
FUNDAMENTA

MATHEMATICAE

189 (2006)

Essential tori admitting a standard tiling
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Leonid Plachta (Lviv and Gdańsk)

Abstract. Birman and Menasco (1994) introduced and studied a class of embedded
tori in closed braid complements which admit a standard tiling. The geometric description
of the tori from this class was not complete. Ng showed (1988) that each essential torus
in a closed braid complement which admits a standard tiling possesses a staircase tiling
pattern.

In this paper, we introduce and study the so-called longitude-meridional patterns for
essential tori admitting a standard tiling. A longitude-meridional pattern of an essential
torus can be derived from the corresponding tiled torus and carries a portion of geometric
information about the embedded torus. We also study the interplay between the geometry
of essential embedded tori and combinatorics of the corresponding tiled tori.

Introduction. The existing results about closed incompressible sur-
faces in link complements are of the following types. The first type of results
are existence theorems for different classes of knots or links (satellite knots,
fibered knots, closed braids etc.). In the second case, it is assumed that an
essential surface in the corresponding 3-manifold is given and then one tries
to transform it to one in some standard form satisfying certain properties.
In many situations, it would be helpful to represent the link as a closed
braid and deform the embedded surfaces to ones in some standard positions
with respect to the braid axis. Closed incompressible surfaces in comple-
ments of closed 3-braids have been studied by Przytycki and Lozano [13]
and Finkelstein [7]. The problem of classification of incompressible surfaces
in complements of links of braid index > 3 remains unsolved.

We study incompressible surfaces in a closed braid complement via their
natural (singular) foliations induced by the open book fibration of the braid
structure. This approach is due to Birman and Menasco [4] (see also [2] for
the details and basic machinery). The main purpose of this paper is the
study of essential tori in closed braid complements which admit a standard
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tiling via their combinatorial patterns, called tiled tori. We shall also be
concerned with the tiled closed orientable surfaces of genus g > 1.

The important role of incompressible tori in the geometry and topology
of link complements has been explained by Jaco and Shalen [8], and Johann-
son [9]. They proved that if M is a Haken 3-manifold, then there is a finite
collection B of incompressible and non-peripheral tori T1, . . . , Tn in M such
that each component of M split along the tori in B is either Seifert-fibered
or a hyperbolic space.

Let L be a non-split link represented as a closed braid in S3 with braid
axis A, and let T be an incompressible and non-peripheral torus in S3 \ L
arising in the Jaco–Shalen–Johannson decomposition of S3 \L. Birman and
Menasco [4] showed that any such torus T may be standardized by a se-
quence of controlled moves on closed braid representatives of L and isotopies
in closed braid complements to one in a special position. The controlled
moves used in [4] take closed braids to closed braids, preserve link types and
are of the following two types: braid isotopy and exchange moves. Braid iso-
topy means an isotopy in the complement of the braid axis which preserves
braid structure at each stage, and the exchange move is defined pictorially
in Fig. 1 (see also [4]).

Fig. 1

Let H = {Hθ : θ ∈ [0, 2π]} be the open book decomposition of R
3

into half-planes with boundary on the z-axis A. The notion of torus T in a
special position in R

3 with respect to the braid axis A is defined in terms
of the natural (singular) foliation of T induced by H or of its combinatorial
pattern T . The description of essential tori in a special position falls into
three cases (see [4]).

In the first case, a torus T is transverse to every fiber Hθ of the braid
fibration and intersects it in a meridian of the solid torus bounded by T
(a torus of type 0 in [4]). In the second case, T admits a standard mixed
decomposition. Birman and Menasco [4] showed that in this case, T can be
further standardized to be an embedded torus of type 1.
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In the third case, T admits a standard tiling [4]. Such tori have a
much more complicated geometrical description. To give it, Birman and
Menasco [4] introduced and studied standard tori of types k ≥ 2. It turned
out that the embedded tori of types k ≥ 2 do not exhaust the class of es-
sential tori which admit a standard tiling. In [12], Ng described standard
tilings of essential tori via the so-called staircase tiling patterns. A staircase
tiling pattern P is parameterized by two parameters, width and height, and
is enhanced with a decoration. Ng showed that every embedded torus T
which admits a standard tiling possesses a staircase tiling pattern of even
width 2n and height k ≥ 2 (see below for details). However, the geometric
description of the tori from the third class has not been completed.

Note that the special positions of essential tori in closed braid comple-
ments (the tori of type ≥ 0) have been used by Los [10] as a technical tool
in his dynamical classification of knots.

In Section 2 of the present paper, we give a description of essential tori in
closed braid complements which admit a standard tiling and bound a solid
torus in R

3 via the so-called “longitude-meridional” patterns. A longitude-
meridional pattern of an essential torus can be derived from the correspond-
ing tiled torus and carries a portion of geometric information about the
embedded torus. A key role in its definition is played by a combinatorial
meridian of the corresponding tiled torus, chosen in a suitable way. Note
that a longitude-meridional pattern for an embedded tiled torus contains a
little more geometric information than the staircase pattern suggested by
Ng [12]. Algorithm 2.1 in Section 2 allows one to find a slice (combinatorial)
meridian on an embedded torus which admits a standard tiling or on the
corresponding tiled torus. For tiled tori with a standard tiling, we also in-
troduce several integral parameters which characterize their combinatorial
properties.

Ng [12] described a series of examples of 2n by k staircase patterns with
decoration which can be geometrically realized as embedded essential tori in
some closed braid complements. We treat several examples of tiled essential
tori that have embeddings in more detail. Finally, we show that each tiled
torus with a standard tiling that has an embedding is essential in some link
complement.

We also pose and discuss some open questions relating to the interplay
between the combinatorics of tiled tori and the geometry of the correspond-
ing embedded tori.

Section 1 presents some preliminaries: we review the singular foliations
of incompressible surfaces in closed braid complements. We also consider
the combinatorial patterns for foliated closed oriented surfaces which admit
a tiling.
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1. Foliated surfaces in closed braid complements and their com-

binatorial patterns. All surfaces embedded in R
3 are assumed to be

smooth of class Cr where r ≥ 2. Throughout Sections 1 and 2, K and
L denote non-split links in S3, unless otherwise specified. We start by re-
viewing the Birman and Menasco approach to the study of incompressible
surfaces in closed braid complements. For details see [4] and [2].

Let L denote the link type of the link L in S3. Choose cylindrical co-
ordinates (r, θ, z) in 3-space R

3 (S3 thought of as R
3 together with a point

at ∞). Let H = {Hθ : θ ∈ [0, 2π]} be the open book decomposition of R
3 into

half-planes with boundary on the z-axis A. A link L is a closed braid with
A as braid axis if each component intersects every half-plane Hθ, θ ∈ [0, 2π],
transversally. Let S′ be an incompressible closed orientable surface in R

3\L.
Assume that S′ is in general position with respect to H. The intersections
of the Hθ’s with S′ induce a smooth foliation F of S′ of class Cr−1. This
foliation is, in general, singular. Its singular points are the points where S′

meets the braid axis A or is tangent to the half-planes Hθ, and are called
vertices and singularities, respectively. By general position, the number of
singular points is finite and all singularities can be assumed to be of saddle
type or center type. Since S′ does not intersect L, each non-singular leaf is
either an arc with both endpoints on A, or a circle. As in [4], we shall call
the leaves in the first case b-arcs, while in the second case the non-singular
leaves are called c-circles. After an appropriate isotopy in S3 \ L, S′ can
be replaced with an essential , smoothly embedded surface S, so that the
natural foliation on S has the following properties (see Theorem 1.1 of [2]):

(i) The foliation is radial at the vertices. All singularities are of saddle
type. The singularity together with its leaves (branches) is then
called a singular leaf of the foliation.

(ii) The singularities fall into three types bb, bc and cc (see below).
(iii) The vertices are (cyclically) ordered by their order on the braid

axis A. Moreover, after an appropriate isotopy, distinct singular
leaves are on distinct singular half-planes (singular fibers) Hθ, so
they are also cyclically ordered.

In the following, we shall assume that an embedded essential surface S
is chosen so that its natural foliation has properties (i)–(iii).

Consider now the different types of singularities which can occur in the
foliation of an essential torus T . There are only two types of non-singular
leaves, so at most three types of singularities can occur, called bb, bc and
cc-singularities, according to the types of leaves which are surgered when
passing through a singularity. If T is an incompressible torus in R

3 \ L,
the singularities of type cc can be eliminated from the foliation [4]. If the
foliation of T consists only of c-circles, then T has no singularities and
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possesses a circular foliation [4]. If the foliation of T involves bc-singularities
and maybe bb-singularities, we say that T has a mixed foliation. Finally, if
each singularity of the foliation is a bb-singularity, we say that T admits a
tiling . By Lemma 4 of [4], one may assume that each incompressible and
non-peripheral torus T in a link complement has either a circular foliation,
or a mixed foliation, or a tiling. In the first case, T is of type 0.

Birman and Menasco [4] showed that any essential torus T in a closed
braid complement which has a mixed foliation can be replaced, via a se-
quence of exchange moves on closed braids and isotopies in closed braid
complements, by a torus T ′ with a standard mixed foliation. Moreover in
this case, any essential torus T ′ in a closed braid complement can be assumed
to be of type 1.

In the rest of this section, we review the combinatorial patterns for es-
sential closed orientable surfaces S of genus g ≥ 0, the induced foliation
of which includes only bb-singularities (see also [6]). Theorems 1.1 and 1.2
stated here will be used in Section 2 in the study of tiled tori in an essen-
tial way. The graph of singular leaves of the foliation of S, enhanced with
information about its embedding in the surface and some additional data,
defines a combinatorial pattern for the foliated surface S. The dual point of
view is to consider, instead of the foliation of S and its singular leaves, a
decomposition of S into tiles, one for each saddle point (see Fig. 1(a)), by
cutting the surface along appropriate b-arcs (see also Theorem 1.2 of [2]).
This yields a combinatorial pattern for a foliated surface in a closed braid
complement R

3 \ L, called a tiled surface (see also [3]).

A tiled surface SF is a triple (S,G, E), where S is a closed connected
oriented surface, G is a graph which is embedded in S, and E is some com-
binatorial data which we call a decoration. The graph G is bipartite with
each node a vertex or a singularity . The branches of singular leaves of the
foliation determine the edges of G. Each component D ⊂ S \G is a disc and
∂D contains exactly four edges. The vertices are cyclically ordered accord-
ing to the order on the axis A and the singularities are cyclically ordered
according to increasing θ. Each vertex has a sign and the singularities are
also marked by signs. The sign of a vertex v is + (respectively, −) if the
positive normal vector to S at v agrees (respectively, disagrees) with the
orientation of the axis A. The sign of a singularity s or the tile containing s
is + (respectively, −) if the positive normal to T at s agrees (respectively,
disagrees) with the normal to Hθ which points in the direction of increas-
ing θ. Any two vertices v and w which are adjacent to the same singularity
s so that v, s and w lie on the boundary of a face D have different signs.

Note also that if SF = (S,G, E) is a tiled surface, then its underlying
surface S admits a singular foliation so that the graph G is the union of
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singular leaves of this foliation (see also [3]). In Section 2, we shall keep
however the dual point of view. So, instead of the decorated graph G of
a tiled torus T we shall consider the corresponding decomposition of the
embedded torus T into tiles, enhanced with a decoration. In this case, we
define the underlying graph of the tiling to be a graph H embedded in T
which is formed by the set of vertices of T and b-arcs bounding the tiles, the
edges of H. It follows from the definition that the sign of vertices in each tile
τ of the tiling alternates when encountering the boundary of τ . Therefore
the graph H is bipartite. Moreover the sign of the singularity in the tile
τ is determined by the signs of its vertices and the remaining decoration
data inherited from T (which does not include information about signs).
A change of orientation on the surface S leads to changes of the signs of all
vertices and singularities of T . For this reason, in Section 2, we shall usually
omit the sign information in the decoration of T .

Each foliated bb-tile with decoration admits a canonical (unique up to
foliation preserving isotopy) embedding in oriented 3-space with respect to
the z-axis A ([2]; see Fig. 2(b)).

Fig. 2

Definition 1.1. We shall say that a tiled surface SF has an embedding

(in 3-space) if it can be represented as a bipartite (embedded) graph, formed
by singular points and singular leaves of some foliated embedded surface S
(with respect to the axis A) and enhanced with an appropriate decoration.

Let SF be a tiled surface as before. Suppose the singular leaves occur at
angles θ1, . . . , θl given in circular order. Each θ-interval (θi−1, θi), in partic-
ular, (θl, θ1), is uniquely determined and is meant in the oriented (ordered)
sense. Denote by b(vi, vj) a b-arc joining the vertices vi and vj and let (θm, θn)
be the maximal open interval in which there is a b-arc between the vertices
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vi and vj which is homotopic to b(vi, vj) rel endpoints. Denote by [b(vi, vj)]
the equivalence class given by these b-arcs. We say that the b-arc b(vi, vj)
exists in the θ-interval (θp−1, θp) if (θp−1, θp) ⊂ (θm, θn), i.e. if some repre-
sentative of the equivalence class [b(vi, vj)] exists between θp−1 and θp. In
[3, Theorem 3.5], J. Birman and M. Hirsch give a test for embeddability of a

tiled surface SF where the underlying surface S of SF has a boundary. By a
slight modification, this test can be adopted for checking the embeddability
of a closed oriented tiled surface in 3-space with respect to the braid axis A.

Proposition 1.1. Let SF be a (closed) tiled surface and let the vertices

and regions of SF be labelled in the manner described above. Then SF has

an embedding if and only if :

(i) The singularities about each positive (respectively , negative) vertex

in the foliation are positively (respectively , negatively) cyclically or-

dered with respect to increasing θ.
(ii) The vertices about each positive (respectively , negative) singularity

are positively (respectively , negatively) cyclically ordered on the ori-

ented braid axis.

(iii) The endpoints of any b-arc in the θ-interval (θi−1, θi) never separate

the endpoints of a b-arc in the same interval.

Proof. The proof follows the one of Theorem 3.5 of [3]. The only dif-
ference is that instead of the so-called gb-arcs which can occur when the
surface has boundary, we take into account only the (true) b-arcs. These
arcs exhaust all possible non-singular leaves of a foliation in our case. All
the other arguments in the proof of Theorem 3.5 in [3] carry over to the case
of (closed) tiled surfaces without any changes.

Proposition 1.2. Let SF be a (closed) tiled surface that has an em-

bedding and has a decoration E which includes the cyclic ordering of its

vertices, the cyclic ordering of its singularities, and the signs of the vertices

and singularities. Let h be an embedding of its underlying surface S into

the oriented space R
3, determined by SF . The embedding h is unique up to

foliation preserving isotopy.

Proof. The proof is similar to that of Theorem 4.1 of [2] (see also The-
orem 2.2 of [3]). It follows from the above discussion that each decorated
bb-tile admits a unique (up to foliation preserving isotopy) embedding in R

3,
with respect to the z-axis A. Now the embedding of the tiled surface in R

3

is determined by specifying how the boundary components of the embedded
tiles are glued together. But the two b-arc boundary components of tiles
D1 and D2 are glued together if they have two common vertices and the
singularities belonging to D1 and D2 occur consecutively in the fibration.
Therefore the decoration E of SF determines uniquely how the boundary
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components of the tiles are identified. It follows that the combinatorial data
contained in SF determines the embedding h of the surface S uniquely up
to foliation preserving isotopy.

Definition 1.2. Let K be a knot or a link represented as a closed braid
with the braid axis A and let S be a surface embedded in S3 \ K, with
foliation induced by the open book decomposition of S3 \ A. Let β be a
b-arc of the foliated surface S which is contained in a fiber Hθ. Then β is
called essential if both sides Hθ split along β are pierced by K, otherwise it
is called inessential (see Fig. 3). S is called an essential tiled surface if all
b-arcs on the foliated surface S are essential.

Fig. 3

In the same way we define an essential tiled surface SF that has an
embedding in the link complement S3 \K with respect to the axis A.

The combinatorial conditions imposed on the graph and the decoration
of a tiled surface that has an embedding are not independent. We shall not
concentrate on this point here.

2. Combinatorial description of essential tori which admit

a standard tiling. Let T be an essential torus in a closed braid com-
plement which admits a tiling. Choose an orientation on T . We shall say
that a tiling of T is standard if each of its vertices is of valence 4 and for any
vertex v the four tiles adjacent to v occur cyclically with signs +,−,+,−,
when traveling on T around v. By Lemma 7 of [4], each incompressible torus
T in the complement of a closed braid L which admits a tiling can be trans-
formed, via a sequence of braid isotopies and exchange moves (on closed
braids) and isotopies in closed braid complements, to an essential torus T ′
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in the complement of a closed braid L′ so that T ′ admits a standard tiling .
It follows that L′ and L have the same link type L. Note that T ′ can be
chosen to be smooth.

By a curve on the torus T we shall mean a piecewise smooth curve C
which consists of a finite number of (non-singular) closed b-arcs, unless oth-
erwise specified. To each such curve on T there corresponds a combinatorial
curve C on the tiled torus T in a natural way. Note also that a (closed)
combinatorial curve C on T can be considered as a (closed) path in the
graph of T . Then by the length of C we shall mean the length of the path
corresponding to C in the graph and use the notation l(C). In the future,
we shall often identify a curve C on T with its combinatorial analogue C on
T and use the same notation C for both. Under this convention, the length
of C on T is also well defined.

Let C be a simple curve on T . Fix an orientation on C and fix also an
edge e (a b-arc) on C. Let u and v be the initial and terminal vertices of e
with respect to the given orientation on C. Let v1, v2 and v3 be the other
three vertices on T which are adjacent to v, and let e1, e2 and e3 be the
edges joining v to v1, v2 and v3, respectively. Since T is oriented it makes
sense to talk about the left and right edges among the three outcoming edges
e1, e2 and e3 at the vertex v. Suppose e1 is the left edge (b-arc) and e3 the
right edge (b-arc) at v. Then the remaining edge (b-arc) e2 is called straight

with respect to e. We shall say that the oriented curve (path) C makes a
right turn, a left turn or has a straight pass at the vertex v if the edge f of
C appearing just after e and leaving v is e1, e3 and e2, respectively.

A (combinatorial) simple curve C on T (or T ) is called perfect if for
some choice of orientation of C the left and right turns along C alternate.
It follows that, in addition to the left and right turns, a perfect curve C can
also contain “straight” passes (see Fig. 4(a) for a local picture of a perfect
curve on T ). A perfect curve on T is called a zig-zag curve if it does not
contain any straight passes, so the sequence e1, e2, . . . that forms C consists
only of left and right turns that alternate (see Fig. 4(b)). A perfect curve is
called straight if it does not contain locally any left and right turns.

Consider a tiled plane R
2 as the universal cover of a tiled torus T and

enhance it with the decoration inherited from the one of T . Fix a covering
ϕ: R

2 → T . Now, taking into account the signs of the tiles in T , we may
consider R

2 as a tiled plane with a chessboard coloring. Since the definitions
of perfect and zig-zag combinatorial curves on T are of local character, we
can extend them in a direct manner to the chessboard plane R

2.
Let C be a closed perfect curve on T and let λ = ϕ−1(C) be a perfect

curve on R
2. Then C is homotopically non-trivial in the torus T (or T ), and λ

is unbounded in R
2. First assume that λ is a straight line on R

2, i.e. C does
not contain any turns. It then makes sense to talk about two elementary
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a) b)

c)

C

C

C

a perfect curve C a zig-zag curve C

l'

l
' '

l

the  two shifts of the curve l

Fig. 4

“horizontal” shifts on the chessboard plane R
2, in directions transversal to

λ on R
2. There are also four diagonal elementary shifts of R

2. They all
preserve the tiling on the plane and are understood in the combinatorial
sense. Passing again from R

2 to the tiled torus T , we have essentially two
elementary (non-diagonal) shifts of T that are transversal to a straight line
C on T . Similarly, if the perfect curve λ is not straight (i.e. contains turns) it
makes sense to talk about two elementary diagonal shifts (by one) of R

2 in
directions transversal to λ (see Fig. 4(c) for a local picture of such shifts). We
say that combinatorial curves c and c′ on the plane R

2 or on the tiled torus
T are parallel if one is obtained from the other by a sequence of elementary
(diagonal, vertical and horizontal) shifts of the tiled plane or the tiled torus.

Next, every torus T which admits a standard tiling can be cut open
to obtain a planar tiled fundamental domain. We say that T has a (d, k)-
staircase tiling pattern or d by k staircase tiling pattern P if a standard
tiling of T has a staircase-tiling fundamental domain P with k rows and d
tiles across each row, and its two opposite zig-zag sides are identified on T
with a possible shift in the order of vertices, while the top and bottom sides
are identified so that the second vertex on the bottom side coincides with
the first vertex on the top side. It follows from the definition of standard
tiling that k ≥ 2 and d is even. As discussed in [12], any embedded torus T
which admits a standard tiling has essentially two staircase patterns, dual
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to each other in some sense. In Fig. 5(a) we indicate an essential torus T
which admits a standard tiling and has a 2 by 3 staircase pattern P .

Fig. 5

The combinatorial patterns of embedded tori in closed braid comple-
ments considered in [12] and [4] represent actually tiled tori in the sense
of Definition 1.1 (in the first case the torus T is cut along two cycles).
It follows that the question of whether a given (decorated) staircase pat-
tern can be realized geometrically can be answered by passing the tests in
Proposition 1.1. By Proposition 1.2, if a tiled torus T has an embedding, its
geometric realization (in R

3) is unique in a certain sense.
Note that the fundamental domain of any embedded torus T that admits

a standard tiling and has a type k ≥ 2 can be represented by a rectangle of
size 2 tiles by k tiles, where the opposite edges on the sides with k arcs are
identified without any shift in the order [4]. For k = 3, see the example in
Figs. 5(a) and 5(b). Ng [12] showed that for any natural numbers n and k,
k ≥ 2, there is a (2n, k)-staircase pattern P which is geometrically realizable.
That is, there is a decoration of the pattern P so that the corresponding
tiled torus T has an embedding. The latter can be checked directly by using
Proposition 1.1. To describe geometrically the corresponding embedded tori,
let us recall the definition of making tracks on tori of type k ≥ 2.

Let T be a torus of type k ≥ 2 which is made up of k cylinders Ci by
consecutively gluing them along the corresponding boundary components
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(see Fig. 5(a) for k = 3 and Fig. 6(a) for k = 2). Each closed curve mi =
Ci ∩Ci+i is a meridian of the torus T which intersects the axis A in exactly
two points, say xi and yi, i = 1, . . . , k. The points xi and yi decompose mi

into two arcs, αi and βi. The torus T admits a 2 by k rectangular pattern P
(see Fig. 5(b) in the case k = 3). Consider on T a zig-zag longitude η, as in
Figs. 6(a) and 5(b). Note that η intersects each meridian mi, i = 1, . . . , k,
on T once and does not meet the axis A. Now we push the surface T along η
in the direction of the inward normal to the surface at the points of η until
each arc αi (βi, respectively) which intersects η is isotoped rel endpoints to
a new arc α′

i (β′
i, respectively) which intersects A in two more points. We

shall say that the resulting torus T ′ is obtained from T by making a track

along η on T (see Fig. 5(c)).

Let λ be a zig-zag longitude on T , isotopic to η, which is obtained from
η by an elementary shift (see Fig. 6(a)). In the same way as before, one

Fig. 6

can define the operation of making s parallel tracks along η and t parallel
tracks along λ on T (see also [12]). Note that each meridian mi is deformed
by means of this procedure to a meridian m′

i on T ′ which intersects A in
exactly 2(t+s+1) points. Making n−1 parallel tracks on T in an appropriate
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manner, we get a new torus T ′ which is smoothly embedded in S3 and has a
2n by k staircase pattern P . For example, for the embedded torus which is
obtained from the one in Fig. 6(a) by making one track along the longitude η
and another track along λ, we get the 6 by 2 staircase tiling pattern pictured
in Fig. 6(b). We then say that T ′ has the generalized type k, k ≥ 2. Ng also
showed that in some link complement each such torus is essential.

Ng [12] posed the problem of finding a complete set of well defined moves
on embedded tori of type k ≥ 2 such that any embedding of a torus which
admits a standard tiling can be obtained from one of type n ≥ 2 by a
sequence of such moves.

We shall see that applications of the operation of making tracks alone
to tori of type k ≥ 2 do not suffice to obtain all essential tori which ad-
mit a standard tiling. The corresponding example of an embedded torus is
indicated in Fig. 7. To describe this example, first take arcs c1 and c2 in

Fig. 7

the half-planes H0 and Hπ/2, with ends (1, 10) and (1, 6), respectively, on

the axis A. Next take solid cylinders B1 and B2 in R
3 with cores c1 and c2,

respectively. Then B1 and B2 are glued together along a common merid-
ional disc D. The other slice meridional disc bounding Bi on the opposite
side is denoted by Di, i = 1, 2. The cylinders B1 and B2 may be chosen
to have D large, and D1 and D2 small and disjoint. Denote by B the solid
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cylinder obtained by gluing B1 and B2. Put S = cl(∂B \ (D1 ∪D2)). Let l
be a longitude on S that makes a full twist along a meridian. Next, in the
manner described before, we make a track along l on B so that the point 1
on the axis will be inside the track (see Fig. 7). The resulting solid cylinder
is denoted by B′. The discs D1 and D2 are then deformed into new discs
D′

1 and D′
2, respectively. Now take an arc c3 in Hπ with ends 1 and 6 and

an arc c4 in H3π/2 with ends 1 and 10, all the ends being on the axis A.
Consider thin tubes B3 and B4 about the arcs c3 and c4 which have the
following properties:

1) B3∩B4 is a small meridional discD′ which passes through the vertex 1
on the axis A.

2) B3 ∪ B4 intersects B′ along the two meridional discs, D′
2 and D′

1, so
that B3 ∪B4 ∪B

′ forms a solid torus T
′ in R

3.

Extend the track on the cylinder B′ to the whole solid torus along a
longitude of the cylinderB3∪B4 so that the resulting track wraps twice along
a meridian of T

′. The resulting solid torus is denoted by T. The boundary
of T is the desired torus T . It is clear from the construction that T admits
a standard tiling. It is also not difficult to show that T is essential in the
complement of some closed braid b which determines a 2-component link.
Note, however, that the closed braid b then admits exchange moves after
which the torus T can be replaced with a new one which will be of the type
described in previous examples.

Recall that each torus T in a 3-sphere S3 bounds a solid torus T at
least on one side [5]. Let T be a torus in a closed braid complement R

3 \ L
which admits a standard tiling and bounds a solid torus T in R

3. For a
given θ ∈ [0, π] define the slice Tθ of the torus T at the angle θ to be the set
T ∩ (Hθ ∪Hθ+π) (where we identify 0 and 2π). Similarly, the slice Tθ of the
solid torus T at θ is T∩(Hθ∪Hθ+π). For θ ∈ (π, 2π] we define Tθ to be equal
to Tθ−π and Tθ to be equal to Tθ−π. The slice Tθ is called non-singular if it
contains no singularities of T . In that case, the slice Tθ is the disjoint union
of a finite number of plane discs and annuli, and Tθ is the boundary of Tθ.

Now our aim is to define a longitude-meridional pattern for the torus T
(or T ). Letm be a meridian of minimal length on T that bounds a meridional
disc D in T. Fix orientations on m and T . Note that each minimal meridian
m on T is perfect. This becomes clear when we pass from the torus T
to its universal cover R

2. Indeed, the existence of two consecutive “left” or
“right” turns on the curve η = ϕ−1(m) ⊂ R

2, with possible “straight” passes
between them, immediately leads to a new meridian m′ on T with length
l(m′) ≤ l(m) − 2, from which the assertion follows.

Fix an edge e on the oriented meridian m. The set E of edges on m can
be decomposed into two subsets, Ev and Eh, where each arc a from Ev is



Essential tori admitting a standard tiling 209

parallel to the arc e on T , while every arc f from Eh is transverse to it.
Put l1 = |Ev| and l2 = |Eh|. The unordered pair {l1, l2} is independent of
the choice of a minimal meridian on T , so it is an intrinsic characteristic of
the tiled torus T that has an embedding. Cutting T along m, we obtain a
cylinder R bounded by the two copies of the meridian m, c and c′. Let p be
the zig-zag curve of minimal length on the tiled cylinderR that joins a vertex
u on the curve c to some vertex u′ on c′. The number sm = [(l(p) + 1)/2]
is called the width of the cylinder R. Cutting R along p, we obtain a tiled
fundamental domain D for the given embedded torus T . The domain D
is bounded by two parallel zig-zag lines d and d′, the copies of p, and the
parallel perfect curves that correspond to the boundary components of the
cylinderR (which we also denote bym andm′). The torus T is obtained from
R by gluing m and m′ together, with a possible shift t. Taking into account
the orientation of m and T , this shift is characterized by two parameters
th and tv, the “horizontal” and “vertical” components. Let w be the vertex
on c′ that corresponds to the vertex u via the identification of the circles c
and c′. Consider a curve q on c′ which joins u′ to w and so that the curve
γ = p ∪ q, which joins u to w, is perfect. Then on T , the closed curve
γ represents a perfect longitude. The tiled plane region D, enhanced with
decoration, will be called a longitude-meridional pattern for the embedded
torus T (or the tiled torus T ) bounding the solid torus T in R

3. In Fig. 6(c)
we indicate a longitude-meridional pattern for T which is represented by a
staircase pattern shown in Fig. 6(b).

Let s = min sm where the minimum is taken over all minimal combi-
natorial meridians m on T . It follows from the above discussion that the
unordered pair {l1, l2} and the number s are intrinsic characteristics of the
embedded torus T that admits a standard tiling and bounds a solid torus
in R

3 (or for the corresponding tiled torus T that has an embedding).

In the exceptional case when l1 = 0 or l2 = 0, the meridian m contains
only straight passes.

For the tiled torus indicated in Fig. 6(c) we have l1 = 4, l2 = 2 and
s = 2, t = (0, 0).

Proposition 2.1. The embedded graph of a tiled torus T with a standard

tiling is uniquely determined up to isomorphism by the triple 〈m, sm, tm〉
where m is a minimal meridian on T , sm is the width of the correspond-

ing cylinder R and tm is the shift that determines the identification of the

boundary components of R.

Proof. Note that a tiled fundamental domain D of any tiled torus T ,
together with the information about identification of the pairs of edges on
the boundary of D, determines uniquely (up to isomorphism) the underlying
graphH of T . In particular, a longitude-meridional patternQ of a tiled torus
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T determines the graph H uniquely. In the exceptional case when l1 or l2 is
zero, the assertion is obvious. So we consider only the non-exceptional case.

Let T and T1 be two embedded tiled tori with standard tilings that
are characterized by the same triple 〈m, sm, tm〉. Denote by H and H1 the
underlying graphs of T and T1, respectively. Let p be a zig-zag curve on T
that determines the width sm of the corresponding cylinderR. We shall show
that, given the triple 〈m, sm, tm〉, there is a canonical way to obtain a tiled
fundamental domain of the tiled torus, from which the assertion follows. Fix
a covering ϕ: R

2 → T . Let m′ be a lift of the minimal meridian m to R
2 with

ends a and a′, where l(m) = l(m′). Moreover let p′ be the lift of p with one
end at a, where l(p′) = l(p). We have sm = [(l(p′) + 1)/2]. The fundamental
domain for the tiled torus T can be obtained as follows. Shift first m′ along
the zig-zag line p′ on R

2, i.e. perform sm elementary diagonal shifts defined
by p′. The resulting perfect curve m̂ is also a lift of m to R

2. Next, shift
m̂ along a perfect curve that is characterized by the pair tm = (th, tv), i.e.
perform th horizontal and tv vertical shifts. The resulting perfect curve on
R

2 is denoted by m̃. Under the above shifts,m′ fills up a tiled domainD that
is actually a plane domain for the tiled torus T . The domain D is bounded
by two pairs of parallel (in combinatorial sense) curves. It follows from the
construction that D is also a tiled fundamental domain for T1. The way of
identification of parallel sides on D to obtain a tiled torus is the same in
both cases. This completes the proof.

Note that, for a given tiled torus T that has an embedding, the width
of the cylinder Rm depends, in general, on the choice of a minimal meridian
m on T . For an example, we indicate in Fig. 8 two longitude-meridional
patterns D1 and D2 for a tiled torus T that correspond to the choice of the
minimal meridians m1 and m2 on T . It is easy to check that the correspond-
ing cylinders R1 and R2 have width 1 and 2, respectively.

Fig. 8

Remark 2.1. The decorated longitude-meridional and staircase pat-
terns for the torus T that admits a standard tiling and bounds a solid torus
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in R
3 represent the same tiled torus T . The only difference is in the choice

of a fundamental domain of T .

Question 2.1. Given a configuration of the combinatorial meridian m
that is characterized by the parameters l1, l2, where l1 + l2 is an even num-
ber, and a natural number s, does there exist a tiled torus T that has an
embedding and possesses a longitude-meridional pattern Q with the merid-
ian m and width s? What are the admissible values of the shift t in that
case?

It is known that the answer to the first part of Question 2.1 is affirmative.
The proof of this fact will be given separately.

Let T be a tiled torus with a standard tiling that has an embedding,
and γ a perfect longitude on T . Moreover let H be the underlying graph
of T . The graph H is naturally embedded in the torus T . Consider now a
topological graph G, the dual of the embedded graph H on T . The vertices
of G are simply the singularities of the foliation F on T . The edges of G
are the arcs which join the singularities in adjacent tiles and are transverse
to the leaves of F . The combinatorial curve γ on T can be considered also
as a cycle in the topological graph H. It now makes sense to consider the
perfect longitudes δ on T or on T that are obtained from γ by shifting it
by 1/2. From the combinatorial point of view, δ is considered as a cycle in
the topological graph G. The most interesting case is when δ is obtained
by such a shift from a zig-zag longitude γ on T . Fix a minimal meridian
m on T and an orientation on it. There is a natural orientation on δ so
that the orientation on T agrees with the one defined by the pair (m, δ) of
oriented curves. We define w(δ) to be the winding number of δ around the
axis A. Note that w(δ) can be directly read off from the tiled torus T or
from the longitude-meridional pattern Q for T . For example, consider the
embedded torus T ′ in Fig. 5(c). It is obtained from the torus T of Fig. 5(a)
by making a track t along the longitude η shown in Fig. 5(b). Let δ be a
zig-zag longitude on T ′ along the track t on T ′. We then have w(δ) = ±1.
Next, shifting horizontally by 1 the longitude η on the tiled torus T , we
obtain another zig-zag longitude λ on T . Let T1 be the torus obtained from
T by making a track along λ on T , and let δ′ be a zig-zag longitude on T1

along this track. We then have w(δ′) = ±2. For the tiled torus indicated in
Fig. 6(c) we have w(δ) = ±1.

Question 2.2. Given a tiled torus that has an embedding, how to rec-
ognize in combinatorial terms a meridian of the solid torus bounded by the
embedded torus with the given tiling?

The answer to this question is important for solving many other related
problems. Below we give a simple method for finding a (minimal) meridian
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on the torus T which admits a standard tiling. This method can also be used
for finding combinatorial meridians on tiled tori that have an embedding.
The corresponding algorithm works due to Theorem 2.2.

Before formulating the next result, we first introduce some notions.
By a θ-sector in S3 or in R

3 we shall mean a part of the 3-sphere or
3-space bounded by two half-planes. More precisely, for a given pair 〈ϕ, ψ〉
of angles denote by Hϕ,ψ the θ-sector bounded by the half-planes Hϕ and
Hψ, Hϕ,ψ =

⋃
θ∈[ϕ,ψ]Hθ, where the (closed) θ-interval [ϕ, ψ] is defined as in

Section 1. The plane in R
3 which contains the half-plane Hθ will be denoted

by Pθ. Recall also that for each θ ∈ [0, 2π] we denote by Tθ the slice of
T at angle θ. Any non-singular slice Tθ has, in general, several connected
components C each of which is homeomorphic to a circle.

Theorem 2.2. Let T be a tiled torus with a standard tiling that has an

embedding T in R
3. Then there exist θ ∈ [0, 2π) and a component C of the

non-singular slice Tθ so that the circle C bounds a meridional disc in a solid

torus T bounded by T .

Proof. Let s0, s1, . . . , s2r−1 be the cyclic order of all the singularities of
T numbered according to increasing θ ∈ [0, 2π). Let θi be the polar angle so
that si ∈ Hθi

, i = 0, 1, . . . , 2r − 1, where the values θi are regarded modulo
2π and the integers i are considered modulo 2r. We may suppose that each
plane Pθi

contains at most one singularity. Choose a sequence 0 ≤ ϕ0 <
ϕ1 < · · · < ϕ2r−1 < 2π of polar angles so that for each 0 ≤ i ≤ 2r − 1 there
is exactly one singularity in Hϕi,ϕi+1

. We may assume for simplicity that
ϕ0 = 0. To continue, we need the following

Lemma 2.1. There exist a plane Pϕi
, where 0 ≤ i ≤ 2r−1, and a compo-

nent C of the slice Tϕi
= T ∩Pϕi

so that the closed curve C is homotopically

non-trivial in T .

Proof of the lemma. Suppose the contrary, i.e. that all components of
any slice Tϕi

are homotopically trivial in T . Then each such component
bounds a disc on T . In particular, Tϕ0

is the union of disjoint closed curves
C1, . . . , Ck so that each Ci bounds a disc D0

i on T . Note that these curves
cover all the vertices of the tiled torus T . Let D = {D0

j1
, . . . , D0

jl
} be the

set of all outer discs on the torus T from the above collection. Then the
discs in D are disjoint. Consider a disc D0

ji
. For ε > 0 small enough, the

regular ε-neighborhood N(Cji) of Cji in D0
ji

lies completely on the same

side of the plane Pϕ0
. We color the disc D0

ji
green if N(Cji) ⊂ H0,π, and

red if N(Cji) ⊂ Hπ,2π. Denote by D− (D+, respectively) the set of discs
D0
ji
∈ D colored green (red, respectively). Suppose D+ 6= ∅. We claim that

D− is then empty. Indeed, suppose D− 6= ∅. Then, in a fragment of the torus
where the discs from D+ neighbor on the ones of D−, we have essentially
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Fig. 9

one of the four pictures in Fig. 9. Here each tile which is not contained
in any disc from D is colored white. Now a direct inspection of possible
decorations (by the parameter θ) of the tiles and their edges in the indicated
fragments shows that none of them is admissible. It follows that D− = ∅.
LetHψ0

, Hψ1
, . . . , Hψl

be the enumeration of all half-planes from the θ-sector
H0,π, where 0 = ψ0 < ψ1 < · · · < ψl−1 < ψl = π, each of which is contained
in some plane Pϕi

.

Now we define inductively the sequences D0,D1, . . . ,Dl and G0, G1, . . .
. . . , Gl−1, where each Di and each Gi is a disjoint union of connected regions
on the torus T . We set D0 =

⋃
D+. Put G′

i = T ∩Hψi,ψi+1
, i = 0, 1, . . . , l−1.

Each G′
i is then the disjoint union of connected regions dis on T of the

following two types.

(a) Each region of type (a) is bounded on T by two b-arcs, b1(i, j) and
b2(i, j), with common vertices i and j so that b1(i, j) exists at θ = ψi, b

2(i, j)
exists at θ = ψi+1 and both arcs represent the same edge of adjacent tiles
(so [b1(i, j)] = [b2(i, j)]).

(b) Each region of type (b) is a tile τ which contains a unique singularity
s and is bounded by two arcs b1 and b3 which exist at θ = ψi and two b-arcs
which exist at θ = ψi+1.
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Denote by G0 the subset of G′
0 which is the union of the regions d0

s

that are not contained in D0. Suppose we have already defined the sets Gi
and Di. Define Gi+1 to be the subset of G′

i+1 which is the union of the
regions di+1

s that are not contained in Di. Then Di+1 is defined to be the
subspace Di ∪Gi of the torus T . Denote by Bi the set of connected compo-
nents of Di.

The induction process finishes at step l. Note that, by the definition
of {ϕi}, each set Gi, i = 0, 1, . . . , l − 1, contains at most one region of
type (b). Moreover, by the definition of D0,D1, . . . ,Dl, the set Dl coincides
with the whole torus T . It follows directly from the definition that each Di

is a submanifold of T contained in the θ-sector Hπ,ψi
and each edge (b-arc)

of any boundary component of Di is contained in Hπ ∪Hψi
. The following

question arises. What are the components of the submanifolds Di? We claim
that for each i ≤ l − 1 every component (region) Rij of Di is a disc with a

finite number of holes. That is, each Rij is bounded by a finite number of
cycles Cj1 , . . . , Cjp , one of which, say Cj1 , is outer and contains a disc Dji

on T , while Cj2 , . . . , Cjp bound disjoint discs Dj2 , . . . , Djp on T lying inside
Dj1 . The case when the number of holes in a disc is 0 is not excluded.

The proof is by induction on i. For i = 0 the assertion follows directly
from the definition of D0. Suppose the assertion holds for all i < m where
m < l. By definition, Dm is obtained from Dm−1 by gluing a finite number
of regions dms of type (a) and, possibly, a region of type (b).

Consider first the case when Gm−1 contains no region of type (b). Adding
a finite number of regions of type (a) to Gm−1 does not change the topolog-
ical or combinatorial properties of Dm−1 and its components. In particular,
|Bm| = |Bm−1|. Moreover if Rm−1

j ∈ Bm−1 is a disc with k holes on T , then,
after adding a finite number of regions of types (a), it remains a disc on T
with the same number of holes.

Now consider the second possibility. We may think of Dm as made of
Dm−1 in two steps. In the first step, we glue to Dm−1 a finite number of
regions of type (a) from Gm−1, as before. In the second step, we glue a
(unique) tile τ to the resulting manifold D′

m−1 on T . As already noted,
the first step does not lead to any changes of topological or combinatorial
properties of the submanifold Dm−1. We now have to inspect what happens
if we glue a tile τ to D′

m−1 in an appropriate manner. The treatment of this
procedure also falls into two cases.

In the first case, there are components Rm−1
j and Rm−1

n of D′
m−1 and pair

of opposite edges b1 and b3 of the tile τ , with b1 ∈ Hψm−1
and b3 ∈ Hψm−1

,

so that b1 lies on the outer boundary component of Rm−1
j and b3 lies on the

outer boundary component of Rm−1
n . Suppose Rm−1

j is a disc on T with qj

holes and Rm−1
n is one with qn holes. Gluing the tile τ to Rm−1

j and Rm−1
n
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along the common edges results in a disc on T with qj + qn holes. Thus
|Bm| = |Bm−1| − 1 in this case.

In the second case, there is a component Rm−1
j of D′

m−1 and a pair of
opposite edges b1 and b3 of the tile τ , with b1 ∈ Hψm−1

and b3 ∈ Hψm−1
, so

that b1 and b3 lie on the same (not necessarily outer) boundary component
of Rm−1

j . Denote by C the corresponding boundary component of Rm−1
j .

Suppose Rm−1
j is a disc on T with q holes. If C is not outer, then it bounds

a disc lying inside another one bounded by the outer boundary component of
Rm−1
j . In this situation, gluing τ to Rm−1

j along the common edges obviously

yields a new disc Rmj on T with q+1 holes. The other components of D′
m−1

remain unchanged. As a result, the cycle C is transformed into two new
cycles each of which bounds a disc on T .

Now suppose that C is the outer boundary component of Rm−1
j . Gluing

the tile τ to Rm−1
j , we obtain a new connected region, Rmj , on T . All the

other components of D′
m−1 remain unchanged. As a result of gluing τ to

Rm−1
j , the cycle C is transformed into two new cycles, say C1 and C2, the

boundary components of the submanifold Dm of T . By construction, the
closed curves C1 and C2 are isotopic in T . Moreover there is a component
C ′ of the slice Tψm

which lies completely in Dm and is isotopic to C1 in T .
By assumption, C ′ also bounds a disc on T . It follows that so do C1 and C2.
Note, however, that after gluing τ to Rm−1

j , the boundary components of
the new region Rmj may encircle on T , in principle, the other components

of the submanifold Dm. In any case, Dm is a disc with q+ 1 holes on T . We
also have |Bm| = |Bm−1|.

At the last lth step of the inductive procedure only two types of gluing
regions from Gl−1 to components of Dl−1 are possible. These are indicated
in Fig. 10.

Fig. 10

In the first case, the region d of type (a) from Gl−1 is glued to a com-
ponent Rl−1

i of Dl−1 along two common edges b1(s, t) and b2(s, t), where
b1(s, t) exists at θ = ψl−1 and b2(s, t) exists at θ = ψl = π. In the second
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case, a tile τ is glued to Rl−1
i along common edges b1, b2, b3, b4, where b1, b3

is a pair of opposite edges of τ which exist at θ = ψl−1, and b2, b4 is a
pair of opposite edges of τ which exist at θ = ψl = π. In both cases, this

procedure consists in sealing up the holes bounded by the cycles C l−1
j , the

boundary components of the regions Rl−1
j of Dl−1. Since the initial closed

curves C1, . . . , Ck bounding on T the discs D0
1, . . . , D

0
k, respectively, cover

all the vertices of the tiled torus T , the submanifold Dl−1 of T has to be con-
nected, i.e. Dl−1 is a disc with a finite number of holes on the torus. Passing
from Dl−1 to Dl, we only seal up the holes of Dl−1 on T . As a result, at the
lth step we obtain a closed submanifold Dl of T with Euler characteristic
two, i.e. a sphere. This is a contradiction. This completes the proof of the
lemma.

Let us return to the proof of Theorem 2.2. Let Pϕi
, 0 ≤ i ≤ 2r − 1, be

a plane from the above collection so that the slice T ∩ Pϕi
contains a cycle

which is homotopically non-trivial in T . Let C ′ be an innermost (on the
plane Pϕi

) homotopically non-trivial component of the slice T ∩ Pϕi
. The

cycle C ′ bounds a disc D′ on the plane Pϕi
. The disc D′ can contain in its

interior only the components of T ∩Pϕi
which are homotopically trivial in T .

Let C1, . . . , Ct be all the components of T ∩ Pϕi
which are contained in the

interior of D′. Each Ci bounds a disc Di on the torus T and the disc Bi on
the plane Pϕi

. For each i choose an open ε-neighborhood Ui of Bi in Pϕi

with a small ε. Remove all open discs Ui, i = 1, . . . , t, from D′. Denote by
D̃ the remaining part of D′. Cutting S3 open along the torus T , we obtain
two connected 3-manifolds, T1 and T2, with common boundary T . Let Tk
be the one which contains D̃. By the above reasoning, in the interior of Tk
there are closed discs Wi with the following properties:

(a) Wi ∩Wj = ∅ if i 6= j;

(b) Wi ∩ D̃ = ∂Wi = FrUi, i = 1, . . . , t.

Put D = D̃ ∪
⋃t
i=1Wi. It is clear from the above construction that

the disc D is contained in Tk and ∂D = C ′. Now, by using the standard
cut-and-paste technique, it is not difficult to show that Tk is a solid torus
and D is its meridional disc. This completes the proof of the theorem.

A meridional disc D of a solid torus T bounded by the slice component
C ′ and obtained by surgery on a plane disc, as described in the proof of
Theorem 2.2, will be called good . Note that if the torus T under the as-
sumptions of Theorem 2.2 bounds solid tori on both sides in S3, say T1

and T2, the above theorem asserts only that there is a component C which
is a meridional curve for one of them. Let us consider the torus T of type 3
indicated in Fig. 5. It bounds a solid torus T1 in R

3. Note that T also bounds
in S3 a solid torus T2 on the opposite side. It is easy to see that the slice
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meridian m1 on T bounds a meridional disc D of T1. On the other hand, no
component of any slice of T bounds a meridional disc of T2.

The following algorithm for finding a meridional disc on an essential
torus that admits a standard tiling is based on the proofs of Theorem 2.2
and Lemma 2.1. Similarly, we may consider instead of T a tiled torus T with
a standard tiling that has an embedding. Let T be an essential torus in a
closed braid complement which admits a standard tiling. Let s0, s1, . . . , s2k−1

be the cyclic order of all the singularities of the foliation of T according to
increasing θ ∈ [0, 2π). For each i = 0, 1, . . . , 2k − 1 let ψi be the polar angle
so that si ∈ Hθi

.

Algorithm 2.1

Step 1. Choose a cyclic sequence ϕ0 < ϕ1 < · · · < ϕ2k−1 so that no ψj
is equal to any ϕi or ϕi + π and for each i there is at most one singularity
on T which lies in Hϕi,ϕi+1

, i = 0, 1, . . . , 2k − 1.

Step 2. Construct a cyclic sequence Tϕ0
, Tϕ1

, . . . , Tϕ2k−1
of the slices of

the torus T (or T ).

Step 3. Inspect consecutively all the components of Tϕ0
, Tϕ1

, . . . , Tϕ2k−1

until a (homotopically) non-trivial cycle C ′ in some Tϕi
occurs. Theorem 2.2

provides the existence of such a slice of T and of its component C ′. The triv-
iality of the cycle C ′ on T can be easily checked by passing to the chessboard
tiled plane R

2, the universal cover of the embedded tiled torus T .

Step 4. Check if there are other homotopically non-trivial cycles in T
which lie inside the disc D′ bounded by C ′ on the corresponding plane.
Choose an innermost one with respect to the disc D′. The resulting curve
C is the desired meridian on the torus T that bounds a solid torus T.

Let T be a torus in a closed braid complement R
3 \ L which admits a

standard tiling T . By Theorem 2.2 and symmetry, we may assume that T
bounds in R

3 a solid torus T and has a slice meridional curve C. Moreover
C bounds a good meridional disc in T. Fix an orientation on T . Using the
combinatorial presentation of the curve C on T , one can isotope it to a
minimal meridian m on T (or T ). Fix an orientation on m. Among all the
collections of disjoint minimal meridians in T that include m consider the
one, say M, with a maximal number of elements. It is easy to show that all
the meridians in M may be assumed to be parallel to m in the combinatorial
sense (see definition above).

Disjoint minimal meridians m and m′ on T that are obtained from each
other by an elementary shift bound in a natural way a cylinder Rm of
width 1. The tiled cylinder Rm enhanced with the data inherited from T
is then called an elementary building block for the tiled torus T and the
embedded torus T that bounds a solid torus T. Note that any elementary
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building block Rm consists of |l(m)| tiles. In M there may be other cylin-
ders R′ of width 1. Each such R′ is bounded by two disjoint parallel minimal
meridians m1 and m2. We then say that R′ is a defective building block with
respect to m. A defective building block R′ is characterized by the number
d(m) = r(m) − l(m), where r(m) is the number of tiles in R′.

We have the following

Proposition 2.3. Let Q be a longitude-meridional pattern for T that

is characterized by the meridian m, width s and shift t as defined above.

Moreover let M be the maximal collection of disjoint minimal meridians on

T that contains m and |M| = r. Then r = s and all the meridians in M
may be chosen to be parallel to m. Moreover M decomposes T into s building

blocks Ri; all of them are elementary except maybe one which is defective.

Proof. The assertion follows directly from the definitions, Proposition 2.1
and the above discussion.

The defective building block Rj for T can contain internal vertices, so
the minimal meridians from a collection M may not cover all vertices of T .
However, if m is a straight minimal meridian or a zig-zag minimal merid-
ian (i.e. l1 = l2) on T , then any maximal collection M that contains m
decomposes T into elementary building blocks, so it covers all the vertices
of T . In general, this is not the case. To see this, let us consider the pattern
in Fig. 5(b). The corresponding embedded torus T bounds a solid torus T

in R
3 and is unknotted in R

3. It follows that T bounds a solid torus T1

on the opposite side in S3. One of the two combinatorial curves coded by
(1, 6), (6, 3), (3, 2), (2, 1) represents a minimal meridian m′ on the embedded
tiled torus T that bounds T1. The maximal number r of disjoint minimal
meridians on T is 1. It follows that m′ decomposes the (embedded) tiled
torus T into one defective building block with respect to T1.

On the other hand, the maximal number r of disjoint minimal meridians
on the embedded torus T (or the tiled torus T ) that bounds T equals 3, and
these meridians decompose T into three elementary building blocks and
cover all the vertices of T .

Let Ri be any building block for T from the meridional decomposition
of T by a collection M of minimal meridians that contains m. Let m1 and
m2 be the two minimal meridians that bound Ri and let V1 and V2 be the
sets of vertices on m1 and m2, respectively. Suppose first that m is a straight
curve on T . Then m2 is obtained from m1 by an elementary “horizontal”
shift (by one). This gives a natural bijection h: V1 → V2.

Suppose now that m contains turns. If the block Ri is elementary, then
there is a natural map h: V1 → V2 induced by a diagonal shift of m1 by one.
If Ri is defective there is also a shift of T along a perfect curve (see above)
that moves m1 to m2. This shift also induces a natural bijection h: V1 → V2.
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In any case, h can be extended to a PL-homeomorphism of the meridians
m1 and m2 which maps edges of m1 into edges of m2.

A characteristic feature of a decomposition of T by minimal combina-
torial meridians is that the latter has a geometric meaning. Indeed, each
meridian mi from M bounds a meridional disc Di in the solid torus T.
Moreover, using the standard cut-and-paste technique and general position,
we may achieve that the discs Di, i = 1, . . . , s, are disjoint. This gives a de-
composition of T into k solid cylinders Ri, the building blocks for T, where
each Ri is bounded by the embedded cylinder Ri and the meridional discs
Di and Di+1, i = 1, . . . , s− 1.

Our interest in decomposition of embedded tiled tori into building blocks
and its analysis is motivated by an attempt to extend the class of stan-
dard embedded tori of type ≥ 2 and generalized type ≥ 2 to a wider
class of geometric tori of standard position. In this way, we hope to ob-
tain a geometric description for the whole class of essential tori that ad-
mit a standard tiling. For standard embedded tori of type ≥ 2 and gen-
eralized type ≥ 2, the building blocks that form a decomposition are el-
ementary and have a geometric description. In the general case, the geo-
metric description is not complete. Note, however, that the natural maps
h: m1 → m2 defined above establish some coherence in the order of ver-
tices on the meridians m1 and m2, with respect to the axis A, and in
the cyclic order of the arcs on these meridians, with respect to the polar
angle θ.

We would like to standardize the geometric position of the minimal
meridians and building blocks for the embedded tiled tori T . Unfortunately,
there is no canonical way of choosing such meridians on an embedded tiled
torus. One tries also to find, among the minimal meridians on T that form
a decomposition of T into building blocks, those which are close in a certain
sense to the slice meridional curves. In this connection the following question
arises:

Question 2.3. Does any embedded torus T which admits a standard
tiling and bounds a solid torus in R

3 possess a slice minimal meridian?

We shall see that the answer to this question is negative.

Remark 2.2. Let T be an essential torus which admits a standard tiling
T and bounds a solid torus T. Moreover let H be the underlying graph of
T embedded in T and let G be the dual of the embedded graph H on T .
Note that as graphs, G and H are isomorphic. Each edge of the embedded
graph G joins two singularities in T and is transverse to the leaves of the
foliation F of T , so it has the natural orientation according to increasing θ.
Denote by G′ the corresponding orgraph. The set E′ of oriented edges (arcs)
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of G′ can be covered by a collection B of closed (oriented) zig-zag paths lj , l
′
j ,

j = 1, . . . , q, which have the following properties. For a fixed oriented path
ln from B, each lj is parallel to ln on T , while each l′j is antiparallel to it,
j = 1, . . . , q (see Fig. 11).

Fig. 11

We shall use the construction of the dual graph G below.
Let us consider the tiled torus T represented by a staircase pattern in

Fig. 12(a). This remarkable example is due to Ng [12]. It is not difficult to
verify that the tiled torus T passes the tests from Proposition 1.1, so it has
an embedding. By Proposition 1.2, the embedding T of the tiled torus T in
R

3 is unique in a certain sense. Now we apply Algorithm 2.1 to T .

Fig. 12

First consider the slices Tθi
of the embedded torus T at the angles θ1 =

1
16π, θ2 = 3

16π, . . . , θ8 = 15
16π (see Fig. 13).
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Fig. 13

We conclude that T bounds in R
3 a solid torus T1. The corresponding

slice meridians are the curves m1,m2 in Fig. 13(a) and the curves m3,m4 in
Fig. 13(e). The combinatorial meridians m1,m2,m3,m4 on T can be coded
by the cyclic sequences of vertices as follows: m1 = (1, 4, 5, 8, 7, 6, 1), m2 =
(9, 14, 15, 16, 13, 12, 9), m3 = (1, 6, 3, 2, 15, 16, 1), m4 = (7, 10, 11, 14, 9, 8, 7).
Note that no meridian mi, i = 1, 2, 3, 4, bounds a slice meridional disc of T1,
but each such meridian bounds in T1 a good meridional disc.
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For example, let B1 be the disc on the plane Pθ1 bounded by the curvem1

of Fig. 13(a). Then there is a disc B inside B1 which is bounded by a closed
curve c1, which is decomposed by vertices 2 and 3 into two b-arcs b(2, 3).
Clearly B lies outside the solid torus T1. Moreover c1 is obviously homo-
topically trivial on T . Similarly, the closed curves c2, c3, c4 in Figs. 13(a)
and 13(e) are also homotopically trivial on T .

The meridians m1,m2,m3,m4 can be replaced with the minimal meri-
dians m′

1,m
′
2,m

′
3,m

′
4, respectively, where m′

1 = (1, 6, 3, 4, 1), m′
2 =

(9, 14, 11, 12, 9), m′
3 = (2, 15, 16, 13, 2), m′

4 = (7, 8, 5, 10, 7). The latter give a
combinatorial decomposition of the tiled torus T (or the embedded torus T )
into (embedded) building blocks. Next, the closed curve δ = (6, 7, 8, 9, 12, 13)
in Fig. 13(b) is non-trivial on T and bounds a disc D in the exterior of T1.
It follows that T bounds in S3 a solid torus T2 on the opposite side and D
is a meridional disc of T2. Thus T1 is “unknotted” in R

3.

Note also that the torus T , considered as the boundary of the solid torus
T2, contains no perfect meridian in any slice Tθ. The minimal meridian
l1 which bounds a meridional disc in T2 has the following combinatorial
presentation: l1 = (12, 13, 6, 7, 12). The longitude-meridional patterns for
T corresponding to the meridian m′

2 and the zig-zag longitude l, and the
straight longitude l1, are indicated in Figs. 12(a) and 12(b), respectively.
Let γ be the oriented longitude on T indicated in Fig. 12(a). By direct
computation, we have w(γ) = ±3.

Let us consider T as the boundary of the solid torus T1. The minimal
meridians m′

1,m
′
2,m

′
3,m

′
4 bounding the building blocks for T have a simi-

lar geometric configuration with respect to the parameter θ and the cyclic
order of the vertices on the axis A. This can be shown by using the natural
maps h defined above. Similarly, if T is considered as the boundary of T2,
the minimal meridians l1, l2, l3, l4 on T are similar in a certain sense. The
same is true for the tiled tori that have embeddings and generalized type
k ≥ 2.

As opposed to the embedded tori considered before, the tiled torus T
in Fig. 12 has no slice perfect meridian. Finally, T is essential. This is shown
in Fig. 13. Here we denote by ◦ the intersections of the component of L
lying inside T1 with the fibers Hθ, while ∗ stands for the intersections of
the remaining components (lying outside T1) with these fibers. It turns out
that this result can be extended to the whole class of embedded tiled tori.

Let T be a closed tiled torus and let T be an embedding of the tiled
surface in Euclidean 3-space R

3, with respect to the z-axis A. This em-
bedding is unique in a certain sense. Denote by F the natural singular
foliation of T which yields in turn the given tiled surface T . In the follow-
ing, by a curve on T we shall mean any smooth or PL-curve on T . Let U
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be a finite collection consistings of simple closed curves Ci, i = 1, . . . , t,
on T so that no Ci intersects the axis A. We shall say that U is essen-

tial on T (or T ) if each Ci is transverse to the leaves of the foliation F
and for any b-arc b(k, j) on T there is a curve Cn from U which intersects
b(k, j).

Theorem 2.4. Any embedded tiled torus T ′ is essential in the comple-

ment of some non-split link L represented as a closed braid with braid axis A.

Proof. Let T ′ be a tiled torus that has an embedding, and let T ′ be an
embedding in 3-space with respect to the axis A. Then T ′ is a Riemannian
manifold with metric inherited from R

3. We may assume that T ′ bounds a
solid torus T in R

3 and a positive normal to T ′ points inwards with respect
to T. Let H be the underlying graph of T ′ and let G be the dual of the
graph H embedded in T ′. Then G is a regular graph of valence 4 embedded
in T ′. The edges of G are transverse to the leaves of the natural foliation
F on T ′ and can be oriented in a natural way (see above). Let G′ denote
the corresponding orgraph. The arcs of G′ can be covered by a collection B′

of oriented closed zig-zag paths li, i = 1, . . . , 2q, with the properties given
in Remark 2.2. Note also that B′ can be divided into two subcollections B′

1

and B′
2 of zig-zag lines, where |B′

1| = |B′
2| = q, which have the following

properties.

(i) Any two paths from the same subcollection B′
i, i = 1, 2, are parallel

on T ′ (i.e. can be obtained from each other by an elementary diagonal
shift on T ′).

(ii) Any two paths from distinct subcollections are antiparallel on T ′.

There is another collection D′, dual to B′ in some sense, of closed oriented
paths in the embedded graph G which also cover the arcs of the orgraph G′.
The collection D′ consists of oriented zig-zag lines aj , j = 1, . . . , 2t, on G
and can be divided into two subcollections, D′

1 and D′
2, with the same prop-

erties as the ones of B′. The intersection index i(lk, aj) = w of the curves
lk and aj on T ′, where lk ∈ B′, is non-zero and can change only in sign
when passing to other representatives within the same class. All the curves
from the collections B′ and D′ may be assumed to be smooth outside the
singularities of F on T ′, which they pass through.

By definition, no curve li, i = 1, . . . , 2q and aj , j = 1, . . . , 2t, intersects
the axis A. Moreover each oriented curve from B′ and D′ is transverse to the
non-singular leaves of F and every edge is directed according to increasing θ.
It follows that both B′ and D′ are essential on T ′. Let K be the union of all
curves from B′. Let d = dist(K,A). We may push each curve li, i = 1, . . . , 2q,
off singularities s in small δ-neighborhoods of s on T ′, where δ < d/4, to
obtain a new essential collection B of disjoint oriented closed curves βi,
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Fig. 14

i = 1, . . . , 2q, on T ′ or T ′ (see Fig. 14(a)). Similarly, by pushing the curves
aj off singularities s on T ′, in small neighborhoods of these singularities, we
obtain a new essential collection of disjoint curves D = {α1, . . . , α2t} on T ′.
Moreover, we may assume that each oriented curve βi, i ≤ 2q, and αj ,
j ≤ 2t, is smooth and transverse to the fibers of F and is directed according
to increasing θ. It follows that the curves βi and αj are all transverse to the
half-planes Hθ, θ ∈ [0, 2π).

It may occur that αj or βi bounds a meridional disc D in a solid torus
bounded by T ′ in S3. In any case, one of the following two possibilities holds:

1) βi does not bound a meridional disc in T and αj determines a non-
trivial homology class in H1(S

3 \ T,Z);
2) αj does not bound a meridional disc in T and βi determines a non-

trivial homology class in H1(S
3 \ T,Z).

Suppose, for instance, that 1) holds. Consider a normal tubular ε-neigh-
borhood N(T ′) of T ′ in R

3, where ε > 0 is chosen small enough. It can be
considered as the image of a smooth embedding g : T ′ × (−ε, ε), so that
g(T ′ × {0}) is identified with T ′. Moreover, we may assume that the man-
ifold N(T ′)+ = g(T ′ × {+ε/2}) is the ε/2-push-off of the torus T ′ in the
direction of the positive normal to T ′ and N(T ′)− = g(T ′ × {−ε/2}) is the
ε/2-push-off of T ′ in the opposite direction. Put B1 = g(T ′×(0, ε)) and B2 =
g(T ′×(−ε, 0)). By assumption,N(T ′)+ ⊂B1 ⊂T and N(T ′)− ⊂B2 ⊂R

3 \ T.

Let β+
i (α−

j , respectively) be the ε/2-push-off of βi (αj , respectively) in the

direction of the positive (negative, respectively) normal to T ′, i = 1, . . . , 2q,
j = 1, . . . , 2t, and let pi: βi → β+

i and qj : αj → α−

j be the corresponding

homeomorphisms. Then β+
i ⊂ N(T ′)+ and α−

j ⊂ N(T ′)− for all i and j.
Define gi: βi → T as follows. Let x be any point on the curve βi and Hθi

the
half-plane which passes through x, and let u be the orthogonal projection
of pi(x) on Hθi

. We put gi(x) = u and ci = gi(βi), i = 1, . . . , 2q. By con-
struction, all maps gi, i = 1, . . . , 2q, are continuous. Each curve ci has the
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natural orientation inherited from the one of βi. In a similar way we define
fj : αj → R

3 \ T and oriented continuous curves dj , i = 1, . . . , 2t. If ε > 0 is
small enough, both families of curves {c1, . . . , c2q} and {d1, . . . , d2t} are dis-
joint. It follows that all the curves ci and dj are transverse to the half-planes
Hθ, where θ ∈ [0, 2π), and are oriented in the direction of increasing θ.

Using the standard technique, we may choose ǫ small enough and isotope
each curve ci in its ǫ-neighborhood in B1 so that the resulting oriented curves
γi are smooth and preserve all the properties of ci mentioned above.

In the same way, by isotoping the curves dj , j = 1, . . . , 2t, we obtain a
collection of oriented smooth closed curves δj , j = 1, . . . , 2t, all positioned
in B2. Let L be the 2(q+t)-component link in R

3 consisting of the curves γi,
i = 1, . . . , 2q, and δj , j = 1, . . . , 2t. By our assumption and the definition
of γi and δj , we have lk(γi, δj) 6= 0 for all i and j. The link L is then
represented as a closed braid with braid axis A and is contained in the
complement of T ′. By the definition of γi and δj , the torus T ′ is essential in
the complement of the closed braid L. In Figs. 14(b) and 14(c), we indicate
by ◦ the intersections of the components γi of L with the non-singular fibers
Hθ, while ∗ stands for intersections of the components δj with these fibers,
when passing through a singular fiber Hθ0 . Moreover L is a non-split link.
By our construction, the components of L inside the solid torus T intersect
each meridional disc of T at least twice. If T ′ is knotted it follows that T ′

is incompressible. If T ′ bounds in S3 a solid torus T1 on the opposite side,
then each meridional disc of T1 is pierced at least twice by the components
of L lying inside T1. In this case, T ′ is also incompressible in S3 \ L.

The further development of the combinatorics of tiled surfaces of genus
g > 1 and of the geometry of embedded tiled surfaces will be given in a
forthcoming paper.
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