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The classification of circle-like continua
that admit expansive homeomorphisms
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Christopher Mouron (Memphis, TN)

Abstract. A homeomorphism h : X → X of a compactum X is expansive provided
that for some fixed c > 0 and every x, y ∈ X (x 6= y) there exists an integer n, dependent
only on x and y, such that d(hn(x), hn(y)) > c. It is shown that if X is a solenoid that
admits an expansive homeomorphism, then X is homeomorphic to a regular solenoid. It
can then be concluded that a circle-like continuum admits an expansive homeomorphism
if and only if it is homeomorphic to a regular solenoid.

1. Introduction. In 1955, R. F. Williams constructed an expansive
homeomorphism on the dyadic solenoid [14]; this was the first example of
an expansive homeomorphism on a continuum. In this paper we will show
that the only circle-like continua that admit expansive homeomorphisms are
regular solenoids like the dyadic solenoid. A homeomorphism h : X → X is
called expansive provided that there exists a constant c > 0 such that for
any distinct x, y ∈ X there exists an integer n such that d(hn(x), hn(y)) > c.
Here, c is called the expansive constant. Expansive homeomorphisms exhibit
sensitive dependence on initial conditions in the strongest sense in that no
matter how close any two points are, either their images or preimages will
at some point be at least a certain distance apart.

A continuum X is circle-like if it is the inverse limit of simple closed
curves. Equivalently, a continuum is circle-like if for every ε > 0 there exists
a circle-chain cover U of X with mesh(U) < ε. Let the simple closed curve
S be defined by R/Z with metric

dS(x, y) = min{|x− y|, 1− |x− y|}.

If n ∈ N, let (n) : S → S be defined by

(n)x = (n)(x) = nx mod 1.
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A continuum is a solenoid if it is homeomorphic to lim←− (S, (n(i)))∞i=1 where
{n(i)}∞i=1 is some sequence of natural numbers. A solenoid is a simple closed
curve if and only if all but a finite number of elements of {n(i)}∞i=1 are 1.
Since it is well known that simple closed curves do not admit expansive
homeomorphisms [12], we will only consider solenoids that are defined by
bonding maps {(n(i))}∞i=1 with an infinite number of elements greater than 1.
It is well known that the shift homeomorphism of lim←− (S, (n))∞i=1 is expansive
when n ≥ 2. Here, lim←− (S, (n))∞i=1 is called a regular solenoid. Floris Takens
gives a survey on the solenoid in [11] and shows that if Mn is a homeo-
morphism that is multiplication of the solenoid lim←− (S, (n(i)))∞i=1 by n then

• each prime factor of n is a factor of each element of some infinite
subsequence of {n(i)}∞i=1,
• if (lim←− (S, (n(i)))∞i=1,Mn) is conjugated to a hyperbolic attractor, then

lim←− (S, (n(i)))∞i=1 is isomorphic to lim←− (S, (n))∞i=1 as a topological group.

Alex Clark showed in [1] that a solenoid must be composite to admit an
expansive homeomorphism. A solenoid is composite if there exists a prime
number p that divides an infinite number of {n(i)}∞i=1. Also, it is known that
if X is tree-like [7] or separates the plane into two complementary domains
[8], then X does not admit an expansive homeomorphism. The following
related result has recently been shown:

Theorem 1 ([6]). A circle-like continuum admits an expansive homeo-
morphism if and only if it is a solenoid.

The goal of this paper is to prove the following theorem:

Theorem 2. A solenoid Σ admits an expansive homeomorphism if and
only if the solenoid is homeomorphic to lim←− (S, (n))∞i=1 for some n ≥ 2.

Then combining this with Theorem 1 we get a complete classification of
circle-like continua that admit expansive homeomorphisms:

Corollary 3. A circle-like continuum admits an expansive homeo-
morphism if and only if it is homeomorphic to lim←− (S, (n))∞i=1 for some n ≥ 2.

To do this we first need some basic results about expansive homeo-
morphisms. The following theorem is Corollary 5.22.1 in Walters [Wa]:

Theorem 4. Let X be a compact metric space and h : X → X be an
expansive homeomorphism. Then

(1) Expansiveness is independent of metric as long as the metric gives
the topology of X.

(2) Let φ : X → Y be a homeomorphism of compact spaces X and Y .
Then g = φ ◦ h ◦ φ−1 is an expansive homeomorphism.

(3) hn : X → X is an expansive homeomorphism for each n ∈ Z+.
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Notice that part (2) implies that admitting an expansive homeomorphism
is a topological invariant.

In Section 4, the motivation and an outline of the proof of the main
theorem is given.

2. Inverse limits. In order to prove the main theorem, an understand-
ing of inverse limits and the construction of homeomorphisms on inverse
limits is necessary. Let {(Xi,dXi)}∞i=1 be a collection of metric spaces such
that {dXi}∞i=1 is uniformly bounded and for each i let bi : Xi+1 → Xi be a
continuous function called a bonding map. The collection (Xi, bi)∞i=1 is called
an inverse system. Each Xi is called a factor space of the inverse system.
If each bonding map is the same map b : Y → Y , then the inverse sys-
tem can be written as (Y, b)∞i=1. Every inverse system (Xi, bi)∞i=1 determines
a topological space X called the inverse limit of the system and written
X = lim←− (Xi, bi)∞i=1. The space X is the subspace of the Cartesian product∏∞
i=1Xi given by

X = lim←− (Xi, bi)∞i=1 =
{
〈xi〉∞i=1 ∈

∞∏
i=1

Xi

∣∣∣ bi(xi+1) = xi

}
.

X has the subspace topology induced on it by
∏∞
i=1Xi. If x = 〈xi〉∞i=1 and

y = 〈yi〉∞i=1 are two points of the inverse limit, we define their distance to
be

d(x,y) =
∞∑
i=1

dXi(xi, yi)
2i

.

If bi : Xi+1 → Xi for n ≤ i < k then define bnn : Xn → Xn by bnn = idXn
and bkn : Xk → Xn by bkn = bn◦bn+1◦· · ·◦bk−1. Next define the ith projection
πi : X → Xi by πi(〈xi〉∞i=1) = xi. For more on inverse limits see [2], [3], [5]
or [13].

The next theorem by Mioduszewski [5] states how to construct homeo-
morphisms between inverse limit spaces:

Theorem 5. Let X = lim←− (Xi, bi)∞i=1, Y = lim←− (Yi, βi)∞i=1. Then a map
h : X → Y is a homeomorphism if and only if there exist

• a decreasing sequence {εi}∞i=1 of positive numbers such that εi → 0,
• increasing sequences {ni}∞i=1 and {mi}∞i=1 of positive integers,
• maps fi : Xn2i−1 → Ym2i−1 and gi : Ym2i → Xn2i,

such that

• the following diagrams are εm2i−1-commutative for all j ≤ m2i−1 and
k ≥ i:
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Xn2i−1

b
n2k
n2i−1←−−−− Xn2k

fi

y gk

x
Yj

β
m2i−1
j←−−−−− Ym2i−1

β
m2k
m2i−1←−−−− Ym2k

Xn2i−1

b
n2k−1
n2i−1←−−−− Xn2k−1

fi

y fk

y
Yj

β
m2i−1
j←−−−−− Ym2i−1

β
m2k−1
m2i−1←−−−−− Ym2k−1

• the following diagrams are εn2i-commutative for all j ≤ n2i and k ≥ i:

Xj

b
n2i
j←−−−− Xn2i

b
n2k
n2i←−−−− Xn2k

gi

x gk

x
Ym2i

β
m2k
m2i←−−−− Ym2k

Xj

b
n2i
j←−−−− Xn2i

b
n2k+1
n2i←−−−− Xn2k+1

gi

x fk+1

y
Ym2i

β
m2k+1
m2i←−−−−− Ym2k+1

Furthermore,

h(〈xi〉) =
∞⋂
j=1

∞⋃
i=j

π−1
m2i−1(fi(xn2i−1)), h−1(〈xi〉) =

∞⋂
j=1

∞⋃
i=j

π−1
n2i(gi(xm2i)).

The next two corollaries show that we can compose or decompose the
bonding maps without changing the topology of the inverse limit space, and
“small” changes to {fi}∞i=1 do not change the homeomorphism.

Corollary 6. Let X=lim←− (Xi, bi)∞i=1 and X̂=lim←− (Xni , b
ni+1
ni )∞i=1 where

{ni}∞i=1 is an increasing sequence. Then X̂ and X are homeomorphic.

Corollary 7. Let X = lim←− (Xi, bi)∞i=1, {ni}∞i=1 be an increasing se-
quence, fi, f̂i : Xni+1 → Xni and h, ĥ : X → X be such that h(〈xi〉∞i=1) =⋂∞
j=1

⋃∞
i=j π

−1
ni (fi(xni+1)) and ĥ(〈xi〉∞i=1) =

⋂∞
j=1

⋃∞
i=j π

−1
ni (f̂i(xni+1)). If for

every ε > 0 there exists Nε such that d(bnik ◦ fi(xni+1), bnik ◦ f̂i(xni+1)) < ε for
every i > Nε and k ≤ ni, then h = ĥ.

Let {fα}α∈Ω be a collection of maps fα : X → X such that fα ◦ fβ =
fβ ◦ fα for all α, β ∈ Ω. Let X̂ = lim←− (X, gi)∞i=1 where gi ∈ {fα}α∈Ω for
each i. Then define O(fα, X̂) = |{i : gi = fα}| and Oj(fα, X̂) = |{i :
gi = fα and i ≥ j}|. Additionally suppose p = (fα1)n1 ◦ · · · ◦ (fαk)nk where
αi ∈ Ω and αi = αj if and only if i = j. Then define O(fα, p) = ni if α = αi
and O(fα, p) = 0 if α 6∈ {α1, . . . , αk}. This counts the number of times a
particular function appears in the composition of p.

Let A be a finite multi-set, denoted by [a1, . . . , an], of commuting self-
maps on X. Then define A∗ : X → X by taking the composition of the
elements of A. Since the maps commute, the order of the composition does
not matter. Then if p = A∗ define C(p) = A. This allows us to compose
multisets of functions into a function or decompose a function into a multiset



Classification of circle-like continua 105

of its component functions. For example, if gji = gi ◦ · · · ◦ gj−1, then C(gji ) =
[gi, . . . , gj−1] and C(gji )∗ = gji .

The next theorem shows that the order of the bonding maps does not
matter if the maps are all pairwise commutative:

Theorem 8. Suppose that X̂ = lim←− (X, gi)∞i=1 and Ŷ = lim←− (X, g̃i)∞i=1

where gi, g̃i ∈ {fα}α∈Ω and O(fα, X̂) = O(fα, Ŷ ) for all α ∈ Ω. Then X̂ is
homeomorphic to Ŷ .

Proof. For notational convenience we will assume gi : Xi+1 → Xi, g̃i :
X ′i+1 → X ′i, p

j
i : X ′j → Xi and qji : Xj → X ′i where X ′i = X = Xi.

Let p1
1 = idX and q21 = g1. Then g1 = p1

1 ◦ q21. Also notice that

O(fα, Ŷ ) = O2(fα, X̂) +O(fα, q21).

Thus there exists n1 > 2 such that C(q21) ⊂ C(g̃n1
1 ). Let pn1

2 = (C(g̃n1
1 ) −

C(q21))∗. Then g̃n1
1 = q21 ◦ p

n1
2 .

Continuing inductively suppose that pn1
2 , . . . , p

n2k−1
n2k−2 and qn2

n1
, . . . , qn2k

n2k−1

have been found. Then

On2k−1
(fα, Ŷ ) = On2k

(fα, X̂) +O(fα, qn2k
n2k−1

).

Thus there exists n2k+1 > n2k such that C(qn2k
n2k−1

) ⊂ C(g̃n2k+1
n2k−1). Let pn2k+1

n2k =
(C(g̃n2k+1

n2k−1)− C(qn2k
n2k−1

))∗. Then g̃
n2k+1
n2k−1 = qn2k

n2k−1
◦ pn2k+1

n2k .
Also,

On2k
(fα, X̂) = On2k+1

(fα, Ŷ ) +O(fα, p
n2k+1
n2k ).

Thus there exists n2k+2 > n2k+1 such that C(pn2k+1
n2k ) ⊂ C(gn2k+2

n2k ). Let
q
n2k+2
n2k+1 = (C(gn2k+2

n2k )− C(qn2k+1
n2k ))∗.

Hence X̂ and Ŷ are homeomorphic by Theorem 5.

If f : S → S is a map, then define deg(f) = n if f is homotopic to (n).
It quickly follows that deg(f ◦ g) = deg(f) deg(g) (see [9]).

Let f : S → S be a map such that deg(f) = a. Then define F : R → R
to be the lift of f given by F (x) = abxc + f(x mod 1). Lower case letters
will always define functions on S whereas the capitalization of that letter
will represent the lift of that function—except in the case of multiplication
by an integer a. In this case we define (a) : S → S and a : R → R. Notice
that f(x) = F (x) mod 1 and (a)x = ax mod 1. Normally a and b will denote
positive integers.

Let f , g : S → S. Then define dS(f, g) = supx∈S dS(f(x), g(x)). Likewise
define dR(F,G) = supx∈R dR(F (x), G(x)) where F and G are lifts of f and
g respectively onto R. Notice that

dS(f, g) = min{dR(F,G) mod 1, 1− (dR(F,G) mod 1)}.
From here on if Σ = lim←− (S, (bi))∞i=1, then define Si = πi(Σ).



106 C. Mouron

Suppose that F : R→ R is a map. Then [a, b] is an up-horseshoe of F if

• F (a) = F (b),
• F (x) ≥ F (a) for all x ∈ [a, b].

The interval [a, b] is a maximal up-horseshoe of F if [a, b] is an up-horseshoe
and no interval [c, d] that properly contains [a, b] is an up-horseshoe.

Proposition 9. Suppose that F : R → R is a map and k ∈ N is such
that dR(F, k)<ε. If [a, b] is an up-horseshoe of F , then diam(F ([a, b]))<2ε.

Proof. Suppose on the contrary that diam(F ([a, b])) ≥ 2ε. Then there
exists xm ∈ (a, b) such that F (xm)−F (b) = 2ε. Since |F (xm)−kxm| < ε, we
have kxm − F (b) > ε. However, since k is increasing, kb > kxm. Therefore
|kb− F (b)| = kb− F (b) > ε, which is a contradiction.

Proposition 10. Suppose that F : R → R and G : R → R are onto
maps and k ∈ N is such that dR(F ◦ G, k) < ε. If [a, b] is an up-horseshoe
of F , then diam(F ([a, b])) < 2ε.

Proof. Suppose that [a, b] is an up-horseshoe of F . There exists an inter-
val [a′, b′] such that G([a′, b′]) = [a, b], and either G(a′) = a and G(b′) = b, or
G(a′) = b and G(b′) = a. Thus [a′, b′] is an up-horseshoe of F ◦G. Therefore,
by Proposition 9,

diam(F ([a, b])) = diam(F ◦G([a′, b′])) < 2ε.

Proposition 11. Suppose that F : R → R is a map such that one of
the following is true:

• limx→−∞ F (x) = −∞ and limx→∞ F (x) =∞,
• limx→−∞ F (x) =∞ and limx→∞ F (x) = −∞.

If [a, b] and [c, d] are maximal up-horseshoes of F , then [a, b] = [c, d] or
[a, b] ∩ [c, d] = ∅.

Proof. Suppose on the contrary that [a, b] and [c, d] are maximal up-
horseshoes such that [a, b] 6= [c, d] and [a, b]∩ [c, d] 6= ∅. We may assume that
a < c < b < d. Then since c ∈ [a, b] and b ∈ [c, d], we have F (c) ≥ F (b)
and F (b) ≥ F (c). Therefore F (a) = F (b) = F (c) = F (d) and F (x) ≥ F (a)
for all x ∈ [a, d]. Thus [a, d] is an up-horseshoe that properly contains [a, b],
which is a contradiction.

Proposition 12. Suppose that F : R → R and G : R → R are onto
maps and k ∈ N is such that dR(F ◦G, k) < ε. Then there exists a monotone
map F̂ : R→ R such that dR(F, F̂ ) < 2ε.
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Proof. By Proposition 11 the set of maximal up-horseshoes is a pairwise
disjoint collection of intervals {[ai, bi]}i∈Ω. Define F̂ : R→ R by

F̂ (x) =
{
F (x) if x ∈ R−

⋃
i∈Ω[ai, bi],

F (ai) if x ∈ [ai, bi].

Then F̂ is monotone. Since diam(F ([ai, bi])) < 2ε by Proposition 10, we have
d(F̂ (x), F (x)) = d(F (ai), F (x)) < 2ε if x ∈ [ai, bi]. Thus dR(F, F̂ ) < 2ε.

Theorem 13. Suppose the following:

• Σ = lim←− (S, (bi))∞i=1,
• {ni}∞i=1 is a non-decreasing sequence of positive integers,
• fi : Sni+1 → Sni,
• h : Σ → Σ is a homeomorphism such that

h(〈xi〉∞i=1) =
∞⋂
j=1

∞⋃
i=j

π−1
ni (fi(xni+1)).

Then there exist maps f̂i : Sni+1 → Sni whose lifts F̂i are monotone such

that h(〈xi〉∞i=1) =
⋂∞
j=1

⋃∞
i=j π

−1
ni (f̂i(xni+1)).

Proof. Let Fi be the lift of fi. Then by Theorem 5 there exists a sequence
{εi}∞i=1 of positive numbers, a sequence {ki}∞i=1 of positive integers and maps
Gi : R→ R such that

• εi → 0 as i→∞,
• dR(Fi ◦Gi, ki) < εi/b

ni
1 .

Then it follows from Proposition 12 that there exists a monotone map F̂i
such that dR(Fi, F̂i) < 2εi/bni1 . Let f̂i = F̂i mod 1; then the theorem follows
from Corollary 7.

Since h is an expansive homeomorphism if and only if h2 is an expansive
homeomorphism by Theorem 4, we may take each F̂i in Theorem 13 to be
monotone increasing.

3. Expansive homeomorphisms on regular solenoids. In this sec-
tion we will examine sufficient conditions for a solenoid to admit an expan-
sive homeomorphism. This was first shown by Williams [14]. For complete-
ness, the proof will be given.

Let b ∈ Z+ and define (b) : S → S by (b)x = bx mod 1. A solenoid Σb is
regular if there exists a positive integer b such that Σb = lim←− (S, (b)).

Define the shift homeomorphism hb : Σb → Σb by

hb(x) = hb(〈x1, x2, x3, . . .〉) = 〈(b)x1, (b)x2, (b)x3, . . .〉 = 〈(b)x1, x1, x2, . . .〉.
Also, notice that h−1

b (〈x1, x2, x3, . . .〉) = 〈x2, x3, x4, . . .〉.
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Theorem 14. Let Σb be a regular solenoid such that b > 1. Then Σb
admits an expansive homeomorphism.

Proof. We will show that the shift homeomorphism hb is expansive.
Let the expansive constant be 1/(2b). Notice that if x, y ∈ S and dS(x, y)

< 1/(2b) then dS((b)x, (b)y) = bdS(x, y). Let x,y be distinct elements in Σb.
Then there exists i such that xi 6= yi. Furthermore, there exists a non-
negative natural number n such that 1/(2b) < bndS(xi, yi) ≤ 1/2. Hence,

d(hn−i+1
b (x), hn−i+1

b (y)) = d(hnb (h−i+1
b (x)), hnb (h−i+1

b (y)))
= d(hnb (〈xi, xi+1, . . .〉), hb(〈yi, yi+1, . . .〉))

> bndS(xi, yi) >
1
2b
.

Hence hb is expansive.

Now in order to prove the main theorem we must show that if Σ is a
solenoid that admits an expansive homeomorphism, then Σ must be regular.

4. A critical example and motivation of the proof of the main re-
sult. In this section we give an example of a homeomorphism of a solenoid
that is continuum-wise expansive but not expansive. This example is the
motivation for the main result. A homeomorphism is continuum-wise ex-
pansive if there exists a number c > 0 (called the continuum-wise expan-
sive constant) such that for every non-degenerate subcontinuum A, there
exists an integer n such that diam(hn(A)) ≥ c. A homeomorphism is posi-
tively continuum-wise expansive if there exists an integer n ≥ 0 such that
diam(hn(A)) ≥ c. All expansive homeomorphisms are continuum-wise ex-
pansive, but the converse is not true.

Let {pi}∞i=1 be an increasing sequence of primes and define {b̂i}∞i=1 by

b̂i =
{ 2 if i is odd,
pi/2 if i is even.

Then define Σ̂2 = lim←− (S, (̂bi))∞i=1.
Let h : Σ̂2 → Σ̂2 be defined by h(〈xi〉∞i=1) = 〈(2)xi〉∞i=1. It can be shown

by using Theorem 5 that h is a homeomorphism.
In order to prove that neither the current example nor non-regular

solenoids in general admit expansive homeomorphisms, we must find subsets
that satisfy the assumption of the following lemma.

Lemma 15. Suppose that h : X → X is an expansive homeomorphism
and Y ⊂ X is such that h(Y ) = Y and |Y | ≥ 2. Then the expansive constant
for h cannot be greater than diam(Y ).

Proof. Let x and y be distinct elements of Y . Then hn(x), hn(y) ∈ Y for
all n ∈ Z. Therefore, d(hn(x), hn(y)) ≤ diam(Y ) for all n.
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Theorem 16. The homeomorphism h : Σ̂2 → Σ̂2 is continuum-wise
expansive. However, h is not expansive.

Proof. The continuum-wise expansive constant for h will be 1/4. Let A
be a proper subcontinuum of Σ̂2. Then A is an arc with endpoints say x =
〈xi〉∞i=1 and y = 〈yi〉∞i=1. If π1(A) = S, then diam(A) ≥ (1/2)dS(0, 1/2) =
1/4. So suppose that π1(A) is an arc [x1, y1]. Then there exists a positive
integer n such that |2nx1 − 2ny1| > 1. Thus (2)n([x1, y1]) = S. Therefore
diam(hn(A)) ≥ 1/4 and h is continuum-wise expansive.

On the other hand, let c be the expansive constant for h. Pick i > 2 such
that

1
2

∞∑
j=2i

1
2j
< c

and consider the set {j/pi}pi−1
j=1 . Then since 2 and pi are relatively prime,

(2)({j/pi}pi−1
j=1 ) = {j/pi}pi−1

j=1 . Thus

h

(
π−1

2i+1

({
j

pi

}pi−1

j=1

))
⊂ π−1

2i+1

(
(2)
({

j

pi

}pi−1

j=1

))
= π−1

2i+1

({
j

pi

}pi−1

j=1

)
.

Let Y =
⋂∞
n=0 h

n(π−1
2i+1({j/pi}pi−1

j=1 )). Then h(Y ) = Y . Furthermore, since
π2i+1(Y ) = {j/pi}pi−1

j=1 , we have |Y | ≥ 2. Finally, as (b2i)(j/pi) = (pi)(j/pi)
= 0, it follows that

diam(Y ) ≤ diam
(
π−1

2i+1

({
j

pi

}pi−1

j=1

))
≤ diam(π−1

2i (0)) <
1
2

∞∑
j=2i

1
2j
< c.

Thus by Lemma 15, c is not an expansive constant for h. Consequently, h
is not an expansive homeomorphism.

In order to prove the main result, it will also be necessary to find arbi-
trarily small invariant sets under h. However, since we are only guaranteed
ε-commuting diagrams and not commuting diagrams to describe an arbi-
trary homeomorphism on an inverse limit space, this process becomes more
difficult and technical. An outline of the proof of the main theorem is the
following:

• Without loss of generality, we can assume that h : Σ → Σ is a pos-
itively continuum-wise expansive homeomorphism and an expansive
homeomorphism with expansive constant c > 0 of a solenoid Σ.
• From Section 2, we can assume that Σ = lim←− (S, (bi))∞i=1 where {bi}∞i=1

is a sequence of primes.
• In Section 5, it is shown that Σ is homeomorphic to one of five types

of solenoids (see Section 5 for precise definitions):
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(a) Types 1A, 2A and 3A have the following properties:

(i) there exist at least one prime number p that occurs infinitely
often in {bi}∞i=1,

(ii) there are an infinite number of distinct primes in {bi}∞i=1,
(iii) there are strings of increasing length of the same primes that

follow a certain pattern.

(b) Type 4 solenoids have the following properties:

(i) no prime number occurs infinitely often in {bi}∞i=1,
(ii) there are an infinite number of distinct primes in {bi}∞i=1.

(c) Solenoids that are type 5A have the property that there are only a
finite number of distinct prime numbers in {bi}∞i=1, each of which
occurs infinitely often. These solenoids are regular and admit ex-
pansive homeomorphisms as shown in Section 3.

• It is shown in Theorems 13 and 19 and Proposition 18 that there exist
a non-decreasing sequence {ni}∞i=1 and maps fi : Sn2i → Sn2i−1 such
that for each i:

(a) the lift Fi of fi is monotone increasing,
(b) there exist relatively prime positive integers a and b such that

deg(fi)/bn2i
n2i−1

= a/b,

(c) h(〈xi〉∞i=1) =
∞⋂
j=1

∞⋃
i=j

π−1
n2i−1(fi(xn2i)).

• The multiplying factor of h is defined to be M(h) = a/b. The multi-
plying factor is essentially the factor to which the diameters of small
subarcs of Σ expand under h.
• It is shown in Corollary 34 that if h is positively continuum-wise ex-

pansive, then M(h) > 1.
• It follows from Corollary 20 that ifΣ is a type 4 solenoid, thenM(h)=1

and hence h cannot be continuum-wise expansive. It follows that h is
not expansive.
• Next, under the assumption that Σ is a type 1A, 2A, or 3A solenoid

it can be shown by using Theorem 22 and Corollary 23 that there
exist an increasing sequence {si}∞i=1 of positive integers and an integer
β such that {ni}∞i=1 and {fi}∞i=1 can be chosen to have the following
additional properties:

(a) deg(fi) = a,
(b) n2i = n2i−1 + β = α′i + β,
(c) bn2i

n2i−1
= b

α′i+β

α′i
= b,

(d) si < α′i,
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(e) bsi is relatively prime to both a and b,
(f) fi becomes arbitrarily close to (a) with great control. (Note: find-

ing this control on the closeness is a major part of the technical
discussion in the following.)

• As {si}∞i=1 is increasing, there exists an N1 such that diam(π−1
si (0)) <

c/6 for all i > N1. Then since (bsi)(j/bsi) = 0 for j ∈ Z, it follows that

diam
(
π−1
si+1

({
j

bsi

}bsi−1

j=1

))
< c/6.

(Note: bsi is also represented by ρi and ρ in what follows.)
• Also, since bsi is relatively prime to a and b, it follows that

(a)
({

j

bsi

}bsi−1

j=1

)
= (b)

({
j

bsi

}bsi−1

j=1

)
=
{
j

bsi

}bsi−1

j=1

.

• Since a > b for an appropriate choice of ε > 0, there is an rε > 1 such
that

bsi−1⋃
j=1

[
j

bsi
− rεbε,

j

bsi
+ rεbε

]
⊂

bsi−1⋃
j=1

(a)
([

j

bsi
− ε, j

bsi
+ ε

])
.

• Since fi can be taken arbitrarily close to (a) with some control, and
by Theorem 41 and 42 and Corollaries 43 and 44, it follows that for
some choice of ε we have

bsi−1⋃
j=1

[
j

bsi
− bε, j

bsi
+ bε

]
⊂

bsi−1⋃
j=1

fi

([
j

bsi
− ε, j

bsi
+ ε

])
.

This choice of ε also requires quite a bit of technical details in the
following.
• Thus, if

Y = π−1
α′i

(bsi−1⋃
j=1

[
j

bsi
− bε, j

bsi
+ bε

])
= π−1

α′i+β

( bsi−1⋃
j=1

[
j

bsi
− ε, j

bsi
+ ε

])
,

then Y ⊂ h(Y ). So there a non-degenerate set Y ′ ⊂ Σ such that
h(Y ′) = Y ′ and dH(Y ′, π−1

si+1({j/bsi}
bsi−1
j=1 )) < c/6 by Theorem 51.

• It follows from Lemma 15 that c is not an expansive constant for h.

5. Homeomorphisms on solenoids. In this section we reduce the
class of solenoids to types of solenoids whose bonding maps occur in a man-
ageable order. Also we show that a homeomorphism h on a solenoid has
a multiplication factor M(h) associated with it. This multiplication factor
helps to determine the dynamics of the homeomorphism.
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Proposition 17. Suppose that f, g : S → S are such that dS(f, g) <
1/16. Then deg(f) = deg(g).

Proof. Suppose on the contrary that deg(f) > deg(g) and let F and G
be the respective lifts of f and g. Then F (1) − F (0) ≥ G(1) − G(0) + 1.
Define D(x) = F (x)−G(x)− (F (0)−G(0)). Then D(0) = 0 and D(1) ≥ 1.
Therefore by the Intermediate Value Theorem, there exists y ∈ (0, 1) such
that D(y) = 1/4. But since |f(0)−g(0)| < 1/16, it follows that |F (0)−G(0)|
< 1/16 or 15/16 < |F (0) − G(0)| < 1. Thus 3/16 < |F (y) − G(y)| < 5/16,
11/16 < |F (y) − G(y)| < 3/4 or 19/16 < |F (y) − G(y)| < 5/4. Therefore
dS(f, g) > 1/16, which is a contradiction.

Proposition 18. Suppose that f, g, φ, ψ : S → S are such that

dS(ψ ◦ f(x), g ◦ φ(x)) < 1/16 for each x ∈ S.

Then deg(f) deg(ψ) = deg(g) deg(φ).

Proof. This follows from the fact that

deg(f) deg(ψ) = deg(ψ ◦ f), deg(g) deg(φ) = deg(g ◦ φ)

and Proposition 17.

Theorem 19. Suppose the following:

(1) {ni}∞i=1 is a non-decreasing sequence of positive integers,
(2) fi : Sn2i → Sn2i−1 and gi : Sn2i+1 → Sn2i,
(3) deg(fi)b

n2j
n2i = deg(fj)b

n2j−1
n2i−1 for i < j,

(4) deg(fi) deg(gi) = b
n2i+1
n2i−1 .

Then there exist relatively prime positive integers a and b such that

• deg(fi)/bn2i
n2i−1

= a/b and deg(gi)/b
n2i+1
n2i = b/a,

• ab divides bn2i+1
n2i−1,

for every i ∈ Z+.

Proof. It follows from hypothesis (3) that

deg(fi)b
n2j
n2j−1b

n2j−1
n2i = deg(fj)b

n2j−1
n2i bn2i

n2i−1
.

Thus
deg(fi)
bn2i
n2i−1

=
deg(fj)
b
n2j
n2j−1

for all i < j. Therefore there exist relatively prime positive integers a and b
such that deg(fi)/bn2i

n2i−1
= a/b. Then deg(gi)/b

n2i+1
n2i = b/a follows from hy-

pothesis (4). Also since a = bdeg(fi)/bn2i
n2i−1

, a divides deg(fi) and similarly
b divides deg(gi). Hence ab divides bn2i+1

n2i−1 by hypothesis (4).
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Let Σ = lim←− (S, (bi))∞i=1 and h : Σ → Σ be a homeomorphism. Then
by Theorem 5, there exists a non-decreasing sequence {ni}∞i=1 and maps
gi : Sn2i+1 → Sn2i and fi : Sn2i → Sn2i−1 such that

• h(〈xi〉∞i=1) =
∞⋂
j=1

∞⋃
i=j

π−1
n2i−1(fi(xn2i)),

• h−1(〈xi〉∞i=1) =
∞⋂
j=1

∞⋃
i=j

π−1
n2i(gi(xn2i+1)),

• d(fi ◦ (bn2j
n2i ), (b

n2j−1
n2i−1 ) ◦ fj) < 1/16 for all i < j.

Then Theorem 19 and Proposition 18 imply that there exist relatively prime
numbers a and b such that deg(fi)/bn2i

n2i−1
= a/b and deg(gi)/b

n2i+1
n2i = b/a. So

define the multiplying factor of h to be M(h) = a/b. Notice that M(h−1) =
(M(h))−1 = b/a.

The next corollary now follows from the previous definition and Theo-
rem 19:

Corollary 20. Suppose that h : Σ → Σ is a homeomorphism where
Σ = lim←− (S, (bi))∞i=1. If M(h) = a/b where a and b are relatively prime and k
is a prime number that divides ab, then there exists an increasing sequence
{mi}∞i=1 such that k divides each bmi.

Let

P ({bi}∞i=1) = {p | p is prime and |{i : bi = p}| =∞},
Q({bi}∞i=1) = {q | q is prime and 0 ≤ |{i : bi = q}| <∞}.

That is, P ({bi}∞i=1) is the set of primes that repeat an infinite number of
times in {bi}∞i=1, and Q({bi}∞i=1) is the set of primes that repeat a finite num-
ber of times in {bi}∞i=1. Also define W ({bi}∞i=1) = {wi}∞i=1 in the following
way:

wi = b1 if i = 1 mod 2,
wi = b2 if i = 2 mod 4,

...
wi = bk if i = 2k−1 mod 2k.

For example, let {pi}∞i=1 be the sequence of all primes. Then W ({pi}∞i=1)
begins with the following pattern:

2, 3, 2, 5, 2, 3, 2, 7, 2, 3, 2, 5, 2, 3, 2, 11, 2, 3, 2, 5, 2, 3, 2, 7, 2, 3, 2, 5, 2, 3, 2, 13,
2, 3, 2, 5, 2, 3, 2, 7, 2, 3, 2, 5, 2, 3, 2, 11, 2, 3, 2, 5, 2, 3, 2, 7, 2, 3, 2, 5, 2, 3, 2, 17, . . .

Next, we will partition the collection of infinite sequences of primes into
five types:
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A sequence {bi}∞i=1 is type 1 if each bi is a prime, 1 ≤ |P ({bi}∞i=1)| <∞
and |Q({bi}∞i=1)| =∞.

Suppose that the sequence {bi}∞i=1 is type 1 and let P ({bi}∞i=1) = {pi}ki=1

and Q({bi}∞i=1) = {qi}∞i=1 where {qi}∞i=1 is increasing. Let γi be the number
of times that each qi occurs in {bi}∞i=1, and let {ni}∞i=0 be a sequence defined
in the following way: n0 = 0, n1 = 2kq1 and continuing inductively n2i =
n2i−1 + γi and n2i+1 = n2i + 2kqi+1. Then {bi}∞i=1 is type 1A if it has the
following additional properties:

• bn2i+j = pjmod k for j ∈ {1, . . . , 2kqi+1} and i ≥ 0,
• bn2i+1+j = qi+1 for j ∈ {1, . . . , γi+1}.
For example, if P ({bi}∞i=1)={2, 11} and Q({bi}∞i=1)={3, 5, 7, 13, 17, . . .}

with γi = i and {bi}∞i=1 is type 1A, then {bi}∞i=1 would begin in the following
way (numbers in bold are elements of Q({bi}∞i=1)):

2, 11, 2, 11, 2, 11, 2, 11, 2, 11, 2, 11,3, 2, 11, 2, 11, 2, 11, 2, 11, 2, 11,
2, 11, 2, 11, 2, 11, 2, 11, 2, 11,5,5, 2, 11, 2, 11, 2, 11, . . .

A sequence {bi}∞i=1 is type 2 if each bi is a prime, |P ({bi}∞i=1)| =∞ and
|Q({bi}∞i=1)| <∞.

A sequence {bi}∞i=1 is type 2A if there is an increasing sequence {pi}∞i=1

of primes such that {bi}∞i=1 = W ({pi}∞i=1). Notice that if a sequence is type
2A, then it is type 2 since P ({bi}∞i=1) = {pi}∞i=1 and Q({bi}∞i=1) = ∅.

A sequence {bi}∞i=1 is type 3 if each bi is a prime, |P ({bi}∞i=1)| =∞ and
|Q({bi}∞i=1)| =∞.

A sequence {bi}∞i=1 is type 3A if there exist

• increasing sequences {pi}∞i=1 and {qi}∞i=1 of prime numbers such that
{pi}∞i=1 ∩ {qi}∞i=1 = ∅,
• an increasing sequence {ni}∞i=1 defined in the following way: n1 = 2q1,
n2 = n1 + γ1 + 2q2 and continuing inductively ni = ni−1 + γi−1 + 2qi
where γi is the number of times that qi occurs in {bi}∞i=1.

Then {bi}∞i=1 is defined by

bi = wi if i ≤ n1,

bi = q1 if n1 < i ≤ n1 + γ1,

bi = wi−n1−γ1 if n1 + γ1 < i ≤ n2,
...

bi = qk if nk < i ≤ nk + γk,

bi = wi−nk−γk if nk + γk < i ≤ nk+1,

where {wi}∞i=1 = W ({pi}∞i=1). Notice that if {bi}∞i=1 is type 3A, then {bi}∞i=1

is type 3 since P ({bi}∞i=1) = {pi}∞i=1 and Q({bi}∞i=1) = {qi}∞i=1.
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For example, let {p̂i}∞i=1 be the sequence of primes, pi = p̂2i−1, qi = p̂2i

and γi = i. Then define {bi}∞i=1 from {pi}∞i=1 and {qi}∞i=1 so that {bi}∞i=1

has type 3A. Then {bi}∞i=1 begins in the following way (numbers in bold are
elements of Q({bi}∞i=1)):

2, 5, 2, 11, 2, 5,3, 2, 5, 2, 11, 2, 5, 2, 17, 2, 5, 2, 11, 2, 5,7,7, 2, 5, 2, 11, 2, 5, 2, 17,
2, 5, 2, 11, 2, 5, 2, 23, 2, 5, 2, 11, 2, 5, 2, 17, 2, 5,13,13,13, 2, 5, 2, . . .

A sequence {bi}∞i=1 is type 4 if each bi is a prime, |P ({bi}∞i=1)| = 0 and
|Q({bi}∞i=1)| =∞.

A sequence {bi}∞i=1 is type 5 if each bi is a prime, 0 < |P ({bi}∞i=1)| <∞
and |Q({bi}∞i=1)| <∞.

A sequence {bi}∞i=1 is type 5A or regular if bi = b for some b ∈ Z+ and
all i.

Theorem 21. Suppose that Σ is a solenoid that is not a simple closed
curve. Then Σ is homeomorphic to lim←− (S, (bi))∞i=1 where {bi}∞i=1 is a type
1A, 2A, 3A, 4 or 5A sequence.

Proof. By Corollary 6, the solenoid Σ is homeomorphic to lim←− (S, (b′i))
∞
i=1

where {b′i}∞i=1 is a sequence of primes. Thus, {b′i}∞i=1 is a type 1, 2, 3, 4 or 5
sequence. If {b′i}∞i=1 is a type 1, 2, 3, or 5 sequence, then by Theorem 8, Σ is
homeomorphic to lim←− (S, (bi))∞i=1 where {bi}∞i=1 is a type 1A, 2A, 3A, or 5A
sequence.

It has already been shown in Section 3 that if {bi}∞i=1 is a type 5A
sequence, then lim←− (S, (bi))∞i=1 = lim←− (S, (b))∞i=1 admits an expansive homeo-
morphism. Therefore it suffices to show that if {bi}∞i=1 is a type 1A, 2A,
3A or 4 sequence, then lim←− (S, (bi))∞i=1 does not admit an expansive homeo-
morphism. The next theorem begins this process:

Theorem 22. Suppose that {bi}∞i=1 is type 1A, 2A or 3A. Let α, β ∈ Z+

be such that bi ∈ P ({bi}∞i=1) for i ∈ {α, . . . , α + β − 1} and let bα+β
α =∏α+β−1

i=α bi. Then there exist increasing sequences {si}∞i=1, {αi}∞i=1 and
{α′i}∞i=1 such that

• bαi+βαi = b
α′i+β

α′i
= bα+β

α ,
• αi + β < si < α′i,
• bsi does not divide bα+β

α ,
• limi→∞(α′i − si) =∞.

Proof. There are three cases to consider, each corresponding to the three
types:

Case 1: {bi}∞i=1 is a type 1A sequence. Let k = |P ({bi}∞i=1)| and {ni}∞i=1

be as in the definition of type 1A. Then there exists a non-negative integer
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M such that
n2M < α < α+ β < n2M+1.

Let r = α − n2M and u = n2M+1 − α and define αi = n4i+2M + r, α′i =
n4i+2M+3 − u and si = n4i+2M+2. Then for each j ∈ {0, . . . , β − 1}, bαi+j =

bα′i+j = bα+j . Thus bαi+βαi = b
α′i+β

α′i
= bα+β

α . Furthermore, bsi ∈ Q({bi}∞i=1)
and bj ∈ P ({bi}∞i=1) for α < j ≤ α + β − 1. So bsi 6∈ {bα, . . . , bα+β−1} and
hence bsi divides bα+β

α for no i. Finally,

lim
i→∞

(α′i − si) = lim
i→∞

(n4i+2M+3 − u− n4i+2M+2) = lim
i→∞

2q2i+M+2 − u =∞.

Case 2: {bi}∞i=1 is a type 2A sequence. Let {pi}∞i=1 be a sequence of
primes such that {bi}∞i=1 = W ({pi}∞i=1). There exists an integer M such
that α + β ≤ 2M . Then if j ≤ 2M and i mod 2M+1 = j, it follows that
bi = bj . Let αi = α + 22i+M and α′i = α + 22i+M+1 − 2M+1. Then bα+j =

bαi+j = bα′i+j whenever j ∈ {0, . . . , β− 1}. Thus, bαi+βαi = b
α′i+β

α′i
= bα+β

α . Let

si = 22i+M + 22i+M−1. Then bsi = p2i+M−1 6∈ {bi}2
M

i=1. Therefore bsi does
not divide bα+β

α . Finally,

lim
i→∞

(α′i − si) = lim
i→∞

(α+ 22i+M+1 − 2M+1 − 22i+M − 22i+M−1)

= lim
i→∞

22i+M−1 − 2M+1 + α =∞.

Case 3: {bi}∞i=1 is a type 3A sequence. Since {bi}
nk+1

i=nk+γk+1 = {wi}
2qk+1

i=1
where {wi}∞i=1 = W ({pi}∞i=1) and qk → ∞, the proof of this case is similar
to the proof of Case 2.

Corollary 23. Let X=lim←− (Si, (bi))∞i=1 where {bi}∞i=1 is a type 1A, 2A
or 3A sequence. Suppose that {ki}∞i=1 is an increasing sequence of positive
integers, a and b are relatively prime positive integers and {fi}∞i=1 is a col-
lection of maps such that fi : Sk2i → Sk2i−1

and deg(fi)/bk2ik2i−1
= a/b for

each i. Then there exists a positive integer β, increasing sequences {m(i)}∞i=1,
{si}∞i=1, {αi}∞i=1 and {α′i}∞i=1 and a collection {f ′i}∞i=1 of maps such that

(1) αi < αi + β < si < α′i < α′i + β,
(2) bαi+βαi = b

α′i+β

α′i
= b′,

(3) {bsi}∞i=1 is an increasing sequence of primes,
(4) bsi divides bj for no j ∈ {αi, . . . , αi + β − 1},
(5) limi→∞(α′i − si) =∞,
(6) f ′i : Sαm(i)+β → Sαm(i)

,

(7) fi ◦ (b
αm(i)+β

k2i
) = (b

αm(i)

k2i−1
) ◦ f ′i ,

(8) deg(f ′i) = b′a/b = a′.
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Proof. Parts (1)–(5) can be found in Theorem 22. Let {m(i)}∞i=1 be an
increasing sequence such that k2i < αm(i) for each i and define

f ′i(x) =
1

b
αm(i)

k2i−1

Fi(b
αm(i)+β

k2i
x) mod 1.

Then fi ◦ (b
αm(i)+β

k2i
) = (b

αm(i)

k2i−1
)◦f ′i . So deg(fi)b

αm(i)+β

k2i
= b

αm(i)

k2i−1
deg(f ′i). Thus

deg(f ′i) =
deg(fi)b

αm(i)+β
αm(i)

bk2ik2i−1

=
a

b
b′.

6. Continuum-wise expansive homeomorphisms. In this section
we examine properties of continuum-wise expansive homeomorphisms on
solenoids. In particular, we show the relationship between h being positively
continuum-wise expansive and M(h). Then it is concluded that if Σ is a
solenoid defined by a type 4 sequence, then h is not an expansive homeo-
morphism. First several technical propositions are needed.

A continuum X is decomposable if there exist proper subcontinua H,K
such that X = H ∪ K. A continuum is indecomposable if it is not decom-
posable. It is well known that all solenoids not homeomorphic to a simple
closed curve are indecomposable.

The following theorem follows from Corollary (2.7) in [4]:

Theorem 24. If h : X → X is a continuum-wise expansive homeo-
morphism on indecomposable continuum X, then either h or h−1 is positively
continuum-wise expansive.

The following theorem follows from Corollary (2.4) in [4]:

Theorem 25. If h : X → X is a positively continuum-wise expansive
homeomorphism, then there exists δ > 0 such that for every γ > 0 there
exists Nγ ∈ N such that if A is a subcontinuum with diam(A) > γ then
diam(hn(A)) > δ for every n ≥ Nγ.

For the rest of this section suppose the following:

(1) {ni}∞i=1 is an increasing sequence of positive integers such that ni+1−
ni > β > 0,

(2) {bi}∞i=1 is a sequence of positive integers such that bni+βni = b for all i,
(3) Σ = lim←− (Si, (bi))∞i=1,
(4) fi : Sni+β → Sni is a map such that deg(fi) = a for each i,
(5) h : Σ → Σ is a homeomorphism such that

h(〈xi〉∞i=1) =
∞⋂
j=1

∞⋃
i=j

π−1
ni (fi(xni+β)),
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(6) {εi}∞i=1 is a decreasing sequence of positive numbers with εi → 0,
(7) dR(Fi(b

nj+β
ni+β

x), bnjniFj(x)) < εk for all j > i > k where Fi and Fj are
the respective lifts of fi and fj ,

(8) F̃ ji (x) = (1/bnjni )Fi(b
nj+β
ni+β

x).

Proposition 26. bnjni = b
nj+β
ni+β

.

Proof. This follows from the fact that

b
nj+β
ni+β

=
b
nj+β
ni

bni+βni

=
b
nj+β
nj b

nj
ni

bni+βni

=
bb
nj
ni

b
= b

nj
ni .

Proposition 27. If dR(Fi◦b
nj+β
ni+β

, b
nj
ni ◦Fj) < ε, then dR(F̃ ji , Fj) < ε/b

nj
ni .

Proof. Since bnjni F̃
j
i (x) = Fi(b

nj+β
ni+β

x), it follows that

b
nj
nidR(F̃ ji , Fj) = dR(bnjni F̃

j
i , b

nj
niFj) < ε.

Proposition 28. For every ε > 0 and i ∈ N there exists N i
ε such that

if j > N i
ε , then dR(F̃ ji , a) < ε.

Proof. Fix i. Since bnjni → ∞ as j → ∞, there exists N i
ε such that if

j > N i
ε then 1/bnjni < ε/dR(Fi, a). Also, since

dR(Fi, a) = sup
x∈R

dR(Fi(b
nj+β
ni+β

x), a(bnj+βni+β
x)),

it follows that for each j > N i
ε ,

dR(F̃ ji , a) = dR

(
1
b
nj
ni

Fi ◦ b
nj+β
ni+β

,
1
b
nj
ni

ab
nj+β
ni+β

)
≤ 1
b
nj
ni

dR(Fi, a) < ε.

Proposition 29. For every ε > 0 there exists an integer Na
ε > 0 such

that if j > Na
ε then dR(Fj , a) < ε.

Proof. Let N1 be such that dR(Fi ◦ b
nj+β
ni+β

, b
nj
ni ◦Fj) < ε/2 for all i, j > N1

where i < j. Fix i > N1. Let N i
ε/2 > N1 be as in Proposition 28 and choose

j > N i
ε/2. Then by Proposition 27,

d(F̃ ji , Fj) <
ε

2bnjni
< ε/2,

and by Proposition 28, d(F̃ ji , a) < ε/2. Hence, by the triangle inequality,
d(Fj , a) < ε for all j > N i

ε/2. Let Na
ε = N i

ε/2 and the proposition follows.

Proposition 30. For every ε > 0 there exists an integer Nε > 0 such
that if Nε < j < k, then dR(Fk, a) < ε/bnkbj .
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Proof. Let N1 be such that dR(Fj ◦ bnk+βnj+β
, bnknj ◦Fk) < ε/2 for all k > j >

N1 and let Na
ε/2 > N1 be as in Proposition 29. Then by Proposition 26,

dR(Fj ◦ bnk+βnj+β
, abnknj ) = dR(Fj ◦ bnk+βnj+β

, abnk+βnj+β
) = dR(Fj , a) < ε/2

for each Na
ε/2 < j < k. Thus, by the triangle inequality

bnknj dR(Fk, a) = dR(bnknj ◦ Fk, ab
nk
nj ) < ε/2 + ε/2 = ε.

Consequently, the proposition follows by letting Nε = Na
ε/2.

Proposition 31. For every ε > 0 there exists an integer Nε > 0 such
that if Nε < j < k, then dS(fk, (a)) < ε/bnknj .

Proof. This follows from Proposition 30 and the fact that

dS(fk, (a)) = min{dR(Fk, a) mod 1, 1− (dR(Fk, a) mod 1)}.
Lemma 32. For every ε > 0 there exists Nε such that

dS(πnk ◦ h, (a) ◦ πnk+β) < ε/bnknj for all k > j > Nε.

Proof. By Proposition 31 there exists Nε/2 such that

dS(fk ◦ πnk+β, (a) ◦ πnk+β) < ε/(2bnknj )

for all k > j > Nε/2. Also, by the definition of h, there exists N1
ε/2 such that

dS(πnk ◦ h, fk ◦ πnk+β) < ε/(2bnknj )

for all k > j > N1
ε/2. Thus by letting Nε = max{Nε/2, N

1
ε/2}, the lemma

follows from the triangle inequality.

Theorem 33. Let Σ = lim←− (S, (bi))∞i=1 and h : Σ → Σ be a homeo-
morphism such that M(h) ≤ 1. Then h is not positively continuum-wise
expansive.

Proof. Let δ be as in Theorem 25 and p ∈ N be such that p ≥ 3 and
1/p < δ. Notice that M(h−1) ≥ 1. Let M(h−1) = a/b where a ≥ b. Next let

{Ajk}
b
nk
1
j=1 be subcontinua of Σ such that

πnk+β(Ajk) =
[
j − 1

pbnk+β1

,
j

pbnk+β1

]
for j ∈ {1, . . . , bnk1 }

and let Ak =
⋃b

nk
1
j=1A

j
k. Then diam(Ajk) ≤ 1/p, πnk+β(Ak) = [0, 1/(pb)] and

πnk(Ak) = [0, 1/p]. Let

r(m) =
m−1∑
i=0

(
a

b

)i
.

By Lemma 32 there exists a sequence {i(m)}∞m=1 such that

dS(πni(m)
◦ h−1, (a) ◦ πni(m)+β) <

1
p2r(m)

.
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Then
[

1
p2r(m)

, apb −
1

p2r(m)

]
⊂ πni(m)

◦ h−1(Ai(m)) and it follows inductively
that

[1/p2, 2/p2] ⊂
[

1
p2r(m)

m−1∑
i=0

(
a

b

)i
,
am

pbm
− 1
p2r(m)

m−1∑
i=0

(
a

b

)i]
⊂ πni(m)

◦ h−m(Ai(m)).

Thus, by the Pigeon-Hole Principle, there exists Am = Ajmi(m) such that

diam(πni(m)
◦ h−m(Am)) ≥ 1

p2b
ni(m)

1

.

Let Bm = h−m(Am). Then diam(Bm) ≥ 1/(2p2) but diam(hm(Bm)) ≤
1/p < δ for each m. Hence h is not positively continuum-wise expansive by
Theorem 25.

The following results can be found in Clark [1]. However, they follow
quickly from the results in this section, so for completeness, their proofs are
given:

Corollary 34. If h : Σ → Σ is a homeomorphism such that M(h) = 1
then h is not continuum-wise expansive and hence not expansive.

Proof. It follows from Theorem 33 that h is not positively continuum-
wise expansive. Since M(h−1) = 1, h−1 is also not positively continuum-wise
expansive. It now follows from Theorem 24 that since Σ is indecomposable,
h cannot be continuum-wise expansive and hence not expansive.

Corollary 35. If Σ = lim←− (Si, (bi))∞i=1 where {bi}∞i=1 is a type 4 se-
quence, then Σ does not admit an expansive homeomorphism.

Proof. Let h : Σ → Σ be a homeomorphism.

Claim. M(h) = 1.

Suppose on the contrary that M(h) = a/b 6= 1. Then there exists a prime
number p that divides ab. Thus, by Corollary 20, there exists an increasing
sequence {mi}∞i=1 such that bmi = p. However, this contradicts the fact that
{bi}∞i=1 is a type 4 sequence.

Since M(h) = 1, it follows from Corollary 34 that h is not expansive.

7. Growth of small intervals in continuum-wise expansive hom-
eomorphisms. In this technical section we show that arbitrarily small arcs
must grow at a certain rate under fi in a fully continuum-wise expansive
homeomorphism. In this section, we have the same assumptions as in the
previous section with the additional assumption that fi(0) = 0 for all i.
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Proposition 36. Suppose rn>0, limn→∞ b
n
1cn=α and limn→∞ rn=1.

Then
dH(π−1

n ([0, rncn]), π−1
n ([0, α/bn1 ]))→ 0 as n→∞.

Proof. Let ε > 0. Then by the multiplication rule for limits there exists
a positive integer N such that |bn1rncn − α| < ε/2 and

∑∞
i=n 1/2i < ε/2 for

all n ≥ N .

Case 1: rncn > α/bn1 for some n ≥ N . Then π−1
n ([0, α/bn1 ]) is a proper

subset of π−1
n ([0, rncn]). So there exists x ∈ π−1

n ([0, rncn]) − π−1
n ([0, α/bn1 ]).

Thus πn(x) = xn ∈ (α/bn1 , rncn]. Therefore |xn − α/bn1 | < ε/(2bn1 ). So
d(x, π−1

n ([0, α/bn1 ])) < ε and hence

dH(π−1
n ([0, rncn]), π−1

n ([0, α/bn1 ])) < ε.

Case 2: rncn < α/bn1 for some n ≥ N . The proof is similar to Case 1.

Case 3: rncn = α/bn1 for some n ≥ N . Then clearly

dH(π−1
n ([0, rncn]), π−1

n ([0, α/bn1 ])) = 0 < ε.

Proposition 37. If {Hi}∞i=1 and {Ki}∞i=1 are collections of subsets of X
such that limi→∞ dH(Hi,Ki) = 0 then

∞⋂
n=1

∞⋃
i=n

Ki =
∞⋂
n=1

∞⋃
i=n

Hi.

Proof. Let ε > 0 and x ∈
⋂∞
n=1

⋃∞
i=nKi. Then there exists an increasing

sequence {ik}∞k=1 such that d(x,Kik) < ε/2 for each k. Also, there exists
N > 0 such that dH(Hik ,Kik) < ε/2 for each k > N . Thus, by the triangle
inequality, d(x,Hik) < ε for each k > N . Since ε is arbitrary, x ∈

⋃∞
i=nHi

for each n. Thus, x ∈
⋂∞
n=1

⋃∞
i=nHi. The proof of the other inclusion is

similar.

Proposition 38. Suppose that {ci}∞i=1 is sequence of positive numbers
such that limi→∞ b

i
1ci = α. Then

lim
i→∞

dH(π−1
ni (fi([0, cni+β])), π−1

ni (fi([0, α/b
ni+β
1 ]))) = 0.

Proof. By Proposition 36,

lim
i→∞

dH(h(π−1
ni ([0, cni+β])), h(π−1

ni ([0, α/bni+β1 ]))) = 0.

Then since

lim
i→∞

dH(π−1
ni (fi([0, cni+β])), h(π−1

ni ([0, cni+β]))) = 0

and
lim
i→∞

dH(h(π−1
ni ([0, α/bni+β1 ])), π−1

ni (fi([0, α/b
ni+β
1 ]))) = 0,

the proposition follows from the triangle inequality.
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The following “calculus” notation will be used. If {rn}∞n=1 is a sequence
of real numbers such that rn > c for all but a finite number of n and
limn→∞ rn = c, then we will write limn→∞ rn = c+.

Proposition 39. Suppose limi→∞ b
ni
1 cni = α, Iα =

⋂∞
i=1 π

−1
ni ([0, α/bni1 ])

and fi([0, cni+β]) ⊂ [0, brni+βcni+β] where limi→∞ rni = 1+. Then h(Iα)
⊂ Iα.

Proof. By Propositions 37 and 38,

h(Iα) =
∞⋂
n=1

∞⋃
i=n

π−1
ni (fi([0, α/b

ni+β
1 ])) =

∞⋂
n=1

∞⋃
i=n

π−1
ni (fi([0, cni+β])).

Also, since fi([0, cni+β]) ⊂ [0, brni+βcni+β] we have
∞⋂
n=1

∞⋃
i=n

π−1
ni (fi([0, cni+β])) ⊂

∞⋂
n=1

∞⋃
i=n

π−1
ni ([0, brni+βcni+β]).

Next by Propositions 36 and 37 it follows that
∞⋂
n=1

∞⋃
i=n

π−1
ni ([0, brni+βcni+β]) =

∞⋂
n=1

∞⋃
i=n

π−1
ni ([0, α/bni1 ])

=
∞⋂
i=1

π−1
ni ([0, α/bni1 ]) = Iα.

Theorem 40. Suppose h : Σ → Σ is a positive continuum-wise expansive
homeomorphism and fi([0, cni+β]) ⊂ [0, brni+βcni+β] where limi→∞ rni
= 1+. Then limi→∞ b

ni
1 cni+β = 0.

Proof. To prove this theorem we must first prove two claims:

Claim. There exists k such that lim supi→∞ bninkcni+β < 1.

By Theorem 33 we may assume that a > b. Let Nr be such that rnj <
(a+ b)/(2b) for each j > Nr. Let ε < (a− b)/4 and Nε be as in Proposi-
tion 31. Let k > max{Nr, Nε}. Then for every i ≥ k,

dS(fi, (a)) <
ε

bnink
<
a− b
4bnink

.

Since fi([0, cni+β]) ⊂ [0, brni+βcni+β], we have

fi(cni+β) ≤ brni+βcni+β <
a+ b

2
cni+β < acni+β.

Hence

acni+β −
a+ b

2
cni+β ≤ dS(fi(cni+β), (a)(cni+β)) <

a− b
4bnink

.

It follows that cni+β < 1/(2bnink) for each i > k, which yields the Claim.
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Claim. Suppose that lim supi→∞ bninkcni+β = αk where αk<1 for some k.
Then αk = 0.

Suppose on the contrary that there is an increasing sequence {i(j)}∞j=1

such that limj→∞ b
ni(j)
k cni(j)+β = αk > 0. Let Iαk =

⋂∞
j=1 π

−1
i(j)([0, αk/b

ni(j)
k ]),

which is a subarc of Σ. Then by Proposition 39, h(Iαk) ⊂ Iαk . Since arcs
do not admit continuum-expansive homeomorphisms (see [4, Theorem 2.6]),
this contradicts the fact that h is a positive continuum-wise expansive hom-
eomorphism.

By the two claims there exists a k such that limi→∞ b
ni
nk
cni+β = 0. Thus

lim
i→∞

bni1 cni+β = bnk1 lim
i→∞

bninkcni+β = 0.

The proofs of the next two theorems are similar to that of Theorem 40:

Theorem 41. Suppose that h : Σ → Σ is a positive continuum-wise
expansive homeomorphism and fi([1−cni+β, 0]) ⊂ [1−brni+βcni+β, 0] where
limi→∞ rni = 1+. Then limi→∞ b

ni
1 cni+β = 0.

If x, y ∈ S where x < y, then define [y, x]0 to be [y, 0] ∪ [0, x].

Theorem 42. Suppose that h : Σ → Σ is a positive continuum-wise
expansive homeomorphism and

fi([1− cni+β, cni+β]0) ⊂ [1− brni+βcni+β, brni+βcni+β]0

where limi→∞ rni = 1+. Then limi→∞ b
ni
1 cni+β = 0.

Corollary 43. Let fi be as in Theorem 40, 41 or 42. Then for every
ε ∈ (0, 1/2) there exist rε ∈ (1, 2) and Nε ∈ Z+ such that

brε diam
([

1− ε

bαi1

,
ε

bαi1

]
0

)
≤ diam

(
fi

([
1− ε

bαi1

,
ε

bαi1

]
0

))
for all i > Nε.

Proof. Suppose on the contrary that there exists an increasing sequence
{ik}∞k=1 such that

brk diam
([

1− ε

b
αik
1

,
ε

b
αik
1

]
0

)
> diam

(
fik

([
1− ε

b
αik
1

,
ε

b
αik
1

]
0

))
where limk→∞ rk = 1+. Thus, since the lift of fi is increasing (see Theorem
13), one of the following must be true:

fi

([
0,

ε

b
αik
1

])
⊂
[
0, brk

ε

b
αik
1

]
,

fi

([
1− ε

b
αik
1

, 0
])
⊂
[
1− brk

ε

b
αik
1

, 0
]
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or

fi

([
1− ε

b
αik
1

,
ε

b
αik
1

])
⊂
[
1− brk

ε

b
αik
1

, brk
ε

b
αik
1

]
.

However, if cαik+β = ε/b
αik
1 then

lim
k→∞

b
αik
1 cαik+β = lim

k→∞
b
αik
1

ε

b
αik
1

= ε,

which contradicts Theorem 40, 41 or 42.

Corollary 44. Let fi be as in Theorem 40, 41 or 42. Define hi =
(1/k)Fi(kx) mod 1. Then for every ε ∈ (0, 1/(2k)) there exist rε ∈ (1, 2) and
Nε ∈ Z+ such that

brε diam
([

j

k
− ε

bαi1

,
j

k
+

ε

bαi1

])
≤ diam

(
hi

([
j

k
− ε

bαi1

,
j

k
+

ε

bαi1

]))
for all i > Nε and j ∈ {1, . . . , k − 1}.

Proof. Let rε/k be defined from fi in Corollary 43. If on the contrary

brε/k diam
([

j

k
− ε

bαi1

,
j

k
+

ε

bαi1

])
> diam

(
hi

([
j

k
− ε

bαi1

,
j

k
+

ε

bαi1

]))
,

then

brε/k diam
(

(k)
([

j

k
− ε

bαi1

,
j

k
+

ε

bαi1

]))
> diam

(
(k)◦hi

([
j

k
− ε

bαi1

,
j

k
+

ε

bαi1

]))
.

Thus,

brε/k diam
([

1− kε

bαi1

,
kε

bαi1

]
0

)
> diam

(
fi ◦ (k)

([
j

k
− ε

bαi1

,
j

k
+

ε

bαi1

]))
≥ diam

(
fi

([
1− kε

bαi1

,
kε

bαi1

]
0

))
,

which contradicts Corollary 43.

8. Periodic sets. In this section we show that there exist periodic sets
of h that are similar to the periodic points in Section 4. First we show that
if h : Σ → Σ is an expansive homeomorphism, then h must have a fixed
point.

Proposition 45. Let f : S → S be a map such that deg(f) = a and let
b ∈ Z+. Then dR

(
1
bF (bx), ax

)
= 1

bdR(F (bx), abx) where F is the lift of f .

Proof. This follows from the fact that

dR

(
1
b
F (bx), ax

)
= dR

(
1
b
F (bx),

1
b
bax

)
=

1
b

dR(F (bx), abx).
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Proposition 46. Let f : S → S be a map such that deg(f) = a and
f̃ : S → S be such that f̃(x) = (1/k)F (kx) mod 1 for some k ∈ N where F is
the lift of f . If m divides k then f̃(i/m) = (a)(i/m) for each i ∈ {0, . . . ,m}.

Proof. Since m divides k, k(i/m) is an integer. So (1/k)F (k(i/m)) =
(1/k)ak(i/m) = a(i/m). Thus f̃(i/m) = a(i/m) mod 1 = (a)(i/m).

The following is the well-known coincidence theorem:

Theorem 47. Suppose that F,G : R → R are maps such that G(0) ≥
F (0) and G(n) ≤ F (n). Then there exists c ∈ [0, n] such that F (c) = G(c).

Proof. Let D(x) = F (x) − G(x). Then the theorem follows from the
Intermediate Value Theorem.

Lemma 48. Suppose f, g : S → S are such that deg(g) 6= deg(f). Then
there exists xc ∈ S such that f(xc) = g(xc).

Proof. Without loss of generality, suppose that deg(g) < deg(f). Let F
and G be the respective lifts of f and g. There are three cases:

Case 1: F (0) < G(0). Let n be a positive integer such that

n >
G(0)− F (0)

deg(f)− deg(g)
.

Then

F (n) = n deg(f) + F (0) > ndeg(g) +G(0) = G(n).

It follows from Theorem 47 that there exists c ∈ [0, n] such that F (c) = G(c).
Let xc = c mod 1. Then f(xc) = g(xc).

Case 2: F (0) > G(0). Then the proof is similar to Case 1.

Case 3: F (0) = G(0). Then f(0) = g(0).

Theorem 49. Suppose that h : Σ → Σ is a homeomorphism such that
M(h) 6= 1. Then h has a fixed point.

Proof. By Theorem 5, Corollary 23 and Theorem 33 there exists a non-
increasing sequence {ni}∞i=1 and maps hi : Sn2i → Sn2i−1 such that

• deg(hi)/bn2i
n2i−1

= M(h) 6= 1 for each i,
• dH(h(〈xi〉∞i=1), π−1

n2i−1
(hi(xn2i)))→ 0 as i→∞.

By Lemma 48, since deg(hi) 6= bn2i
n2i−1

, there exists xci such that hi(xci) =
(bn2i
n2i−1

)xci for each i. Let {xi}∞i=1 = {〈xij〉∞j=1}∞i=1 be a sequence of points
such that πn2i(x

i) = xci and y be a limit point of {xi}∞i=1.

Claim. y is a fixed point of h.
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For every ε > 0 there exists Nε such that if i > Nε then

d(h(xi),xi) < dH(h(xi), π−1
n2i−1

(xin2i−1
)) = dH(h(xi), π−1

n2i−1
((bn2i

n2i−1
)xci))

= dH(h(xi), πn2i−1(hi(xin2i
))) < ε/3.

Furthermore, since y is a limit point of {xi}∞i=1, there exists i′ > Nε such
that d(xi

′
,y) < ε/3 and d(h(xi

′
), h(y)) < ε/3. Thus d(y, h(y)) < ε by the

triangle inequality. Since ε is arbitrary, we conclude that h(y) = y.

It will be easier to prove the main theorem if we take the fixed point of
h to be 0. The next theorem shows that we can do this.

Theorem 50. If ĥ : Σ → Σ is an expansive homeomorphism, then
there exists an expansive homeomorphism h : Σ → Σ such that h(0) = 0.

Proof. By Corollary 34, if ĥ is expansive, then M(ĥ) 6= 1. Thus by
Theorem 49, there exists a fixed point y of ĥ. Also, since Σ is homogeneous
[10], there exists a homeomorphism φ : Σ → Σ such that φ(y) = 0. Then
by Theorem 4, h = φ ◦ ĥ ◦ φ−1 is an expansive homeomorphism such that

h(0) = φ ◦ ĥ ◦ φ−1(0) = φ ◦ ĥ(y) = φ(y) = 0.

Next we find periodic sets of h. Define χρa,b(i) = j if ai = bj mod ρ,
(χρa,b(i))

2 =χρa,b(χ
ρ
a,b(i)) and inductively define (χρa,b(i))

n=χρa,b((χ
ρ
a,b(i))

n−1).
Also, if X is a continuum, then define the hyperspace of X by

C(X) = {Y | Y is a subcontinuum of X}.

Theorem 51. Suppose

(1) Σ = lim←− (Si, (bi))∞i=1 where {bi}∞i=1 is a sequence of primes,
(2) b = bα+β

α where α, β ∈ N,
(3) ρ is relatively prime to positive integers a and b,
(4) a/b > 1,
(5) h : Σ → Σ is a homeomorphism,
(6) dH((a)x, πα ◦ h(π−1

α+β(x))) < 1/(3ρ(a+ 1)).

Then there exist disjoint closed subsets {Yi}ρ−1
i=1 such that

• dH(πα+β(Yi), i/ρ) < 1/(3ρ(a+ 1)),
• h(Yi) = Yχρa,b(i)

.

Proof. Since a, b and ρ are fixed, let χ(i) = χρa,b(i). Also let

Ii=
[
i

ρ
− 1

3(a+ 1)ρ
,
i

ρ
+

1
3(a+ 1)ρ

]
and T 0

i ={Y 0
i ∈ C(Σ) | πα+β(Y 0

i ) = Ii}.
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Claim 1. πα ◦ h(Y 0
i ) ⊂

[
ai
ρ −

a+1
3(a+1)ρ ,

ai
ρ + a+1

3(a+1)ρ

]
for all Y 0

i ∈ T 0
i .

Pick x ∈ πα(h(Y 0
i )). Then there exists ŷ ∈ Y 0

i such that πα(h(ŷ)) = x.
Since πα+β(ŷ) ∈ Ii = [ iρ −

1
3(a+1)ρ ,

i
ρ + 1

3(a+1)ρ ],

dS((a) ◦ πα+β(ŷ), x) = dS((a) ◦ πα+β(ŷ), πα ◦ h(ŷ)) <
1

3ρ(a+ 1)

by hypothesis (6). Also, since

(a) ◦ πα+β(ŷ) ∈
[
ai

ρ
− a

3(a+ 1)ρ
,
ai

ρ
+

a

3(a+ 1)ρ

]
,

it follows that

x ∈
[
ai

ρ
− a+ 1

3(a+ 1)ρ
,
ai

ρ
+

a+ 1
3(a+ 1)ρ

]
.

Claim 2. πα ◦ h
(
π−1
α+β

(
i
ρ −

1
3ρ(a+1)

))
∈
[
ai
ρ −

a+1
3(a+1)ρ ,

ai
ρ −

a−1
3(a+1)ρ

]
.

This follows from the fact that

dH

(
(a)
(
i

ρ
− 1

3ρ(a+ 1)

)
, πα ◦ h

(
π−1
α+β

(
i

ρ
− 1

3ρ(a+ 1)

)))
<

1
3ρ(a+ 1)

.

Claim 3. πα ◦ h
(
π−1
α+β

(
i
ρ + 1

3ρ(a+1)

))
∈
[
ai
ρ + a−1

3(a+1)ρ ,
ai
ρ + a+1

3(a+1)ρ

]
.

The proof of this claim is similar to the proof of Claim 2.

Claim 4.
[
ai
ρ −

a−1
3(a+1)ρ ,

ai
ρ + a−1

3(a+1)ρ

]
⊂ πα(h(Y 0

i )).

Since h(Y 0
i ) is a continuum, by Claim 1, πα(h(Y 0

i )) is an interval con-
tained in

[
ai
ρ −

a+1
3(a+1)ρ ,

ai
ρ + a+1

3(a+1)ρ

]
. By Claims 2 and 3,

πα ◦ h(Y 0
i ) ∩

[
ai

ρ
− a+ 1

3(a+ 1)ρ
,
ai

ρ
− a− 1

3(a+ 1)ρ

]
6= ∅

and

πα ◦ h(Y 0
i ) ∩

[
ai

ρ
+

a− 1
3(a+ 1)ρ

,
ai

ρ
+

a+ 1
3(a+ 1)ρ

]
6= ∅.

Thus the claim follows.

On to the proof of the theorem: from Claim 4, bj = ai and b ≤ a− 1 we
have

(b)(Ij) =
[
bj

ρ
− b

3(a+ 1)ρ
,
bj

ρ
+

b

3(a+ 1)ρ

]
=
[
ai

ρ
− b

3(a+ 1)ρ
,
ai

ρ
+

b

3(a+ 1)ρ

]
⊂
[
ai

ρ
− a− 1

3(a+ 1)ρ
,
ai

ρ
+

a− 1
3(a+ 1)ρ

]
⊂ πα(h(Y 0

i )).
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Therefore Iχ(i) ⊂ πα+β(h(Y 0
i )). Let

T 1
i = {Y 1

i ∈ C(Σ) | there exists Y 0
i ∈ T 0

i such that Y 1
i ⊂ Y 0

i

and πα+β(h(Y 1
i )) = Iχ(i)}.

Notice that if Y 1
i ∈ T 1

i , then h(Y 1
i ) ∈ T 0

χ(i). Continuing inductively, let

T ni = {Y n
i ∈ C(Σ) | there exists Y n−1

i ∈ T n−1
i such that Y n

i ⊂ Y n−1
i

and h(Y n
i ) ∈ T n−1

χ(i) }.

We now have the following facts:

• for every Y n
i ∈ T ni there exists Y n−1

i ∈ T n−1
i such that Y n

i ⊂ Y
n−1
i ,

• h(T ni ) ⊂ T n−1
χ(i) ,

•
⋃
Y n+1
i ∈T n+1

i
Y n+1
i ⊂

⋃
Y ni ∈T ni

Y n
i ,

•
⋃
Y ni ∈T ni

Y n
i 6= ∅ for each i and n.

Let

Ŷi =
∞⋂
n=0

⋃
Y ni ∈T ni

Y n
i .

Then

h(Ŷi) = h
( ∞⋂
n=0

⋃
Y ni ∈T ni

Y n
i

)
=
∞⋂
n=0

⋃
Y ni ∈T ni

h(Y n
i )

⊂
∞⋂
n=1

⋃
Y n−1
χ(i)
∈T n−1

χ(i)

Y n−1
χ(i) = Ŷχ(i).

Let k be a positive integer such that i = (χ(i))k. Then

hk(Ŷi) ⊂ hk−1(Ŷ(χ(i))k−1) ⊂ · · · ⊂ Ŷi.

Next let Yi =
⋂∞
n=1 h

nk(Ŷi), which is nonempty since Ŷi is nonempty and
closed. Therefore, hk(Yi) = Yi and it follows that h(Yi) = Yχ(i).

Let f : S → S and g : S → S be maps. Suppose Yi ⊂ S for i ∈
{0, . . . , n−1}. Then {Yi}n−1

i=0 is an ordered collection of n-periodic sets under
(f, g) if f(Yi) = g(Yi+1modn) for each i. If each Yi = {yi}, then {yi}n−1

i=0
is an ordered collection of n-periodic points under (f, g). If g = idS , then
{Yi}n−1

i=0 is an ordered collection of n-periodic sets under f . Likewise for
δ > 0, {Yi}n−1

i=0 is an ordered collection of (n, δ)-periodic sets under (f, g) if
dH(f(Yi), g(Yi+1modn)) < δ for each i.

The next theorem gives a useful condition when {Yi}n−1
i=0 is not (n, δ)-

periodic.
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Theorem 52. Suppose the following:

(1) f, (b) : S → S where b ∈ Z+,
(2) {xi}n−1

i=0 is an ordered collection of n-periodic points under (f, (b)),
(3) there exist r > b and 0 < θ < ψ/3 < ψ < 1/b such that if θ <

dS(x, xi) < ψ then dS(f(x), f(xi)) > rdS(x, xi),
(4) {Yi}n−1

i=0 is a collection of closed subsets of S with dH(Yi, xi) < ψ/3,
(5) δ < min

{
r−b
3 θ, ψ3

}
,

(6) there exist i ∈ {0, . . . , n− 1} such that θ < dH(Yi, xi).

Then {Yi}n−1
i=0 is not (n, δ)-periodic under (f, (b)).

Proof. First, we need the following claim:

Claim 1. If θ < dH(Yk, xk) then

dH(f(Yk), f(xk)) > dH((b)(Yk), (b)(xk)) + 3δ.

Since Yk is closed, there exists yk ∈ Yk such that dS(yk, xk) = dH(Yk, xk).
Thus θ < dS(yk, xk) < ψ/3. Therefore it follows that

dH(f(Yk), f(xk)) ≥ dS(f(yk), f(xk))
> rdS(yk, xk) = (r − b)dS(yk, xk) + bdS(yk, xk)
> (r − b)θ + bdH(Yk, xk) > 3δ + dH((b)(Yk), (b)(xk)).

By hypothesis (6) we may assume that dH(x0, Y0) > θ. Otherwise just
reorder {xi}n−1

i=0 and {Yi}n−1
i=0 . Also, assume that dH(f(Yi−1), (b)(Yi)) < δ for

i ∈ {1, . . . , n− 1}. We will show that dH(f(Yn−1), (b)(Y0)) ≥ δ.
Claim 2. dH(f(Yk), f(xk)) > dH((b)(Y0), (b)(x0)) + 2(k + 1)δ for k ∈

{0, . . . , n− 1}.
The proof is by induction on k.

Base case: dH(f(Y0), f(x0)) > dH((b)(Y0), (b)(x0)) + 2δ. This follows
from the assumption that dH(Y0, x0) > θ and Claim 1.

Induction step: Suppose dH(f(Yk−1), f(xk−1)) > dH((b)(Y0), (b)(x0)) +
2(k)δ for k ≥ 2. Since

dH(f(Yk−1), (b)(Yk)) + dH((b)(Yk), (b)(xk)) ≥ dH(f(Yk−1), (b)(xk)),

it follows that

bdH(Yk, xk) = dH((b)(Yk), (b)(xk))
≥ dH(f(Yk−1), (b)(xk))− dH(f(Yk−1), (b)(Yk))
> dH(f(Yk−1), f(xk−1))− δ > dH((b)(Y0), (b)(x0)) + 2kδ − δ
> bdH(Y0, x0) + (2k − 1)δ > bθ.

Notice that dH(Yk, xk) > θ. Thus by Claim 1,

dH(f(Yk), f(xk)) > dH((b)(Yk), (b)(xk)) + 3δ.
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Therefore

dH(f(Yk), f(xk)) > dH((b)(Y0), (b)(x0)) + (2k − 1)δ + 3δ
= dH((b)(Y0), (b)(x0)) + 2(k + 1)δ.

Thus Claim 2 is proved.

Next since

dH(f(Yn−1), (b)(x0))=dH(f(Yn−1), f(xn−1))≥dH((b)(Y0), (b)(x0)) + 2(n)δ,

it follows from the triangle inequality that

δ < 2(n)δ ≤ dH(f(Yn−1), (b)(Y0))

for n ≥ 1. If n = 0, then δ < dH(f(Y0), (b)(Y0)) follows from Claim 1.

9. Main result. In order to prove the main result, we first prove a
technical lemma whose hypothesis we have worked hard to satisfy:

Lemma 53. Suppose the following:

(1) {bi}∞i=1 is a sequence of primes and Σ = lim←− (S, (bi))∞i=1,
(2) {α′i}∞i=1 and {si}∞i=1 are increasing sequences such that si < α′i,
(3) there exists a non-negative integer β such that bα

′
i+β

α′i
= b for each i ,

(4) there is a collection of maps hi : Sα′i+β → Sα′i such that deg(hi) = a
where a > b,

(5) h : Σ → Σ is a homeomorphism such that

h(〈xj〉∞j=1) =
∞⋂
j=1

∞⋃
i=j

π−1
α′i

(hi(xα′i+β)) and h(0) = 0,

(6) ρi = bsi is relatively prime to both a and b,
(7) for each i there is an integer ki > 3ρi(a+ 1) such that

hi

(
j

kiρi

)
= (a)

j

kiρi
for each i ∈ Z+ and j ∈ {0, . . . , kipi},

(8) dH((a)x, πα′i ◦ h(π−1
α′i

(x))) < 1/(3ρi(a+ 1)),
(9) for every ε ∈ (0, 1/2) there exist Nε ∈ N and rε ∈ (1, 2) such that

brε diam
([

j

ρi
− ε

b
α′i+β
1

,
j

ρi
+

ε

b
α′i+β
1

])
≤ diam

(
hi

([
j

ρi
− ε

b
α′i+β
1

,
j

ρi
+

ε

b
α′i+β
1

]))
for all i > Nε and j ∈ {1, . . . , ρi − 1}.

Then h is not an expansive homeomorphism.
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Proof. Suppose on the contrary that there exists an expansive constant
c > 0 for h. Since {si}∞i=1 is increasing, there exists an N1 such that
diam(π−1

si (0)) < c/6 for all i > N1. Then since (bsi)(j/ρi) = (ρi)(j/ρi) = 0,
it follows that diam(π−1

si+1({j/ρi}ρi−1
j=1 )) < c/6 for all i > N1. Let

δi = min
{

c

6bα
′
i+β

1

,
rc/6 − 1

3
b

c

6bα
′
i+β

1

}
where rc/6 is as in Corollary 44.

By hypothesis (5), there exists N2 > 0 such that for every i ≥ N2,

dH(h(〈xj〉∞j=1), π−1
α′i

(hi(xα′i+β))) < min
{
c

6b
,
rc/6 − 1

18
c

}
.

So dH(πα′i ◦ h(〈xj〉∞j=1), hi(xα′i+β)) < δi for each i > N2.

By Theorem 51, there exists a collection {Y i
j }

ρi−1
j=1 of closed sets such

that h(Y i
j ) = Y i

χ
ρi
a,b(j)

and dH(πα′i+β(Y i
j ), j/ρi) < 1/(3ρi(a+ 1)). Thus,

dH((b) ◦ πα′i+β(Y i
χ
ρi
a,b(j)

), hi ◦ πα′i+β(Y i
j )) = dH(πα′i(Y

i
χ
ρi
a,b(j)

), hi ◦ πα′i+β(Y i
j ))

= dH(πα′i◦h(Y i
j ), hi◦πα′i+β(Y i

j ))
< δi

for all i > N2. Let Ỹ i
1 = πα′i+β(Y i

1 ), Ỹ i
j = πα′i+β(Y i

(χ
ρi
a,b(1))j

), xi1 = 1/ρi and

xij = (χρia,b(1))j/ρi. Then {Ỹ i
j }

ρi−1
j=1 is an ordered collection of (ρi − 1, δi)-

periodic sets and {xij}
ρi−1
j=1 is an ordered collection of (ρi−1)-periodic points

under (hi, (b)) such that dH(xij , Ỹ
i
j ) < 1/(3ρi(a+ 1)) for each i. Let θi =

c/(3bα
′
i+β

1 ). Then δi < (rc/6 − 1)bθi/3. So by hypothesis (9), we can apply
Theorem 52 to conclude

dH(xij , Ỹ
i
j ) ≤ θi =

c

3bα
′
i+β

1

for each i > max{N1, N2} and j ∈ {1, . . . , ρi − 1}. However, it then follows
that

dH
(
π−1
α′i+β

({xij}
ρi−1
j=1 ),

ρi−1⋃
j=1

Y i
j

)
≤ c

3
.

Since diam(π−1
α′i+β

({xij}
ρi−1
j=1 )) < c/6, we deduce that

diam
(ρi−1⋃
j=1

Y i
j

)
≤ dH

(
π−1
α′i+β

({xij}
ρi−1
j=1 ),

ρi−1⋃
j=1

Y i
j

)
+ diam(π−1

α′i+β
({xij}

ρi−1
j=1 ))

<
c

2
.
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Therefore, since h(
⋃ρi−1
j=1 Y i

j ) =
⋃ρi−1
j=1 Y i

j and |
⋃ρi−1
j=1 Y i

j )| ≥ 2, we conclude
that c is not an expansive constant for h.

In order to prove the main theorem, we must show that all of the hy-
potheses in Lemma 53 hold:

Theorem 54. If h : Σ → Σ is an expansive homeomorphism of a sol-
enoid Σ, then Σ must be homeomorphic to Σb for some n ≥ b.

Proof. Suppose that Σ is a solenoid not homeomorphic to Σn for n ≥ 2.
We may assume that Σ is not the simple closed curve by [8]. By Corollary 6,
we may assume hypothesis (1). If {bi}∞i=1 is a type 5A sequence, then Σ is
homeomorphic to a regular solenoid. If {bi}∞i=1 is a type 4 sequence, then
Σ does not admit an expansive homeomorphism by Corollary 35. Thus,
hypotheses (2), (3) and (4) follow from Theorem 21 and Corollary 23. Hy-
pothesis (5) follows from Theorems 5 and 50. Hypothesis (6) follows from
Theorems 19 and 22. Hypothesis (7) follows from Proposition 46. Hypoth-
esis (8) follows from Lemma 32 and hypothesis (7). Hypothesis (9) follows
from Corollary 44. Thus the theorem follows from Lemma 53.

By taking Theorem 54 along with Theorem 14 we get the main result
Theorem 2.
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