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Kelley's speialization of Tyhono�'s Theoremis equivalent to the Boolean Prime Ideal TheorembyEri Shehter (Nashville, TN)
Abstrat. The priniple that �any produt of o�nite topologies is ompat� is equiv-alent (without appealing to the Axiom of Choie) to the Boolean Prime Ideal Theorem.1. Introdution. The priniple that is nowadays ommonly known (1)as Tyhono�'s Theorem states that(TT) any produt of ompat spaes is ompat,when the produt spae is equipped with the produt topology. It was provedin 1930s by several methods, all using the Axiom of Choie (2) (AC). In1950 John L. Kelley published a proof of the onverse, TT ⇒ AC, thusdemonstrating equivalene of the two priniples. His proof ontained a veryminor error (3), whih is easily orreted. This was mentioned by �o± andRyll-Nardzewski in 1951; a orreted proof was published by Plastria in 1972.Inidentally, Plastria's proof also shows that TT and AC are equivalent to2000 Mathematis Subjet Classi�ation: Primary 03E25.Key words and phrases: Axiom of Choie, Boolean Prime Ideal Theorem, generalizedsequene, Moore�Smith sequene, net, produt topology, Tyhono�'s Theorem, ultra�lter,universal net.
(1) Atually, what Tyhono� himself proved is the more speialized result TTI , listedlater in this setion. The formulation that we are alling TT was given later by �eh.
(2) The Axiom of Choie, in its simplest form, says that any produt of nonempty setsis nonempty; we may arbitrarily hoose a member from eah of those nonempty sets. Forthe bene�t of any newomers to this subjet, we restate the axiom in other terms: AC isa nononstrutive assertion of existene, requiring a formalist philosophy of mathematis.When we aept AC, we are agreeing to the onvention that, even if we are unable toexhibit a partiular example of a member of a produt of nonempty sets, we are stillpermitted to use a hypothetial member of that produt in proofs, as though it exists insome sense.
(3) Unfortunately, Kelley's error was propagated in my book [9℄. I am grateful toMihael Greineker for bringing it to my attention.[285℄



286 E. Shehterthe statement that any produt of ompat T1 spaes is ompat; see relatedremarks at the end of this setion.Kelley had argued TT ⇒ TTcf

∗
⇒ AC, using the intermediate priniple(TTcf) any produt of o�nite topologies is ompat,but his proof of ∗

⇒ was faulty. Plastria's orreted proof of TT ⇒ AC didnot involve TTcf , and left open this question: Is the impliation ∗
⇒ true butunproved, or is it atually false?In this note we shall show that ∗

⇒ is false. It turns out that TTcf is equiv-alent to the Boolean Prime Ideal Theorem (BPI), a priniple well known (4)to be stritly weaker than AC.This note is not atually onerned with Boolean prime ideals. We havementioned BPI only as an identi�er; it is the most famous of a whole familyof priniples known to be equivalent to one another. Here are four membersof that family:(TT2) 2J is ompat for any set J , if 2 = {0, 1} has the disrete topology.(TTI) [0, 1]J is ompat, for any set J .(TTh) Any produt of ompat Hausdor� spaes is ompat.(U) A topologial spae P is ompat if and only if every universal netin P onverges to at least one limit in P .Obviously Kelley's priniple TTcf implies Myielski's priniple TT2. To es-tablish equivalene, we shall show that the universal net priniple U im-plies TTcf .TTh and TT2 have often been useful in the study of equivalents of BPI,beause a number of ompatness priniples C are trivially seen to satisfyTTh ⇒ C ⇒ TT2. However, Kelley's priniple TTcf does not yield to thatanalysis; the o�nite topology on any in�nite set is T1 but not Hausdor�.2. Tutorial on nets. Some readers may be unfamiliar with nets andwith universal nets; to make this paper self-ontained, we now give a brieftutorial on that subjet. A more detailed introdution an be found in [5℄or [9℄.Sequenes (xn : n ∈ N) are useful tools in metri spaes and in someother topologial spaes. For analogous tools in arbitrary topologial spaesone may turn to nets (also known as generalized sequenes or as Moore�Smith sequenes). These may be written in the form (xδ : δ ∈ D), where thesubsripts δ are members of any direted set�i.e., a set D whose ordering
4 is re�exive and transitive and has the further property that eah �nitesubset of D has a 4-upper bound in D.

(4) Proved by Halpern and Lévy [2℄. See [3℄, [9℄, and soures ited therein for furtherdisussion of AC, BPI, and their relatives.



Tyhono�'s Theorem 287A net (xδ) is said to satisfy some ondition eventually if the ondition issatis�ed by xδ for all δ later than some δ0. A net (xδ) is universal if for eahset S we have either eventually xδ ∈ S or eventually xδ /∈ S. For example, ifa net is eventually onstant, then it is universal (5). Conversely, if a universalnet takes values in a �nite set, then the net must be eventually onstant.In a topologial spae, we say that a net (xδ) is onvergent to a limit z(written xδ → z) if xδ is eventually in eah neighborhood of z. In partiular,any eventually onstant net is onvergent. A net onverges in a produttopology if and only if it onverges oordinatewise; that is, xδ → z in ∏
j Yjif and only if xδj → zj in eah Yj.3. Main results

Muranov’s Lemma (6). Suppose that (xδ) is a universal net in a setequipped with the o�nite topology. Then either (xδ) onverges to every pointin the spae, or (xδ) is eventually onstant.Proof (without using AC or BPI). Suppose there is at least one point z towhih the net does not onverge. Then z has at least one open neighborhood
G for whih we do not eventually have xδ ∈ G. Sine the net is universal,eventually xδ ∈ ∁G, where ∁ denotes omplement.Now G is nonempty (sine it ontains z), and it is an open set in a o�nitetopology. Thus ∁G is �nite. Therefore (xδ) is eventually onstant.Proof of U ⇒ TTcf . Let {Yj : j ∈ J} be a olletion of topologialspaes, eah equipped with the o�nite topology. We are to show that theprodut topology on P =

∏
j∈J Yj is ompat. Sine the only topology onthe empty set is a ompat topology, we may assume that P is nonempty.Thus we may assume that we are given some partiular point u ∈ P ; its jthoordinate is some partiular uj ∈ Yj.Let (xδ : δ ∈ D) be a universal net taking values in P . In view of prin-iple U, it su�es to show that (xδ) has at least one limit in P . Sine on-vergene of nets in produt topologies is oordinatewise, it su�es to showthat ∏

j∈J

{limits of (xδj)} is nonempty,
(5) Strangely, although there are other universal nets besides the eventually onstantones, there are no other examples of universal nets; the existene arguments are all inher-ently nononstrutive. This makes universal nets di�ult to visualize, whih may be whymany mathematiians are relutant to use them. Nontrivial universal nets are a triumphof formalism: One might say that in this paper we are not really working with the universalnets themselves, but rather with sentenes about hypothetial universal nets.
(6) I am grateful to Alexey Muranov, who extrated this lemma from an earlier versionof my paper and thereby simpli�ed things greatly.



288 E. Shehteri.e., that we an hoose a member of this produt. But we may not usethe Axiom of Choie, sine we are trying to prove the equivalene of U andTTcf as weakenings of AC. Thus, what we atually must show is how tononarbitrarily hoose a partiular limit zj of the projeted net (xδj) in eahfator spae Yj.We easily verify that (xδj) is universal in Yj . Thus Muranov's Lemma isappliable. Now hoose zj nonarbitrarily, by this rule:
• If (xδj) onverges to every member of Yj , then take zj = uj .
• Otherwise, (xδj) is eventually onstant; let zj be the onstant valuethat the net eventually assumes.In either ase, we have seleted a partiular zj for whih xδj → zj .
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