x \in \overline{\varphi\left(\left[b_{i}^{-k}\right]_{<}\right)} \cap J_{j}$ for some $j \in \mathbb{Z} / 2 m \mathbb{Z}$. So, $\overline{\left[b_{i}^{-k}\right]_{<}}$contains a point in a_{j}. As $\left[b_{i}^{-k}\right]_{<}$is a closed subset of \mathbb{D}, and $a_{j} \subset \mathbb{D}$, we obtain $\left[b_{i}^{-k}\right]_{<} \cap a_{j} \neq \emptyset$, contradicting the previous item.

Fix $i \in \mathbb{Z} / 2 m \mathbb{Z}$ even. Take a crosscut $\gamma \subset\left[b_{i}^{-k}\right]_{>}$from ω_{i-1} to ω_{i+1}. So, α_{i} belongs to the closure of only one of the connected components of $\overline{\mathbb{D}} \backslash \gamma$: the one to the right of γ. Hence, $\varphi\left(\left[b_{i}^{-k}\right]_{<}\right)$belongs to the connected component of $\mathbb{D} \backslash \varphi(\gamma \cap U)$ which is to the right of $\varphi(\gamma \cap U)$. As $\overline{\varphi(\gamma \cap U)}$ is an arc joining J_{i-1} and J_{i+1}, the cyclic order implies that $\overline{\varphi\left(\left[b_{i}^{-k}\right]_{<}\right)} \cap S^{1} \subset I_{i} \cup I_{i-1}$.

The statement for $i-1$ is proved analogously.
(3) Suppose i is even (as before, the other case is analogous). The previous item implies that if $\overline{\varphi\left(\left[b_{i}^{-k}\right]_{<}\right)}$intersects I_{j} and $I_{l}, j \neq l$, then $\{j, l\}=\{i, i-1\}$.

Take a crosscut $\gamma \subset\left[b_{i}^{-k}\right]_{>}$from ω_{i-1} to ω_{i-2}. Then $\overline{\varphi(\gamma \cap U)}$ separates I_{i-1} from I_{i} in $\overline{\mathbb{D}}$. This gives us

$$
\left[b_{i}^{-k}\right]_{<} \cap\left[b_{i}^{-k}\right]_{>} \neq \emptyset
$$

a contradiction.
REMARK 4.19. If we set $a_{i}^{\prime}=a_{2 i}, b_{i}^{-}=b_{2 i}^{-k}$, and $b_{i}^{+}=b_{2 i}^{k}$ for all $i \in$ $\mathbb{Z} / m \mathbb{Z}$, then $a_{i}^{\prime}, b_{i}^{-}, b_{i}^{+}, i \in \mathbb{Z} / m \mathbb{Z}$, satisfy hypotheses (1)-(3) of Lemma 3.3. So, if we prove that $j_{2 i}=2 i$ for all $i \in \mathbb{Z} / m \mathbb{Z}$, then $\operatorname{Fix}(f) \neq \emptyset$. Indeed, the sets $a_{i}^{\prime}, i \in \mathbb{Z} / m \mathbb{Z}$, are cyclically ordered as follows:

$$
a_{0}^{\prime} \rightarrow a_{1}^{\prime} \rightarrow a_{2}^{\prime} \rightarrow \cdots \rightarrow a_{m-2}^{\prime} \rightarrow a_{m-1}^{\prime} \rightarrow a_{0}^{\prime}
$$

Moreover, if we set $J_{i}^{\prime}=J_{2 i}$ for all $i \in \mathbb{Z} / m \mathbb{Z}$, we have

$$
J_{i-1}^{\prime} \rightarrow I_{2 i} \rightarrow J_{i}^{\prime}
$$

for all $i \in \mathbb{Z} / 2 m \mathbb{Z}$, and so $j_{2 i}=2 i$ is exactly hypothesis (4) of Lemma 3.3.
We are now ready to prove Proposition 4.13,
Proof of Proposition 4.13. Because of the previous remark, it is enough to show that $j_{2 i}=2 i$ for all $i \in \mathbb{Z} / m \mathbb{Z}$. We will show that if this is not the case, we contradict Lemma 3.2 .

Lemma 4.18 tells us that $j_{2 i} \in\{2 i, 2 i-1\}$. Let us assume that $j_{2 i}=2 i-1$. This implies that $j_{2 i-2}, j_{2 i-1}$, and $j_{2 i}$ are different. Indeed, by Lemma 4.18, $j_{2 i-2} \in\{2 i-3,2 i-2\}, j_{2 i-1} \in\{2 i, 2 i+1\}$, and by assumption $j_{2 i}=2 i-1$. Moreover:

- $\left[b_{2 i}^{-k}\right]_{>}$contains $b_{2 i}^{k}, b_{2 i-1}^{k}$, and $b_{2 i-2}^{k}$,
- $\left[b_{2 i-1}^{-k}\right]_{>}$contains $b_{2 i}^{k}, b_{2 i-1}^{k}$, and $b_{2 i-2}^{k}$,
- $\left[b_{2 i-2}^{-k}\right]_{>}$contains both $b_{2 i-2}^{k}$ and $b_{2 i-1}^{k}$.

So, as $j_{2 i-2}, j_{2 i-1}$, and $j_{2 i}$ are different, if we show that $\left[b_{2 i-2}^{-k}\right]_{>}$also contains $b_{2 i}^{k}$, we contradict Lemma 3.2. Take a crosscut $\gamma \subset\left[b_{2 i-2}^{-k}\right]_{>}$from $\underline{a_{2 i-2}}$ to $a_{2 i-4}$. Then $\overline{\varphi(\gamma \cap U)}$ separates $I_{2 i-1}$ from $J_{2 i}$. On the other hand, $\overline{\varphi\left(\left[b_{2 i}^{k}\right]_{<}\right)}$joins both these sets, as we are assuming $j_{2 i}=2 i-1$, and by the definition of $J_{2 i}$. So,

$$
\varphi\left(\left[b_{2 i}^{k}\right]_{<}\right) \cap \varphi(\gamma \cap U) \neq \emptyset,
$$

and we are done.
5. Proof of Lemma 1.3. We finish by proving Lemma 1.3, which shows that our theorem is optimal.

We begin with a perturbation lemma.
Let $\left(\phi_{t}\right)_{t \in \mathbb{R}}$ be the flow in \mathbb{D} whose orbits are drawn in the figure below:

We say that a flow $\left(\varphi_{t}\right)_{t \in \mathbb{R}}$ in \mathbb{D} is locally conjugate to $\left(\phi_{t}\right)_{t \in \mathbb{R}}$ at z_{0} if there exist an open neighbourhood U of z_{0} and a homeomorphism $h: \mathbb{D} \rightarrow U$ such that $h(0)=z_{0}$ and $h^{-1} \varphi_{t} h=\phi_{t}$ for all $t \in \mathbb{R}$.

If $\varphi: \mathbb{D} \rightarrow \mathbb{D}$ is a homeomorphism, we write $\alpha(x, \varphi)$ for the set of accumulation points of the backward φ-orbit of x, and $\omega(x, \varphi)$ for the set of accumulation points of the forward φ-orbit of x.

Lemma 5.1. Let $\varphi: \mathbb{D} \rightarrow \mathbb{D}$ be the time-one map of the flow which is locally conjugate to $\left(\phi_{t}\right)_{t \in \mathbb{R}}$ at z_{0}, and U an open neighbourhood of z_{0} where $h^{-1} \varphi h=\phi_{1}$. Then, for any $x, y \in U$ such that $\omega(x, \varphi)=z_{0}=\alpha(y, \varphi)$, there exists an orientation preserving homeomorphism $g: \mathbb{D} \rightarrow \mathbb{D}$ supported in the union of two free and disjoint open disks such that

$$
\alpha(x, \varphi \circ g)=\alpha(x, \varphi), \quad \omega(x, \varphi \circ g)=\omega(y, \varphi)
$$

Proof. Let $\Delta \subset \mathbb{D}$ be the oriented straight line through 0 with tangent unit vector $e^{i \pi / 4}$, and let L (resp. R) be the connected component of $U \backslash h(\Delta)$ which is to the left (resp. to the right) of $h(\Delta)$.

Note that given two points z_{1}, z_{2} in the same connected component C of $U \backslash h(\Delta)$ that do not belong to the same orbit of $\left(\varphi_{t}\right)_{t \in \mathbb{R}}$, there exists an $\operatorname{arc} \delta \subset C$ joining z_{0} and z_{1} such that $\varphi(\delta) \cap \delta=\emptyset$. Moreover, any $x \in U$ such that $\omega(x, \varphi)=z_{0}$ belongs to L, and any $y \in U$ such that $\alpha(y, \varphi)=z_{0}$ belongs to R. Moreover, there exist $z \in L$ and $n>0$ such that $\varphi^{n}(z) \in R$.

So, we can take a free $\operatorname{arc} \delta_{1} \subset L$ joining x and z, and a free $\operatorname{arc} \delta_{2} \subset R$ joining $\varphi^{n}(z)$ and $\varphi^{-1}(y)$. Moreover, we may suppose that

$$
\begin{aligned}
\delta_{1} \cap\left\{\varphi^{-k}(x): k>0\right\} & =\delta_{2} \cap\left\{\varphi^{k}(y): k \geq 0\right\} \\
& =\left(\delta_{1} \cup \delta_{2}\right) \cap\left\{\varphi^{k}(z): 0<k<n\right\}=\emptyset
\end{aligned}
$$

We thicken the δ_{i} 's to open free and disjoint disks $D_{1} \subset L, D_{2} \subset R$ such that

$$
\begin{aligned}
D_{1} \cap\left\{\varphi^{-k}(x): k>0\right\} & =D_{2} \cap\left\{\varphi^{k}(y): k \geq 0\right\} \\
& =\left(D_{1} \cup D_{2}\right) \cap\left\{\varphi^{k}(z): 0<k<n\right\}=\emptyset
\end{aligned}
$$

Finally, we construct an orientation preserving homeomorphism $g: \mathbb{D} \rightarrow \mathbb{D}$ supported in $D_{1} \cup D_{2}$ such that $g(x)=z$ and $g\left(\varphi^{n}(z)\right)=\varphi^{-1}(y)$. Then we obtain

$$
\alpha(x, \varphi \circ g)=\alpha(x, \varphi), \quad \omega(x, \varphi \circ g)=\omega(y, \varphi)
$$

as desired.
REMARK 5.2. In fact, given a finite set of points $x_{i}, y_{i} \in U, i=1, \ldots, n$, which belong to different orbits of $\left(\varphi_{t}\right)_{t \in \mathbb{R}}$ and such that $\omega\left(x_{i}\right)=z_{0}=\alpha\left(y_{i}\right)$, $i=1, \ldots, n$, there exists an orientation preserving homeomorphism $g: \mathbb{D} \rightarrow \mathbb{D}$ supported in a finite union of free and disjoint open disks such that

$$
\alpha\left(x_{i}, \varphi \circ g\right)=\alpha\left(x_{i}, \varphi\right), \quad \omega\left(x_{i}, \varphi \circ g\right)=\omega\left(y_{i}, \varphi\right)
$$

$i=1, \ldots, n$. Indeed, we choose different points $z_{i} \in L$ and positive integers $n_{i}>0$ such that $\varphi^{n_{i}}\left(z_{i}\right) \in R$. Then we take pairwise disjoint $\operatorname{arcs} \delta_{i}^{1}$ joining
x_{i} and z_{i}, and δ_{i}^{2} joining $\varphi^{n_{i}}\left(z_{i}\right)$ and $\varphi^{-1}\left(y_{i}\right)$ in such a way that all these arcs are disjoint from the backward φ-orbit of x_{i}, the forward φ-orbit of y_{i} and the transitional orbits $\varphi\left(z_{i}\right), \ldots, \varphi^{n_{i}-1}\left(z_{i}\right)$. This allows us to construct the desired perturbation g.

Given a family $\mathcal{K}=\left(\left(\alpha_{i}, \omega_{i}\right)\right)_{i \in \mathbb{Z} / n \mathbb{Z}}$ of pairs of points in S^{1}, we denote by Δ_{i} the oriented segment joining α_{i} and ω_{i}. We say that $z \in \mathbb{D}$ is a multiple point if z belongs to at least two different Δ_{i} 's. Let z be a multiple point, and let $I=\left\{i \in \mathbb{Z} / n \mathbb{Z}: z \in \Delta_{i}\right\}$. We say that a multiple point $z \in \mathbb{D}$ has zero index if there exists an oriented straight line Δ containing z such that the algebraic intersection number $\Delta \wedge \Delta_{i}$ equals 1 for all $i \in I$. Note that this is the case for any multiple point such that $\# I=2$.

We say that a pair $\left(\alpha_{k}, \omega_{k}\right) \in \mathcal{K}$ is i-separated if α_{k} and ω_{k} belong to different connected components of $S^{1} \backslash\left\{\alpha_{i}, \omega_{i}\right\}$.

A degeneracy of \mathcal{K} is a pair of elements of the family, $\left(\alpha_{i}, \omega_{i}\right)$ and $\left(\alpha_{j}, \omega_{j}\right)$, such that $\alpha_{j}=\omega_{i}$ and $\alpha_{i}=\omega_{j}$. We say that a degeneracy is trivial if the connected component of $S^{1} \backslash\left\{\alpha_{i}, \omega_{i}\right\}$ containing α_{k} is independent of the i-separated pair $\left(\alpha_{k}, \omega_{k}\right) \in \mathcal{K}$.

We will deduce Lemma 1.3 from the following lemma.
Lemma 5.3. Let $\mathcal{K}=\left(\left(\alpha_{i}, \omega_{i}\right)\right)_{i \in \mathbb{Z} / n \mathbb{Z}}$ be a family of pairs of points in S^{1}. Suppose that:
(1) every multiple point is of zero index,
(2) every polygon $P \subset \mathbb{D}$ whose boundary is contained in $\bigcup_{i \in \mathbb{Z} / n \mathbb{Z}} \Delta_{i}$ has zero index,
(3) every degeneracy is trivial.

Then there exists a flow $\left(\varphi_{t}\right)_{t \in \mathbb{R}}$ in \mathbb{D} such that:
(i) $\left(\varphi_{t}\right)_{t \in \mathbb{R}}$ is locally conjugate to $\left(\phi_{t}\right)_{t \in \mathbb{R}}$ at every singularity z_{0},
(ii) for all $i \in \mathbb{Z} / n \mathbb{Z}$ there exist two points $z_{i}^{-}, z_{i}^{+} \in \mathbb{D}$ such that $\alpha\left(z_{i}^{-}\right)$ $=\alpha_{i}$ and $\omega\left(z_{i}^{+}\right)=\omega_{i}$,
(iii) the $2 n$ points $z_{i}^{-}, z_{i}^{+}, i \in \mathbb{Z} / n \mathbb{Z}$, are different.

Proof. First suppose that there are no degeneracies in \mathcal{K}. In this case, the orientations of the Δ_{i} 's induce a flow $\left(\varphi_{t}\right)_{t \in \mathbb{R}}$ on $\bigcup_{i \in \mathbb{Z} / n \mathbb{Z}} \Delta_{i}$ with a singularity at each multiple point. By (1), we may extend this flow to a neighbourhood of every multiple point in such a way that it is locally conjugate to $\left(\phi_{t}\right)_{t \in \mathbb{R}}$. Moreover, by (2) we may extend $\left(\varphi_{t}\right)_{t \in \mathbb{R}}$ to the rest of \mathbb{D} without singularities, and we are done.

If \mathcal{K} contains one degeneracy $\left(\alpha_{i}, \omega_{i}\right)=\left(\omega_{j}, \alpha_{j}\right)$, we "open it up" as follows. We consider the family of segments $\bigcup_{k \in \mathbb{Z} / n \mathbb{Z}, k \neq j} \Delta_{k}$ and a simple curve γ_{j} joining α_{j} and ω_{j} such that:
(a) $\gamma_{j} \cap \Delta_{i}=\left\{\alpha_{i}, \omega_{i}\right\}$,
(b) $\gamma_{j} \cap \Delta_{k} \cap \mathbb{D} \neq \emptyset$ if and only if $\left(\alpha_{k}, \omega_{k}\right)$ is j-separated, and in this case $\#\left\{\gamma_{j} \cap \Delta_{k} \cap \mathbb{D}\right\}=1$,
(c) γ_{j} does not intersect any multiple point.

Now, the orientations of the Δ_{i} 's, $i \neq j$, and the orientation of γ_{j} induce a flow $\left(\varphi_{t}\right)_{t \in \mathbb{R}}$ on $\bigcup_{i \in \mathbb{Z} / n \mathbb{Z}, i \neq j} \Delta_{i} \cup \gamma_{j}$ with a singularity at each multiple point of $\bigcup_{i \in \mathbb{Z} / n \mathbb{Z}, i \neq j} \Delta_{i}$ and also at the intersection points of γ_{j} with the Δ_{i} 's, $i \neq j$.

Note that as γ_{j} does not intersect any multiple point, we may extend $\left(\varphi_{t}\right)_{t \in \mathbb{R}}$ to a neighbourhood of every multiple point of $\bigcup_{k \in \mathbb{Z} / n \mathbb{Z}, k \neq j} \Delta_{k}$ in such a way that it is locally conjugate to $\left(\phi_{t}\right)_{t \in \mathbb{R}}$. Moreover, a point $z_{0} \in \gamma_{j}$ belongs to at most one $\Delta_{k}, k \neq j$, and the intersection is transversal by item (b) above. So, we may as well extend $\left(\varphi_{t}\right)_{t \in \mathbb{R}}$ to a neighbourhood of z_{0} so as to have local conjugation with $\left(\phi_{t}\right)_{t \in \mathbb{R}}$ as well. As the degeneracies considered are trivial, we can extend $\left(\varphi_{t}\right)_{t \in \mathbb{R}}$ to the rest of \mathbb{D} without singularities.

If more than one degeneracy occurs, triviality implies that they are disjoint. That is, if $\left(\alpha_{i}, \omega_{i}\right)=\left(\omega_{j}, \alpha_{j}\right)$, and $\left(\alpha_{k}, \omega_{k}\right)=\left(\omega_{l}, \alpha_{l}\right)$, then $\left(\alpha_{i}, \omega_{i}\right)$ is not k-separated. So, we can "open up" both degeneracies in such a way that $\gamma_{j} \cap \gamma_{l}=\emptyset$, and construct our flow $\left(\varphi_{t}\right)_{t \in \mathbb{R}}$ analogously.

We deduce:
Corollary 5.4. With the same hypothesis of the preceding lemma, there exists a fixed-point free orientation preserving homeomorphism $f: \mathbb{D} \rightarrow \mathbb{D}$ that realizes \mathcal{K}.

Proof. Let φ be the time-one map of the flow given by the preceding lemma. By simultaneous applications of Lemma 5.1, we can construct an orientation preserving homeomorphism $g: \mathbb{D} \rightarrow \mathbb{D}$ supported in disjoint open free disks such that

$$
\lim _{k \rightarrow-\infty}(\varphi \circ g)^{k}\left(z_{i}^{-}\right)=\alpha_{i}, \quad \lim _{k \rightarrow \infty}(\varphi \circ g)^{k}\left(z_{i}^{-}\right)=\omega_{i}
$$

(see also Remark 5.2).
Then the homeomorphism $\varphi \circ g$ realizes \mathcal{K}. Moreover, as we have local conjugation to the flow $\left(\phi_{t}\right)_{t \in R}$ at every singularity of φ, and $\varphi \circ g=\varphi$ in a neighbourhood of each singularity, we can further perturb $\varphi \circ g$ into a homeomorphism $f: \mathbb{D} \rightarrow \mathbb{D}$ realizing \mathcal{K} and which is fixed point free.

This last lemma finishes the proof of Lemma 1.3 .
Lemma 5.5. If a multiple point has non-zero index, then there exists a subfamily of \mathcal{K} forming an elliptic cycle of links.

Proof. Let x be a multiple point of non-zero index, and let

$$
I=\left\{i \in \mathbb{Z} / n \mathbb{Z}: x \in \Delta_{i}\right\} .
$$

As x has non-zero index, there exists indices $i, j \in I$ such that the oriented interval in S^{1} joining α_{i} and α_{j} contains $\omega_{k}, k \in I$. Then $\mathcal{L}=\left(\alpha_{l}^{\prime}, \omega_{l}^{\prime}\right)_{l \in \mathbb{Z} / 3 \mathbb{Z}}$ is an elliptic cycle of links, where

$$
\left(\alpha_{0}^{\prime}, \omega_{0}^{\prime}\right)=\left(\alpha_{i}, \omega_{i}\right), \quad\left(\alpha_{1}^{\prime}, \omega_{1}^{\prime}\right)=\left(\alpha_{j}, \omega_{j}\right), \quad\left(\alpha_{2}^{\prime}, \omega_{2}^{\prime}\right)=\left(\alpha_{k}, \omega_{k}\right) .
$$

Acknowledgements. Professor Patrice Le Calvez carefully read and corrected this article and I thank him deeply.

I also thank Professors Christian Bonatti and Frédéric Le Roux who highlighted the importance of having an optimal theorem; their remarks gave rise to Lemma 1.3.

References

[1] L. E. J. Brouwer, Beweis des ebenen Translationssatzes, Math. Ann. 72 (1912), 37-54.
[2] M. Brown, A new proof of Brouwer's lemma on translation arcs, Houston J. Math. 10 (1984), 35-41.
[3] M. Brown and J. Kister, Invariance of complementary domains of a fixed point set, Proc. Amer. Math. Soc. 91 (1984), 503-504.
[4] A. Fathi, An orbit closing proof of Brouwer's lemma on translation arcs, Enseign. Math. (2) (33) (1987), 315-322.
[5] J. Franks, Generalizations of the Poincaré-Birkhoff theorem, Ann. of Math. 128 (1988), 139-151.
[6] L. Guillou, Théorème de translation plane de Brouwer et généralisations du théorème de Poincaré-Birkhoff, Topology 33 (1994), 331-351.
[7] M. Handel, A fixed-point theorem for planar homeomorphisms, Topology 38 (1999), 235-264.
[8] P. Le Calvez, Periodic orbits of Hamiltonian homeomorphisms of surfaces, Duke Math. J. 133 (2006), 125-184.
[9] P. Le Calvez, Une nouvelle preuve du théorème de point fixe de Handel, Geom. Topol. 10 (2006), 2299-2349.
[10] P. Le Calvez, Pourquoi les points périodiques des homéomorphismes du plan tour-nent-ils autour de certains points fixes? Ann. Sci. École Norm. Sup. (4) 41 (2008), 141-176.
[11] F. Le Roux, Homéomorphismes de surfaces: théorèmes de la fleur de Leau-Fatou et de la variété stable, Astérisque 292 (2004).
[12] A. Sauzet, Application des décompositions libres à l'étude des homéomorphismes de surfaces, Thèse de l'Université Paris 13, 2001.
[13] J. Xavier, Handel's fixed point theorem revisited, Ergodic Theory Dynam. Systems, to appear; premat.fing.edu.uy/papers/2012/139.pdf.

Juliana Xavier
IMERL
Facultad de Ingeniería
Universidad de la República
Julio Herrera y Reissig 565
Montevideo, Uruguay
E-mail: mariajules@gmail.com

Received 26 April 2012;
in revised form 27 July 2012

