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Complete pairs of coanalytic sets

by

Jean Saint Raymond (Paris)

Abstract. Let X be a Polish space, and let C0 and C1 be disjoint coanalytic subsets
of X. The pair (C0, C1) is said to be complete if for every pair (D0, D1) of disjoint coana-
lytic subsets of ωω there exists a continuous function f : ωω

→ X such that f−1(C0) = D0

and f−1(C1) = D1. We give several explicit examples of complete pairs of coanalytic sets.

1. Introduction and notations. All spaces we consider in this note
are metrizable and separable, and often zero-dimensional, hence embeddable
in the Cantor set 2ω or in the Baire space ωω. For unexplained notations we
refer to [5].

We will denote by Q the dense countable subset of 2ω defined by

Q := {α ∈ 2ω : ∃n ∀p ≥ n α(p) = 0}.

For any space X we denote by K (X) the hyperspace of non-empty
compact subsets ofX equipped with the Vietoris topology. It is a well-known
fact that K (Q) is complete coanalytic. We will also denote by Kω(X) the
subspace of K (X) consisting of the countable compact subsets of X, and
by K ∗(Q) the subset

K
∗(Q) = {K ∈ K (2ω) : K \ Q has a unique element}

of K (2ω), which is clearly disjoint from K (Q) and contained in Kω(2ω).

We will denote by Seq the countable set ω<ω of finite sequences of inte-
gers and by T the set of trees on ω, which we identify with a closed subset
of 2Seq. We denote by WF the set of well-founded trees. We also denote by
WF∗ the subset of T consisting of the trees which have a unique branch.
For any tree T ∈ T we denote by ⌈T ⌉ the set of branches of T and identify
it with a closed subset of ωω. We will always identify a finite sequence of
elements of ω×ω with a pair (s, t) of finite sequences of integers having the
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same length. So any tree T on ω× ω is viewed as a subset of Seq×Seq and
for every x ∈ ωω the set

T (x) := {s ∈ Seq : ∃t ≺ x |s| = |t| and (t, s) ∈ T}

is a tree on ω. Moreover it is clear from the definition that the mapping
x 7→ T (x) is then continuous from ωω to T .

Recall that a function f : X → Y is said to be bianalytic (we write
f ∈ ∆1

1) if f−1(V ) is a (relative) coanalytic subset of X for every open
subset V of Y (or equivalently for every (relative) coanalytic subset V of Y ).
Of course all Borel functions are ∆1

1. Moreover the composition of two ∆1
1

functions is ∆1
1 too.

Recall that a continuous function f : X → Y reduces a subset D of X
to a subset C of Y if D = f−1(C), and that a coanalytic subset C of the
Polish space Y is said to be Π1

1-complete (or simply complete for short if
there is no ambiguity) if every coanalytic subset D of a zero-dimensional
Polish space X is continuously reducible to C (i.e. if there is a continuous
function f : X → Y which reduces D to C). There are many “natural”
examples of complete coanalytic sets, namely WF in T , K (Q) in K (2ω) or
Kω(2ω) in K (2ω). It is a well-known fact that, under the axiom of analytic
determinacy, any coanalytic non-Borel subset of ωω or of 2ω is Π1

1-complete.
Moreover it is a classical result of Harrington ([3]) that the converse is true:
if any non-Borel coanalytic subset of 2ω is Π1

1-complete, then the analytic
determinacy holds.

The main goal of this note is to give similar results for disjoint pairs of
coanalytic subsets in a Polish space. Let X and Y be two Polish spaces,
(C0, C1) be a pair of disjoint coanalytic subsets of Y and (D0, D1) be a
pair of disjoint coanalytic subsets of X. We will say that the pair (D0, D1)
is continuously reducible to (C0, C1) if there exists a continuous function
f : X → Y such that f−1(C0) = D0 and f−1(C1) = D1. Just as for complete
coanalytic sets we define complete pairs of coanalytic sets.

Definition 1. We say that the pair (C0, C1) is complete if every disjoint
pair (D0, D1) of coanalytic subsets of a zero-dimensional Polish space X (or
equivalently of a closed subspace of ωω) is continuously reducible to (C0, C1).

We will study the links between Borel separability and completeness for
pairs of coanalytic subsets. We will also give several “natural” examples of
complete pairs of coanalytic subsets, and this will lead us to find a char-
acterization of bianalytic functions. Finally, we will give extensions of the
previous results to disjoint sequences of coanalytic sets.

2. Some coanalytic sets. The following two theorems have been
known for a long time (see for example [2] and the references therein).
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Theorem 2. Let X and Y be Polish, Z be a subspace of X and f :
Z → Y be bianalytic. Then there exists a coanalytic subset C of X contain-

ing Z and a bianalytic function f̃ : C → Y extending f .

Let Y and Z be Polish spaces and X be a subspace of Y × Z. We will
denote by U(X) the set of elements y of Y such that the fiber X(y) :=
{z ∈ Z : (y, z) ∈ X} is a singleton.

Theorem 3. Let Y and Z be Polish spaces and X be a Borel subset of

Y × Z. Then the set U(X) is coanalytic and the function g : U(X) → Z
defined by {g(y)} = X(y) is bianalytic on U(X).

Proof. We give the proof for completeness. Denote by π : Y ×Z → Y the
first projection: (y, z) 7→ y. We prove first that the function g is bianalytic
on U(X). Indeed, let V be an open subset of Z. We have

g−1(V ) = U(X) \ π(X ∩ (Y × V c)),

which is coanalytic in U(X) since π(X∩(Y ×V c)) ∈ Σ1
1. Thus g is bianalytic.

Using Theorem 2 we get a coanalytic subset C of Y containing U(X)
and a bianalytic extension g̃ : C → Z of g. The set X2 of points of Y where
the fiber has at least two points is

{y ∈ Y : ∃z, z′ z′ 6= z and (y, z) ∈ X and (y, z′) ∈ X},

hence is analytic. Furthermore,

U(X) ⊂ {y ∈ C \X2 : g̃(y) ∈ X} ⊂ U(X),

and this shows that U(X) ∈ Π1
1 since the inverse image of the Borel set X

under g̃ is coanalytic in the coanalytic set C \X2.

Again for completeness we now give the proofs of the classical facts that
K ∗(Q), Kω(2ω) \ K (Q) and WF∗ are all coanalytic.

Theorem 4. The set K ∗(Q) is Π1
1 in K (2ω).

Proof. Let X = {(K,α) ∈ K (2ω) × 2ω : α ∈ K and α /∈ Q}. Then X is
clearly a Π0

2 subset of the compact space K (2ω) × 2ω, and since K ∗(Q) =
U(X) the conclusion follows from Theorem 3.

Theorem 5. The set WF∗ is Π1
1 in T .

Proof. Let X = {(T, α) ∈ T ×ωω : α ∈ ⌈T ⌉}. Then X is clearly a closed
subset of the Polish space T × ωω, and since WF∗ = U(X) the conclusion
follows again from Theorem 3.

Theorem 6. The set Kω(2ω) \ K (Q) is Π1
1 in K (2ω).

Proof. The proof of the following lemma can be found in [4] (Exer-
cise 39.23, p. 368).
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Lemma 7. There is a countable family (Cu) of coanalytic subsets of

Kω(2ω) and a family (fu) of ∆1
1 functions from Cu to 2ω such that for

every countable compact subset K of 2ω,

K = {fu(K) : K ∈ Cu}.

Proof. Consider the following open game G∗(K) with parameter K ∈
K (2ω): Player II begins by playing some s0 ∈ 2<ω, Player I answers a0 ∈
{0, 1}, Player II plays s1 ∈ 2<ω and Player I answers a1 ∈ {0, 1}, and so on.
And Player II wins the run (s0, a0, s1, a1, . . .) iff the infinite dyadic sequence
s0

⌢a0
⌢s1

⌢ · · ·⌢sn
⌢an

⌢ . . . belongs to K.

If Player II has a winning strategy τ in G∗(K), this strategy defines a
continuous mapping f : 2ω → K by

f(α) = s0
⌢α(0)⌢s1

⌢α(1)⌢ . . .

where (s0, s1, . . .) is the answer by τ to α. It is easily checked that f is
one-to-one, hence that K is uncountable if Player II has a winning strategy.

Conversely, if Player I has a winning strategy σ in G∗(K) we consider
the set Sσ of finite sequences u = 〈s0, a0, s1, a1, . . . , sn−1, an−1〉 such that
for all p < n, ap is the answer by σ to (s0, s1, . . . , sp), and define χ(u) :=
s0

⌢a0
⌢s1

⌢a1
⌢ . . .⌢an−1 whenever u = 〈s0, a0, s1, a1, . . . , sn−1, an−1〉.

Then, for u ∈ Sσ, we consider the set

Eu := {α ∈ 2ω : χ(u) ≺ α and ∀v ∈ Sσ u ≺ v ⇒ χ(v) 6≺ α}.

It is easily checked that Eu contains at most one point: indeed, if χ(u)=α|p

and u = 〈s0, a0, s1, a1, . . . , sn−1, an−1〉 then for all s = 〈α(p), α(p + 1),
. . . , α(q − 1)〉 and a = σ(s0, s1, . . . , sn−1, s) we have v := u⌢〈s, a〉 ∈ Sσ,
hence χ(v) 6≺ α. Thus α(q) = 1 − a. This allows us to find inductively the
coordinates of α from σ.

Moreover, if α /∈
⋃

u∈Sσ
Eu, one can construct inductively a sequence

(un) of elements of Sσ such that u0 = ∅, un ≺ un+1 and χ(un) ≺ α for all n:
indeed, if un is defined and satisfies χ(un) ≺ α then since α /∈ Eun there
exists un+1 ∈ Sσ such that un ≺ un+1 and χ(un+1) ≺ α. And since Player I
wins the corresponding infinite run in G∗(K) we conclude that α /∈ K. So

K ⊂
⋃

u∈Sσ

Eu

and K is countable. It follows that G∗(K) is won by Player I if and only if
K is countable.

The set {(K, s0, a0, s1, a1, . . .) : Player I wins the game G∗(K)} is open
in the Polish space K (2ω)× Seqω ×2ω. It follows by Martin’s theorem that
the set Kω(2ω) of those K such that Player I has a winning strategy in
G∗(K) is Π1

1 and that there exists a bianalytic function K 7→ σK defined
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on Kω(2ω) assigning to each countable compact subset K of 2ω a winning
strategy in the game G∗(K).

Then for each sequence u = 〈s0, a0, s1, a1, . . . , sn−1, an−1〉 the set

C ′
u := {K ∈ Kω(2ω) : u ∈ SσK

}

is coanalytic. The function fu defined on C ′
u by fu(K) = β ∈ 2ω where

χ(u) ≺ β and, for q ≥ p := |χ(u)|,

β(q) = 1 − σK(s0, s1, . . . , sn−1, 〈β(p), β(p+ 1), . . . , β(q − 1)〉)

depends continuously on σK , hence is bianalytic on C ′
u. It follows that Cu :=

{K ∈ C ′
u : fu(K) ∈ K} is coanalytic and that every countable K in K (2ω)

satisfies

K = {fu(K) : K ∈ Cu};

this completes the proof of the lemma.

It follows from the previous lemma that K ∈ Kω(2ω)\K (Q) if and only
if there is some u = 〈s0, a0, s1, a1, . . . , sn−1, an−1〉 such that K ∈ Cu and
fu(K) /∈ Q, hence

Kω(2ω) \ K (Q) =
⋃

u

Cu ∩ f−1
u (2ω \ Q),

which is a countable union of coanalytic sets, hence coanalytic itself.

3. Borel separation of coanalytic sets. We now compare, for a dis-
joint pair of coanalytic sets (C0, C1), the property “(C0, C1) is complete”
with the property “C0 is not separable from C1 by a Borel set”.

Lemma 8. Let (C0, C1) be a disjoint pair of coanalytic subsets of ωω. If

the pair (C0, C1) is complete then no Borel subset B of ωω can separate C0

from C1.

Proof. Assume that some Borel set B separates C0 from C1. Then B is
Σ0

ξ for some countable ordinal ξ. If the pair (C0, C1) were complete then
for any Borel subset B1 of ωω, the pair (B1, ω

ω \ B1) would be a disjoint
pair of coanalytic sets, and there would be a continuous f : ωω → ωω such
that f−1(C0) = B1 and f−1(C1) = ωω \B1, hence B1 = f−1(B); this would
imply that B1 ∈ Σ0

ξ , in contradiction with the existence of Borel sets in ωω

of arbitrarily large rank.

Theorem 9. Assume Det(Σ1
1). Let (C0, C1) be a disjoint pair of coan-

alytic subsets of ωω. Then the pair (C0, C1) is complete if no Borel subset

B of ωω separates C0 from C1.

Conversely , if any pair of disjoint and Borel non-separable coanalytic

sets is complete then the analytic games are determined.
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Proof. Assume that no Borel set separates C0 from C1 and that (D0, D1)
is a disjoint pair of coanalytic subsets of ωω. Consider the game G where
Player I and Player II play alternately integers and construct respectively
α ∈ ωω and β ∈ ωω and where Player II wins iff

(α ∈ D0 and β ∈ C0) or (α ∈ D1 and β ∈ C1)

or (α /∈ D0 ∪D1 and β /∈ C0 ∪ C1).

Clearly the payoff of this game is the difference of two analytic sets, hence
the game G is determined under the assumption of analytic determinacy.

If Player I has a winning strategy σ, this strategy induces a continuous
function g : ωω → ωω such that

g−1(D0)∩C0 = g−1(D1)∩C1 = g−1(ωω \ (D0 ∪D1))∩ (ωω \ (C0 ∪C1)) = ∅.

Then denoting by C ′
0 and C ′

1 the coanalytic sets g−1(D0) and g−1(D1), and
by A and A′ the analytic sets ωω \ (C0 ∪ C1) and ωω \ (C ′

0 ∪ C
′
1), we have

A ∩ A′ = ∅. Thus there exists a Borel set B∗ separating A from A′. Since
B∗ ⊂ C ′

0 ∪ C ′
1 and C ′

0 ∩ C ′
1 = ∅, both B∗ ∩ C ′

0 and B∗ ∩ C ′
1 are Borel.

Moreover, ωω \B∗ ⊂ C0 ∪ C1 and C0 ∩ C1 = ∅, hence C0 \B
∗ and C1 \B

∗

are both Borel. And it is easily checked that the Borel set

B = (B∗ ∩ C ′
1) ∪ (C0 \B

∗)

contains C0 and is disjoint from C1. Thus Player I cannot have a winning
strategy if C0 and C1 cannot be separated by a Borel set.

So Player II has a winning strategy τ which induces a continuous function
f from ωω to ωω such that f−1(Ci) = Di for i = 0, 1, and this shows that
every pair (D0, D1) is reducible to the pair (C0, C1), hence the pair (C0, C1)
is complete.

We now prove that, as in Harrington’s result, the analytic determinacy
holds if any pair of coanalytic subsets of 2ω is complete provided it is not
Borel separable.

Let C be any non-Borel coanalytic subset of 2ω, Γ be a complete coana-
lytic subset of 2ω and ϕ be a Π1

1-norm on Γ . We claim that if any non-Borel
separable pair of coanalytic subsets of 2ω is complete then Γ is continuously
reducible to C, and by Harrington’s theorem this will imply that the ana-
lytic determinacy holds. Since Γ is Π1

1-complete there exists a continuous
function g : 2ω → 2ω such that g−1(Γ ) = C. Then it is easily checked that
the function ϕ ◦ g is a Π1

1-norm on C and that the sets

C0 = {(x, y) ∈ C × 2ω : ϕ(g(x)) ≤∗ ϕ(y)},

C1 = {(x, y) ∈ 2ω × Γ : ϕ(y) <∗ ϕ(g(x))}

are disjoint and both coanalytic. Then our claim will follow from the next
two lemmas.
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Lemma 10. No Borel set can separate C0 from C1.

Proof. Assume towards a contradiction that B is a Σ0
ξ subset of 2ω × 2ω

separating C0 from C1. Let P be a Borel non-Π0
ξ subset of 2ω. Since Γ is

Π1
1-complete, P is reducible to Γ , and there is some continuous f : 2ω → 2ω

such that P = f−1(Γ ). Then A = f(P ) is a Σ1
1 subset of Γ and the norm

ϕ is bounded on A by some ordinal η. Furthermore, since C is coanalytic
non-Borel, the norm ϕ ◦ g is unbounded on C. Thus there exists some x ∈ C
such that η′ := ϕ ◦g(x) > η. Denote by B′ the Π0

ξ set {y : (x, y) /∈ B}. Then
for y ∈ 2ω we have:

y ∈ A ⇒ η′ > ϕ(y) ⇒ (x, y) ∈ C1 ⇒ (x, y) /∈ B ⇒ y ∈ B′,

y /∈ Γ ⇒ η′ ≤∗ ϕ(y) ⇒ (x, y) ∈ C0 ⇒ (x, y) ∈ B ⇒ y /∈ B′,

hence A ⊂ B′ ⊂ Γ . Thus P ⊂ f−1(B′) ⊂ f−1(Γ ) = P . And we conclude
that the Π0

ξ set f−1(B′) is equal to P , a contradiction.

Lemma 11. If the pair (C0, C1) is complete, then Γ is continuously re-

ducible to C.

Proof. If (C0, C1) is complete then the pair (Γ, ∅) is reducible to (C0, C1),
and there are two continuous functions f0 and f1 from 2ω to 2ω such that
f = f0 × f1 reduces (Γ, ∅) to (C0, C1). So

x ∈ Γ ⇒ (f0(x), f1(x)) ∈ C0 ⇒ f0(x) ∈ C,

x /∈ Γ ⇒ (f0(x), f1(x)) /∈ C0 ∪ C1 ⇒ f0(x) /∈ C,

and this shows that f0 reduces Γ to C.

Thus the proof of Theorem 9 is complete.

The following result is well-known.

Lemma 12. There exist complete disjoint pairs of coanalytic subsets

of 2ω.

Proof. Let C be a complete Π1
1 subset of 2ω. Then C×2ω and 2ω×C are

coanalytic subsets of 2ω ×2ω ≃ 2ω, and since the class Π1
1 has the reduction

property there are disjoint coanalytic subsets C0 and C1 of 2ω × 2ω such
that C0 ⊂ C × 2ω, C1 ⊂ 2ω × C and C0 ∪ C1 = (C × 2ω) ∪ (2ω × C).

We claim that the pair (C0, C1) is complete. Let X be a zero-dimensional
Polish space, and (D0, D1) a disjoint pair of coanalytic subsets of X. Since
C is complete there are continuous functions f, g : X → 2ω such that D0 =
f−1(C) and D1 = g−1(C). Then the function h = f×g : X → 2ω×2ω is con-
tinuous and satisfies h(D0) ⊂ C×(2ω\C) ⊂ C0, h(D1) ⊂ (2ω \ C) × C ⊂ C1

and

h(X \ (D0 ∪D1)) ⊂ (2ω \ C) × (2ω \ C) = (2ω × 2ω) \ (C0 ∪ C1),

which shows that the pair (C0, C1) is complete.
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4. Bianalytic functions. Our goal is now to give “natural” examples
of complete pairs of coanalytic sets. For this we need several results on
bianalytic functions.

Lemma 13. Let X be a zero-dimensional Polish space and (C0, C1) a

disjoint pair of coanalytic subsets of X. Then there exists a bianalytic func-

tion h : C0 → ωω such that no point of C1 × ωω lies in the closure of the

graph of h.

Proof. It is well-known that WF is Π1
1-complete in T and that the

height T 7→ ht(T ) is a Π1
1 norm on WF. So if we define

Γ0 := {(S, T ) ∈ T × T : S ∈ WF and ht(S) <∗ ht(T )},

Γ1 := {(S, T ) ∈ T × T : T ∈ WF and ht(T ) ≤∗ ht(S)},

we see as in Lemma 12 that the pair (Γ0, Γ1) is complete in T × T . So
there exists a continuous mapping ϕ : X → T × T which reduces (C0, C1)
to (Γ0, Γ1). It is enough to prove the lemma for the pair (Γ0, Γ1) since if
ψ : Γ0 → ωω has the required property for the pair (Γ0, Γ1), so does h = ψ◦ϕ
for the pair (C0, C1). Indeed assume that the sequence (xj) in C0 converges
to x ∈ C1 and that (h(xj)) converges to α ∈ ωω. Then (βj) = (ϕ(xj)) is a
sequence in Γ0 which converges to β = ϕ(x) ∈ Γ1 and ψ(βj) → α. So (β, α)
is a cluster point of the graph of ψ with β ∈ Γ1, in contradiction with the
hypothesis on ψ.

Consider the following open game G(S, T ) with parameters S and T
in T : Player I plays integers m0,m1, . . . and Player II plays integers
n0, n1, . . . with the rule:

“〈n0, n1, . . . , nk−1〉 must be in S whenever 〈m0,m1, . . . ,mk−1〉 is in T”.

And Player II wins a run if it respects the rule forever.
We claim that Player I has a winning strategy in G(S, T ) if (S, T ) ∈ Γ0.

As usual, for T ∈ T and t ∈ ω<ω we denote by Tt the tree {s ∈ ω<ω :
t⌢s ∈ T}. Since

ht(T ) = ht(T∅) = sup
m

(ht(Tm) + 1) > ht(S)

there is an m0 such that ht(Tm0) + 1 > ht(S), hence ht(Tm0) ≥ ht(S) >
ht(Sn0) since S is well-founded.

In the same way, if Player I has played t = 〈m0,m1, . . . ,mk−1〉 and
Player II has played s = 〈n0, n1, . . . , nk−1〉 in such a way that ht(Tt) >
ht(Ss), we have again

ht(Tt) = sup
m

(ht(Tt⌢m) + 1) > ht(Ss),

hence Player I can find and play an integermk such that 〈m0,m1, . . . ,mk〉∈T
and ht(Tt⌢mk

) ≥ ht(Ss) > ht(Ss⌢nk
). Since the sequence (ht(S〈n0,n1,...,nk〉))



Complete pairs of coanalytic sets 275

of ordinals is decreasing, there must be a least integer k with 〈n0, n1, . . . , nk〉
/∈ S whereas 〈m0,m1, . . . ,mk〉 ∈ T , and Player I wins.

As in Lemma 7 it follows from Martin’s theorem that there is a bian-
alytic function (S, T ) 7→ σS,T on Γ0 which assigns to each (S, T ) a win-
ning strategy for Player I in G(S, T ). Viewing a strategy σ as a function
〈n0, n1, . . . , nk−1〉 7→ mk from Seq = ω<ω to ω, we identify the set Σ of

I-strategies with ωSeq ≃ ωω. We now have to prove that if (S(j)) and (T (j))
are sequences of trees converging to S and T respectively, if (S(j), T (j)) ∈ Γ0

and if σ(j) = σS(j),T (j) converges to σ ∈ Σ, then (S, T ) cannot belong to Γ1.

Assume towards a contradiction that (S, T ) ∈ Γ1. Then T is well-founded
and ht(T ) ≤∗ ht(S). We define sequences of integers (mk) and (nk) such
that, for all k,

mk = σ(〈n0, n1, . . . , nk−1〉) and ht(T〈m0,m1,...,mk〉) < ht(S〈n0,n1,...,nk−1〉).

Indeed, if ht(T〈m0,m1,...,mk〉) < ht(S〈n0,n1,...,nk−1〉), we have

ht(T〈m0,m1,...,mk〉) < ht(S〈n0,n1,...,nk−1〉) = sup
n

(ht(S〈n0,n1,...,nk−1〉⌢n) + 1)

and there is an nk such that ht(T〈m0,m1,...,mk〉) < ht(S〈n0,n1,...,nk〉) + 1. Then
for mk+1 = σ(〈n0, n1, . . . , nk〉) we get

ht(T〈m0,m1,...,mk+1〉) < ht(T〈m0,m1,...,mk〉) ≤ ht(S〈n0,n1,...,nk〉)

and this allows us to pursue the inductive construction. And since T is
well-founded there is some k such that 〈m0,m1, . . . ,mk+1〉 /∈ T whereas
〈n0, n1, . . . , nk〉 ∈ S. Let k be the least with this property. Since (S(j))
converges to S, (T (j)) converges to T and (σ(j)) converges to σ, for all large
enough j we have 〈n0, n1, . . . , np〉 ∈ S(j) for p ≤ k, 〈m0,m1, . . . ,mp〉 ∈ T (j)

for p ≤ k, 〈m0,m1, . . . ,mk+1〉 /∈ T (j) and mp = σ(j)(〈n0, n1, . . . , np−1〉) for
p ≤ k + 1, in contradiction with the choice of σ(j) as a winning strategy in
G(S(j), T (j)). This contradiction completes the proof of Lemma 13.

Lemma 14. Let X be a Polish space and (C0, C1) a disjoint pair of

coanalytic subsets of X. Then there exists a bianalytic function h : C0 → ωω

such that no point of C1 × ωω lies in the closure of the graph of h.

Proof. Define C = C0∪C1. Since X is Polish there exists a closed subset
X∗ of ωω and a continuous bijection ϕ from X∗ onto X. Then ϕ−1 is Borel
from X to X∗, and so is h0 = ϕ−1

|C : C → X∗ ⊂ ωω. Define C∗
i = ϕ−1(Ci)

for i = 0, 1. Then (C∗
0 , C

∗
1 ) is a disjoint pair of coanalytic subsets of X∗.

Applying Lemma 13 to (C∗
0 , C

∗
1 ) we get a bianalytic function h∗ : C∗

0 → ωω

such that the graph of h∗ has no cluster point in C∗
1 ×ω

ω. Put h1 = h∗ ◦h0 :
C0 → ωω and h = h0 × h1 : C → ωω × ωω ≃ ωω.

If (xj) were a sequence in C0 converging to x ∈ C1 with h(xj) → (x∗, α)
we would have x∗j := h0(xj) ∈ C∗

0 , x∗j → x∗ and h∗(x∗j ) → α, hence xj =
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ϕ(x∗j) → ϕ(x∗). This would show that ϕ(x∗) = x ∈ C1 hence that x∗ ∈ C∗
1 ,

in contradiction with the choice of h∗.

Lemma 15. Let X be a Polish space and (C0, C1) be a disjoint pair of

coanalytic subsets of X. Denote by C the set C0∪C1 and by g : C → {0, 1}
the bianalytic function defined by g(x) = 0 ⇔ x ∈ C0. Then there exists

a bianalytic function h : C → ωω such that for every sequence (xj) in C
converging to some x ∈ C, if (g(xj)) converges to a ∈ {0, 1} and (h(xj))
converges to some α ∈ ωω then g(x) = a.

Proof. Applying Lemma 14 to (C0, C1) and to (C1, C0) we get bianalytic
functions h0 : C0 → ωω and h1 : C1 → ωω such that the closure of the graph
of hi is disjoint from C1−i × ωω for i = 0, 1. Define then h : C → ωω by

h(x) =

{
h0(x) if x ∈ C0,

h1(x) if x ∈ C1.

Clearly, h is ∆1
1 on C. Moreover, if the sequence (xj) converges to x ∈ C

with g(xj) → a ∈ {0, 1} and h(xj) → α ∈ ωω, for j large enough we have
xj ∈ Ca and h(xj) = ha(xj) → α. We conclude that x /∈ C1−a, hence x ∈ Ca

and g(x) = a.

Lemma 16. Let X be a Polish space and (C0, C1) be a disjoint pair of

coanalytic subsets of X. Denote by C the set C0∪C1 and by g : C → {0, 1}
the bianalytic function defined by g(x) = 0 ⇔ x ∈ C0. Then there exists a

bianalytic function h : C → ωω such that the function g×h : C → {0, 1}×ωω

has a closed graph.

Proof. Let (Wk)k∈ω be a sequence of clopen subsets of ωω separating
the points of ωω. We can define inductively for s ∈ Seq bianalytic functions
gs : C → {0, 1} and hs : C → ωω in such a way that

(i) g∅ = g,
(ii) gs⌢k(x) = 1 ⇔ hs(x) ∈Wk,
(iii) for every sequence (xj) converging to x in C, if (gs(xj)) converges

to a in {0, 1} and (hs(xj)) converges to α in ωω then gs(x) = a.

Indeed, if gs is defined, we get hs by Lemma 15. And if hs is ∆1
1, so are

the functions gs⌢k = 1Wk
◦ hs, where 1Wk

is the characteristic function of
Wk, which is continuous on ωω.

Then if we define h =
∏

s∈Seq hs : C → (ωω)Seq ≃ ωω, the function h

is ∆1
1. Moreover, if (xj) is a sequence in C converging to x ∈ C with

g∅(xj) = g(xj) → a∅ := a ∈ {0, 1} and h(xj) → β = (αs)s∈Seq,

we have hs(xj) → αs for all s ∈ Seq, hence gs⌢k(xj) → as⌢k := 1Wk
(αs) for

all s ∈ Seq and all k.
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For all s we have gs(xj) → as and hs(xj) → αs, hence gs(x) = as. In
particular, g(x) = g∅(x) = a∅ = a. And if we had hs(x) 6= αs for some
s ∈ Seq there would exist some k such that 1Wk

(hs(x)) 6= 1Wk
(αs), hence

gs⌢k(x) 6= as⌢k, a contradiction. We conclude that g(x) = a and h(x) = β,
hence the graph of g × h is closed.

Theorem 17. Let X and Y be Polish spaces, C be a coanalytic subset

of X and g : C → Y be a ∆1
1 function. Then there exists a ∆1

1 function

h : C → ωω such that the graph of g × h is closed in C × Y × ωω.

Proof. There exists a closed subset Y ∗ of ωω, a continuous bijection
ϕ : Y ∗ → Y and a homeomorphic embedding ̺ of Y ∗ into 2ω. Then ψ =
ϕ−1 : Y → Y ∗ is Borel, ̺ ◦ ψ ◦ g : C → 2ω is bianalytic, and so are the
coordinate functions gn : C → {0, 1} of ̺ ◦ψ ◦g. Applying Lemma 16 to each
gn we find bianalytic functions hn : C → ωω such that the graph of gn × hn

is closed in C × {0, 1} × ωω for all n.
Define then h = (ψ ◦ g) ×

∏
n hn : C → ωω × (ωω)ω ≃ ωω. If the

sequence (xj) converges in C to x with yj := g(xj) → y and h(xj) →
β = (y∗, (αn)n∈ω), the sequence (y∗j ) := (ψ ◦ g(xj)) converges to y∗. Thus
yj = ϕ(y∗j ) → ϕ(y∗), and this shows that ϕ(y∗) = y, hence y∗ = ψ(y).
Moreover ̺ ◦ ψ ◦ g(xj) = ̺(y∗j ) → ̺(y∗) = (an) ∈ 2ω and ̺(y∗) = ̺ ◦ ψ(y).
Hence gn(xj) → an and hn(xj) → αn. Since the graph of gn × hn is closed
we get an = gn(x) and hn(x) = αn for all n, hence ̺ ◦ ψ ◦ g(x) = ̺ ◦ ψ(y)
and h(x) = β. Thus g(x) = y and h(x) = β, and this shows that g × h has
a closed graph.

Corollary 18. Let X be a separable metrizable space, Y be a Polish

space and g be a mapping from X to Y . Then g is bianalytic if and only if

there exists a Polish space Z and a mapping h : X → Z such that g × h :
X → Y × Z has a closed graph in X × Y × Z.

Proof. Assume first that there exists h : X → Z such that g × h has a
closed graph G. Let X̂ be the completion of X and G be the closure of G in
X̂ × (Y ×Z). Since G is closed in X × (Y ×Z) we have X ⊂ U(G) and the
mapping x 7→ (g(x), h(x)) is bianalytic on U(G) by Theorem 3. It follows
that g is ∆1

1 on X.
Conversely, if g is ∆1

1 on X, it has a ∆1
1 extension g̃ onto a coanalytic

subset C of X̂ containing X. Applying Theorem 17 we get a ∆1
1 mapping

h : C → ωω such that g̃ × h has a closed graph on C. It follows that the
graph of g × h|X is closed in X × Y × ωω.

5. Some examples of complete pairs of coanalytic sets

Lemma 19. Let X be a Polish space and (C0, C1) be a disjoint pair of

coanalytic subsets of X. Denote by π : X×2ω →X the projection (x, α) 7→ x.
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Then there exists a Π0
2 subset B of X × 2ω such that C0 ⊂ X \ π(B) and

C1 ⊂ U(B).

Proof. Let C = C0 ∪ C1 and g : C → {0, 1} be the bianalytic function
defined by g(x) = 0 ⇔ x ∈ C0. By Lemma 16 there exists a ∆1

1 function
h : C → ωω such that the graph G of g × h is closed in C × {0, 1} × ωω.
Then for x ∈ C, a ∈ {0, 1} and α ∈ ωω we have

(x, a, α) ∈ G ⇔ a = g(x) and α = h(x).

Denote by ϕ a homeomorphism from ωω to a Π0
2 subset Y of 2ω (e.g. 2ω \Q)

and define

B = {(x, β) ∈ X × Y : (x, 1, ϕ−1(β)) ∈ G}.

Clearly B is closed in X × Y hence Π0
2 in X × 2ω. Moreover, for x ∈ C0

there is exactly one point (x, a, α) ∈ G and a = 0. Thus x /∈ π(B). And for
x ∈ C1 there is exactly one point (x, a, α) ∈ G, and a = 1. So x ∈ U(B).

Theorem 20. Let X be a zero-dimensional Polish space and (C0, C1)
a disjoint pair of coanalytic subsets of X. Then there exists a continuous

function Φ : X → K (2ω) such that Φ(x) ∈ K (Q) if x ∈ C0, Φ(x) ∈ K ∗(Q)
if x ∈ C1 and Φ(x) /∈ Kω(2ω) if x /∈ C0 ∪ C1.

Proof. By Lemma 19 there exists a Π0
2 subset B of X × 2ω such that

C0 ∩ π(B) = ∅ and C1 ⊂ U(B). Since X × 2ω is zero-dimensional there is a
continuous function f : X×2ω → 2ω reducing the Π0

2 set B to 2ω \Q. Then
for x ∈ X we put

Φ′(x) = f({x} × 2ω) ∈ K (2ω).

Since the mapping x 7→ {x} × 2ω is continuous from X to K (X × 2ω), it
follows that Φ′ is continuous.

If x ∈ C0 then x /∈ π(B), hence {x} × 2ω ⊂ f−1(Q) and Φ′(x) ∈ K (Q).
If x ∈ C1 then x ∈ U(B), hence ({x} × 2ω) \ f−1(Q) has exactly one point;
it follows that Φ′(x) ∈ K ∗(Q).

Moreover, C = C0 ∪ C1 is coanalytic, and there exists a continuous
mapping Φ′′ from X to K (2ω) such that Φ′′(x) ∈ K (Q) for all x in C and
Φ′′(x) /∈ Kω(2ω) for all x outside C (see for example Lemma 5.1.7 in [1]).

Then the mapping Φ : x 7→ Φ′(x) ∪ Φ′′(x) is clearly continuous from X
to K (2ω) and has the required properties.

We immediately deduce from this theorem the next two corollaries.

Corollary 21. The pair (K (Q),K ∗(Q)) of coanalytic subsets of K (2ω)
is complete.

Corollary 22. The pair (K (Q),Kω(2ω)\K (Q)) of coanalytic subsets

of K (2ω) is complete.
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We give one more example of a complete disjoint pair of coanalytic sub-
sets.

Theorem 23. The pair (WF,WF∗) of coanalytic subsets of T is com-

plete.

Proof. Let X be a closed subset of ωω and (C0, C1) a disjoint pair of
coanalytic subsets of X. Let C = C0 ∪ C1 and g : C → {0, 1} be the
bianalytic function defined by g(x) = 0 ⇔ x ∈ C0. By Lemma 16 there
exists a ∆1

1 function h : C → ωω such that the graph G of g× h is closed in
C × {0, 1} × ωω. Then for x ∈ C, a ∈ {0, 1} and α ∈ ωω we have

(x, a, α) ∈ G⇔ a = g(x) and α = h(x).

Then define F ′ := {(x, α) ∈ X ×ωω : (x, 1, α) ∈ G}. Clearly, F ′ is closed
in X×ωω and we have C0∩π(F ′) = ∅ and C1 ⊂ U(F ′). Since C is coanalytic
there exists a closed subset H of X × ωω such that π(H) = X \ C. Then
H × ωω is a closed subset of (X × ωω) × ωω ≃ X × (ωω × ωω) ≃ X × ωω.
Thus there exists a closed subset F ′′ of X × ωω such that π(F ′′) = X \ C
and the fiber F ′′(x) is uncountable for x /∈ C.

The closed subset F = F ′ ∪ F ′′ of X × ωω then satisfies F (x) = ∅ if
x ∈ C0, F (x) is a singleton if x ∈ C1, and F (x) is uncountable if x ∈ X \C.
Let T be a tree on ω × ω such that ⌈T ⌉ = F ⊂ X × ωω ⊂ ωω × ωω. Define
a continuous mapping from X to T by

T (x) = {s ∈ Seq : ∃t ≺ x |t| = |s| and (t, s) ∈ T}.

It is easily checked that the set ⌈T (x)⌉ of infinite branches of the tree
T (x) is equal to the fiber F (x). So T (x) ∈ WF if x ∈ C0, T (x) ∈ WF∗

if x ∈ C1 and T (x) /∈ WF ∪ WF∗ if x /∈ C. And this shows that the
mapping x 7→ T (x) is a continuous reduction of the pair (C0, C1) to the pair
(WF,WF∗). It follows that the pair (WF,WF∗) is complete.

6. Complete sequences of coanalytic sets. More generally, one can
consider disjoint sequences of coanalytic sets instead disjoint pairs. We will
say that the sequence (Cn) of pairwise disjoint coanalytic subsets of the
Polish space Y is complete if for every Polish zero-dimensional space X and
every sequence (Dn) of pairwise disjoint coanalytic subsets of X there exists
a continuous function f : X → Y such that Dn = f−1(Cn) for all n.

For every n ∈ ω we denote by WF(n) the set of trees on ω having exactly
n infinite branches. So WF(0) = WF and WF(1) = WF∗. We intend to prove
that the sequence (WF(n))n∈ω is complete.

Lemma 24. Let Y and Z be Polish spaces, and X be a Borel subset of

Y × Z. Then, for every integer n, the set Un(X) of points y ∈ Y such that

the fiber X(y) has exactly n points in Z is coanalytic.
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Proof. This is already proved for n = 0 and n = 1. Let (Wk) be a
countable basis of the topology of Z, and

Dn = {(k0, k1, . . . , kn−1) ∈ ωn : Wki
∩Wkj

= ∅ for 0 ≤ i < j < n}.

Let π : Y ×Z → Y denote the first projection. Define for all k the coanalytic
set Ek by Ek := U(X∩(Y ×Wk)) and for (k0, k1, . . . , kn−1) ∈ Dn the analytic
set A(k0,k1,...,kn−1) by

A(k0,k1,...kn−1) = π
(
X ∩

(
Y ×

(
Z \

⋃

j<n

Wkj

)))
.

It is clear that a point y lies in Un(X) if and only if there are n pairwise
disjoint open sets (V0, V1, . . . , Vn−1) such that X(y) contains exactly one
point in each Vj and no point outside

⋃
j<n Vj . So

Un(X) =
⋃

(k0,k1,...,kn−1)∈Dn

(⋂

j<n

Ekj
\ A(k0,k1,...,kn−1)

)
,

and this shows that Un(X) ∈ Π1
1.

Lemma 25. For all integer n, WF(n) is a coanalytic subset of T .

Proof. Let X be the set {(T, α) ∈ T × ωω : α ∈ ⌈T ⌉}. Then X is closed
in T × ωω and WF(n) = Un(X) for all n ∈ ω. So the conclusion follows
immediately from Lemma 24.

Lemma 26. Let X be a Polish space and (Cn) be a sequence of pairwise

disjoint coanalytic subsets of X. Then there exists a closed subset F of

X × ωω such that Cn = Un(X) for all integer n.

Proof. Consider the bianalytic function g defined on the coanalytic set
C =

⋃
nCn by g(x) = n ⇔ x ∈ Cn. By Theorem 17 there is a bianalytic

function h : C → ωω such that the graph G of g×h is closed in C×ω×ωω.
Then G is closed in X × ω × ωω and we have G(x) = {(n, h(x))} for every
x ∈ Cn. As in the proof of Theorem 23 we can find a closed subset F ′ of
X × (ω × ωω) such that F ′(x) = ∅ for x ∈ C and F ′(x) is uncountable for
x /∈ C.

Then we define F ⊂ X × (ω × ωω) ≃ X × ωω by

(x,m, α) ∈ F ⇔ ((x,m, α) ∈ F ′) or (∃n n ≤ m < 2n and (x, n, α) ∈ G).

It is easily checked that F is closed, that F (x) ⊃ F ′(x) is uncountable for
x /∈ C and that, for x ∈ Cn, F (x) = {(m,h(x)) : n ≤ m < 2n}, hence has
exactly n points. Thus Un(X) = Cn.

Theorem 27. The sequence (WF(n))n∈ω of pairwise disjoint coanalytic

subsets of T is complete.
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Proof. Let X be a closed subset of ωω and (Cn) a sequence of pairwise
disjoint coanalytic subsets of X. By Lemma 26 there is a closed subset F of
X × ωω, hence of ωω × ωω, such that Un(F ) = Cn for all n. Let T be a tree
on ω×ω such that F = ⌈T ⌉. Then we define a continuous mapping from X
to T by

T (x) = {s ∈ Seq : ∃t ≺ x (t, s) ∈ T and |s| = |t|}.

Since ⌈T (x)⌉ = F (x) for all x ∈ X we have x ∈ Cn ⇔ T (x) ∈ WF(n) for
all n. Thus the mapping x 7→ T (x) is a continuous reduction of the sequence
(Cn) to the sequence (WF(n)).

SinceX and the sequence (Cn) are arbitrary this shows that the sequence
(WF(n)) is complete.

References

[1] G. Debs and J. Saint Raymond, Borel liftings of Borel sets: some decidable and

undecidable statements, Mem. Amer. Math. Soc., to appear; preprint available at
www.institut.math.jussieu.fr/˜raymond/preprints/treerep.pdf.

[2] C. Dellacherie, Ensembles analytiques: théorèmes de séparation et applications, in:
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