Cycles of links and fixed points for orientation preserving homeomorphisms of the open unit disk

by

Juliana Xavier (Montevideo)

Abstract. Michael Handel proved the existence of a fixed point for an orientation preserving homeomorphism of the open unit disk that can be extended to the closed disk, provided that it has points whose orbits form an *oriented cycle of links at infinity*. More recently, the author generalized Handel's theorem to a wider class of cycles of links. In this paper we complete this topic describing exactly which are all the cycles of links forcing the existence of a fixed point.

1. Introduction. Handel's fixed point theorem [7] has been of great importance for the study of surface homeomorphisms. It guarantees the existence of a fixed point for an orientation preserving homeomorphism f of the unit disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ provided that it can be extended to the boundary $S^1 = \{z \in \mathbb{C} : |z| = 1\}$ and that it has points whose orbits form an oriented cycle of links at infinity. More precisely, there exist n points $z_i \in \mathbb{D}$ such that

$$\lim_{k \to -\infty} f^k(z_i) = \alpha_i \in S^1, \quad \lim_{k \to \infty} f^k(z_i) = \omega_i \in S^1,$$

i = 1, ..., n, where the 2*n* points $\{\alpha_i\}, \{\omega_i\}$ are different points in S^1 and have the following order property:

(*) α_{i+1} is the only one among these points that lies in the open interval in the oriented circle S^1 from ω_{i-1} to ω_i .

(Although this is not Handel's original statement, it is an equivalent one as already pointed out in [9].)

Le Calvez gave an alternative proof of this theorem [9], relying only on Brouwer theory and plane topology, which allowed him to obtain a sharper

²⁰¹⁰ Mathematics Subject Classification: 37B20, 54H20, 37E30.

 $Key\ words\ and\ phrases:$ cycles of links, surface homeomorphisms, brick decompositions, free disks chain.

J. Xavier

result. Namely, he weakened the extension hypothesis by demanding the homeomorphism to extend just to $\mathbb{D} \cup \bigcup_{i \in \mathbb{Z}/n\mathbb{Z}} \{\alpha_i, \omega_i\}$ and he strengthened the conclusion by proving the existence of a simple closed curve of index 1.

The author generalized both Handel's and Le Calvez's results as follows [13]. Let $P \subset \mathbb{D}$ be a compact convex *n*-gon. Let $\{v_i : i \in \mathbb{Z}/n\mathbb{Z}\}$ be its set of vertices, and for each $i \in \mathbb{Z}/n\mathbb{Z}$, let e_i be the edge joining v_i and v_{i+1} . We suppose that each e_i is endowed with an orientation, so that we can tell whether P is to the right or to the left of e_i . We say that the orientations of e_i and e_j coincide if P is to the right (or to the left) of both e_i and e_j , $i, j \in \mathbb{Z}/n\mathbb{Z}$.

We define the *index* of P by

$$i(P) = 1 - \frac{1}{2} \sum_{i \in \mathbb{Z}/n\mathbb{Z}} \delta_i,$$

where $\delta_i = 0$ if the orientations of e_{i-1} and e_i coincide, and $\delta_i = 1$ otherwise.

We will denote by α_i and ω_i the first, and respectively the last, point where the straight line Δ_i containing e_i and inheriting its orientation intersects $\partial \mathbb{D}$.

We say that a homeomorphism $f : \mathbb{D} \to \mathbb{D}$ realizes P if there exists a family $(z_i)_{i \in \mathbb{Z}/n\mathbb{Z}}$ of points in \mathbb{D} such that for all $i \in \mathbb{Z}/n\mathbb{Z}$,

$$\lim_{k \to -\infty} f^k(z_i) = \alpha_i, \quad \lim_{k \to \infty} f^k(z_i) = \omega_i.$$

THEOREM 1.1 ([13]). Let $f : \mathbb{D} \to \mathbb{D}$ be an orientation preserving homeomorphism which realizes a compact convex polygon $P \subset \mathbb{D}$ where the points $\alpha_i, \omega_i, i \in \mathbb{Z}/n\mathbb{Z}$, are all different. Suppose that f can be extended to a homeomorphism of $\mathbb{D} \cup \bigcup_{i \in \mathbb{Z}/n\mathbb{Z}} \{\alpha_i, \omega_i\}$. If $i(P) \neq 0$, then f has a fixed point. Furthermore, if i(P) = 1, then there exists a simple closed curve $C \subset \mathbb{D}$ of index 1.

The two polygons appearing in Figure 1(a)&(b) satisfy the hypothesis of this theorem. However, the polygon illustrated in (c) does not, as there are coincidences among the points $\{\alpha_i\}, \{\omega_i\}, i \in \mathbb{Z}/n\mathbb{Z}$.

The purpose of this paper is to complete this topic: we assume that there exist two families $(\alpha_i)_{i \in \mathbb{Z}/n\mathbb{Z}}, (\omega_i)_{i \in \mathbb{Z}/n\mathbb{Z}}$ of points in S^1 and a family $(z_i)_{i \in \mathbb{Z}/n\mathbb{Z}}$ of points in \mathbb{D} such that, for all $i \in \mathbb{Z}/n\mathbb{Z}$,

$$\lim_{k \to -\infty} f^k(z_i) = \alpha_i, \quad \lim_{k \to \infty} f^k(z_i) = \omega_i,$$

and that f extends to a homeomorphism of $\mathbb{D} \cup \bigcup_{i \in \mathbb{Z}/n\mathbb{Z}} \{\alpha_i, \omega_i\}$, and we describe exactly which combinatorics of the points $\alpha_i, \omega_i, i \in \mathbb{Z}/n\mathbb{Z}$, force the existence of a fixed point.

Fig. 1. The hypothesis of Theorem 1.1

A cycle of links of order $n \ge 3$ is a family of pairs of points on the circle S^1 ,

$$\mathcal{L} = ((\alpha_i, \omega_i))_{i \in \mathbb{Z}/n\mathbb{Z}},$$

such that for all $i \in \mathbb{Z}/n\mathbb{Z}$:

- (1) $\alpha_i \neq \omega_i$,
- (2) α_{i+1} and ω_{i+1} belong to different connected components of the set $S^1 \setminus \{\alpha_i, \omega_i\}.$

If \mathcal{L} is a cycle of links, we define the set

$$\ell = \{\alpha_i, \omega_i : i \in \mathbb{Z}/n\mathbb{Z}\} \subset S^1$$

of points in the circle which belong to a pair in the cycle.

If $a, b \in \ell$, we write $a \to b$ if b follows a in the natural (positive) cyclic order on S^1 , and $a \xrightarrow{=} b$ if either a = b or $a \to b$.

We say that a cycle of links \mathcal{L} is *elliptic* if for all $i \in \mathbb{Z}/n\mathbb{Z}$,

$$\omega_{i-1} \xrightarrow{=} \alpha_{i+1} \to \omega_i.$$

We say it is hyperbolic if $n = 2k, k \ge 2$, and for all $i \in \mathbb{Z}/n\mathbb{Z}$ with $i = 0 \mod 2$,

$$\alpha_i \to \alpha_{i-1} \xrightarrow{-} \omega_{i+1} \to \omega_i \xrightarrow{-} \alpha_{i+2}.$$

J. Xavier

Finally, we say that \mathcal{L} is *non-degenerate* if

$$(\alpha_i, \omega_i) \in \mathcal{L} \Rightarrow (\omega_i, \alpha_i) \notin \mathcal{L}.$$

Of course, we say it is *degenerate* if this condition is not satisfied. An example is illustrated in Figure 2.

Fig. 2. A degenerate cycle of links

We say that a homeomorphism $f : \mathbb{D} \to \mathbb{D}$ realizes \mathcal{L} if there exists a family $(z_i)_{i \in \mathbb{Z}/n\mathbb{Z}}$ of points in \mathbb{D} such that, for all $i \in \mathbb{Z}/n\mathbb{Z}$,

 $\lim_{k \to -\infty} f^k(z_i) = \alpha_i, \quad \lim_{k \to \infty} f^k(z_i) = \omega_i.$

The following theorem is the main result of this article.

THEOREM 1.2. Suppose that $f : \mathbb{D} \to \mathbb{D}$ is an orientation preserving homeomorphism which realizes a cycle of links \mathcal{L} and can be extended to a homeomorphism of $\mathbb{D} \cup \ell$. If \mathcal{L} is either elliptic or hyperbolic, then f has a fixed point. Furthermore, if \mathcal{L} is non-degenerate and elliptic, then there exists a simple closed curve $C \subset \mathbb{D}$ of index 1.

It turns out that these results completely describe the combinatorics giving rise to fixed points: LEMMA 1.3. Given a family $((\alpha_i, \omega_i))_{i \in \mathbb{Z}/n\mathbb{Z}}$ of pairs of points in S^1 , one of the following is true:

- (1) there exists a subfamily of $((\alpha_i, \omega_i))_{i \in \mathbb{Z}/n\mathbb{Z}}$ forming an elliptic or hyperbolic cycle of links,
- (2) the oriented straight lines from α_i to ω_i bound a non-zero index polygon $P \subset \mathbb{D}$,
- (3) there exists a fixed-point free orientation preserving homeomorphism
 f: D → D and a family of points (z_i)_{i∈Z/nZ} in D such that for all
 i∈ Z/nZ,

$$\lim_{k \to -\infty} f^k(z_i) = \alpha_i, \quad \lim_{k \to \infty} f^k(z_i) = \omega_i.$$

We finish this introduction with some remarks on Theorem 1.2.

The elliptic non-degenerate case contains Le Calvez's improvement of Handel's theorem. Indeed, if the points in ℓ are all different, then \mathcal{L} is non-degenerate. As the example in Figure 1(c) shows, our theorem is more general even in this case.

The theorem contains the author's result on non-zero index polygons. Indeed, in [13] it is shown that if f realizes a non-zero index polygon where the points $\alpha_i, \omega_i, i \in \mathbb{Z}/n\mathbb{Z}$ are all different, then f realizes an elliptic or hyperbolic cycle of links. Again, as coincidences in ℓ are allowed, our theorem is more general even in this case.

The extension hypothesis is necessary. Indeed, if $f : \mathbb{D} \to \mathbb{D}$ is fixed-point free, one can easily construct a homeomorphism $h : \mathbb{D} \to \mathbb{D}$ such that hfh^{-1} realizes any prescribed cycle of links.

Non-degeneracy is necessary to obtain the index result. Let f_1 be the time-one map of the flow whose orbits are drawn in the figure below.

As we will explain below, one can perturb f_1 to a homeomorphism f such that:

- $Fix(f) = Fix(f_1) = \{x\},\$
- $f = f_1$ in a neighbourhood of x,
- f realizes $\mathcal{L} = ((\alpha_i, \omega_i))_{i \in \mathbb{Z}/4\mathbb{Z}}$.

We say that the set X is free if $f(X) \cap X = \emptyset$.

One can find (by means of a transverse foliation, for example) free and pairwise disjoint simple paths β_i and γ_i , $i \in \mathbb{Z}/4\mathbb{Z}$, such that:

• β_i joins z_i and z'_i , where

$$\lim_{k \to \infty} f_1^{-k}(z_i) = \alpha_i \quad \text{and} \quad \lim_{k \to \infty} f_1^k(z_i') = \alpha_{i^*},$$

- $i^* = i + 1$ for even values of i, and $i^* = i 1$ for odd values of i,
- γ_i joins $f_1^{p_i}(z'_i)$ and z''_i , where $p_i > 0$ and $\lim_{k \to \infty} f_1^k(z''_i) = \omega_i$,
- γ_i and β_i are disjoint from the f_1 -orbits of all z_j, z'_j, z''_j with $i \neq j$.

By thickening the paths $\{\beta_i\}$ and $\{\gamma_i\}$, one can find free, pairwise disjoint open disks $\{D'_i\}$ and $\{D''_i\}$ such that the disks D'_i and D''_i are disjoint from the f_1 -orbits of the points z_j, z'_j, z''_j for $i \neq j$.

We construct a homeomorphism $h : \mathbb{D} \to \mathbb{D}$ such that:

- $h = \text{Id outside } \bigcup_{i \in \mathbb{Z}/4\mathbb{Z}} D'_i \cup D''_i,$
- $h(z_i) = z'_i$,
- $h(f_1^p(z'_i)) = z''_i$.

So, if we define $f = h \circ f_1$, we obtain

$$\lim_{k \to \infty} f^{-k}(z_i) = \alpha_i, \quad \lim_{k \to \infty} f^k(z_i) = \omega_i,$$

for all $i \in \mathbb{Z}/4\mathbb{Z}$. Clearly we can make this construction in such a way that $f = f_1$ in a neighbourhood of x. Moreover, as the disks $\{D'_i\}$ and $\{D''_i\}$ are free,

$$\operatorname{Fix}(f) = \operatorname{Fix}(f_1) = \{x\}.$$

So, f realizes the elliptic cycle \mathcal{L} , but there is no simple closed curve of index 1.

64

No negative-index fixed point is guaranteed by hyperbolicity. One could think that when \mathcal{L} is hyperbolic, a negative-index fixed point should be obtained. For example, this would be the case if one had an oriented foliation \mathcal{F} in $\mathbb{D} \setminus \operatorname{Fix}(f)$ whose leaves are Brouwer lines for f and simple paths γ_i , $i \in \mathbb{Z}/n\mathbb{Z}$, joining α_i and ω_i such that:

- each γ_i is positively transverse to \mathcal{F} ,
- the paths $\{\gamma_i\}$ bound a compact disc in \mathbb{D} .

(See the figure above.) Indeed, in this case, the Poincaré–Hopf formula would give a singularity x of the foliation for which $i(\mathcal{F}, x) < 0$. So, $x \in Fix(f)$ and by a result of Le Calvez ([10]) one has $i(f, x) = i(\mathcal{F}, x) < 0$.

However, this is not the case, as the following example shows. Let f_1 be the time-one map of the flow whose orbits are drawn in the figure below.

As we did in our preceding example, one can perturb f_1 to a homeomorphism f such that:

- Fix(f) = Fix(f₁) = {x},
 f = f₁ in a neighbourhood of x,
- f realizes $\mathcal{L} = ((\alpha_i, \omega_i))_{i \in \mathbb{Z}/4\mathbb{Z}}$.

So, f realizes the hyperbolic cycle \mathcal{L} , but there is no fixed point of negative index.

The structure of this article is the following. In Section 2 we introduce the tools to be used (brick decompositions, Brouwer theory, repeller/attractor configurations [13]) and we sum up the results from [9] and [13] that will be used in the proofs. In Section 3 we state two lemmas that are key for the contradiction argument in the proof of Theorem 1.2, which is contained in Section 4. The last Section 5 is devoted to the proof of Lemma 1.3, which shows that our results are optimal.

2. Preliminaries

2.1. Brick decompositions. A brick decomposition \mathcal{D} of an orientable surface M is a one-dimensional singular submanifold $\Sigma(\mathcal{D})$ (the skeleton of the decomposition), with the property that the set of singularities V is discrete and such that every $\sigma \in V$ has a neighbourhood U for which $U \cap (\Sigma(\mathcal{D}) \setminus V)$ has exactly three connected components. We have illustrated two brick decompositions in Figure 3. The bricks are the closures of the connected components of $M \setminus \Sigma(\mathcal{D})$ and the edges are the closures of the connected components of $\Sigma(\mathcal{D}) \setminus V$. We will write E for the set of edges, B for the set of bricks and finally $\mathcal{D} = (V, E, B)$ for a brick decomposition.

Fig. 3. Brick decompositions

Let $\mathcal{D} = (V, E, B)$ be a brick decomposition of M. We say that $X \subset B$ is *connected* if given two bricks $b, b' \in X$, there exists a sequence $(b_i)_{0 \leq i \leq n}$ with $b_0 = b, b_n = b'$ and such that b_i and b_{i+1} have non-empty intersection, $i \in \{0, \ldots, n-1\}$. Whenever two bricks b and b' have non-empty intersection, we say that they are *adjacent*. Moreover, we say that a brick b is *adjacent* to a subset $X \subset B$ if $b \notin X$ but b is *adjacent* to one of the bricks in X. We say that $X \subset B$ is adjacent to $X' \subset B$ if X and X' have no common bricks but there exist $b \in X$ and $b' \in X'$ which are adjacent.

From now on we will identify a subset X of B with the closed subset of M formed by the union of the bricks in X. This may lead to ambiguities (for instance, two adjacent subsets of B have empty intersection in B and non-empty intersection in M), but we will point out such cases explicitly. We remark that ∂X is a one-dimensional topological manifold and that the connectedness of $X \subset B$ is equivalent to the connectedness of $X \subset M$ and to the connectedness of $\operatorname{Int}(X) \subset M$ as well. We say that a decomposition \mathcal{D}' is a subdecomposition of \mathcal{D} if $\Sigma(\mathcal{D}') \subset \Sigma(\mathcal{D})$.

If $f: M \to M$ is a homeomorphism, we define a map $\varphi : \mathcal{P}(\mathcal{B}) \to \mathcal{P}(\mathcal{B})$ as follows:

$$\varphi(X) = \{ b \in B : f(X) \cap b \neq \emptyset \}.$$

We remark that $\varphi(X)$ is connected whenever X is. We define analogously a map $\varphi_{-}: \mathcal{P}(\mathcal{B}) \to \mathcal{P}(\mathcal{B})$:

$$\varphi_{-}(X) = \{ b \in B : f^{-1}(X) \cap b \neq \emptyset \}.$$

We define the *future* $[b]_{\geq}$ and the *past* $[b]_{\leq}$ of a brick *b* as follows:

$$[b]_{\geq} = \bigcup_{k\geq 0} \varphi^k(\{b\}), \quad \ [b]_{\leq} = \bigcup_{k\geq 0} \varphi^k_-(\{b\}).$$

We also define the strict future $[b]_{>}$ and the strict past $[b]_{<}$ of a brick b:

$$[b]_{>} = \bigcup_{k>0} \varphi^k(\{b\}), \quad \ [b]_{<} = \bigcup_{k>0} \varphi^k_-(\{b\}).$$

We say that a set $X \subset B$ is an *attractor* if it satisfies $\varphi(X) \subset X$; this is equivalent in M to the inclusion $f(X) \subset \text{Int}(X)$. A *repeller* is any set Xwhich satisfies $\varphi_{-}(X) \subset X$. In this way, the future of any brick is an attractor, and the past of any brick is a repeller. We observe that $X \subset B$ is a repeller if and only if $B \setminus X$ is an attractor.

REMARK 2.1. The following properties can be deduced from the fact that $X \subset B$ is an attractor if and only if $f(X) \subset Int(X)$:

- (1) if $X \subset B$ is an attractor and $b \in X$, then $[b]_{\geq} \subset X$; if $X \subset B$ is a repeller and $b \in X$, then $[b]_{<} \subset X$,
- (2) if $X \subset B$ is an attractor and $b \notin X$, then $[b] \leq \cap X = \emptyset$; if $X \subset B$ is a repeller and $b \notin X$, then $[b] > \cap X = \emptyset$,
- (3) if $b \in B$ is adjacent to an attractor $X \subset B$, then $[b]_{>} \cap X \neq \emptyset$; if $b \in B$ is adjacent to a repeller $X \subset B$, then $[b]_{<} \cap X \neq \emptyset$,
- (4) two attractors are disjoint as subsets of B if and only if they are disjoint as subsets of M; in other words, two disjoint (in B) attractors cannot be adjacent; also, two disjoint (in B) repellers cannot be adjacent.

The following conditions are equivalent:

 $b \in [b]_{>}, \ [b]_{>} = [b]_{\geq}, \ b \in [b]_{<}, \ [b]_{<} = [b]_{\leq}, \ [b]_{<} \cap [b]_{\geq} \neq \emptyset, \ [b]_{\leq} \cap [b]_{>} \neq \emptyset.$

The existence of a brick $b \in B$ for which any of these conditions is satisfied is equivalent to the existence of a *closed chain of bricks*, i.e. a family $(b_i)_{i \in \mathbb{Z}/r\mathbb{Z}}$ of bricks such that for all $i \in \mathbb{Z}/r\mathbb{Z}$, $\bigcup_{k>1} f^k(b_i) \cap b_{i+1} \neq \emptyset$.

J. Xavier

In general, a *chain* for $f \in \text{Homeo}(M)$ is a family $(X_i)_{0 \le i \le r}$ of subsets of M such that $\bigcup_{k\ge 1} f^k(X_i) \cap X_{i+1} \ne \emptyset$ for all $0 \le i \le r-1$. We say that the chain is *closed* if $X_r = X_0$.

We say that a subset $X \subset M$ is free if $f(X) \cap X = \emptyset$.

We say that a brick decomposition $\mathcal{D} = (V, E, B)$ is *free* if every $b \in B$ is a free subset of M. If f is fixed point free it is always possible, taking sufficiently small bricks, to construct a free brick decomposition.

We recall the definition of maximal free decomposition, which was introduced by Sauzet in his doctoral thesis [12]. Let f be a fixed point free homeomorphism of a surface M. We say that \mathcal{D} is a maximal free decomposition if \mathcal{D} is free and any strict subdecomposition is no longer free. Applying Zorn's lemma, it is always possible to prove the existence of a maximal free subdecomposition of a given brick decomposition \mathcal{D} .

2.2. Brouwer theory background. We say that $\Gamma : [0,1] \to \overline{\mathbb{D}}$ is an *arc* if it is continuous and injective. We say that an arc Γ *joins* $x \in \overline{\mathbb{D}}$ to $y \in \overline{\mathbb{D}}$ if $\Gamma(0) = x$ and $\Gamma(1) = y$. We say that an arc Γ joins $X \subset \overline{\mathbb{D}}$ to $Y \subset \overline{\mathbb{D}}$, if Γ joins some $x \in X$ to some $y \in Y$.

Fix an $f \in \text{Homeo}^+(\mathbb{D})$. An arc γ joining $z \notin \text{Fix}(f)$ to f(z) such that $f(\gamma) \cap \gamma = \{z, f(z)\}$ if $f^2(z) = z$, and $f(\gamma) \cap \gamma = \{f(z)\}$ otherwise, is called a *translation arc*.

PROPOSITION 2.2 (Brouwer's translation lemma, [1], [2], [4] or [6]). If any of the following two hypotheses is satisfied:

- (1) there exists a translation arc γ joining $z \in Fix(f^2) \setminus Fix(f)$ to f(z),
- (2) there exists a translation arc γ joining $z \notin \text{Fix}(f^2)$ to f(z) and an integer $k \geq 2$ such that $f^k(\gamma) \cap \gamma \neq \emptyset$,

then there exists a simple closed curve of index 1.

If $z \notin \text{Fix}(f)$, there exists a translation arc containing z; this is easy to prove once one knows that the connected components of the complement of Fix(f) are invariant. For this last fact, see [3] for a general proof in any dimension, or [8] for an easy proof in dimension 2.

We deduce:

COROLLARY 2.3. If $\operatorname{Per}(f) \setminus \operatorname{Fix}(f) \neq \emptyset$, then there exists a simple closed curve of index 1.

PROPOSITION 2.4 (Franks' lemma [5]). If there exists a closed chain of free, open and pairwise disjoint disks for f, then there exists a simple closed curve of index 1.

Following Le Calvez [9], we will say that f is *recurrent* if there exists a closed chain of free, open and pairwise disjoint disks for f.

The following proposition is a refinement of Franks' lemma due to Guillou and Le Roux (see [11, p. 39]).

PROPOSITION 2.5. Suppose there exists a closed chain $(X_i)_{i \in \mathbb{Z}/r\mathbb{Z}}$ for f of free subsets whose interiors are pairwise disjoint and which have the following property: given any two points $z, z' \in X_i$ there exists an arc γ joining z and z' such that $\gamma \setminus \{z, z'\} \subset \text{Int}(X_i)$. Then f is recurrent.

We deduce:

PROPOSITION 2.6. Let $\mathcal{D} = (V, E, B)$ be a free brick decomposition of $\mathbb{D} \setminus \text{Fix}(f)$. If there exists $b \in B$ such that $b \in [b]_{>}$, then f is recurrent.

2.3. Little bricks at infinity. Fix $f \in \text{Homeo}^+(\mathbb{D})$, different from the identity map and *non-recurrent*. We will make use of the following two propositions from [9] (both of them depend on the non-recurrent character of f). The first one (Proposition 2.2 in [9]) is a refinement of a result already appearing in [12]; the second one is Proposition 3.1 in [9].

PROPOSITION 2.7 ([12], [9]). Let $\mathcal{D} = (V, E, B)$ be a maximal free brick decomposition of $\mathbb{D} \setminus \operatorname{Fix}(f)$. Then the sets $[b]_{\geq}$, $[b]_{>}$, $[b]_{\leq}$ and $[b]_{<}$ are connected. In particular every connected component of an attractor is an attractor, and every connected component of a repeller is a repeller.

PROPOSITION 2.8 ([9]). If f satisfies the hypothesis of Theorem 1.2, then for all $i \in \mathbb{Z}/n\mathbb{Z}$ we can find a sequence $(\gamma_i^k)_{k\in\mathbb{Z}}$ of arcs such that:

- each γ_i^k is a translation arc from $f^k(z_i)$ to $f^{k+1}(z_i)$,
- $f(\gamma_i^k) \stackrel{'}{\cap} \gamma_i^{k'} = \emptyset$ if k' < k,
- the sequence $(\gamma_i^k)_{k\leq 0}$ converges to $\{\alpha_i\}$ in the Hausdorff topology,
- the sequence $(\gamma_i^k)_{k\geq 0}$ converges to $\{\omega_i\}$ in the Hausdorff topology.

This result is a consequence of Brouwer's translation lemma and the hypothesis on the orbits of the points $(z_i)_{i \in \mathbb{Z}/n\mathbb{Z}}$. In particular, the extension hypothesis of Theorem 1.2 is used. It allows us to construct a particular brick decomposition suitable for our purposes:

LEMMA 2.9. For every $i \in \mathbb{Z}/n\mathbb{Z}$, take U_i^- a neighbourhood of α_i in $\overline{\mathbb{D}}$ and U_i^+ a neighbourhood of ω_i in $\overline{\mathbb{D}}$ such that $U_i^- \cap U_i^+ = \emptyset$. There exist two families $(b_i^{l})_{i \in \mathbb{Z}/n\mathbb{Z}, l \geq 1}$ and $(b_i^{l})_{i \in \mathbb{Z}/n\mathbb{Z}, l \leq -1}$ of closed disks in \mathbb{D} and a family $(l_i)_{i \in \mathbb{Z}/n\mathbb{Z}}$ of integers such that:

- (1) each $b_i^{\prime l}$ is free and contained in $U_i^ (l \leq -1)$ or in U_i^+ $(l \geq 1)$,
- (2) $\operatorname{Int}(b_i'^l) \cap \operatorname{Int}(b_i'^{l'}) = \emptyset \text{ if } l \neq l',$
- (2) In (b_i) + In (b_i) = b_i = b_i = b_i = (b_i) (3) for every k > 1 the sets $(b_i'^l)_{1 \le l \le k}$ and $(b_i'^l)_{-k \le l \le -1}$ are connected,
- (4) for all $i \in \mathbb{Z}/n\mathbb{Z}$, $\partial \bigcup_{l \in \mathbb{Z} \setminus \{0\}} b_i^{ll}$ is a one-dimensional submanifold,
- (5) if $x \in \mathbb{D}$, then x belongs to at most two different disks in the family $(b_i^{l})_{l \in \mathbb{Z} \setminus \{0\}, i \in \mathbb{Z}/n\mathbb{Z}},$

J. Xavier

- (6) for all $i \in \mathbb{Z}/n\mathbb{Z}$, $f^{l_i+l}(z_i) \in \operatorname{Int}(b_i'^{l+1})$ for all $l \ge 0$, and $f^{-l_i-l}(z_i) \in$ $\operatorname{Int}(b_i'^{-l-1})$ for all $l \ge 0$,
- (7) $f^k(z_j) \in b_i^{(l)}$ if and only if j = i and $k = l_i + l 1$, (8) the sequence $(b_i^{(l)})_{l \ge 1}$ converges to $\{\omega_i\}$ in the Hausdorff topology and the sequence $(b_i^{l})_{l \leq -1}$ converges to $\{\alpha_i\}$ in the Hausdorff topology.

The idea is to construct trees $T_i^- \subset U_i^-, T_i^+ \subset U_i^+, i \in \mathbb{Z}/n\mathbb{Z}$, by deleting the loops of the curves $\prod_{k\geq -1} \gamma_i^k \cap U_i^-$ and $\prod_{k\leq 1} \gamma_i^k \cap U_i^+$ respectively, and then thickening these trees to obtain the families $(b_i^{\prime l})_{i \in \mathbb{Z}/n\mathbb{Z}, l \geq 1}$ and $(b_i^{\prime l})_{i \in \mathbb{Z}/n\mathbb{Z}, l < -1}$. We refer the reader to [13] for a proof in English but we remark that these results are contained in [9]. We have illustrated these families in Figure 4.

Fig. 4. The families $b_i^{\prime l}$

REMARK 2.10. The fact that the sequence $(b_i'^l)_{l\geq 1}$ converges in the Hausdorff topology to ω_i , implies we can find an arc $\Gamma_i^+: [0,1] \to \operatorname{Int}(\bigcup_{l>0} b_i^{l}) \cup$ $\{\omega_i\}$ such that $\Gamma_i^+(1) = \omega_i, i \in \mathbb{Z}/n\mathbb{Z}$. Similarly, we can find an arc $\Gamma_i^-: [0,1] \to \operatorname{Int}(\bigcup_{l>0} b_i'^{-l}) \cup \{\alpha_i\} \text{ such that } \Gamma_i^-(1) = \alpha_i, i \in \mathbb{Z}/n\mathbb{Z}.$

2.4. Repeller/attractor configurations

2.4.1. Cyclic order at infinity. Let $(a_i)_{i \in \mathbb{Z}/n\mathbb{Z}}$ be a family of non-empty, pairwise disjoint, closed, connected subsets of \mathbb{D} , such that $\overline{a}_i \cap \partial \mathbb{D} \neq \emptyset$ and $U = \mathbb{D} \setminus \bigcup_{i \in \mathbb{Z}/n\mathbb{Z}} a_i$ is a connected open set. As U is connected, and its complementary set in \mathbb{C} , namely

$$\{z \in \mathbb{C} : |z| \ge 1\} \cup \bigcup_{i \in \mathbb{Z}/n\mathbb{Z}} a_i,$$

is also connected, U is simply connected.

With these hypotheses, there is a natural cyclic order on the sets $\{a_i\}$. Indeed, U is conformally isomorphic to the unit disc via the Riemann map $\varphi: U \to \mathbb{D}$, and one can consider the Carathéodory extension of φ ,

$$\hat{\varphi}: \hat{U} \to \overline{\mathbb{D}},$$

which is a homeomorphism between the prime ends completion \hat{U} of Uand the closed unit disk $\overline{\mathbb{D}}$. The set \hat{J}_i of prime ends whose impression is contained in a_i is open and connected. It follows that the images $J_i = \hat{\varphi}(\hat{J}_i)$ are pairwise disjoint open intervals in S^1 , and are therefore cyclically ordered following the positive orientation of the circle.

2.4.2. Repeller/attractor configurations. We recall the definition of repeller/attractor configuration that was introduced in [13].

We fix $f \in \text{Homeo}^+(\mathbb{D})$ together with a maximal free brick decomposition $\mathcal{D} = (V, E, B)$ of $\mathbb{D} \setminus \text{Fix}(f)$.

Let $(R_i)_{i \in \mathbb{Z}/n\mathbb{Z}}$ and $(A_i)_{i \in \mathbb{Z}/n\mathbb{Z}}$ be two families of connected, pairwise disjoint subsets of B such that:

- (1) For all $i \in \mathbb{Z}/n\mathbb{Z}$,
 - (a) R_i is a repeller and A_i is an attractor,
 - (b) there exists non-empty, closed, connected subsets $r_i \subset \text{Int}(R_i)$, $a_i \subset \text{Int}(A_i)$ of \mathbb{D} such that $\overline{r_i} \cap \partial \mathbb{D} \neq \emptyset$ and $\overline{a_i} \cap \partial \mathbb{D} \neq \emptyset$,
- (2) $\mathbb{D} \setminus \bigcup_{i \in \mathbb{Z}/n\mathbb{Z}} (a_i \cup r_i)$ is a connected open set.

We say that the pair $((R_i)_{i \in \mathbb{Z}/n\mathbb{Z}}, (A_i)_{i \in \mathbb{Z}/n\mathbb{Z}})$ is a repeller/attractor configuration of order n. We will write

$$\mathcal{E} = \{R_i, A_i : i \in \mathbb{Z}/n\mathbb{Z}\}.$$

Property (2) in the previous definition allows us to give a cyclic order to the sets $r_i, a_i, i \in \mathbb{Z}/n\mathbb{Z}$ (see the beginning of this section).

We say that a repeller/attractor configuration of order $n \ge 3$ is an *elliptic* configuration if:

(1) the cyclic order of the sets $r_i, a_i, i \in \mathbb{Z}/n\mathbb{Z}$, has the *elliptic order* property:

 $a_0 \to r_2 \to a_1 \to \cdots \to a_i \to r_{i+2} \to a_{i+1} \to \cdots \to a_{n-1} \to r_1 \to a_0,$

(2) for all $i \in \mathbb{Z}/n\mathbb{Z}$ there exists a brick $b_i \in R_i$ such that $[b_i] > \cap A_i \neq \emptyset$.

We say that a repeller/attractor configuration is a *hyperbolic configuration* if:

(1) the cyclic order of the sets $r_i, a_i, i \in \mathbb{Z}/n\mathbb{Z}$, has the hyperbolic order property:

$$r_0 \to a_0 \to r_1 \to a_1 \to \dots \to r_i \to a_i$$
$$\to r_{i+1} \to a_{i+1} \to \dots \to r_{n-1} \to a_{n-1} \to r_0,$$

(2) for all $i \in \mathbb{Z}/n\mathbb{Z}$ there exist two bricks $b_i^i, b_i^{i-1} \in R_i$ such that $[b_i^i]_{>} \cap A_i \neq \emptyset$ and $[b_i^{i-1}]_{>} \cap A_{i-1} \neq \emptyset$.

(b) A hyperbolic configuration

We will make use of the following results from [13]:

PROPOSITION 2.11 ([13]). If there exists an elliptic configuration of order $n \geq 3$, then f is recurrent.

PROPOSITION 2.12 ([13]). If there exists a hyperbolic configuration of order $n \ge 2$, then $\operatorname{Fix}(f) \neq \emptyset$.

3. Two technical lemmas. In this section we give applications of Propositions 2.11 and 2.12 that will be used in the proof of Theorem 1.2.

We fix $f \in \text{Homeo}^+(\mathbb{D})$ together with a maximal free brick decomposition $\mathcal{D} = (V, E, B)$ of $\mathbb{D} \setminus \text{Fix}(f)$, and we suppose that f is non-recurrent.

Let $a_i, i \in \mathbb{Z}/n\mathbb{Z}$, be non-empty, pairwise disjoint, closed, connected subsets of \mathbb{D} such that $\overline{a}_i \cap \partial \mathbb{D} \neq \emptyset$ for all $i \in \mathbb{Z}/n\mathbb{Z}$, and $U = \mathbb{D} \setminus \bigcup_{i \in \mathbb{Z}/n\mathbb{Z}} a_i$ is a connected open set. We consider the Riemann map $\varphi: U \to \mathbb{D}$, and the open intervals on the circle J_i , $i \in \mathbb{Z}/n\mathbb{Z}$, defined in 2.4.1. We recall that the interval J_i corresponds to the prime ends in U whose impression is contained in a_i .

Let $(I_i)_{i \in \mathbb{Z}/n\mathbb{Z}}$ be the connected components of $S^1 \setminus \bigcup_{i \in \mathbb{Z}/n\mathbb{Z}} J_i$. So, each I_i is a closed interval, which may be reduced to a point.

REMARK 3.1. One can cyclically order the sets $(a_i)_{i \in \mathbb{Z}/n\mathbb{Z}}, (r_j)_{i \in \mathbb{Z}/m\mathbb{Z}}, (r_j)_{i \in \mathbb{Z}/m\mathbb{Z}}, (r_j)_{i \in \mathbb{Z}/m\mathbb{Z}}, (r_j)_{i \in \mathbb{Z}/m\mathbb{Z}}, (r_j)_{j \in \mathbb{Z}}, (r_j)_$ where $(r_j)_{i \in \mathbb{Z}/m\mathbb{Z}}$ is any family of closed, connected and pairwise disjoint subsets of U satisfying:

- $\overline{r_j} \cap \partial U \neq \emptyset, \ j \in \mathbb{Z}/m\mathbb{Z},$
- for all $j \in \mathbb{Z}/m\mathbb{Z}$, there exists $i_j \in \mathbb{Z}/n\mathbb{Z}$ such that $\overline{\varphi(r_j)} \cap S^1 \subset I_{i_j}$,
- the correspondence $j \mapsto i_j$ is injective.

LEMMA 3.2. Suppose that:

(1) the cyclic order of the sets $a_i, i \in \mathbb{Z}/n\mathbb{Z}$, is

 $a_0 \to a_1 \to \cdots \to a_i \to a_{i+1} \to \cdots \to a_{n-1} \to a_0,$

- (2) for all $i \in \mathbb{Z}/n\mathbb{Z}$ there exists $b_i^+ \in B$ such that $a_i \subset [b_i^+]_>$,
- (3) there exist three bricks $(b_s^-)_{s\in\mathbb{Z}/3\mathbb{Z}}$ such that
 - (a) for all $s \in \mathbb{Z}/3\mathbb{Z}$ and all $i \in \mathbb{Z}/n\mathbb{Z}$, one has $b_s^- \subset [b_i^+]_<$ (and so $[b_s^-]_< \subset U),$

 - (b) $\overline{[b_s^-]_{<}} \cap \partial U \neq \emptyset$ for all $s \in \mathbb{Z}/3\mathbb{Z}$, (c) for every $s \in \mathbb{Z}/3\mathbb{Z}$ there exists $i_s \in \mathbb{Z}/n\mathbb{Z}$ such that

 $\overline{\varphi([b_s^-]_{<})} \cap S^1 \subset I_{i_s},$

Then the correspondence $s \mapsto i_s$ is not injective.

Fig. 5. Lemma 3.2

Proof. We will prove that if the correspondence $s \mapsto i_s$ is injective, then we can construct an elliptic configuration of order 3. As we are assuming fis not recurrent, this is not possible by Proposition 2.11.

We begin by proving that $[b_s^-]_{\leq} \cap [b_r^-]_{\leq} \neq \emptyset$ implies $i_s = i_r$. Indeed, if $[b_s^-]_< \cap [b_r^-]_< \neq \emptyset$, then $[b_s^-]_< \cup [b_r^-]_<$ is a connected set and $\varphi([b_s^-]_< \cup [b_r^-]_<)$ intersects both I_{i_s} and I_{i_r} . If $i_s \neq i_r$, then there exist $j_0, j_1 \in \mathbb{Z}/n\mathbb{Z}$ such that any arc joining J_{j_0} and J_{j_1} separates I_{i_r} from I_{i_s} in \mathbb{D} . Our hypothesis (3)(a) allows us to take a crosscut γ from a_{j_0} to a_{j_1} such that $\gamma \cap U \subset [b_s^-]_>$. So, $\overline{\varphi(\gamma \cap U)}$ is an arc joining J_{j_0} and J_{j_1} , and

$$\overline{\varphi(\gamma \cap U)} \cap \varphi([b_s^-]_{<} \cup [b_r^-]_{<}) \neq \emptyset.$$

This gives us

$$([b_s^-]_{\lt} \cup [b_r^-]_{\lt}) \cap [b_s^-]_{\gt} \neq \emptyset,$$

J. Xavier

and as we are supposing that f is not recurrent,

$$[b_r^-]_< \cap [b_s^-]_> \neq \emptyset.$$

So,

$$[b_s^-]_< \subset [b_r^-]_<,$$

which implies

$$\varphi([b_s^-]_{<}) \cap S^1 \subset I_{i_s} \cap I_{i_r}$$

a contradiction.

So, if the correspondence $s \mapsto i_s$ is injective, the sets $[b_s^-]_{<}$ are pairwise disjoint, and one can cyclically order the n + 3 sets $a_i, [b_s^-]_{<}, i \in \mathbb{Z}/n\mathbb{Z}, s \in \mathbb{Z}/3\mathbb{Z}$ (see Remark 3.1). We may suppose without loss of generality that

$$[b_0^-]_< \to [b_1^-]_< \to [b_2^-]_< \to [b_0^-]_<.$$

For all $s \in \mathbb{Z}/3\mathbb{Z}$, we can take $j_s \in \mathbb{Z}/3\mathbb{Z}$ such that

$$[b_0]^-_{<} \to a_{j_2} \to [b_1^-]_{<} \to a_{j_0} \to [b_2^-]_{<} \to a_{j_1} \to [b_0]^-_{<}$$

(see Figure 9 below).

For all $s \in \mathbb{Z}/3\mathbb{Z}$, we define

$$R_s = [b_s^-]_<, \quad A_s = [b_{j_s}^+]_>.$$

We want to show that

$$((R_s)_{s\in\mathbb{Z}/3\mathbb{Z}}), (A_s)_{s\in\mathbb{Z}/3\mathbb{Z}})$$

is an elliptic configuration. It is enough to show that the sets A_s, R_s , $s \in \mathbb{Z}/3\mathbb{Z}$, are pairwise disjoint, because of the cyclic order of these sets, and our hypothesis (3)(a). We already know that the sets $R_s, s \in \mathbb{Z}/3\mathbb{Z}$, are pairwise disjoint. As we are supposing that f is not recurrent, and $b_{j_s}^+ \in [b_{s'}^-]_{>}$ for any s, s' in $\mathbb{Z}/3\mathbb{Z}$ (see (3)(a)), we know that

$$[b_{j_s}^+]_> \cap [b_{s'}^-]_< = \emptyset$$

for all s, s' in $\mathbb{Z}/3\mathbb{Z}$. So, the sets $\{A_s\}$ are disjoint from the sets $\{R_s\}$, and we just have to show that the sets $\{A_s\}$ are pairwise disjoint to finish the proof of the lemma.

Because of the symmetry of the problem it is enough to show that

$$A_0 \cap A_1 = \emptyset.$$

If this is not so, then

$$A_0 \cup A_1 = [b_{j_0}^+]_> \cup [b_{j_1}^+]_>$$

would be a connected set containing both a_{j_1} and a_{j_0} , and the cyclic order would imply that

$$([b_{j_0}^+]_{>} \cup [b_{j_1}^+]_{>}) \cap [b_{j_0}^+]_{<} \neq \emptyset,$$

by our hypothesis (3)(a). As we are supposing that f is not recurrent, we have

$$[b_{j_1}^+]_{>} \cap [b_{j_0}^+]_{<} \neq \emptyset$$

But this implies that $[b_{j_1}^+]_{>}$ is a connected set containing both a_{j_1} and a_{j_0} . Once again our hypothesis (3)(a) and the cyclic order give us

$$[b_{j_1}^+]_> \cap [b_{j_1}^+]_< \neq \emptyset,$$

and we are done.

For our next lemma, we keep the assumption on the cyclic order of the sets $a_i, i \in \mathbb{Z}/n\mathbb{Z}$:

$$a_0 \to a_1 \to \cdots \to a_i \to a_{i+1} \to \cdots \to a_{n-1} \to a_0.$$

We define I_i to be the connected component of $S^1 \setminus \bigcup_{j \in \mathbb{Z}/n\mathbb{Z}} J_j$ that follows J_{i-1} in the natural cyclic order on S^1 , so that we have

$$J_{i-1} \to I_i \to J_i$$

for all $i \in \mathbb{Z}/n\mathbb{Z}$.

LEMMA 3.3. If for all $i \in \mathbb{Z}/n\mathbb{Z}$:

- (1) there exists $b_i^+ \in B$ such that $a_i \subset [b_i^+]_{>}$, (2) there exists $b_i^- \in B$ such that $b_i^- \subset [b_j^+]_{<}$, $j \in \{i-1,i\}$,
- (3) $[b_i^-]_< \subset U$, and $\overline{[b_i^-]_<} \cap \partial U \neq \emptyset$,
- (4) $\overline{\varphi([b_i^-]_{<})} \cap S^1 \subset I_i,$

then $\operatorname{Fix}(f) \neq \emptyset$.

Fig. 6. Lemma 3.3 with n = 6

Proof. By Proposition 2.12 it is enough to show that we can construct a hyperbolic configuration.

We begin by proving that the sets $\{[b_i^-]_{<}\}\$ are pairwise disjoint. Otherwise, there exist $i \neq j$ such that

$$[b_i^-]_<\cap [b_j^-]_<\neq \emptyset.$$

Then $[b_i^-]_{<} \cup [b_j^-]_{<}$ is a connected set and $\varphi([b_i^-]_{<} \cup [b_j^-]_{<})$ intersects both I_i and I_j . The cyclic order implies that any arc joining J_{i-1} and J_i separates I_i from I_j , $i \neq j$.

Our hypothesis (2) allows us to take a crosscut γ from a_{i-1} to a_i such that

$$\gamma \cap U \subset [b_i^-]_{>}.$$

So, $\overline{\varphi(\gamma \cap U)}$ is an arc joining J_{i-1} and J_i , and $\overline{\varphi(\gamma \cap U)} \cap \varphi([b_i^-]_{<} \cup [b_i^-]_{<}) \neq \emptyset$.

This gives us

$$([b_i^-]_{<} \cup [b_j^-]_{<}) \cap [b_i^-]_{>} \neq \emptyset,$$

and as we are supposing that f is not recurrent,

 $[b_i^-]_{<} \cap [b_i^-]_{>} \neq \emptyset.$

So, $[b_i^-]_< \subset [b_j^-]_<$, which implies

$$\overline{\varphi([b_i^-]_{<})} \cap S^1 \subset I_i \cap I_j,$$

a contradiction.

So, we can cyclically order the 2n sets a_i , $[b_i^-]_{<}$, $i \in \mathbb{Z}/n\mathbb{Z}$ (see Remark 3.1). Moreover, for all $i \in \mathbb{Z}/n\mathbb{Z}$,

$$a_{i-1} \to [b_i^-]_{<} \to a_i.$$

Define $A_i = [b_i^+]_>$ and $R_i = [b_i^-]_<$ for $i \in \mathbb{Z}/n\mathbb{Z}$. To finish the proof of the lemma, it is enough to show that the sets $R_i, A_i, i \in \mathbb{Z}/n\mathbb{Z}$, are pairwise disjoint. Indeed, if this is true, our previous remark on the cyclic order, and our hypothesis (2) imply that $((R_i)_{i\in\mathbb{Z}/n\mathbb{Z}}, (A_i)_{i\in\mathbb{Z}/n\mathbb{Z}})$ is a hyperbolic configuration.

We have already proved that the sets R_i , $i \in \mathbb{Z}/n\mathbb{Z}$, are pairwise disjoint. We will also show that $[b_i^-]_{<} \cap [b_j^+]_{>} = \emptyset$ for any $j \in \mathbb{Z}/n\mathbb{Z}$. By hypothesis (2), $[b_i^-]_{<} \cap [b_i^+]_{>} = \emptyset$, as we are supposing that f is not recurrent. If $[b_i^-]_{<} \cap [b_j^+]_{>} \neq \emptyset$ for some $j \neq i$, then $[b_j^+]_{<} \subset [b_i^-]_{<}$, $j \neq i$. Therefore, $\overline{\varphi([b_j^+]_{<})} \cap S^1 \subset I_i, j \neq i$, which contradicts our hypothesis (4)

We have proved that the sets R_i are disjoint from the sets A_i , $i \in \mathbb{Z}/n\mathbb{Z}$. So, in order to finish, we only have to prove that the sets A_i , $i \in \mathbb{Z}/n\mathbb{Z}$, are pairwise disjoint. If this is not the case, there would exist $i \neq j$ such that $[b_i^+]_{>} \cap [b_j^+]_{>} \neq \emptyset$. So, $[b_i^+]_{>} \cup [b_j^+]_{>}$ is a connected set containing $a_i \cup a_j$, and must therefore intersect $[b_i^+]_{<}$, because of the cyclic order and hypothesis (2). We may of course assume that $[b_j^+]_{>} \cap [b_i^+]_{<} \neq \emptyset$. Now, we see that $[b_j^+]_{>}$ is a connected set containing $a_j \cup a_i$ and must therefore intersect $[b_j^+]_{<}$. This contradiction proves our claim.

4. Proof of the main result. This section is devoted to the proof of Theorem 1.2.

We fix an orientation preserving homeomorphism $f : \mathbb{D} \to \mathbb{D}$ which realizes a cycle of links $\mathcal{L} = ((\alpha_i, \omega_i))_{i \in \mathbb{Z}/n\mathbb{Z}}$. We recall that this means that there exists a family $(z_i)_{i \in \mathbb{Z}/n\mathbb{Z}}$ of points in \mathbb{D} such that for all $i \in \mathbb{Z}/n\mathbb{Z}$,

$$\lim_{k \to -\infty} f^k(z_i) = \alpha_i, \quad \lim_{k \to \infty} f^k(z_i) = \omega_i.$$

We also recall that

$$\ell = \{\alpha_i, \omega_i : i \in \mathbb{Z}/n\mathbb{Z}\} \subset S^1,$$

and that we suppose that f can be extended to a homeomorphism of $\mathbb{D} \cup \ell$.

4.1. The elliptic case. Let us state our first proposition:

PROPOSITION 4.1. If \mathcal{L} is elliptic, then $\operatorname{Fix}(f) \neq \emptyset$. Moreover, one of the following holds:

- (1) f is recurrent,
- (2) \mathcal{L} is a degenerate cycle.

As the proof is long, we will first describe our strategy. The first part of the work consists in constructing a brick decomposition which is suitable for our purposes. Once this is done, we show that if f is not recurrent, then the elliptic order property gives rise to constraints on the order of the cycle of links \mathcal{L} . We will show (as a consequence of Lemma 3.2) that the only possibility for the order of \mathcal{L} is n = 4. The case n = 4 is special, as degeneracies may occur (see Figure 2, and the introduction, where we explain that non-degeneracy is necessary to obtain the index result). For n = 4 we prove that $\operatorname{Fix}(f) \neq \emptyset$, and that if f is not recurrent, then \mathcal{L} is degenerate.

I. Construction of the brick decomposition. We first note that we may assume that n > 3: if n = 3, the definition of cycle of links implies automatically that the points $\{\alpha_i\}, \{\omega_i\}$ are all different, and the proof follows from Le Calvez's improvement to Handel's theorem. As we are dealing with the elliptic case, the only possible coincidences among the points $\{\alpha_i\}, \{\omega_i\}$ are of the form $\omega_{i-2} = \alpha_i$. In particular, the points $\{\omega_i\}$ are all different and for all $i \in \mathbb{Z}/n\mathbb{Z}$ we can take a neighbourhood U_i^+ of ω_i in $\overline{\mathbb{D}}$ in such a way

that $U_i^+ \cap U_i^+ = \emptyset$ if $i \neq j$. We define $U_i^- = U_{i-2}^+$ if $\alpha_i = \omega_{i-2}$, and for all $i \in \mathbb{Z}/n\mathbb{Z}$ such that $\alpha_i \neq \omega_{i-2}$ we take a neighbourhood U_i^- of α_i in $\overline{\mathbb{D}}$ in such a way that $U_i^- \cap U_j^+ = \emptyset$ for all $j \in \mathbb{Z}/n\mathbb{Z}$, and $U_i^- \cap U_j^- = \emptyset$ for all $i \neq j$.

We suppose from now on that f is not recurrent.

We apply Lemma 2.9 and obtain families $(b_i'^l)_{l \in \mathbb{Z} \setminus \{0\}, i \in \mathbb{Z}/n\mathbb{Z}}$ of closed disks. So, the disks in $(b_i')_{l\geq 1, i\in\mathbb{Z}/n\mathbb{Z}}$ have pairwise disjoint interiors.

Let I_{reg} be the set of $i \in \mathbb{Z}/n\mathbb{Z}$ such that $\alpha_i \neq \omega_{i-2}$, or such that $\alpha_i = \omega_{i-2}$ but there exists K > 0 such that

$$\bigcup_{k>K} \operatorname{Int}(b_{i-2}'^k) \cap \bigcup_{k>K} \operatorname{Int}(b_i'^{-k}) = \emptyset.$$

Let I_{sing} be the complement of I_{reg} in $\mathbb{Z}/n\mathbb{Z}$.

After discarding a finite number of disks, we can suppose that the disks b_i^{l} with $l \ge 1$, $i \in \mathbb{Z}/n\mathbb{Z}$, and $b_i^{\prime - l}$ with $l \ge 1$, $i \in I_{\text{reg}}$, have pairwise disjoint interiors.

If $i \in I_{\text{sing}}$, then $\alpha_i = \omega_{i-2}$ and for all k > 0 there exist k' > k, j' > ksuch that $\operatorname{Int}(b_{i-2}^{\prime k'}) \cap \operatorname{Int}(b_i^{\prime - j'}) \neq \emptyset$.

In the following lemma we refer to the family of integers $(l_i)_{i \in \mathbb{Z}/n\mathbb{Z}}$ constructed in Lemma 2.9.

LEMMA 4.2. For $i \in I_{sing}$, we can find sequences $(c_i^m)_{m\geq 0}$ of free closed disks such that:

- (1) $c_i^m \subset U_{i-2}^+ = U_i^-$,
- (2) there exists an increasing sequence (k_i^m)_{m≥0} such that b'^{k_i^m}_{i-2} ∩ c_i^m ≠ Ø for all m ≥ 0,
 (3) (b'^{k_i^p}_{i-2} ∪ c_i^p) ∩ (b'^{k_i^m}_{i-2} ∪ c_i^m) = Ø for all p ≠ m,
- (4) there exists an increasing sequence $(j_i^m)_{m\geq 0}$ such that $f^{-l_i-j_i^m+1}(z_i)$ $\in c_i^m$ for all $m \geq 0$,
- (5) the sequence $(c_i^m)_{m\geq 0}$ converges to $\omega_{i-2} = \alpha_i$ in the Hausdorff topol-
- (6) $b_{i-2}^{\prime k_i^m} \cap c_i^m$ is an arc for all $m \ge 0$ (so, $c_i^m \cup b_{i-2}^{\prime k_i^m}$ is a topological closed
- (7) $\partial(\bigcup_{k>1} b_{i-2}^{\prime k} \cup \bigcup_{m>0} c_i^m)$ is a one-dimensional submanifold,
- (8) if $x \in \mathbb{D}$, then x belongs to at most two different disks in the family $\{b_{i-2}^{\prime k}, c_i^m : k \ge 1, m \ge 0\}.$

Proof. Take $i \in I_{\text{sing}}$ and consider the family $(b_{i-2}')_{k\geq 1} \subset U_{i-2}^+$ of closed disks. As $i \in I_{\text{sing}}$, there exists $j_i^0 > 1$ such that

$$\operatorname{Int}\left(\bigcup_{k\geq 1}b_{i-2}^{\prime k}\right)\cap\operatorname{Int}(b_{i}^{\prime -j_{i}^{0}})\neq \emptyset.$$

Fig. 7. The disks $b_{i-2}^{\prime k_m}$ and c_i^m

By Lemma 2.9(7), $f^{(-l_i-j_i^0+1)}(z_i) \in \operatorname{Int}(b'_i^{-j_i^0}) \setminus \bigcup_{l \ge 1} b'_{l-2}^{l}$. We take an arc $\gamma_i^0 \subset \operatorname{Int}(b'_i^{-j_i^0}) \setminus \operatorname{Int}\left(\bigcup_{l \ge 1} b'_{l-2}^{l}\right)$

joining $f^{(-l_i-j_i^0+1)}(z_i)$ and a point $x_i^0 \in \partial \bigcup_{l \ge 1} b_{i-2}^{\prime l}$. We define $k_i^0 \ge 1$ by $x_i^0 \in b_{i-2}^{\prime k_i^0}$.

We define inductively for $m \ge 0$:

- $U_m \subset U_{i-2}^+ = U_i^-$, a neighbourhood of $\omega_{i-2} = \alpha_i$ in $\overline{\mathbb{D}}$ such that $\overline{U_m} \cap (\operatorname{Int}(b_{i-2}'^{k_i^m}) \cup \operatorname{Int}(b_i'^{-j_i^m})) = \emptyset,$
- $K_m > 0$ such that for all $k \ge K_m$, $b'_{i-2} \cup b'_i \subset U_m$,
- $j_i^{m+1} > K_m$ such that $\operatorname{Int}(\bigcup_{k \ge K_m} b_{i-2}^{\prime k}) \cap \operatorname{Int}(b_i^{\prime j_i^{m+1}}) \neq \emptyset$,
- $\gamma_i^{m+1} \subset \operatorname{Int}(b_i'^{-j_i^{m+1}}) \setminus \bigcup_{l \ge K_m} b_{i-2}'^l$, an arc joining $f^{(-l_i j_i^{m+1} + 1)}(z_i)$ and a point $x_i^{m+1} \in \partial \bigcup_{k \ge K_m} b_{i-2}'^k$,
- $k_i^{m+1} > K_m$ by

$$x_i^{m+1} \in b_{i-2}^{\prime k_i^{m+1}}$$

The existence of K_m comes from the fact that both sequences $(b'_i)_{l\geq 1}$ and $(b'_{i-2})_{l\geq 1}$ converge to $\alpha_i = \omega_{i-2}$ in the Hausdorff topology; that of j_i^{m+1} from the fact that $i \in I_{\text{sing}}$; that of γ_i^{m+1} from the choice of j_i^{m+1} and the fact that $f^{(-l_i-j_i^{m+1}+1)}(z_i) \in \text{Int}(b'_i) \setminus \bigcup_{l\geq K_m} b'_{i-2}$, and that of x_i^{m+1} and k_i^{m+1} follows from the choice of j_i^{m+1} .

By thickening these arcs $\{\gamma_i^m\}$, we can construct disks $\{c_i^m\}$ satisfying all the conditions of the lemma.

The proposition above allows us to construct a maximal free brick decomposition (V, E, B) such that:

J. Xavier

- for all i ∈ Z/nZ and l ≥ 1, there exists b^l_i ∈ B such that b^l_i ⊂ b^l_i,
 for all i ∈ I_{reg} and l ≥ 1, there exists b^{-l}_i ∈ B such that b^l_i ⊂ b^{-l}_i,
- for all $m \ge 0$ and $i \in I_{\text{sing}}$, there exists $b_i^{-j_i^m} \in B$ such that $c_i^m \subset b_i^{-j_i^m}$.

II. The "domino effect" of the elliptic order property

LEMMA 4.3. Take two indices i, j in $\mathbb{Z}/n\mathbb{Z}$, and two integers k and N. If b_j^k and b_{j+2}^k are contained in $[b_i^N]_{>}$, then there exists $k' \in \mathbb{Z}$ such that $b_l^{k'}$ is contained in $[b_i^N]_>$ for all $l \in \mathbb{Z}/n\mathbb{Z}$.

Proof. We will show that if b_j^k and b_{j+2}^k are contained in $[b_i^N]_>$, then there exists k'' such that both $b_{j+1}^{k''}$ and $b_{j+3}^{k''}$ are contained in $[b_i^N]_>$. If b_j^k and b_{j+2}^k are contained in $[b_i^N]_>$, then b_j^l and b_{j+2}^l are contained in $[b_i^N]_>$ for all $l \ge k$. By Remark 2.10, we can find an arc

$$\gamma: [0,1] \to [b_i^N]_> \cup \{\omega_j, \omega_{j+2}\}$$

joining ω_j and ω_{j+2} . As n > 3, and the coincidences are of the form $\alpha_i =$ ω_{i-2} , we know that the points $\alpha_{j+1}, \omega_j, \alpha_{j+3}, \omega_{j+2}$ are all different. So, γ separates both α_{j+1} from ω_{j+1} and α_{j+3} from ω_{j+3} . Hence, there exists k'' > 0 such that $[b_{i+1}^{k''}] \leq \cap [b_i^N] \geq \neq \emptyset$ and $[b_{i+3}^{k''}] \leq \cap [b_i^N] \geq \neq \emptyset$. We are done by induction, and by taking k' large enough.

In the following lemma we make reference to the sequences $(k_i^m)_{m>0}$ and $(j_i^m)_{m\geq 0}$ defined in Lemma 4.2.

LEMMA 4.4. For every $i \in I_{sing}$, there exists N > 0 such that $[b_i^{-j_i^N}]_{>}$ contains $b_i^{k_i^N}$.

Proof. We will prove the following stronger statement which implies immediately that $[b_i^{-j_i^N}]_{\geq}$ contains $b_{i-2}^{k_i^N}$: there exists N > 0 such that $f(c_i^N) \cap$ $b_{i-2}^{\prime k_i^N} \neq \emptyset.$

I. Let us begin by studying the local dynamics of the brick decomposition at $\alpha_i = \omega_{i-2}, i \in I_{\text{sing}}$. We define, for all $m \ge 0$,

$$X_m = b_{i-2}^{\prime k_i^m} \cup c_i^m,$$

and we recall that every X_m is a closed disk (see Lemma 4.2). Then, for all $m \ge 0,$

$$f^{l_{i-2}+k_i^m-1}(z_{i-2}) \cup f^{-l_i-j_i^m-j_i^m}(z_i) \in X_m.$$

So, given any two positive integers m > p, one has

$$\bigcup_{k \ge 1} f^k(X_p) \cap X_m \neq \emptyset \quad \text{and} \quad \bigcup_{k \ge 1} f^k(X_m) \cap X_p \neq \emptyset.$$

Moreover, $X_m \cap X_p = \emptyset$ and X_m and X_p are topological closed disks. Therefore, if we can find $m > p \ge 0$ such that both X_p and X_m are free sets, then f would be recurrent by Proposition 2.5. Hence, we can suppose that for all $m \ge 0$ the set X_m is not free. So, as for all $m \ge 0$ both $b_i^{\prime k_m}$ and c_i^m are free sets, we see that either $f(b_{i-2}^{\prime k_i^m}) \cap c_i^m \ne \emptyset$, or $f(c_i^m) \cap b_{i-2}^{\prime k_i^m} \ne \emptyset$. If there exists m > 0 such that $f(c_i^m) \cap b_{i-2}^{\prime k_i^m} \ne \emptyset$, we are done. So, we may assume that for all $m \ge 0$, $f(b_{i-2}^{\prime k_i^m}) \cap c_i^m \ne \emptyset$. Then $f(b_{i-2}^{k_i^m}) \cap b_i^{-j_i^m} \ne \emptyset$ for all $m \ge 0$. In particular, $[b_{i-2}^{k_i^m}]_>$ contains b_i^l for all l > 0 and for all $m \ge 0$.

II. We will show that this implies that f is recurrent. As $[b_{i-2}^{k_i^m}]_{>}$ contains b_i^k and b_{i-2}^k for $k > k_i^m$, Lemma 4.3 implies that for all $m \ge 0$ there exists $l_m > 0$ such that $[b_{i-2}^{k_i^m}]_{>}$ contains b_j^l for all $j \in \mathbb{Z}/n\mathbb{Z}$ and for all $l \ge l_m$.

In particular, Remark 2.10 tells us that for all $m \ge 0$ there exists an arc

$$\Gamma_m : [0,1] \to [b_{i-2}^{k_i^m}]_{>} \cup \{\omega_{i-2}, \omega_{i-4}\}$$

joining ω_{i-2} and ω_{i-4} , which implies that Γ_m separates α_{i-1} from α_{i-3} in $\overline{\mathbb{D}}$ (see Figure 8(a) and observe that as n > 3 the points $\alpha_{i-3}, \omega_{i-4}, \alpha_{i-1}, \omega_{i-2}$ are all different). Since we are assuming that f is not recurrent, we deduce that the closure of $[b_{i-2}^{k_i^m}]_{\leq}$ cannot contain both points α_{i-1} and α_{i-3} .

Fig. 8. The proof of Lemma 4.4

We will suppose that for all $m \ge 0$, the closure of $[b_{i-2}^{k_i^m}]_{\le}$ does not contain one of the points α_{i-1} and α_{i-3} , and obtain a contradiction. As m > p implies

$$[b_{i-2}^{k_i^p}]_{\leq} \subset [b_{i-2}^{k_i^m}]_{\leq},$$

one of the points α_{i-1} , α_{i-3} is not contained in the closure of any of the sets $[b_{i-2}^{k_i^m}]_{\leq}$, $m \geq 0$. Suppose that α_{i-3} is not contained in $[\overline{b_{i-2}^{k_i^m}}]_{\leq}$ for any $m \geq 0$ (the other case is analogous). In particular, for all $m \geq 0$, $[b_{i-2}^{k_i^m}]_{\leq}$ does not contain any of the bricks containing the orbit of z_{i-3} . We take a

neighbourhood U of α_{i-3} in $\overline{\mathbb{D}}$ such that $U \cap [b_{i-2}^{k_i^0}] \leq \emptyset$ and such that $U \cap \bigcup_{l > k_i^0} b_{i-2}^l = \emptyset$. We also take j > 0 such that $f^{-j}(z_{i-3}) \in U$, and an arc $\beta : [0,1] \to U$ joining α_{i-3} and $f^{-j}(z_{i-3})$. Finally, we take a brick $b \in B$ such that $f^{-j}(z_{i-3}) \in b$. As $\bigcup_{l \ge 1} b_{i-3}^{l} \subset [b]_{\ge}$, Remark 2.10 allows us to take an arc $\gamma : [0,1] \to [b]_{\ge} \cup \omega_{i-3}$ joining $f^{-j}(z_{i-3})$ and ω_{i-3} .

So, β . γ separates α_{i-2} from ω_{i-2} in $\overline{\mathbb{D}}$ and

$$\beta.\gamma \cap \left(\bigcup_{l>k_0} b_{i-2}^l \cup [b_{i-2}^{k_i^0}] \le \right) \neq \emptyset,$$

which implies

$$\gamma \cap \left(\bigcup_{l>k_0} b_{i-2}^l \cup [b_{i-2}^{k_0^i}] \le \right) \neq \emptyset,$$

because of our choice of U (see Figure 8(b)). Hence,

$$b_{\geq} \cap \bigcup_{l>0} [b_{i-2}^l]_{<} \neq \emptyset,$$

which implies that for some $m \ge 0$,

$$[b]_{\geq} \cap [b_{i-2}^m]_{<} \neq \emptyset.$$

Therefore, $b \in [b_{i-2}^{k_i^m}] \leq$, and $[b_{i-2}^{k_i^m}] \leq$ contains a brick containing one point of the orbit of z_{i-3} . This contradiction finishes the proof of the lemma.

LEMMA 4.5. There exists k > 0 such that for any pair of indices i, j in $\mathbb{Z}/n\mathbb{Z}$, the attractor $[b_i^{-k}]_{>}$ contains b_i^k .

Proof. For all $i \in I_{\text{reg}}$, we know that $\bigcup_{l \ge 1} b'_i^{-l} \subset \bigcup_{l > 0} [b_i^{-l}]_{>}$ (note that this is not necessarily the case if $i \in I_{\text{sing}}$). So, by Remark 2.10, there exists an arc

$$\Gamma_i: [0,1] \to \bigcup_{l>0} [b_i^{-l}]_{>} \cup \{\alpha_i, \omega_i\}$$

joining α_i and ω_i . Hence, Γ_i separates both α_{i-1} from ω_{i-1} and α_{i+1} from ω_{i+1} in $\overline{\mathbb{D}}$. Therefore, there exists m > 0 such that $[b_i^{-m}]_{>}$ contains both b_{i+1}^m and b_{i-1}^m . By Lemma 4.3, $[b_i^{-m}]_{>}$ contains b_j^l for all $j \in \mathbb{Z}/n\mathbb{Z}$, and l large enough.

For all $i \in I_{\text{sing}}$, the previous lemma tells us that there exists N > 0 such that $[b_i^{-j_i^N}]_{\geq}$ contains $b_{i-2}^{k_i^N}$. Clearly, $[b_i^{-j_i^N}]_{\geq}$ also contains $b_i^{k_i^N}$ and so once again, Lemma 4.3 implies that $[b_i^{-j_i^N}]_{\geq}$ contains b_j^l for all $j \in \mathbb{Z}/n\mathbb{Z}$ and l large enough. We finish by taking k sufficiently large.

III. Constraints on the order of the cycle of links \mathcal{L} . We fix k > 0 such that for any i, j in $\mathbb{Z}/n\mathbb{Z}$, $[b_i^{-k}]_{>}$ contains b_j^k . We define

$$a_i = \left(\bigcup_{m \ge k} b_i^m\right) \cap \Gamma_i^+, \quad i \in \mathbb{Z}/n\mathbb{Z}$$

(see Remark 2.10 for the definition of Γ_i^+). We may suppose that

$$U = \mathbb{D} \setminus \bigcup_{i \in \mathbb{Z}/n\mathbb{Z}} a_i$$

is simply connected. As $a_i \subset \bigcup_{m \ge k} b_i^m$, and we are supposing that f is not recurrent, we know that $[b_i^{-k}]_{<} \subset U$ for all $i \in \mathbb{Z}/n\mathbb{Z}$.

Let $\varphi : U \to \mathbb{D}$ be the Riemann map and consider the intervals J_i , $i \in \mathbb{Z}/n\mathbb{Z}$, defined in 3.1. We define I_i as to be the connected component of $S^1 \setminus \bigcup_{l \in \mathbb{Z}/n\mathbb{Z}} J_l$ following J_{i-2} in the natural (positive) cyclic order on S^1 . So, each I_i is a closed interval, and we have

$$J_{i-2} \to I_i \to J_{i-1}$$

for all $i \in \mathbb{Z}/n\mathbb{Z}$.

LEMMA 4.6. For all $i \in \mathbb{Z}/n\mathbb{Z}$:

- (1) there exists $j_i \in \mathbb{Z}/n\mathbb{Z}$ such that $\overline{\varphi([b_i^{-k}]_{\leq})} \cap S^1 \subset I_{j_i}$,
- (2) $j_i \in \{i-1, i\},\$
- (3) if $\alpha_i \neq \omega_{i-2}$, then $j_i = i$.

Proof. (1) If there exists $x \in \varphi([b_i^{-k}]_{\leq}) \cap J_j$ for some $j \in \mathbb{Z}/n\mathbb{Z}$, then $\overline{[b_i^{-k}]_{\leq}} \cap a_j \neq \emptyset$. As $[b_i^{-k}]_{\leq}$ is closed in \mathbb{D} , and as $a_j \subset \mathbb{D}$, we obtain $[b_i^{-k}]_{\leq} \cap a_j \neq \emptyset$, a contradiction. So, $\overline{\varphi([b_i^{-k}]_{\leq})} \subset \bigcup_{j \in \mathbb{Z}/n\mathbb{Z}} I_j$. If $\overline{\varphi([b_i^{-k}]_{\leq})}$ intersects I_j and $I_k, k \neq j$, then there exist two different indices i_0 and i_1 in $\mathbb{Z}/n\mathbb{Z}$ such that any arc joining J_{i_0} and J_{i_1} separates I_j from I_k . We take a crosscut γ from a_{i_0} to a_{i_1} such that $\gamma \subset [b_i^{-k}]_{\geq}$. So,

$$\varphi(\gamma \cap U) \cap \varphi([b_i^{-k}]_{<}) \neq \emptyset,$$

and consequently

$$[b_i^{-k}]_{>} \cap [b_i^{-k}]_{<} \neq \emptyset,$$

which contradicts our assumption that f is not recurrent.

(2) Take a crosscut $\gamma \subset [b_i^{-k}]_{>}$ from a_{i-3} to a_{i-1} . Then the elliptic order property implies that α_i belongs to the closure of only one of the two connected components of $U \setminus \gamma$: the one to the right of γ . We use here the fact that $\alpha_i \notin \{\omega_{i-3}, \omega_{i-1}\}$. So, $[b_i^{-k}]_{<}$ also belongs to the connected component of $U \setminus \gamma$ which is to the right of γ . Consequently, $\varphi([b_i^{-k}]_{<})$ belongs to the connected component of $\mathbb{D} \setminus \varphi(\gamma \cap U)$ which is to the right of $\varphi(\gamma \cap U)$. As $\overline{\varphi(\gamma \cap U)}$ is an arc from J_{i-3} to J_{i-1} , the closure of this connected component only contains I_i and I_{i-1} . So, we obtain $j_i \in \{i-1, i\}$.

(3) If $\alpha_i \neq \omega_{i-2}$, we can apply exactly the same argument as in the preceding item, but using a crosscut γ from a_{i-2} to a_{i-1} , obtaining $j_i = i$.

REMARK 4.7. If we set $b_i^- = b_i^{-k}$ and $b_i^+ = b_i^k$, then the bricks b_i^- , $i \in \{i_0, i_1, i_2\}$, satisfy all the hypotheses of Lemma 3.2, where i_0, i_1, i_2 are any three different indices in $\mathbb{Z}/n\mathbb{Z}$. Indeed, k is chosen so that (2) and (3)(a) hold, (3)(b) is granted since $\alpha_i \subset \overline{[b_i^-]_{<}}$ for all $i \in \mathbb{Z}/n\mathbb{Z}$, and (3)(c) is the content of item (1) in Lemma 4.6.

The second item in Lemma 4.6 gives us:

COROLLARY 4.8. If $|i - l| \ge 2$, then $j_i \ne j_l$.

The constraint on the order \mathcal{L} follows:

LEMMA 4.9. The order of \mathcal{L} is either 4 or 5.

Proof. If $n \ge 6$, the sets $\{i, i-1\}$, $i \in \{0, 2, 4\}$, are pairwise disjoint, and so the three indices j_0, j_2, j_4 given by Lemma 4.6 are different. This contradicts Lemma 3.2.

LEMMA 4.10. We have n = 4.

Proof. We show that n = 5 also contradicts Lemma 3.2. If j_0, j_2, j_3 are all different, we are done because of Lemma 3.2. Otherwise, the only possibility is that $j_2 = j_3 = 2$ (see Lemma 4.6). But then j_1, j_3 and j_4 are different.

LEMMA 4.11. \mathcal{L} is degenerate.

Proof. We will show that if n = 4 and \mathcal{L} is non-degenerate, we can also find a triplet i_0, i_1, i_2 in $\mathbb{Z}/n\mathbb{Z}$ such that the corresponding $j_{i_s}, s \in \{0, 1, 2\}$, are different.

For a non-degenerate cycle of links, there can be at most two coincidences of the type $\alpha_i = \omega_{i-2}$. Furthermore, if $\alpha_i = \omega_{i-2}$ and $\alpha_j = \omega_{j-2}$ for some $i \neq j$, then |i - j| = 1. Indeed, the points in ℓ are ordered as follows:

$$\omega_0 \xrightarrow{=} \alpha_2 \to \omega_1 \xrightarrow{=} \alpha_3 \to \omega_2 \xrightarrow{=} \alpha_0 \to \omega_3 \xrightarrow{=} \alpha_1 \to \omega_0,$$

and non-degeneracy means that we cannot have both $\omega_i = \alpha_{i+2}$ and $\omega_{i+2} = \alpha_i$, for some $i \in \mathbb{Z}/4\mathbb{Z}$. So, there exists $l \in \mathbb{Z}/4\mathbb{Z}$ such that $\alpha_l \neq \omega_{l-2}$ and $\alpha_{l+1} \neq \omega_{l-1}$. We can suppose without loss of generality that $\alpha_0 \neq \omega_2$, and $\alpha_1 \neq \omega_3$ (see Figure 9). Items (2) and (3) in Lemma 4.6 imply that j_0, j_1 , and j_3 are different, and we are done.

The following lemma finishes the proof of Proposition 4.1.

LEMMA 4.12. If n = 4, then $Fix(f) \neq \emptyset$.

Fig. 9. The case n = 4

Proof. We will be done by constructing a hyperbolic repeller/attractor configuration of order 2. We define

$$R_0 = [b_0^{-k}]_{<}, \quad R_1 = [b_2^{-k}]_{<}, \quad A_0 = [b_3^{k}]_{>}, \quad A_1 = [b_1^{k}]_{>}.$$

By the choice of k, there exist two bricks c_i^i, c_i^{i-1} , contained in R_i , $i \in \mathbb{Z}/2\mathbb{Z}$, such that $[c_i^j]_{>} \cap A_j \neq \emptyset$ if $j \in \{i, i-1\}$.

Moreover, the cyclic order of these sets is the following:

$$R_0 \to A_0 \to R_1 \to A_1 \to R_0.$$

Indeed, we know that $j_0 \in \{0,3\}, j_2 \in \{2,1\}$, and the cyclic order of the intervals $J_i, I_i, i \in \mathbb{Z}/4\mathbb{Z}$, is

$$I_0 \to J_3 \to I_1 \to J_0 \to I_2 \to J_1 \to I_3 \to J_2 \to I_0$$

So, we just have to show that the sets $R_i, A_i, i \in \mathbb{Z}/2\mathbb{Z}$, are pairwise disjoint. The choice of k implies that $[b_i^{-k}]_{\leq} \cap [b_j^k]_{\geq} = \emptyset$ for all i, j in $\mathbb{Z}/4\mathbb{Z}$. As a consequence, we just have to check $R_0 \cap R_1 = \emptyset$, and $A_0 \cap A_1 = \emptyset$.

If this is not the case, $[b_0^{-k}]_{\leq} \cup [b_2^{-k}]_{\leq}$ is a connected set separating $[b_1^k]_{\geq}$ and $[b_3^k]_{\geq}$. Again by the choice of k we have

$$([b_0^{-k}]_{<} \cup [b_2^{-k}]_{<}) \cap [b_0^{-k}]_{>} \neq \emptyset,$$

and as we are supposing that f is not recurrent,

$$[b_2^{-k}]_{<} \cap [b_0^{-k}]_{>} \neq \emptyset.$$

But then

$$[b_2^{-k}]_{<} \cap [b_2^{-k}]_{>} \neq \emptyset,$$

because $[b_2^{-k}]_{<}$ contains $[b_0^{-k}]_{<}$ and therefore separates $[b_1^k]_{>}$ and $[b_3^k]_{>}$, both of which are contained in $[b_2^{-k}]_{>}$.

Analogously, if $A_0 \cap A_1 \neq \emptyset$, then $[b_3^k]_{>} \cup [b_1^k]_{>}$ is a connected set separating $[b_2^{-k}]_{<}$ and $[b_0^{-k}]_{<}$. Again by the choice of k we have

$$([b_3^k]_{\geq} \cup [b_1^k]_{\geq}) \cap [b_3^k]_{\leq} \neq \emptyset,$$

and as we are supposing that f is not recurrent,

$$[b_1^k]_{>} \cap [b_3^k]_{<} \neq \emptyset$$

But then

$$[b_1^k]_{>} \cap [b_1^k]_{<} \neq \emptyset$$

because $[b_1^k]_>$ contains $[b_3^k]_>$ and therefore separates $[b_0^{-k}]_<$ and $[b_2^{-k}]_<$, both of which are contained in $[b_1^k]_<$.

4.2. The hyperbolic case. Our next proposition finishes the proof of Theorem 1.2:

PROPOSITION 4.13. If \mathcal{L} is hyperbolic, then $\operatorname{Fix}(f) \neq \emptyset$.

We recall that the order of a hyperbolic cycle of links is an even number. That is, from now on n = 2m, $m \ge 2$. The hyperbolic order property implies that the only possible coincidences among the points $\alpha_i, \omega_i, i \in \mathbb{Z}/n\mathbb{Z}$, are of the form $\omega_{i-2} = \alpha_i$ for even values of *i*, or $\omega_{i+2} = \alpha_i$ for odd values of *i*.

As the points $\{\omega_i\}$ are all different, we can take a neighbourhood U_i^+ of ω_i in $\overline{\mathbb{D}}$ in such a way that that $U_i^+ \cap U_j^+ = \emptyset$ if $i \neq j$. For even values of i, we define $U_i^- = U_{i-2}^+$ if $\alpha_i = \omega_{i-2}$, and if $\alpha_i \neq \omega_{i-2}$ we take a neighbourhood U_i^- of α_i in $\overline{\mathbb{D}}$ in such a way that $U_i^- \cap U_j^+ = \emptyset$ for any j, and $U_i^- \cap U_j^- = \emptyset$ if $j \neq i$. Similarly, for odd values of i, we define $U_i^- = U_{i+2}^+$ if $\alpha_i = \omega_{i+2}$, and if $\alpha_i \neq \omega_{i+2}$ we take a neighbourhood U_i^- of α_i in $\overline{\mathbb{D}}$ in such a way that $U_i^- \cap U_j^- = \emptyset$ if $j \neq i$.

We keep the assumption that f is not recurrent.

We apply Lemma 2.9 and obtain families $(b_i'^l)_{l \in \mathbb{Z} \setminus \{0\}, i \in \mathbb{Z}/2m\mathbb{Z}}$ of closed disks. So, the disks in $(b_i'^l)_{l \geq 1, i \in \mathbb{Z}/2m\mathbb{Z}}$ have pairwise disjoint interiors.

Let I_{reg} be the set of even $i \in \mathbb{Z}/2m\mathbb{Z}$ such that $\alpha_i \neq \omega_{i-2}$, or such that $\alpha_i = \omega_{i-2}$ but there exists K > 0 such that $\bigcup_{k>K} b'_{i-2} \cap \bigcup_{k>K} b'_i^{-k} = \emptyset$, together with the set of odd $i \in \mathbb{Z}/2m\mathbb{Z}$ such that $\alpha_i \neq \omega_{i+2}$, or such that $\alpha_i = \omega_{i+2}$ but there exists K > 0 such that $\bigcup_{k>K} b'_{i+2} \cap \bigcup_{k>K} b'_i^{-k} = \emptyset$. Let I_{sing} be the complement of I_{reg} in $\mathbb{Z}/2m\mathbb{Z}$.

We can suppose that all the disks in the families $(b_i'^l)_{l\geq 1, i\in\mathbb{Z}/2m\mathbb{Z}}$, $(b_i'^{-l})_{l\geq 1, i\in I_{reg}}$ have disjoint interiors.

We define $i^* = i - 2$ if *i* is even, and $i^* = i + 2$ if *i* is odd.

LEMMA 4.14. If $i \in I_{sing}$, then we can find sequences of free closed disks $(c_i^n)_{n\geq 0}$ satisfying:

(1) $c_i^n \subset U_{i^*}^+ = U_i^-,$

- (2) there exists an increasing sequence $(k_i^n)_{n\geq 0}$ such that $b_{i^*}^{\prime k_i^n} \cap c_i^n \neq \emptyset$ for all $n \geq 0$,
- (3) $(b_{i^*}^{\prime k_i^n} \cup c_i^n) \cap (b_{i^*}^{\prime k_i^p} \cup c_i^p) = \emptyset$ for all $n \neq p$, (4) there exists an increasing sequence $(j_i^n)_{n\geq 0}$ such that $f^{-j_i^n}(z_i) \in c_i^n$,
- (5) the sequence $(c_i^n)_{n\geq 0}$ converges to $\omega_{i^*} = \alpha_i$ in the Hausdorff topology,
- (6) $b_{i^*}^{\prime k_i^n} \cap c_i^n$ is an arc for all $n \ge 0$,
- (7) $\partial(\bigcup_{k\geq 1} b_{i^*}^{\prime k} \cup \bigcup_{n\geq 0} c_i^n)$ is a one-dimensional submanifold, (8) if $x \in \mathbb{D}$, then x belongs to at most two different disks in the family $\{b_{i^*}^{\prime k}, c_i^n : k \ge 1, n \ge 0\}.$

Proof. Note that the local dynamics in a neighbourhood of a point α_i , $i \in I_{\text{sing}}$, is exactly the same as that in the elliptic case. So, the same proof we did for Lemma 4.2 works here as well.

We construct a maximal free brick decomposition (V, E, B) such that:

- for all $i \in \mathbb{Z}/2m\mathbb{Z}$ and for all $l \geq 1$, there exists $b_i^l \in B$ such that $b_i^{\prime l} \subset b_i^l$
- for all $i \in I_{\text{reg}}$ and for all $l \geq 1$, there exists $b_i^{-l} \in B$ such that $b_i^{\prime -l} \subset b_i^{-l},$
- for all $n \ge 0$ and for all $i \in I_{\text{sing}}$, there exists $b_i^{-j_i^n} \in B$ such that $c_i^n \subset b_i^{-j_i^n}$.

LEMMA 4.15. If $i \in I_{\text{sing}}$, then there exists N > 0 such that $[b_i^{-j_i^N}]_{\geq 0}$ contains $b_{i*}^{k_i^N}$.

Proof. Fix an even index $i \in I_{sing}$ (the proof for odd indices is analogous). The first part of the proof is identical to part I in the proof of Lemma 4.4. Indeed, this proof is local, that is, it does not depend on how the rest of the points in ℓ are ordered. So, there are two possibilities: either $f(c_i^N) \cap b_{i-2}^{\prime k_i^N} \neq \emptyset$ or $f(b_{i-2}^{\prime k_i^N}) \cap c_i^N \neq \emptyset$. In the first case we are done, as it implies immediately the statement of the lemma. As a consequence, we may assume that for all $n \geq 0, [b_{i-2}^{k_i^n}]_{>}$ contains b_i^l for all l > 0. We will show that this contradicts the fact that f is not recurrent.

With this last assumption, for all $n \ge 0$ there exists an arc

$$\Gamma_n : [0,1] \to [b_{i-2}^{k_i^n}]_{>} \cup \{\omega_{i-2}, \omega_i\}$$

joining ω_{i-2} and ω_i (see Remark 2.10). So, the arc Γ_n separates α_{i-1} from α_{i-3} in $\overline{\mathbb{D}}$ for all n > 0 (see Figure 10, and note that the points α_{i-1} , α_{i-3} , ω_{i-2}, ω_i are all different).

We deduce (as we are supposing that f is not recurrent) that for any $n > 0, [b_{i-2}^{k_i^n}] \leq \text{cannot contain both } \alpha_{i-1} \text{ and } \alpha_{i-3}.$ So, one of the points α_{i-1}

Fig. 10. The proof of Lemma 4.15

or α_{i-3} is not contained in any of the sets $\overline{[b_{i-2}^{k_i^n}]_{\leq}}$, n > 0. We will suppose that for all n > 0, $\alpha_{i-1} \notin \overline{[b_{i-2}^{k_i^n}]_{\leq}}$ (the proof is analogous in the other case). We fix n > 0 and consider the connected set

$$K = \bigcup_{l \ge k_i^n} b_{i-2}^l \cup [b_{i-2}^{k_i^n}]_{\le}.$$

We choose a neighbourhood U of α_{i-1} in $\overline{\mathbb{D}}$ such that $U \cap K = \emptyset$. Then we take j > 0 such that $f^{-j}(z_{i-1}) \in U$, and $b \in B$ such that $f^{-j}(z_{i-1}) \in b$. We take an arc $\gamma \subset U$ joining α_{i-1} and $f^{-j}(z_{i-1})$, and an arc $\beta \subset [b]_{\geq} \cup \omega_{i-1}$ joining $f^{-j}(z_{i-1})$ and ω_{i-1} . We deduce that $\gamma . \beta \cap K \neq \emptyset$, and as $\gamma \subset U$, we have $\beta \cap K \neq \emptyset$. So, there exists $l \geq k_i^n$ such that $b \in [b_{i-2}^l]_{\leq}$, and consequently $\alpha_{i-1} \in \overline{[b_{i-2}^l]_{\leq}}$. This contradiction finishes the proof of the lemma.

LEMMA 4.16. There exists k > 0 such that for all even values of $i \in \mathbb{Z}/2m\mathbb{Z}$, both attractors $[b_i^{-k}]_{>}$ and $[b_{i-1}^{-k}]_{>}$ contain b_l^k for all $l \in \{i - 2, i - 1, i, i + 1\}$.

Proof. If $i \in I_{\text{sing}}$, the previous lemma tells us that there exists N > 0 such that $[b_i^{-j_i^N}]_{\geq}$ contains $b_{i-2}^{k_i^N}$. So, we can find an arc

$$\Gamma: [0,1] \to [b_i^{-j_i^N}]_{\geq} \cup \{\omega_{i-2}, \omega_i\}$$

joining ω_{i-2} and ω_i . This arc separates both α_{i-1} from ω_{i-1} and α_{i+1} from ω_{i+1} in $\overline{\mathbb{D}}$ (see Figure 10). As a consequence, both $\bigcup_{k\geq 1} [b_{i-1}^k] \leq$ and $\bigcup_{k\geq 1} [b_{i+1}^k] \leq$ intersect Γ , and so there exists k > 0 such that b_{i-1}^k and b_{i+1}^k belong to $[b_i^{-j_i^N}]_>$. If $i-1 \in I_{\text{sing}}$, we can show analogously that $[b_{i-1}^{-j_{i-1}^N}]_>$ contains b_k^k for all $l \in \{i-2, i-1, i, i+1\}$ and some k > 0.

If $i \in I_{\text{reg}}$, we can find an arc

$$\Gamma: [0,1] \to \bigcup_{l>0} [b_i^{-l}]_{>} \cup \{\alpha_i, \omega_i\}$$

joining α_i and ω_i . So, Γ separates (in $\overline{\mathbb{D}}$) both α_{i+1} from ω_{i+1} and α_{i-1} from ω_{i-1} . Therefore, both $\bigcup_{k\geq 1} [b_{i-1}^k]_{\leq}$ and $\bigcup_{k\geq 1} [b_{i+1}^k]_{\leq}$ intersect Γ , and there exist k, N > 0 such that $[b_i^{-N}]_{>} \cap [b_{i-1}^k]_{\leq} \neq \emptyset$ and $[b_i^{-N}]_{>} \cap [b_{i+1}^k]_{\leq} \neq \emptyset$. Once b_{i-1}^l and b_{i+1}^l belong to $[b_i^{-N}]_{>}$, we can find an arc

 $\Gamma': [0,1] \to [b_i^{-N}]_{>} \cup \{\omega_{i-1}, \omega_{i+1}\}$

joining ω_{i-1} and ω_{i+1} . So, Γ' separates α_{i-2} from ω_{i-2} in $\overline{\mathbb{D}}$, and one obtains $b_{i-2}^k \in [b_i^{-N}]_{>}$ for some k > 0. We obtain the result by sufficiently enlarging k.

We fix k > 0 as in Lemma 4.16.

LEMMA 4.17. There exists p > k such that $[b_i^{-k}]_{\leq} \cap b'_j = \emptyset$ for all i, j in $\mathbb{Z}/2m\mathbb{Z}$ and $l \geq p$.

Proof. Fix $i \in \mathbb{Z}/2m\mathbb{Z}$ even. There exists an arc

$$\gamma_i : [0,1] \to [b_i^{-k}]_{>} \cup \{\omega_{i+1}, \omega_{i-1}\}$$

joining ω_{i+1} and ω_{i-1} . As the three points $\alpha_i, \omega_{i+1}, \omega_{i-1}$ are different, γ_i separates α_i from any ω_j for $j \notin \{i-2, i-1, i+1\}$ (in $\overline{\mathbb{D}}$).

So, there exists $l_i > k$ such that γ_i separates $[b_i^{-k}]_{\leq}$ from any b'_j with $l > l_i$ and $j \notin \{i-2, i-1, i+1\}$. Moreover, we already know that $[b_i^{-l_i}]_{\leq} \cap [b_j^{l_i}]_{>} = \emptyset$ if $j \in \{i-2, i-1, i+1\}$, because $[b_i^{-l_i}]_{>}$ contains $b_j^{l_i}$. In particular, $[b_i^{-l_i}]_{\leq} \cap b'_j = \emptyset$ for $l \ge l_i$ and $j \in \{i-2, i-1, i+1\}$.

If i is odd, we can use the same argument with an arc

$$\gamma_{i-1}: [0,1] \to [b_i^{-k}]_{>} \cup \{\omega_i, \omega_{i-2}\}$$

joining ω_i and ω_{i-2} .

We finish by taking $p = \max\{l_i : i \in \mathbb{Z}/2m\mathbb{Z}\}$.

Thanks to the two preceding lemmas we may fix k > 0 such that:

- both attractors $[b_i^{-k}]_>$ and $[b_{i-1}^{-k}]_>$ contain b_l^k for all even values of i and for all $l \in \{i-2, i-1, i, i+1\}$,
- $[b_i^{-k}]_{\leq} \cap b_j^{\prime l} = \emptyset$ for all i, j in $\mathbb{Z}/2m\mathbb{Z}$ and $l \geq k$.

We define

$$a_i = \Gamma_i^+ \cap \bigcup_{l \ge k} b_i'^l$$

for all $i \in \mathbb{Z}/2m\mathbb{Z}$. The cyclic order of the sets a_i satisfies

$$a_{i-2} \rightarrow a_{i+1} \rightarrow a_i$$

for all even values of *i*. We may suppose that each a_i is an arc, and so $U = \mathbb{D} \setminus \bigcup_{i \in \mathbb{Z}/2m\mathbb{Z}} a_i$ is simply connected. Let $\varphi : U \to \mathbb{D}$ be the Riemann map and consider the intervals J_i defined in 2.4.1.

For all even i, we define I_i to be the connected component of $S^1 \setminus \bigcup_{l \in \mathbb{Z}/2m\mathbb{Z}} J_l$ following J_{i-2} in the natural (positive) cyclic order on S^1 . We define I_{i+1} to be the connected component of $S^1 \setminus \bigcup_{l \in \mathbb{Z}/2m\mathbb{Z}} J_l$ following I_i . So, for all even i we have

$$J_{i-2} \to I_i \to J_{i+1} \to I_{i+1} \to J_i.$$

LEMMA 4.18. For all $i \in \mathbb{Z}/2m\mathbb{Z}$:

- (1) $[b_i^{-k}]_{\leq} \subset U$,
- (2) if *i* is even, then $\overline{\varphi([b_i^{-k}]_{\leq})} \cap S^1 \subset I_i \cup I_{i-1}$, and $\overline{\varphi(b_{i-1_{\leq}}^{-k})} \cap S^1 \subset I_i \cup I_{i+1}$,
- (3) there exists j_i such that $\overline{\varphi([b_i^{-k}]_{\leq})} \cap S^1 \subset I_{j_i}$ (so, for i even, $j_i \in \{i, i-1\}, j_{i-1} \in \{i, i+1\}$).

Proof. (1) This is trivial because of the choice of k > 0.

(2) First, we show that $\varphi([b_i^{-k}]_{<}) \subset \bigcup_{j \in \mathbb{Z}/2m\mathbb{Z}} I_j$. Otherwise, there exists $x \in \overline{\varphi([b_i^{-k}]_{<})} \cap J_j$ for some $j \in \mathbb{Z}/2m\mathbb{Z}$. So, $\overline{[b_i^{-k}]_{<}}$ contains a point in a_j . As $[b_i^{-k}]_{<}$ is a closed subset of \mathbb{D} , and $a_j \subset \mathbb{D}$, we obtain $[b_i^{-k}]_{<} \cap a_j \neq \emptyset$, contradicting the previous item.

Fix $i \in \mathbb{Z}/2m\mathbb{Z}$ even. Take a crosscut $\gamma \subset [b_i^{-k}]_>$ from ω_{i-1} to ω_{i+1} . So, α_i belongs to the closure of only one of the connected components of $\overline{\mathbb{D}} \setminus \gamma$: the one to the right of γ . Hence, $\varphi([b_i^{-k}]_<)$ belongs to the connected component of $\mathbb{D} \setminus \varphi(\gamma \cap U)$ which is to the right of $\varphi(\gamma \cap U)$. As $\overline{\varphi(\gamma \cap U)}$ is an arc joining J_{i-1} and J_{i+1} , the cyclic order implies that $\overline{\varphi([b_i^{-k}]_<)} \cap S^1 \subset I_i \cup I_{i-1}$.

The statement for i - 1 is proved analogously.

(3) Suppose *i* is even (as before, the other case is analogous). The previous item implies that if $\overline{\varphi([b_i^{-k}]_{<})}$ intersects I_j and I_l , $j \neq l$, then $\{j,l\} = \{i, i-1\}$.

Take a crosscut $\gamma \subset [b_i^{-k}]_{>}$ from ω_{i-1} to ω_{i-2} . Then $\overline{\varphi(\gamma \cap U)}$ separates I_{i-1} from I_i in $\overline{\mathbb{D}}$. This gives us

$$[b_i^{-k}]_<\cap [b_i^{-k}]_>\neq \emptyset,$$

a contradiction. \blacksquare

REMARK 4.19. If we set $a'_i = a_{2i}$, $b^-_i = b^{-k}_{2i}$, and $b^+_i = b^k_{2i}$ for all $i \in \mathbb{Z}/m\mathbb{Z}$, then $a'_i, b^-_i, b^+_i, i \in \mathbb{Z}/m\mathbb{Z}$, satisfy hypotheses (1)–(3) of Lemma 3.3. So, if we prove that $j_{2i} = 2i$ for all $i \in \mathbb{Z}/m\mathbb{Z}$, then $\operatorname{Fix}(f) \neq \emptyset$. Indeed, the sets $a'_i, i \in \mathbb{Z}/m\mathbb{Z}$, are cyclically ordered as follows:

$$a'_0 \rightarrow a'_1 \rightarrow a'_2 \rightarrow \cdots \rightarrow a'_{m-2} \rightarrow a'_{m-1} \rightarrow a'_0.$$

Moreover, if we set $J'_i = J_{2i}$ for all $i \in \mathbb{Z}/m\mathbb{Z}$, we have

$$J_{i-1}' \to I_{2i} \to J_i'$$

for all $i \in \mathbb{Z}/2m\mathbb{Z}$, and so $j_{2i} = 2i$ is exactly hypothesis (4) of Lemma 3.3.

We are now ready to prove Proposition 4.13:

Proof of Proposition 4.13. Because of the previous remark, it is enough to show that $j_{2i} = 2i$ for all $i \in \mathbb{Z}/m\mathbb{Z}$. We will show that if this is not the case, we contradict Lemma 3.2.

Lemma 4.18 tells us that $j_{2i} \in \{2i, 2i-1\}$. Let us assume that $j_{2i} = 2i-1$. This implies that j_{2i-2}, j_{2i-1} , and j_{2i} are different. Indeed, by Lemma 4.18, $j_{2i-2} \in \{2i-3, 2i-2\}, j_{2i-1} \in \{2i, 2i+1\}$, and by assumption $j_{2i} = 2i-1$. Moreover:

- $[b_{2i}^{-k}]_{>}$ contains b_{2i}^k , b_{2i-1}^k , and b_{2i-2}^k ,
- $[b_{2i-1}^{-k}]_{>}$ contains b_{2i}^{k} , b_{2i-1}^{k} , and b_{2i-2}^{k} ,
- $[b_{2i-2}^{-k}]_{>}$ contains both b_{2i-2}^{k} and b_{2i-1}^{k} .

So, as j_{2i-2} , j_{2i-1} , and j_{2i} are different, if we show that $[b_{2i-2}^{-k}]_{>}$ also contains b_{2i}^{k} , we contradict Lemma 3.2. Take a crosscut $\gamma \subset [b_{2i-2}^{-k}]_{>}$ from $\underline{a_{2i-2}}$ to $\underline{a_{2i-4}}$. Then $\overline{\varphi(\gamma \cap U)}$ separates I_{2i-1} from J_{2i} . On the other hand, $\overline{\varphi([b_{2i}^{k}]_{<})}$ joins both these sets, as we are assuming $j_{2i} = 2i - 1$, and by the definition of J_{2i} . So,

$$\varphi([b_{2i}^k]_{\leq}) \cap \varphi(\gamma \cap U) \neq \emptyset,$$

and we are done. \blacksquare

5. Proof of Lemma 1.3. We finish by proving Lemma 1.3, which shows that our theorem is optimal.

We begin with a perturbation lemma.

Let $(\phi_t)_{t \in \mathbb{R}}$ be the flow in \mathbb{D} whose orbits are drawn in the figure below:

We say that a flow $(\varphi_t)_{t \in \mathbb{R}}$ in \mathbb{D} is *locally conjugate to* $(\phi_t)_{t \in \mathbb{R}}$ at z_0 if there exist an open neighbourhood U of z_0 and a homeomorphism $h : \mathbb{D} \to U$ such that $h(0) = z_0$ and $h^{-1}\varphi_t h = \phi_t$ for all $t \in \mathbb{R}$. If $\varphi : \mathbb{D} \to \mathbb{D}$ is a homeomorphism, we write $\alpha(x, \varphi)$ for the set of accumulation points of the backward φ -orbit of x, and $\omega(x, \varphi)$ for the set of accumulation points of the forward φ -orbit of x.

LEMMA 5.1. Let $\varphi : \mathbb{D} \to \mathbb{D}$ be the time-one map of the flow which is locally conjugate to $(\phi_t)_{t \in \mathbb{R}}$ at z_0 , and U an open neighbourhood of z_0 where $h^{-1}\varphi h = \phi_1$. Then, for any $x, y \in U$ such that $\omega(x, \varphi) = z_0 = \alpha(y, \varphi)$, there exists an orientation preserving homeomorphism $g : \mathbb{D} \to \mathbb{D}$ supported in the union of two free and disjoint open disks such that

$$\alpha(x,\varphi\circ g) = \alpha(x,\varphi), \quad \omega(x,\varphi\circ g) = \omega(y,\varphi).$$

Proof. Let $\Delta \subset \mathbb{D}$ be the oriented straight line through 0 with tangent unit vector $e^{i\pi/4}$, and let L (resp. R) be the connected component of $U \setminus h(\Delta)$ which is to the left (resp. to the right) of $h(\Delta)$.

Note that given two points z_1, z_2 in the same connected component Cof $U \setminus h(\Delta)$ that do not belong to the same orbit of $(\varphi_t)_{t \in \mathbb{R}}$, there exists an arc $\delta \subset C$ joining z_0 and z_1 such that $\varphi(\delta) \cap \delta = \emptyset$. Moreover, any $x \in U$ such that $\omega(x, \varphi) = z_0$ belongs to L, and any $y \in U$ such that $\alpha(y, \varphi) = z_0$ belongs to R. Moreover, there exist $z \in L$ and n > 0 such that $\varphi^n(z) \in R$.

So, we can take a free arc $\delta_1 \subset L$ joining x and z, and a free arc $\delta_2 \subset R$ joining $\varphi^n(z)$ and $\varphi^{-1}(y)$. Moreover, we may suppose that

$$\delta_1 \cap \{\varphi^{-k}(x) : k > 0\} = \delta_2 \cap \{\varphi^k(y) : k \ge 0\}$$
$$= (\delta_1 \cup \delta_2) \cap \{\varphi^k(z) : 0 < k < n\} = \emptyset.$$

We thicken the δ_i 's to open free and disjoint disks $D_1 \subset L$, $D_2 \subset R$ such that

$$D_1 \cap \{\varphi^{-k}(x) : k > 0\} = D_2 \cap \{\varphi^k(y) : k \ge 0\}$$

= $(D_1 \cup D_2) \cap \{\varphi^k(z) : 0 < k < n\} = \emptyset.$

Finally, we construct an orientation preserving homeomorphism $g: \mathbb{D} \to \mathbb{D}$ supported in $D_1 \cup D_2$ such that g(x) = z and $g(\varphi^n(z)) = \varphi^{-1}(y)$. Then we obtain

$$\alpha(x,\varphi\circ g)=\alpha(x,\varphi), \quad \ \omega(x,\varphi\circ g)=\omega(y,\varphi),$$

as desired. \blacksquare

REMARK 5.2. In fact, given a finite set of points $x_i, y_i \in U$, i = 1, ..., n, which belong to different orbits of $(\varphi_t)_{t \in \mathbb{R}}$ and such that $\omega(x_i) = z_0 = \alpha(y_i)$, i = 1, ..., n, there exists an orientation preserving homeomorphism $g : \mathbb{D} \to \mathbb{D}$ supported in a finite union of free and disjoint open disks such that

$$\alpha(x_i, \varphi \circ g) = \alpha(x_i, \varphi), \quad \omega(x_i, \varphi \circ g) = \omega(y_i, \varphi),$$

i = 1, ..., n. Indeed, we choose different points $z_i \in L$ and positive integers $n_i > 0$ such that $\varphi^{n_i}(z_i) \in R$. Then we take pairwise disjoint arcs δ_i^1 joining

 x_i and z_i , and δ_i^2 joining $\varphi^{n_i}(z_i)$ and $\varphi^{-1}(y_i)$ in such a way that all these arcs are disjoint from the backward φ -orbit of x_i , the forward φ -orbit of y_i and the transitional orbits $\varphi(z_i), \ldots, \varphi^{n_i-1}(z_i)$. This allows us to construct the desired perturbation g.

Given a family $\mathcal{K} = ((\alpha_i, \omega_i))_{i \in \mathbb{Z}/n\mathbb{Z}}$ of pairs of points in S^1 , we denote by Δ_i the oriented segment joining α_i and ω_i . We say that $z \in \mathbb{D}$ is a *multiple* point if z belongs to at least two different Δ_i 's. Let z be a multiple point, and let $I = \{i \in \mathbb{Z}/n\mathbb{Z} : z \in \Delta_i\}$. We say that a multiple point $z \in \mathbb{D}$ has zero index if there exists an oriented straight line Δ containing z such that the algebraic intersection number $\Delta \wedge \Delta_i$ equals 1 for all $i \in I$. Note that this is the case for any multiple point such that #I = 2.

We say that a pair $(\alpha_k, \omega_k) \in \mathcal{K}$ is *i-separated* if α_k and ω_k belong to different connected components of $S^1 \setminus \{\alpha_i, \omega_i\}$.

A degeneracy of \mathcal{K} is a pair of elements of the family, (α_i, ω_i) and (α_j, ω_j) , such that $\alpha_j = \omega_i$ and $\alpha_i = \omega_j$. We say that a degeneracy is *trivial* if the connected component of $S^1 \setminus \{\alpha_i, \omega_i\}$ containing α_k is independent of the *i*-separated pair $(\alpha_k, \omega_k) \in \mathcal{K}$.

We will deduce Lemma 1.3 from the following lemma.

LEMMA 5.3. Let $\mathcal{K} = ((\alpha_i, \omega_i))_{i \in \mathbb{Z}/n\mathbb{Z}}$ be a family of pairs of points in S^1 . Suppose that:

- (1) every multiple point is of zero index,
- (2) every polygon $P \subset \mathbb{D}$ whose boundary is contained in $\bigcup_{i \in \mathbb{Z}/n\mathbb{Z}} \Delta_i$ has zero index,
- (3) every degeneracy is trivial.

Then there exists a flow $(\varphi_t)_{t\in\mathbb{R}}$ in \mathbb{D} such that:

- (i) $(\varphi_t)_{t\in\mathbb{R}}$ is locally conjugate to $(\phi_t)_{t\in\mathbb{R}}$ at every singularity z_0 ,
- (ii) for all $i \in \mathbb{Z}/n\mathbb{Z}$ there exist two points $z_i^-, z_i^+ \in \mathbb{D}$ such that $\alpha(z_i^-) = \alpha_i$ and $\omega(z_i^+) = \omega_i$,
- (iii) the 2n points $z_i^-, z_i^+, i \in \mathbb{Z}/n\mathbb{Z}$, are different.

Proof. First suppose that there are no degeneracies in \mathcal{K} . In this case, the orientations of the Δ_i 's induce a flow $(\varphi_t)_{t\in\mathbb{R}}$ on $\bigcup_{i\in\mathbb{Z}/n\mathbb{Z}}\Delta_i$ with a singularity at each multiple point. By (1), we may extend this flow to a neighbourhood of every multiple point in such a way that it is locally conjugate to $(\phi_t)_{t\in\mathbb{R}}$. Moreover, by (2) we may extend $(\varphi_t)_{t\in\mathbb{R}}$ to the rest of \mathbb{D} without singularities, and we are done.

If \mathcal{K} contains one degeneracy $(\alpha_i, \omega_i) = (\omega_j, \alpha_j)$, we "open it up" as follows. We consider the family of segments $\bigcup_{k \in \mathbb{Z}/n\mathbb{Z}, k \neq j} \Delta_k$ and a simple curve γ_j joining α_j and ω_j such that:

- (a) $\gamma_i \cap \Delta_i = \{\alpha_i, \omega_i\},\$
- (b) $\gamma_j \cap \Delta_k \cap \mathbb{D} \neq \emptyset$ if and only if (α_k, ω_k) is *j*-separated, and in this case $\#\{\gamma_j \cap \Delta_k \cap \mathbb{D}\} = 1$,
- (c) γ_j does not intersect any multiple point.

Now, the orientations of the Δ_i 's, $i \neq j$, and the orientation of γ_j induce a flow $(\varphi_t)_{t\in\mathbb{R}}$ on $\bigcup_{i\in\mathbb{Z}/n\mathbb{Z}, i\neq j} \Delta_i \cup \gamma_j$ with a singularity at each multiple point of $\bigcup_{i\in\mathbb{Z}/n\mathbb{Z}, i\neq j} \Delta_i$ and also at the intersection points of γ_j with the Δ_i 's, $i \neq j$.

Note that as γ_j does not intersect any multiple point, we may extend $(\varphi_t)_{t\in\mathbb{R}}$ to a neighbourhood of every multiple point of $\bigcup_{k\in\mathbb{Z}/n\mathbb{Z}, k\neq j} \Delta_k$ in such a way that it is locally conjugate to $(\phi_t)_{t\in\mathbb{R}}$. Moreover, a point $z_0 \in \gamma_j$ belongs to at most one $\Delta_k, k \neq j$, and the intersection is transversal by item (b) above. So, we may as well extend $(\varphi_t)_{t\in\mathbb{R}}$ to a neighbourhood of z_0 so as to have local conjugation with $(\phi_t)_{t\in\mathbb{R}}$ as well. As the degeneracies considered are trivial, we can extend $(\varphi_t)_{t\in\mathbb{R}}$ to the rest of \mathbb{D} without singularities.

If more than one degeneracy occurs, triviality implies that they are disjoint. That is, if $(\alpha_i, \omega_i) = (\omega_j, \alpha_j)$, and $(\alpha_k, \omega_k) = (\omega_l, \alpha_l)$, then (α_i, ω_i) is not k-separated. So, we can "open up" both degeneracies in such a way that $\gamma_i \cap \gamma_l = \emptyset$, and construct our flow $(\varphi_t)_{t \in \mathbb{R}}$ analogously.

We deduce:

COROLLARY 5.4. With the same hypothesis of the preceding lemma, there exists a fixed-point free orientation preserving homeomorphism $f : \mathbb{D} \to \mathbb{D}$ that realizes \mathcal{K} .

Proof. Let φ be the time-one map of the flow given by the preceding lemma. By simultaneous applications of Lemma 5.1, we can construct an orientation preserving homeomorphism $g : \mathbb{D} \to \mathbb{D}$ supported in disjoint open free disks such that

$$\lim_{k \to -\infty} (\varphi \circ g)^k (z_i^-) = \alpha_i, \quad \lim_{k \to \infty} (\varphi \circ g)^k (z_i^-) = \omega_i$$

(see also Remark 5.2).

Then the homeomorphism $\varphi \circ g$ realizes \mathcal{K} . Moreover, as we have local conjugation to the flow $(\phi_t)_{t \in \mathbb{R}}$ at every singularity of φ , and $\varphi \circ g = \varphi$ in a neighbourhood of each singularity, we can further perturb $\varphi \circ g$ into a homeomorphism $f : \mathbb{D} \to \mathbb{D}$ realizing \mathcal{K} and which is fixed point free.

This last lemma finishes the proof of Lemma 1.3:

LEMMA 5.5. If a multiple point has non-zero index, then there exists a subfamily of \mathcal{K} forming an elliptic cycle of links.

Proof. Let x be a multiple point of non-zero index, and let

$$I = \{ i \in \mathbb{Z}/n\mathbb{Z} : x \in \Delta_i \}.$$

As x has non-zero index, there exists indices $i, j \in I$ such that the oriented interval in S^1 joining α_i and α_j contains $\omega_k, k \in I$. Then $\mathcal{L} = (\alpha'_l, \omega'_l)_{l \in \mathbb{Z}/3\mathbb{Z}}$ is an elliptic cycle of links, where

 $(\alpha'_0, \omega'_0) = (\alpha_i, \omega_i), \quad (\alpha'_1, \omega'_1) = (\alpha_j, \omega_j), \quad (\alpha'_2, \omega'_2) = (\alpha_k, \omega_k). \blacksquare$

Acknowledgements. Professor Patrice Le Calvez carefully read and corrected this article and I thank him deeply.

I also thank Professors Christian Bonatti and Frédéric Le Roux who highlighted the importance of having an optimal theorem; their remarks gave rise to Lemma 1.3.

References

- L. E. J. Brouwer, Beweis des ebenen Translationssatzes, Math. Ann. 72 (1912), 37–54.
- M. Brown, A new proof of Brouwer's lemma on translation arcs, Houston J. Math. 10 (1984), 35–41.
- M. Brown and J. Kister, Invariance of complementary domains of a fixed point set, Proc. Amer. Math. Soc. 91 (1984), 503–504.
- [4] A. Fathi, An orbit closing proof of Brouwer's lemma on translation arcs, Enseign. Math. (2) (33) (1987), 315–322.
- [5] J. Franks, Generalizations of the Poincaré-Birkhoff theorem, Ann. of Math. 128 (1988), 139–151.
- [6] L. Guillou, Théorème de translation plane de Brouwer et généralisations du théorème de Poincaré-Birkhoff, Topology 33 (1994), 331–351.
- [7] M. Handel, A fixed-point theorem for planar homeomorphisms, Topology 38 (1999), 235–264.
- P. Le Calvez, Periodic orbits of Hamiltonian homeomorphisms of surfaces, Duke Math. J. 133 (2006), 125–184.
- [9] P. Le Calvez, Une nouvelle preuve du théorème de point fixe de Handel, Geom. Topol. 10 (2006), 2299–2349.
- [10] P. Le Calvez, Pourquoi les points périodiques des homéomorphismes du plan tournent-ils autour de certains points fixes? Ann. Sci. École Norm. Sup. (4) 41 (2008), 141–176.
- [11] F. Le Roux, Homéomorphismes de surfaces: théorèmes de la fleur de Leau-Fatou et de la variété stable, Astérisque 292 (2004).
- [12] A. Sauzet, Application des décompositions libres à l'étude des homéomorphismes de surfaces, Thèse de l'Université Paris 13, 2001.
- J. Xavier, Handel's fixed point theorem revisited, Ergodic Theory Dynam. Systems, to appear; premat.fing.edu.uy/papers/2012/139.pdf.

J. Xavier

Juliana Xavier IMERL Facultad de Ingeniería Universidad de la República Julio Herrera y Reissig 565 Montevideo, Uruguay E-mail: mariajules@gmail.com

> Received 26 April 2012; in revised form 27 July 2012

96