
FUNDAMENTA

MATHEMATICAE

199 (2008)

Matrix factorizations and link homology

by

Mikhail Khovanov (New York) and Lev Rozansky (Chapel Hill, NC)

Abstract. For each positive integer n the HOMFLYPT polynomial of links special-
izes to a one-variable polynomial that can be recovered from the representation theory
of quantum sl(n). For each such n we build a doubly-graded homology theory of links
with this polynomial as the Euler characteristic. The core of our construction utilizes the
theory of matrix factorizations, which provide a linear algebra description of maximal
Cohen–Macaulay modules on isolated hypersurface singularities.
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1. Introduction. The HOMFLYPT polynomial of oriented links in R3

is uniquely determined by the skein relation in Figure 1 and its value on the
unknot (see [HOMFLY], [PT]).

a
_1a b

Fig. 1. The HOMFLYPT skein relation

The specialization a = qn and b = q− q−1, for integer n, produces a one-
variable link polynomial which can be interpreted via representation theory
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of the quantum group Uq(sl(n)) if n is positive (see [RT]), Uq(sl(−n)) if n
is negative, and Uq(gl(1|1)) if n = 0 (see [KS]). This polynomial is invariant
under changing q to q−1 simultaneously with passing to the mirror image
of the link; therefore, we do not lose any information by restricting to non-
negative n. We denote this one-variable polynomial by Pn(L), where L is an
oriented link; the normalization is

Pn(unknot) = [n] :=
qn − q−n

q − q−1
if n > 0, P0(unknot) = 1.

For n = 0, 1, 2, 3 there exists a doubly-graded homology theory of links
whose Euler characteristic is Pn(L). Let us denote this theory by H ′n(L).

• P0(L) is the Alexander polynomial, and H ′0(L) was constructed by
Peter Ozsváth and Zoltán Szabó [OS], and, independently, by Jacob
Rasmussen [Ra]. Their theory exists in greater generality and, in par-
ticular, encompasses knots in homology spheres.

• P1(L) = 1 and H ′1(L) ∼= Z for any oriented link L, with Z in bidegree
(0, 0). It will be clear subsequently that this is a natural choice for
H ′1(L).

• P2(L) is the Jones polynomial; H ′2(L) was defined in [Kh1], and de-
noted by H(L) there. H ′2(unknot) is isomorphic to the integral coho-
mology ring of the 2-sphere.

• H ′3(L) was constructed in [Kh3]. H ′3(unknot) is isomorphic to the in-
tegral cohomology ring of CP2.

The goal of the present paper is to construct, for each n > 0, a doubly-
graded homology theory Hn(L) with Euler characteristic Pn(L). The poly-
nomial Pn(L) can be computed by breaking up each crossing into a linear
combination of diagrams of flat trivalent graphs, as in Figure 2.

q1−n −nq= −

q n−1 q n= −

Fig. 2. Reducing to planar graphs

In these planar graphs some edges are oriented so that the neighborhood
of each unoriented edge (depicted by a thick line, and referred to from now
on as a “wide edge”) looks as on the rightmost pictures in Figure 2. Two
oriented edges “enter” the wide edge at one vertex and two oriented edges
“leave” it at the other. Of course, this arrangement could be used to provide
each wide edge with a canonical orientation, but we will not need it. In
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addition, oriented loops are allowed (an oriented loop is a crossingless plane
projection of the oriented unknot).

There is a unique way to assign a Laurent polynomial Pn(Γ ) ∈ Z[q, q−1]
to each such graph Γ so as to satisfy all skein relations in Figure 3.

= [n]

= [2] = [n−1]

= ++

= + [n−2]

Fig. 3. Graph skein relations, [i] =
qi − q−i
q − q−1

In the representation theory language, an oriented edge stands for the
vector representation V of quantum sl(n), and a wide edge for its (quan-
tum) exterior power Λ2V . The trivalent vertex is the unique (up to scaling)
intertwiner between V ⊗2 and Λ2V . The polynomial Pn(Γ ) has nonnegative
coefficients (see [MOY]).
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Fig. 4. Murakami–Ohtsuki–Yamada terminology and the appearance of edges labeled by 3

This calculus of planar graphs and its generalization to arbitrary exterior
powers of V was developed by Murakami, Ohtsuki and Yamada [MOY].
Oriented edges of graphs in their calculus carry labels from 1 to n− 1 that
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denote fundamental weights of sl(n). The part of their calculus that we use
deals only with edges labeled by 1 and 2. In our notation we omit these
labels; instead, we indicate edges labeled by 2 by wide lines (see Figure 4,
top left). Consistency of Figure 3 relations is shown in [MOY].

The last relation in Figure 3 can be rewritten to introduce edges la-
beled by 3 (see Figure 4), and to say that the difference of certain two
endomorphisms of V ⊗3 is a multiple of the projection onto the irreducible
summand Λ3V .

The polynomial invariant Pn(L) of an oriented link L can be computed
by choosing a plane diagram D of L, resolving each crossing as shown in
Figure 2 and summing Pn(Γ ) weighted by powers of q over all resolutions
Γ of D:

Pn(L) = Pn(D) :=
∑

resolutionsΓ

qα(Γ )Pn(Γ ),

with α(Γ ) determined by Figure 2 rules. Independence from the choice of D
follows from the equations in Figure 3. They imply that Pn(D1) = Pn(D2)
whenever D1 and D2 are related by a Reidemeister move.

To construct the homology theory Hn, we first categorify Pn(Γ ), by
defining in a rather roundabout way a graded Q-vector space H(Γ ) =⊕

j∈ZH
j(Γ ) such that

Pn(Γ ) =
∑
j∈Z

dimQH
j(Γ ) qj .

With Γ we associate a 2-periodic complex C(Γ ) of graded Q-vector
spaces

C0(Γ )→ C1(Γ )→ C0(Γ )

and define H(Γ ) as the degree i cohomology of this complex, where i is the
parity of the number of components of link L. The construction of C(Γ ) is
based on the notion of a matrix factorization. An (R,w)-factorization M
over a commutative ring R (where w ∈ R) consists of two free R-modules
and two R-module maps

M0 d−→M1 d−→M0

such that d2(m) = wm for any m ∈M . The case most commonly considered
in the literature is when R is the ring of power series, and w satisfies a certain
nondegeneracy assumption (that the quotient R/(w) is an isolated singular-
ity). Such an M is called a matrix factorization. When w is homogeneous,
one can switch from power series to polynomials.

Matrix factorizations appeared in commutative algebra in early and mid-
eighties [E1], [B], [Kn], [S], [BEH] in the study of isolated hypersurface sin-
gularities, and much more recently in string theory, as boundary conditions
for strings in Landau–Ginzburg models [KL1–3].
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The tensor productM⊗RN of an (R,w)-factorizationM and an (R,−w)-
factorizationN is a 2-periodic complex ofR-modules, with well-defined coho-
mology. More generally, given a finite set {w1, . . . , wm} of elements of R that
sum to zero, and an (R,wi)-factorization Mi for each i, the tensor product

M1 ⊗R · · · ⊗RMm

is a 2-periodic complex and its cohomology H(
⊗

iMi) is a Z2-graded R-
module.

Starting with a resolution Γ of a link diagram, we denote by E the set
of oriented edges of Γ and by R the ring of polynomials in xj , j ∈ E. We
give each xj degree 2, making R graded. Assume for simplicity that Γ has
no oriented loops and each wide edge of Γ borders exactly four oriented
edges (no oriented edge shares both endpoints with the same wide edge).
Let T be the set of wide edges. Choosing a t ∈ T, denote the oriented edges
at t by 1, 2, 3, 4 (we think of 1, 2, 3, 4 as elements of E) so that the four
corresponding variables are x1, x2, x3, x4 (see Figure 5).

x1 x2

x3 x4

Fig. 5. Near a wide edge

Assign the polynomial

wt = xn+1
1 + xn+1

2 − xn+1
3 − xn+1

4

to the edge t. This polynomial lies in the ideal generated by x1 +x2−x3−x4

and x1x2 − x3x4 (since xn+1 + yn+1 is a polynomial g(x + y, xy) in x + y
and xy). Therefore, we can write

wt = (x1 + x2 − x3 − x4)u1 + (x1x2 − x3x4)u2

for some polynomials u1, u2. The latter are not uniquely defined, but the
indeterminacy is easy to describe. We choose

u1 =
xn+1

1 + xn+1
2 − g(x3 + x4, x1x2)

x1 + x2 − x3 − x4
,

u2 =
g(x3 + x4, x1x2)− xn+1

3 − xn+1
4

x1x2 − x3x4
.

Let Ct be the tensor product of the factorizations

R
x1+x2−x3−x4−−−−−−−−−→ R

u1−→ R

and
R

x1x2−x3x4−−−−−−−→ R
u2−→ R.
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Then Ct is an (R,wt)-factorization. Define C(Γ ) to be the tensor product
of the Ct over all wide edges t,

C(Γ ) :=
⊗
t∈T

Ct.

The square of the differential in C(Γ ) is the sum of wt over all wide edges t,

d2 =
∑
t

wt = 0.

The sum is 0, since for each oriented edge i the term xn+1
i appears twice in

the sum, once with positive and once with negative sign. We see that C(Γ )
is a 2-periodic complex of Q-vector spaces.

If, in addition, Γ contains k oriented loops, to define C(Γ ) we tensor the
product of Ct’s with k copies of the vector space H∗(CPn−1,Q) and, if k is
odd, shift the complex. The shift M〈1〉 of a factorization M0 →M1 →M0

is
M1 →M0 →M1.

If, for some t, some variables (say, x2 and x3) belong to the same oriented
edge (see Figure 6), we quotient the ring R and the complex by the corre-
sponding relation (x2 = x3).

x1 x2

x3
x4

Fig. 6. x2 and x3 are on the same edge

We let H(Γ ) be the cohomology of C(Γ ). The latter has cohomology
only in degree equal to the parity of the number of components of the
link L. Additional internal grading in C(Γ ) coming from the grading in the
polynomial ring R induces a Z-grading on H(Γ ). This, in the nutshell, is
how we define H(Γ ), which serve as building blocks for complexes C(D)
assigned to plane diagrams D.

In this paper we work in greater generality, first by allowing graphs that
lie inside a disc and have points on its boundary. To such a graph we assign
a factorization, rather than a 2-periodic complex. Second, we place one or
more marks on each oriented edge, with variables xi assigned to the marks,
rather than just to the edges (see Figure 7). Boundary points also count
as marks. Let E be the set of marks and R the ring of polynomials in
variables xi for i ∈ E.

To an arc bounded by marks xi, xj and oriented from xj to xi we assign
the factorization Lij :
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t  2

x1

x2

x4

x3

x5
x6

x7

x8

x9

t  1

Fig. 7. A graph with boundary points and marks

R
πij−−→ R

xi−xj−−−−→ R, where πij =
xn+1
i − xn+1

j

xi − xj
.

We then form the tensor product C(Γ ) of the factorizations Ct over all wide
edges t, and factorizations Lij over all arcs. Now we ignore the variables xi
assigned to internal marks, and view C(Γ ) as an (R′, w)-factorization, with
R′ being the ring of polynomials in xi over all boundary points i, and

w =
∑
i

±xn+1
i ,

with signs determined by the orientation of Γ near boundary points. We
prove that, in the homotopy category of factorizations, C(Γ ) does not de-
pend on how we place internal marks.

For example, if Γ is as in Figure 7, to the wide edges t1 and t2 we assign
polynomials wt1 and wt2 in variables x1, x2, x3, x4 and x5, x6, x8, x9, respec-
tively, and factorizations Ct1 , Ct2 . Form the tensor product factorization

C(Γ ) = Ct1 ⊗R Ct2 ⊗R L3
5 ⊗R L7

6,

where R is the ring of polynomials in x1, . . . , x9. We then ignore the variables
x3, x5, x6 that came from internal marks, and treat C(Γ ) as an (R′, w)-
factorization with

w = xn+1
1 + xn+1

2 − xn+1
4 + xn+1

7 − xn+1
8 − xn+1

9 ,

and R′ being the ring of polynomials in the “boundary” variables x1, x2,
x4, x7, x8, x9. As an R′-module, C(Γ ) is free but has infinite rank. However,
by stripping off contractible summands, C(Γ ) can be reduced to a finite
rank factorization.

We prove that the factorizations C(Γ ) have direct sum decompositions
that mimic skein relations in Figure 3, and define homomorphisms χ0 and
χ1 between factorizations C(Γ 0) and C(Γ 1) in Figure 8.

Then we consider oriented tangles in a 3-ball B3 such that all boundary
points of a tangle lie on a fixed great circle of the boundary sphere. Let
D be a generic projection of a tangle L onto the plane of this great circle.
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x2

x4

Γ 0

x3

x1

x4 x3

x2x1

Γ 1

0χ

χ 1

Fig. 8. Graphs Γ 0 and Γ 1

We separate crossings of D into positive and negative, following the rule in
Figure 45. To each crossing we assign two planar graphs (resolutions of this
crossing); see Figure 9.

Γ 0 Γ 1

Fig. 9. Resolving crossings

To a diagram of a single crossing we assign the complex of factorizations

0→ C(Γ 0)
χ0−→ C(Γ 1)→ 0

if the crossing is positive, and the complex

0→ C(Γ 1)
χ1−→ C(Γ 0)→ 0

if the crossing is negative (shifts in the internal grading should be added to
match powers of q that appear in Figure 2 formulas). In both cases we place
C(Γ 0) in cohomological degree 0.

In general, we place marks on each internal edge of D, form a commu-
tative cube of factorizations C(Γ ) over all resolutions Γ of D, and take
the total complex C(D) of the cube. Each factorization C(Γ ) has addi-
tional Z-grading, induced by the grading of the polynomial ring R, and the
differential is grading-preserving. If we ignore the differentials, C(Γ ) is a
Z⊕ Z⊕ Z2-graded R-module.

We prove that if D1 and D2 are related by a Reidemeister move, then
C(D1) and C(D2) are isomorphic as objects in a suitable homotopy category.
Therefore, the isomorphism class of C(D) in this category is an invariant of
the tangle L.
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A cobordism S between tangles T0 and T1 is an oriented surface properly
embedded in B3 × [0, 1] with S ∩ (B3 × {i}) = Ti, and some additional
standard assumptions. S can be presented by a “movie”—a sequence of
plane diagrams of its cross-sections with B3 × k for various k ∈ [0, 1]. The
sequence starts with a diagram D0 of T0 and ends with a diagram D1 of T1.
To such a sequence we associate a homomorphism between complexes of
factorizations C(D0) and C(D1) (with certain grading shifts thrown in), and
show that, up to null-homotopies and multiplications by nonzero rationals,
the homomorphism does not depend on the movie presentation of S (as long
as D0 and D1 are the first and last slides). In this way, for each positive n,
we obtain an invariant of tangle cobordism (trivial invariant if n = 1, and a
variation of the one in [Kh4] if n = 2).

If L is a link, then C(Γ ), for any resolution Γ of D, is a 2-periodic
complex of graded Q-vector spaces. It has cohomology groups only in degree
equal to the parity of the number of components in L. Thus, after removing
the contractible summands, C(Γ ) reduces to a graded vector space, and
C(D) to a complex of graded vector spaces. Its cohomology groups

Hn(D) =
⊕
i,j∈Z

H i,j
n (D)

do not depend, up to isomorphism, on the choice of the projection of L.
The invariant of link cobordism is a homomorphism between these coho-
mology groups, well-defined up to rescaling by nonzero rational numbers.
Due to this, Hn(D) are canonically (up to rescaling) associated to L, rather
than just to its diagram D. Thus, notation Hn(L) is justified. The Euler
characteristic of Hn(L) is the polynomial Pn(L):

Pn(L) =
∑
i,j∈Z

(−1)iqj dimQH
i,j
n (L).

H(Γ ) is the cohomology of the complex C(Γ ) which has countable di-
mension as a Q-vector space. However, since H(Γ ) is finite-dimensional, it
is nontrivial in finitely many degrees only, and an obvious upper bound on
|j| with Hj(Γ ) 6= 0 is ne where e is the number of edges in Γ (both oriented
and unoriented). The complex C(D) is built out of finitely many H(Γ ), and
the differential, being the signed sum of maps χ0, χ1, can be determined
combinatorially as well. Therefore, there exists a combinatorial algorithm
to find the homology groups Hn(L), given L.

If n = 1, the factorization Ct is contractible, and any graph with a wide
edge has trivial homology. The homology of a circle is Q. This implies that
H1(L) ∼= Q for any link L, with Q in bidegree (0, 0).

When n = 2 and Γ is closed (has no boundary points), its cohomology
groups H(Γ ) are isomorphic to A⊗k2 , where A2 is the cohomology ring of the
2-sphere and k the number of circles in the diagram given by deleting all
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wide edges of Γ . The equivalence of H2 with a version of homology theory in
[Kh1] follows easily from this observation. Specifically, for each link L there
is an isomorphism

H i,j
2 (L) ∼= Hi,−j(L!)⊗Z Q,

where L! is the mirror image of L, and H is the homology theory defined
in [Kh1, Section 7] (programs computing H(L) were implemented by Dror
Bar-Natan [BN1] and Alexander Shumakovitch [Sh]).

We conjecture that H3 is isomorphic to the homology theory constructed
in [Kh3], after the latter is tensored with Q. Both theories are doubly-graded,
have the same Euler characteristic, and are built out of similar long exact
sequences. The language of foams used in [Kh3] and [R] should extend from
n = 3 to all n and lead to a better understanding of Hn.

Our categorification of the polynomials Pn(L) comes with several obvious
caveats:

• The homology groups Hn(L) are finite-dimensional Q-vector spaces
rather than finitely generated abelian groups (as in [Kh1], [Kh3] for
n = 2, 3).
• Defining Hn(L) requires a choice of a plane diagram. A more intrinsic

definition would be most welcome.
• Our invariants of link and tangle cobordisms are projective (defined

up to overall multiplication by a non-zero rational number).
• Reconstructing the Ozsváth–Szabó–Rasmussen theory (the n=0 case)

using this approach would require additional ideas, lacking at the mo-
ment.

Construction of C(Γ ) involves tensoring factorizations

R
a−→ R

b−→ R

for various a’s and b’s. We do an elementary study of these tensor products
in Section 2. Section 3 contains a review of matrix factorizations and their
properties. In Section 4 we explain how to view factorizations as functors
and present the identity functor via a factorization. These two sections also
introduce general framework for diagrammatical interpretation of matrix
factorizations. Section 5 treats graded factorizations and explains how to
modify the material of previous sections to cover this case. Section 6 is the
computational core of the paper. We define a factorization C(Γ ) assigned
to a planar graph Γ, construct morphisms χ0, χ1 between graphs Γ 0, Γ 1 in
Figure 8, and prove direct sum decompositions of the factorizations C(Γ )
that lift the skein relations of Figure 3. In Section 7 we associate a complex of
factorizations C(D) to a plane diagram D of a tangle and state Theorem 2.
This theorem, claiming the invariance of C(D) under Reidemeister moves in
a suitable category of complexes of factorizations, is proved in Section 8. In
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Section 9 we use matrix factorizations to construct 2-dimensional topological
quantum field theories with corners. The next section deals with functoriality
of our tangle invariant, extending it to tangle cobordisms. In the last section
we briefly outline an approach to categorification of quantum invariants of
links colored by arbitrary fundamental representations of sl(n).

Acknowledgments. M.K. is indebted to Ragnar-Olaf Buchweitz, Igor
Burban, and Paul Seidel for introducing him to matrix factorizations, and to
Igor Burban for sharing M.K.’s fascination with 2-periodic triangulated cat-
egories. L.R. would like to thank Anton Kapustin for explanations regarding
topological 2-dimensional models and his work with Yi Li. We are grateful
to Dror Bar-Natan and Greg Kuperberg for interesting discussions. While
writing this paper we were partially supported by NSF grants DMS-0104139
and DMS-0196131.

2. The cyclic Koszul complex. Let R be a Noetherian commutative
ring. The Koszul complex R(a1, . . . , am) associated to a sequence a1, . . . , am,
where ai ∈ R, is the tensor product (over R) of complexes

0→ R
ai−→ R→ 0

for i = 1, . . . ,m. A sequence (a1, . . . , am) is called R-regular if ai is not a
zero divisor in the quotient ring R/(a1, . . . , ai−1)R for each i = 1, . . . ,m,
and R/(a1, . . . , am)R 6= 0. If the sequence is R-regular, its Koszul complex
has cohomology in the rightmost degree only. For the converse to be true it
suffices for R to be local (see [E1, Section 17]).

The Koszul complex can be written in a more intrinsic way. Let N be a
free R-module of rank m and a : R→ N an R-module homomorphism. The
Koszul complex of a is the complex of exterior powers of N :

0→ R→ N → Λ2N → Λ3N → · · · ,

with the differential being the exterior product with a(1) ∈ N . Choosing a
basis of N and writing a(1) in coordinates as (a1, . . . , am), we recover the
Koszul complex of this sequence.

Definition 1. Let w ∈ R. An (R,w)-duplex consists of two R-modules
M0,M1 and module maps

M0 d−→M1 d−→M0

such that d2 = w (as endomorphisms of M0 and M1).

In other words, d2m = wm for any m ∈ M0 ⊕M1. “Duplex” is a term
from [FKS], where it was used in a more general situation, with R a (possibly
noncommutative) ring and w its central element.
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A homomorphism f : M → N of duplexes is a pair of homomorphisms
f0 : M0 → N0 and f1 : M1 → N1 that make the diagram below commute.

M0 d0−−−−→ M1 d1−−−−→ M0

f0

y f1

y f0

y
N0 d0−−−−→ N1 d1−−−−→ N0

The category of (R,w)-duplexes and duplex homomorphisms is abelian.
A homotopy h between homomorphisms f, g : M → N of duplexes is a

pair of maps hi : M i → N i−1 (with indices understood modulo 2) such that

f − g = hdM + dNh.

Null-homotopic morphisms constitute an ideal in the category of duplexes.
We call the quotient category by this ideal the category of duplexes up to
homotopy, or simply the homotopy category of duplexes. This category is
triangulated. We denote the shift functor by 〈1〉.

An (R, 0)-duplex M is equivalent to a 2-complex (periodic complex with
period two) of R-modules. We denote the cohomology of an (R, 0)-duplex
M by H(M) ∼= H0(M)⊕H1(M).

Definition 2. A factorization (or matrix factorization) is an (R,w)-
duplex such that M0,M1 are free R-modules.

The homotopy category of (R,w)-factorizations is triangulated.
To a pair of elements a, b ∈ R we associate the (R, ab)-factorization

R
a−→ R

b−→ R,

denoted {a, b}.
If a = (a1, . . . , am) and b = (b1, . . . , bm) are two sequences of elements

of R, we consider the tensor product factorization {a,b} := ⊗i{ai, bi}, where
the tensor product is over R. We call {a,b} the Koszul factorization of the
pair (a,b). We say that a pair (a,b) is orthogonal if

ab :=
∑
i

aibi = 0.

The tensor product {a,b} is a 2-complex iff (a,b) is orthogonal, in which
case we call it the periodic (or cyclic) Koszul complex of (a,b).

Remark. We allow the case m = 0. Then a and b are empty sequences,
w = 0, and the Koszul factorization is R→ 0→ R.

Remark. Factorizations {a,b} were defined in [BGS] and used there in
the classification of finite CM-type singularities.
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Proposition 1. If the entries of a and b generate R as an R-module,
then the factorization {a,b} is contractible (its identity endomorphism is
null-homotopic).

Proof. Write 1 =
∑

i(a
′
iai + b′ibi). The pair (a′,b′), for a′ = (a′1, . . . , a

′
m)

and b = (b′1, . . . , b
′
m), defines a homotopy between the identity and the zero

endomorphism of {a,b}.

Corollary 1. If (a,b) is orthogonal and the entries of a and b generate
R as an R-module, then the 2-complex {a,b} is acyclic.

Let Ia,b ⊂ R be the ideal of R generated by the entries of a and b.

Proposition 2. H({a,b}) is an R/Ia,b-module.

Proof. Multiplications by ai and bi are null-homotopic endomorphisms
of {ai, bi}, and therefore of {a,b}.

Let ai,bi be the sequences obtained from a and b by omitting ai and
bi, respectively. The factorization {a,b} is the “total factorization” of the
bifactorization

{ai,bi} ai−→ {ai,bi} bi−→ {ai,bi}.

If bi is a nonzerodivisor in R, the second map is injective (as a map be-
tween R-modules), and the direct sum of the middle {ai,bi} and its image
under the differential is contractible. Furthermore, suppose that (a,b) is
orthogonal. Then the quotient of {a,b} by this contractible subcomplex is
isomorphic to {ai,bi}R′ , the periodic Koszul complex of the pair (ai,bi) in
the quotient ring R′ := R/(bi). The quotient map induces an isomorphism
on cohomology,

H({a,b}) ∼= H({ai,bi}R′),

which is an isomorphism of R′-modules.

Corollary 2. If (a,b) is orthogonal and b is R-regular then

H0({a,b}) ∼= R/(b1, . . . , bm) and H1({a,b}) = 0.

Likewise, if ai is a nonzerodivisor in R and (a,b) is orthogonal, then the
quotient map

{a,b}〈1〉 → {ai,bi}R/(ai)
induces an isomorphism on cohomology.

Motivated in part by Corollary 2, we introduce

Definition 3. An orthogonal pair (a,b) is called homologically R-re-
gular if H0({a,b}) 6= 0 and H1({a,b}) = 0.

If (a,b) is homologically R-regular then Ia,b is a proper ideal in R.
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Example. Let m = 1. An orthogonal pair (a1, b1) is homologically R-
regular iff a1R = Ann(b1) and b1R is a proper subset of Ann(a1). Further-
more, when R is a domain, (a1, b1) is homologically R-regular iff a1 = 0 and
b1 is not invertible.

Example. Let 0 = (0, . . . , 0). The pair (0,b) is homologically R-regular
iff the Koszul complex of b has cohomology in the rightmost degree only.

Suppose there is a subset J ⊂ {1, . . . ,m} with even number of elements
such that the sequence (h1, . . . , hm) is R-regular, where hi = ai if i ∈ J and
hi = bi otherwise. Then (a,b) is homologically R-regular and H0({a,b}) ∼=
A/(h1, . . . , hm).

We can likewise define the notion of homologically M -regular pair (a,b)
for any R-module M, and even for any (R,w)-duplex M . For the latter, we
require ab = −w,H0(M ⊗R {a,b}) 6= 0 and H1(M ⊗R {a,b}) = 0.

Let N be a finitely-generated free R-module and α : R→ N, β : N → R
be R-module maps. Consider the factorization {α, β} given by

(1) ΛevenN
∧α+¬β−−−−→ ΛoddN

∧α+¬β−−−−→ ΛevenN

where ∧α is the wedge product with α(1),

∧α : ΛiN → Λi+1N,

¬β is the contraction with β,

¬β : ΛiN → Λi−1N,

and
ΛevenN =

⊕
i
Λ2iN, ΛoddN =

⊕
i
Λ2i+1N.

{α, β} is a 2-complex iff βα = 0, in which case we say that α and β are
orthogonal. Choosing a basis of N , we can write α = a = (a1, . . . , am)T and
β = b = (b1, . . . , bm). Then {α, β} is isomorphic to {a,b}.

Thus, with each element γ ∈ N ⊕N∗ we associate a factorization

{γ} := {α, β},
where γ = α+ β and α ∈ N , β ∈ N∗.

Suppose g : N → N is an automorphism of the R-module N . Write
the composition βα as βγ−1γα. The factorizations {α, β} and {γα, βγ−1}
are isomorphic, and GL(N,R) acts on the set of pairs (α, β) preserving the
isomorphism classes of factorizations {α, β}.

We let the group H = (Z2)×m act on pairs by permuting ai with ai in
(a1, a1), . . . , (am, am) for 1 ≤ i ≤ m.

For σ ∈ H, the factorizations {a,b} and {σ(a,b)} are isomorphic if σ is
an even permutation in H ⊂ S2m. If σ is odd, the factorization {σ(a,b)} is
isomorphic to {a,b}〈1〉.
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The natural R-linear pairing between N∗ and N induces a symmetric
bilinear form onN⊕N∗. Let G′ ⊂ GL(N⊕N∗, R) be the subgroup generated
by GL(N,R) and H that act as described above. The action of G′ preserves
the inner product on N ⊕ N∗ (with values in R). Let G be the subgroup
of G′ that consists of all products g1σ1 . . . grσr of elements from GL(N,R)
and H (over all r) such that σ1 . . . σr is an even permutation.

The following result is clear.

Proposition 3. {γ} and {gγ} are isomorphic factorizations for any
g ∈ G and γ ∈ N ⊕N∗.

The cyclic Koszul complex can be thought of as the square root of the
Koszul complex. Namely,

HomR({a,b}, {a,b}) ∼= {a,b} ⊗R {−b,a} ∼= R(a,b),

where R(a,b) is the Koszul complex of the length 2m sequence given by
concatenating a and b, with the grading collapsed from Z to Z2.

3. Potentials, isolated singularities, and matrix factorizations

Potentials and their Jacobian algebras. We start with a finite set x =
{x1, . . . , xk} of variables and let

R = Q[[x]] := Q[[x1, . . . , xk]]

be the algebra of power series in x1, . . . , xk with rational coefficients. Denote
by m the unique maximal ideal in R (generated by x1, . . . , xk).

We say that a polynomial w = w(x) ∈ m2 is a potential if the algebra
R/Iw is finite-dimensional, where Iw ⊂ R is the ideal generated by the
partial derivatives ∂iw := ∂xiw. Any polynomial w ∈ R defines an algebraic
map Cn → C. This map has an isolated singularity at 0 iff w is a potential.

A polynomial w ∈ m2 is a potential iff ∂1w, . . . , ∂kw is a regular sequence
in R, that is, ∂iw is not a zero divisor in R/(∂1w, . . . , ∂i−1w)R for each
1 ≤ i ≤ k.

The quotient algebra Rw := R/Iw is called the local algebra of the singu-
larity and the Jacobian (or Milnor) algebra of w. Its dimension is the Milnor
number of the singularity.

Proposition 4. The Jacobian algebra Rw is symmetric.

A nondegenerate C-linear trace Tr : Rw⊗QC→ C is given by the residue
formula

(2) Tr(a) =
1

(2πi)k
�

|∂jw|=ε

a dx1 . . . dxk
∂1w . . . ∂kw
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(proved in [GH, Chapter 5] and [AGV]). Therefore, the C-algebra Rw ⊗Q C
is symmetric. From [NN, Theorem 5] we deduce that Rw is a symmetric
Q-algebra.

Exterior sum of potentials. Let x and y be two disjoint finite sets of
variables. Define the exterior sum of potentials w1(x) and w2(y) as the
potential w1(x) + w2(y) in variables x and y. The Jacobian algebra of the
exterior sum of potentials is the tensor product of the Jacobian algebras:

Rw1(x)+w2(y)
∼= Rw1(x) ⊗Q Rw2(y).

Matrix factorizations. A matrix factorization of a potential w is a col-
lection of two free A-modules M0,M1 and two module maps d0 : M0 →M1

and d1 : M1 →M0 such that

d0d1 = w · IdM1 , d1d0 = w · IdM0 .

We will often write a matrix factorization as

M0 d−→M1 d−→M0.

The modules M0 and M1 are not required to have finite rank. Since w
is invertible in the field of fractions Q((x)) of R, and the rank of a free
R-module N can be defined as the dimension of the Q((x))-vector space
N ⊗R Q((x)), we see that M0 and M1 have equal ranks (when the ranks
are finite). In general, rk(M0) = rk(M1), understood as equality of ordinals.
We call rk(M0) the rank of M .

A homomorphism f : M → N of factorizations is a pair of homomor-
phisms f0 : M0 → N0 and f1 : M1 → N1 that make the diagram below
commute.

M0 d0−−−−→ M1 d1−−−−→ M0

f0

y f1

y f0

y
N0 d0−−−−→ N1 d1−−−−→ N0

Denote the set of homomorphisms from M to N by HomMF(M,N). It is an
R-module, with the action a(f0, f1) = (af0, af1) for a ∈ R.

Let MFall
w be the category whose objects are matrix factorizations and

morphisms are homomorphisms of factorizations. This category is additive
and R-linear. Direct sum of matrix factorizations M and N is defined in the
obvious way:

(M ⊕N)i = M i ⊕N i, diM⊕N = diM + diN .

The shifted factorization M〈1〉 is given by

M〈1〉i = M i+1, diM〈1〉 = −di+1
M , i = 0, 1 mod 2.

〈1〉 is a functor in MFall
w whose square is the identity, and 〈2〉 ∼= Id.
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Example. If the set of variables x is empty, then R = Q, f = 0, and a
matrix factorization is a pair of vector spaces and a pair of maps between
them such that their composition in any order is 0. We call such data a
2-complex (short for 2-periodic complex ).

Matrix factorizations first appeared in the work of David Eisenbud [E1],
who related them to maximal Cohen–Macaulay modules over isolated hyper-
surface singularities (see also [Y1, Chapter 7], [S], and references therein).
A module N over a commutative Noetherian local ring is called maximal
Cohen–Macaulay if the depth of N equals the Krull dimension of the ring.
Given a matrix factorization M, the R/(f)-module Coker(d1) is maximal
Cohen–Macaulay, and any maximal Cohen–Macaulay module over R/(f)
can be presented in this way (see the above references for details). For a
reader-friendly treatment of the background concepts leading to maximal
Cohen–Macaulay modules we suggest the book [E2].

M

w

Fig. 10. A matrix factorization

Graphical notation. We denote a matrix factorization M with potential
w as in Figure 10. We allow reversing orientation of the arc attached to M
simultaneously with changing potential w to −w (see Figure 11).

w − w=

M

w

M

− w

=

Fig. 11. Orientation reversal

If w is the exterior sum of potentials, we may introduce several arcs
at M, one for each summand (see Figure 12).

Factorizations of finite rank. Let MF′w be the category of finite rank
matrix factorizations. It is a full subcategory in MFall

w . Choose bases in free
R-modules M0 and M1. The maps d0, d1 can be written as m×m matrices
D0, D1 with coefficients in R. These matrices satisfy the equations

(3) D0D1 = w · Id, D1D0 = w · Id
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M

 w (y)
2

w (x)
1

 w (z)
3

M

1 2 3
 w (x)+w (y)+w (z)

=

M

w (x)+w (y)
1 2

M

w (x)
1

 w (y)
2

=

Fig. 12. Diagrams for a factorization over exterior sum of potentials

(of course, any one of these equations implies the other). Alternatively, we
can describe this factorization by a 2m×2m matrix with off-diagonal blocks
D0 and D1:

D =
(

0 D1

D0 0

)
, D2 = w · Id .

Matrix description of objects in MF′w extends to infinite rank factorizations.
The matrices D0 and D1 then have infinite rank, but each of their columns
has only finitely many nonzero entries.

If factorizations M and N are written in matrix form, M = (D0, D1),
and N = (D′0, D

′
1), a homomorphism f : M → N is a pair of matrices

(F0, F1) such that F1D0 = D′0F0 and F0D1 = D′1F1 (note, though, that the
two equations are equivalent).

Homotopies of factorizations. A homotopy h between maps f, g : M →
N of factorizations is a pair of maps hi : M i → N i−1 such that

f − g = hdM + dNh.

Null-homotopic morphisms constitute an ideal in the category MFall
w . Let

HMFall
w be the quotient category by this ideal. It has the same objects as

MFall
w , but fewer morphisms:

HomHMF(M,N) := HomMF(M,N)/{null-homotopic morphisms}.

Choose bases in M0 and M1 and write d as a matrix D. Differentiating the
equation D2 = w with respect to xi we get

D(∂iD) + (∂iD)D = ∂iw.

Therefore, the multiplication by ∂iw endomorphism of M is homotopic to 0,
and we obtain
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Proposition 5. The action of R on HomHMF(M,N) factors through
the action of the Jacobian algebra Rw.

Let HMF′w be the category with objects finite rank matrix factorizations
and morphisms homomorphisms of factorizations modulo those homotopic
to 0. This is a full subcategory in HMFall

w .
The free R-module HomR(M,N) is a 2-complex

Hom0
R(M,N) d−→ Hom1

R(M,N) d−→ Hom0(M,N),

where

Hom0
R(M,N) = HomR(M0, N0)⊕HomR(M1, N1),

Hom1
R(M,N) = HomR(M0, N1)⊕HomR(M1, N0),

and

(df)m = dN (f(m)) + (−1)if(dM (m)) for f ∈ Homi
R(M,N).

Denote the cohomology of this 2-complex by

Ext(M,N) = Ext0(M,N)⊕ Ext1(M,N).

It is clear from the definitions that

Ext0(M,N) ∼= HomHMF(M,N),(4)
Ext1(M,N) ∼= HomHMF(M,N〈1〉).(5)

Proposition 6. Ext(M,N) is a finite-dimensional Rw-module if M and
N are finite rank factorizations.

Proof. We need to show that HomHMF(M,N) is finite-dimensional. The
latter is an R-module quotient of HomMF(M,N), which is a submodule of
the free finite rank R-module HomR(M,N). Since R is Noetherian, subquo-
tients of finitely generated R-modules are finitely generated. The action of
R on HomHMF(M,N) factors through the action of the Jacobian ring Rw,
by Proposition 5. Therefore, HomHMF(M,N) is finite-dimensional, being
finitely generated over a finite-dimensional algebra.

Remark. This proposition and many that follow fail to hold if w ∈ R
is not a potential. However, (R,w)-factorizations for such degenerate w will
make important intermediate appearances, as our main examples come from
tensor products of factorizations with degenerate w (when R/(w) does not
have an isolated singularity at 0).

Definition 4. A polynomial p ∈ m2 is called a degenerate potential if
the Jacobian algebra Rw is infinite-dimensional.

Any polynomial in m2 is either a potential or a degenerate potential (but
never both). Unless specified otherwise, w denotes a potential.
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The Tyurina algebra. The Tyurina algebra RTw is defined as the quotient
of the Jacobian algebra Rw by the ideal generated by w. Multiplication by w
is homotopic to 0 in HomMF(M,M), for any factorization M, and therefore
HomHMF(M,N) and Ext(M,N) are modules over the Tyurina algebra (this
is a slight extension of Proposition 5).

Cohomology of factorizations. The quotient M/mM is a 2-complex of
vector spaces (the square of the differential is 0 since w ∈ m):

M0/mM0 d−→M1/mM1 d−→M0/mM0.

Denote the cohomology of this 2-complex by H(M) and call it the coho-
mology of M . Note that H(M) is Z2-graded, H(M) = H0(M) ⊕ H1(M).
Cohomology of factorizations is a functor from MFall

w and HMFall
w to the

category of Z2-graded Q-vector spaces and grading-preserving linear maps.

Proposition 7. The following conditions on M ∈ MFall
w are equivalent :

(i) H(M) = 0.
(ii) H0(M) = 0.

(iii) H1(M) = 0.
(iv) M is isomorphic to the zero factorization in the category HMFall

w .
(v) M is isomorphic in MFall

w to the (possibly infinite) direct sum of

(6) R
1−→ R

w−→ R

and

(7) R
w−→ R

1−→ R.

Proof. The implications (v)⇒(iv)⇒(i)⇒(ii) and (i)⇒(iii) are obvious.
It suffices to establish (ii)⇒(v). Choose R-module bases in M0 and M1

and write factorization maps in matrix form. If one of the entries does not
lie in the maximal ideal m ⊂ R, this entry is invertible, and a change of
bases makes the matrices block-diagonal with two blocks, one of which is
either (1, w) or (w, 1). Therefore, M is isomorphic to the direct sum of some
factorization N and either (6) or (7). Applying Zorn’s lemma, we conclude
that any factorization M decomposes into a direct sum M ∼= Mes ⊕ Mc

where Mc is a direct sum of factorizations (6) or (7) and Mes does not have
any invertible elements in its matrix presentation (equivalently, Mes does
not contain any summands isomorphic to (6) or (7)). Since M0

es
∼= V ⊗Q R

as R-modules, for some vector space V, we have

H0(M) ∼= H0(Mes) ∼= V.

Therefore, if M satisfies (ii), then V = 0 and Mes = 0. The proposition
follows.
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A factorization is called contractible if it satisfies one of the five equivalent
conditions in Proposition 7.

Define the dimension dim(M) of the factorization M as the dimension of
the Q-vector space H(M). We have dim(M) ≤ 2 rk(M). If M is a finite rank
factorization, equality holds iff M does not contain contractible summands.

Example. A factorization of rank 1 has the form

R
a0−→ R

a1−→ R

for a0, a1 ∈ R such that w = a0a1. Denote this factorization by N . Then

HomMF(N,N) ∼= R and HomHMF(N,N) ∼= R/(a0, a1),

the quotient of R by the ideal generated by a0 and a1. The factorization N is
contractible iff either a0 or a1 is invertible (does not lie in m). It is nontrivial
when both a0 and a1 belong to the maximal ideal (then H(M) ∼= Q ⊕ Q).
This is only possible if k, the number of variables in the set x, is at most 2
(since we need w = a0a1 to be nondegenerate).

Proposition 8. The following properties of a morphism f : M → N of
factorizations are equivalent :

(i) f is an isomorphism in the homotopy category of factorizations.
(ii) f induces an isomorphism between the cohomologies of M and N .

Proof. The implication (i)⇒(ii) is obvious. To prove (ii)⇒(i), choose
decompositions M ∼= Mes ⊕Mc and N ∼= Nes ⊕Nc. The composition

fes : Mes
i−→M

f−→ N
p−→ Nes,

where i and p are the obvious inclusion and projection, induces an iso-
morphism H(fes) : H(Mes) ∼= H(Nes). Given two free R-modules L1 and
L2, an R-module map L1 → L2 which induces an isomorphism of quotients
L1/mL1

∼= L2/mL2 is an isomorphism of R-modules. Therefore, fes : Mes →
Nes is an isomorphism of R-modules, and f is an isomorphism in the homo-
topy category of factorizations.

Remark. We see from this proposition that, although HMFall
w was de-

fined as a “homotopy” category, it also has the flavor of a “derived” category:
in the latter, a morphism which induces an isomorphism in cohomology is
an isomorphism. For an explanation and generalizations of this phenomenon
see Buchweitz [B] and Orlov [O].

The proof of Proposition 8 implies

Corollary 3. A decomposition M ∼= Mes ⊕Mc of M into a factor-
ization without contractible summands and a contractible factorization is
unique up to isomorphism.

We call Mes the essential summand of M .
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Corollary 4. Any factorization M with finite-dimensional cohomology
is a direct sum of a finite rank factorization and a contractible factorization.

Let MFw be the category whose objects are factorizations with finite-
dimensional cohomology and morphisms are homomorphisms of factoriza-
tions. Let HMFw be the quotient of MFw by the ideal of null-homotopic
morphisms. Any finite rank factorization has finite-dimensional cohomology,
therefore, we have (full and faithful) inclusions of categories MF′w ⊂ MFw
and HMF′w ⊂ HMFw. Corollaries 3 and 4 imply

Corollary 5. The inclusion HMF′w ⊂ HMFw is an equivalence of cat-
egories.

Although we will be doing most of our work in the categories HMFw for
various w, the other five categories provide a useful supporting framework.
To reduce the confusion of six different categories, we arranged them into a
table.

factorizations with
all finite finite-dimensional

factorizations rank cohomology

all
homomorphisms MFall

w MF′w MFw

modulo
homotopic to 0 HMFall

w HMF′w ∼= HMFw

The categories in the bottom row are triangulated, and the two right-
most categories in this row are equivalent. Even though most of the time our
constructions start with finite rank factorizations, our functors take them
to infinite rank factorizations, but with finite-dimensional cohomology. The
latter factorizations lie in HMFw (they can be reduced to finite rank factor-
izations, but this operation, sometimes necessary on concrete factorizations,
is awkward from the categorical viewpoint). At the same time, the collec-
tion of categories HMFw over various w is closed under all functors that are
essential in our work, and is a natural and thrifty choice.

Dualities. The free R-module M∗ = HomR(M,R) admits a factorization

(M0)∗
(d1)∗−→ (M1)∗

(d0)∗−→ (M0)∗.

An inclusion of factorizations M ⊂ M∗∗ is an isomorphism if M has fi-
nite rank, and an isomorphism in the homotopy category if M has finite-
dimensional cohomology. Thus, M → M∗ is a contravariant equivalence in
the categories MF′w,HMF′w, and HMFw.
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Assume that M has finite rank, and choose R-module bases in M0,M1.
The factorization is described by two matrices (D0, D1). The dual factoriza-
tion M∗ is described by the transposed matrices (Dt

1, D
t
0).

For M ∈ MFall
w denote by M− the factorization

M0 −d0−→M1 d1−→M0.

This assignment extends to an equivalence of categories of factorizations
with potentials w and −w.

Let M• = (M∗)−. This assignment is a contravariant functor between
categories of factorizations with potentials w and −w. Observe that

{a,b}• ∼= {−b,a}.
Excluding a variable. Let R = Q[[x1, . . . , xm]] and R′ = Q[[x2, . . . , xm]]

⊂ R. Suppose that w ∈ R′ is a potential, and w = ab for a pair {a,b} as in
Section 2, where ai, bi ∈ R. Suppose bi−x1 ∈ R′ for some i. Let c = bi−x1,
and ai,bi be the sequences obtained from a and b by omitting ai and bi. Let
ψ : R → R′ be the homomorphism ψ(xj) = xj for j 6= 1, and ψ(x1) = −c
(so that ψ(bi) = 0). Note that ψ(w) = w.

Let ψ(ai), ψ(bi) be the sequences obtained by applying ψ to every entry
of ai and bi. Then {ψ(ai), ψ(bi)} is an (R′, w)-factorization. By treating R
as an R′-module, we can view {a,b} as an (R′, w)-factorization (of infinite
rank). Let

f : {a,b} → {ψ(ai), ψ(bi)}
be the following homomorphism of (R′, w)-factorizations:

{ai,bi} ai−→ {ai,bi} bi−→ {ai,bi}
↓ψ ↓ ↓ψ

{ψ(ai), ψ(bi)} −→ 0 −→ {ψ(ai), ψ(bi)}
The top line is the factorization {a,b} written as the total factorization of
a bifactorization.

Proposition 9. f is an isomorphism in the homotopy category of
(R′, w)-factorizations.

Proof. It would suffice to show that f induces an isomorphism on coho-
mology. Multiplication by bi is an injective endomorphism of the R′-module
{ai,bi}. Decompose

{ai,bi} ∼= bi{ai,bi} ⊕M,

where the decomposition is that of R′-modules, and M consists of vectors
with all coordinates in R′ in the standard R-module basis of {ai,bi}. The
R′-subfactorization

bi{ai,bi}
ai−→ {ai,bi} bi−→ bi{ai,bi}
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of {a,b} is contractible, while f(M) = {ψ(ai), ψ(bi)} as R′-modules. It
follows immediately that f induces an isomorphism on cohomology.

Let R = Q[[x1, . . . , xk+m]] and R′ = Q[[xk+1, . . . , xk+m]] ⊂ R. Suppose
that w ∈ R′ is a potential, and w = ab for a pair {a,b} with aj , bj ∈ R.
Assume that b1 − x1 is a polynomial in x2, . . . , xk+m, and, more generally,
bj−xj , for each j between 1 and k, is a polynomial in xj+1, . . . , xk+m,modulo
the ideal generated by b1, b2, . . . , bj−1. Let ψ be the homomorphism R→ R′

uniquely determined by the conditions ψ(xj) = xj for j > k, and ψ(bj) = 0
for j ≤ k. Let ak,bk be the sequences obtained from a,b by omitting aj , bj
for all j ≤ k. Let ψ(ak), ψ(bk) be the sequences obtained by applying ψ to
every entry of ak and bk. Then {ψ(ak), ψ(bk)} is an (R′, w)-factorization.
Treating R as an R′-module, we view {a,b} as an (R′, w)-factorization (of
infinite rank).

Proposition 10. {a,b} and {ψ(ak), ψ(bk)} are isomorphic in the ho-
motopy category of (R′, w)-factorizations.

Proof. The proof of the previous proposition generalizes to this setup
without difficulty.

Frobenius structure. The following duality theorem was proved by Rag-
nar-Olaf Buchweitz [B] in much greater generality.

Theorem 1. Suppose that w is a potential in an even number of vari-
ables, w = w(x1, . . . , x2k). There exists a collection of trace maps

TrM : HomHMF(M,M)→ Q,
indexed by objects of HMFw, such that for any M,N ∈ Ob(HMFw) the
composition

HomHMF(M,N)⊗HomHMF(N,M)→ HomHMF(M,M) TrM−→ Q
is a nondegenerate bilinear pairing.

Proof. See Theorem 7.7.5, Proposition 10.1.5, Example 10.1.6, and Co-
rollary 10.3.3 in [B].

Although Theorem 1 is not used explicitly in this paper, the Frobenius
structure of the categories HMFw is implicit in several of our constructions
and proofs. We expect that Theorem 1 will become indispensable in fur-
ther investigations of the interplay between matrix factorizations and link
homology.

4. Factorizations as functors

Internal tensor product. Let M ∈ MFall
w and N ∈ MFall

−w. The tensor
product M ⊗R N is a 2-complex
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(M ⊗R N)0 d−→ (M ⊗R N)1 d−→ (M ⊗R N)0,

where
(M ⊗R N)j =

⊕
i∈{0,1}

M i ⊗R N j−i

and
d(m⊗ n) = dM (m)⊗ n+ (−1)im⊗ dN (n), m ∈M i.

Proposition 11. M ⊗RN has finite-dimensional cohomology if M and
N are factorizations with finite-dimensional cohomology.

Proof. This is a special case of Proposition 13 below.

Proposition 12. If M has finite rank , there is a natural isomorphism
of 2-complexes

(8) HomR(M,N) ∼= N ⊗RM•.

Proof. The usual isomorphism of R-modules on the left and right hand
sides of (8) intertwines the differentials in these 2-complexes.

Corollary 6. If M has finite-dimensional cohomology , there is a nat-
ural isomorphism of cohomology groups

(9) Ext(M,N) ∼= H(N ⊗RM•),
and (in the homotopy category) of 2-complexes

(10) HomR(M,N) ∼= N ⊗RM•.

The internal tensor product M ⊗N will be depicted by gluing the dia-
gram’s arcs (see Figure 13 right).

w
1

M

w
2

N

M N
w

Fig. 13. External and internal tensor products

Tensor product for sums of potentials. To add dynamics to the world of
matrix factorizations we need a large supply of functors between categories
of factorizations over various isolated singularities w. The tensor product
(over Q[[y]]) with a matrix factorization M ∈ MFw1(x)−w2(y) is a functor
from MFall

w2(y) to MFall
w1(x). A slightly more general construction requires

three potentials w1, w2, w3 and two factorizations M ∈ MFall
w1(x)−w2(y), N ∈

MFall
w2(y)−w3(z). We define their tensor product M ⊗y N by

(11) (M ⊗y N)i =
⊕

j∈{0,1}
(M j ⊗y N i−j)
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and
d(m⊗ n) = dM (m)⊗ n+ (−1)im⊗ dN (n) if m ∈M i.

Here M j ⊗yN i−j denotes the completed tensor product M j ⊗̂Q[[y]]N
i−j (in

the sense that the ring Q[[x, y, z]] of power series in the variables x, y, z is a
completion of Q[[x, y]]⊗Q[[y]] Q[[y, z]]).

If M or N is contractible, so is their tensor product. The tensor product
can be viewed as a bifunctor

MFall
w1(x)−w2(y)×MFall

w2(y)−w3(z) → MFall
w1(x)−w3(z),

HMFall
w1(x)−w2(y)×HMFall

w2(y)−w3(z) → HMFall
w1(x)−w3(z) .

The tensor product does not preserve the finite rank property (since
Q[[x, y, z]] has infinite rank as a Q[[x, z]]-module if the set of variables y is
nonempty). However, we have

Proposition 13. If M and N have finite-dimensional cohomology , so
does their tensor product.

This proposition can be restated by saying that tensor product restricts
to bifunctors

MFw1(x)−w2(y)×MFw2(y)−w3(z) → MFw1(x)−w3(z),(12)
HMFw1(x)−w2(y)×HMFw2(y)−w3(z) → HMFw1(x)−w3(z) .(13)

Proof. It suffices to show that T = M ⊗y N has finite-dimensional co-
homology if M and N have finite rank. This cohomology H(T ) is a module
over the Jacobian algebra Rf2(y), where R = Q[[y]], and a subquotient of
the finitely generated free Q[[y]]-module T/(x, z)T . Thus, H(T ) is a finitely
generated Rf2(y)-module, and necessarily has finite dimension.

The tensor product of factorizations M and N will be depicted by joining
the matching ends of their diagrams and placing a mark at the joint, as
Figure 14 illustrates. Sometimes we will write M as Mx

y and N as Ny
z , and

their tensor product as Mx
yN

y
z .

Mw
1 2

− w w
2

w
3

N

Mw
1

w
3w

2

N

Fig. 14. Graphical presentation of the tensor product over Q[[y]]

If the summands w1(x) and w3(z) of the potentials for M and N are
themselves sums of potentials, and we want to emphasize these decomposi-
tions, we will denote the tensor product M ⊗y N as in Figure 15.
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M
w

 2
N

w
 2

NM
w

 2

Fig. 15. Tensor product over Q[[y]] when w1 and w3 are sums

Remark. Matrix factorizations over exterior sums of potentials are
studied in [EP], [HP], [P], and [Y2].

If a factorization M has potential w(x) − w(y) + w1(z), then the
quotient M/(x−y)M is a module over the ring Q[[x, y, z]]/(x−y). We treat
M/(x − y)M as a factorization, necessarily of infinite rank, with potential
w1(z) over the ring Q[[z]] (were we to consider M/(x− y)M over the larger
ring Q[[x, z]], the potential would have been degenerate).

Proposition 14. If a factorization M with potential w(x)−w(y)+w1(z)
has finite-dimensional cohomology , so does M/(x− y)M .

Proof. Similar to the one of Proposition 13.

We depict the quotient factorization by joining the x and y legs of M,
and placing a mark where the legs were joined (see Figure 16).

M

−w(y)

w(x)

M w(x)

Fig. 16. M and its quotient M/(x− y)M

A closed diagram of factorizations (as in Figure 17) gives rise to a tensor
product, the latter a two-periodic complex of modules over a suitable power
series ring. Each oriented edge has a finite set of variables and a potential
assigned to it, d2 = 0 since the potentials cancel. If each factorization in the
diagram has finite-dimensional cohomology, the complex will have finite-
dimensional cohomology as well. The network does not even have to be
planar, and does not need to be embedded anywhere. In our paper, however,
all such diagrams are going to be planar.

External tensor product. When the intermediate set of variables is
empty, the (completed) tensor product is over Q, and we call it the external
tensor product M ⊗Q N . This operation was investigated by Yoshino [Y2].
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M
  1

M
2

M
  3

M
  4

M
  5

Fig. 17. A closed diagram of factorizations; d2 = 0 in the tensor product, marks on the
edges are omitted.

The disjoint union of two diagrams denotes the external tensor product of
corresponding factorizations (see Figure 13 left).

Hiding minus signs in tensor products. Suppose I is a finite set and Ma,
a ∈ I, is a collection of factorizations (possibly with degenerate potentials).
To define the differential in the tensor product

⊗
a∈IMa in a manifestly

intrinsic way, consider the Clifford ring Cl(I) of the set I. It has generators
a ∈ I and relations

a2 = 1, ab+ ba = 0, a 6= b.

As an abelian group, Cl(I) has rank 2|I|, where |I| is the cardinality of I,
and breaks down into a direct sum

Cl(I) =
⊕
J⊂I

ZJ .

ZJ has as generators all ways to order elements of the set J, and relations

a . . . bc . . . e+ a . . . cb . . . e = 0

for all orderings a . . . bc . . . e of J . The group ZJ is isomorphic to Z, but
there is no canonical isomorphism.

r2a = 1 where ra is the right multiplication by a endomorphism of Cl(I).
For each J ⊂ I which does not contain a we have a 2-periodic sequence

ZJ
ra−→ ZJt{a}

ra−→ ZJ .
Now define the tensor product factorization of Ma’s as the sum, over all
J ⊂ I, of

(
⊗
a∈J

M1
a )⊗ (

⊗
b∈I\J

M0
b )⊗Z ZJ ,

with the differential
d =

∑
a∈I

da ⊗ ra

where da is the differential inMa. We denote this tensor product by
⊗

a∈IMa.
When forming tensor products of factorizations, we will use this trick,

and would need to assign labels to each term in a tensor product. If a label
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a is assigned to a factorization M, we write M as

M0(∅)→M1(a)→M0(∅).
Factorization of the identity functor. Start with the one-variable poten-

tial w(x) = xn+1 and consider the potential w(x) − w(y) in two variables.
Let

πxy =
w(x)− w(y)

x− y
= xn + xn−1y + · · ·+ yn.

Denote by Lxy the factorization

R
πxy−→ R

x−y−−→ R,

where R = Q[[x, y]]. We have

HomHMF(Lxy , L
x
y) ∼= Q[x]/(xn),(14)

HomHMF(Lxy , L
x
y〈1〉) ∼= 0.(15)

Indeed, HomR(Lxy , L
x
y) is isomorphic to the Koszul complex of the sequence

(x − y, πxy), with the grading collapsed from Z to Z2. Regularity of this
sequence implies the formulas (of course, it is easy to check the above two
formulas directly; for instance, the second formula follows since x − y and
πxy are relatively prime). If we assign label (a) to Lxy , we can write this
factorization as

R(∅) πxy−→ R(a)
x−y−−→ R(∅).

Here R(∅), R(a) are free R-modules of rank 1 with basis vectors 1(∅), 1(a).
The differential takes 1(∅) to πxy · 1(a), and 1(a) to (x− y) · 1(∅).

We depict Lxy by an arc oriented from y to x (see Figure 18). If the
potential assigned to an endpoint of a diagram has the form xn+1 for some
variable x, we just write the variable at the endpoint, rather than the po-
tential.

x yL
x
y

Fig. 18. Arc with endpoints x and y

Proposition 15. There is a natural isomorphism

LxyM
y
z
∼= Mx

z ,

where w1(z) is any potential in variables z, and My
z any factorization over

yn+1 − w1(z).

(Notation LxyM
y
z was explained several pages earlier.)

Proof. Assign labels a, b, c to factorizations Lxy , My
z , and Mx

z , respec-
tively. The map of w(x)− w1(z) factorizations

τ1 : Lxy ⊗y My
z →Mx

z
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defined by taking R(a)⊗yMy
z to 0 and R(∅)⊗yMy

z
∼= Q[[x, y]]⊗yMy

z onto
Mx
z by adding the relation x = y induces an isomorphism on cohomologies

of the two factorizations.

This isomorphism is functorial in M and implies

Corollary 7. Tensor product with Lxy is an invertible functor from the
homotopy category of matrix factorizations with potential yn+1 − w1(z) to
the homotopy category of matrix factorizations with potential xn+1 −w1(z),
for any potential w1(z), and is isomorphic to the substitution functor that
relabels y as x.

We could say informally that the tensor product with Lxy is the identity
functor. We depict LxyM

y
z by gluing their y-endpoints and placing a mark

at the gluing point (see Figure 19 top). The proposition can be interpreted
graphically as an isomorphism in Figure 19.

w
1

Mx
y

w
1

Mx

L
x
y M

y
z

Mz
x

Fig. 19. Removing a mark

Proposition 16. The diagram in Figure 20 is commutative.

Proof. In other words, for two marks on different arcs, the order in which
they are removed does not matter. The proof is a simple computation with
the maps τ1.

x
2

x
1

M

x
2

x
1

y
1

M x
2

x
1

M

y
2

x
2

x
1

M

y
1

y
2

Fig. 20. Commutative diagram of mark removals
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Proposition 17. There is a natural isomorphism

M z
xL

x
y
∼= M z

y ,

where w1(z) is any potential in the variables z, and Mx
z any factorization

over w1(z)− xn+1.

Proof. Assign labels a, b, c to factorizations M z
x , Lxy , and My

z , respec-
tively. The map of w1(z)− yn+1 factorizations

τ2 : M z
x ⊗x Lxy →M z

y

defined by taking M z
x ⊗y R(b) to 0 and M z

x ⊗x R(∅) ∼= M z
x ⊗x Q[[x, y]] onto

M z
y by adding the relation x = y induces an isomorphism on cohomologies

of the two factorizations.

The proposition can be interpreted graphically as an isomorphism in
Figure 21.

w
1

M y

w
1

M y
x

M
z

x L
x
y

My
z

Fig. 21. Removing a mark

The isomorphism is functorial in M and implies

Corollary 8. Tensor product with Lxy is an invertible functor from the
homotopy category of matrix factorizations with potential w1(z) − xn+1 to
the homotopy category of matrix factorizations with potential w1(z)− yn+1,
for any potential w1(z), and is isomorphic to the substitution functor that
relabels x as y.

Commutative diagram 20 admits three other versions, with reversed ori-
entation in one or two of the x1, x2 legs of M and mark removal using the
morphism τ2 instead of τ1. Each of these three diagrams is commutative.

In Figure 22 we have two marks on an arc connecting the factorizations
N and M . We could remove the mark labeled y using τ1, or we could remove
the other mark (via τ2), and then relabel y as x.

Proposition 18. The two resulting morphisms from the top to the bot-
tom left factorizations in Figure 22 are equal.

Proof. Direct computation.

There are other versions of Figure 22, with the orientation of the marked
arc reversed, and with N and M being just one factorization (so that the
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MN
yx

x y

N M
x

N M
y

Fig. 22. Yet another commutative diagram

arc starts and ends in the same factorization). Commutativity holds in all
of these cases.

We now specialize to the case when M is itself an arc. The tensor product
LxyL

y
z is the factorization

(16)
(

R(∅)
R(ab)

) (
πxy y−z
πyz y−x

)
−−−−−−−→

(
R(a)
R(b)

) (
x−y y−z
πyz −πxy

)
−−−−−−−−→

(
R(∅)
R(ab)

)
where R = Q[[x, y, z]], and we assigned labels a, b to Lxy , L

y
z , respectively.

The minus sign in front of πxy in the right 2 × 2 matrix comes from the
relation ba = −ab.

Lxz is given by

R′(∅) πxz−→ R′(c) x−z−−→ R′(∅)

where R′ = Q[[x, z]] (and notice label c).
We can specialize maps τ1, τ2, introduced earlier, to this case.
The map τ1 : LxyL

y
z → Lxz is given by the pair of matrices

((φy→x, 0), (0, φy→x)),

where φy→x : R → R′ is the algebra homomorphism that takes x to x,
z to z, and y to x.

The map τ2 : LxyL
y
z → Lxz is given by the pair of matrices

((φy→z, 0), (0, φy→z)),

where φy→z : R → R′ is the algebra homomorphism that takes x to x, and
y, z to z.

Proposition 19. The maps τ1, τ2 : LxyL
y
z → Lxz are homotopic.

Proof. Straightforward.

From now on, isomorphism means isomorphism in the homotopy cate-
gory of factorizations, unless specified otherwise. Since τ1, τ2 are homotopic,
they describe the same morphism in the homotopy category, denoted τy.
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Let τ ′y : Lxz → LxyL
y
z be given by the pair of matrices

τ ′y =
((

1
−exyz

)
,

(
1
1

))
, where exyz =

∑
i+j+k=n−1

xiyjzk.

Proposition 20. τy and τ ′y are mutually inverse isomorphisms in the
homotopy category of factorizations with potential w(x)− w(z).

Proof. It is clear that τ ′y is a homomorphism of factorizations, and τ1τ ′y is
the identity endomorphism of Lxz (c). The proposition follows, since τy = τ1
is an isomorphism of factorizations.

Proposition 21. τ is associative: there is an equality

τz(τy ⊗ Id) = τy(Id⊗ τz)
of maps LxyL

y
zLzw → Lxw.

Proof. Direct computation.

Corollary 9. τ ′ is associative.

Corollary 10. For any m and k there is a canonical isomorphism of
factorizations

Lxz1L
z1
z2 . . . L

zm−1
zm Lzmy

∼= Lxv1L
v1
v2 . . . L

vk−1
vk Lvky .

These isomorphisms are consistent.

LxyL
y
z is depicted by two arcs glued together along matching endpoints,

with a mark at the gluing point. The morphism τy corresponds to removing
a mark, and τ ′y to adding a mark (see Figure 23).

x zL
x
y L

y
z

x zL
x
z

Fig. 23. Adding or removing a mark

Proposition 20 says that removing a marked point on an arc does not
change the isomorphism class of a factorization, Proposition 21 says that
arc removal is associative (Figure 24), while Corollary 10 asserts that two
arcs, each with an arbitrary number of marks, are canonically isomorphic
(Figure 25).

Denote by Lxx the quotient of Lxy by the relation y = x. Then Lxx is a
2-complex of Q[[x]]-modules

Q[[x]] πxx−→ Q[[x]] 0−→ Q[[x]],
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x y z u

x y ux z u

x u

Fig. 24. Associativity of mark removal

x

y

x

y

Fig. 25. Canonical isomorphism of marked arcs

and has cohomology only in degree 1. We depict Lxx by an oriented circle
with one mark x.

x

Fig. 26. 2-complex Lxx

Let
A := H∗(CPn−1,Q) = Q[X]/(Xn),

and ι : Q → A be the unit map, ι(1) = 1. Choose a nonzero rational
number ζ, and define ε : A→ Q as the trace map

ε(Xn−1) = ζ, ε(Xi) = 0 if i 6= n− 1.

We identify the Milnor ring Rw(x)
∼= Q[x]/(xn) with A by taking xi ∈ Rw

to Xi ∈ A. To an oriented circle without marks we associate the 2-periodic
complex 0→ A→ 0, denoted A〈1〉.

We fix an isomorphism νx : A〈1〉 ∼= Lxx of 2-periodic complexes of vector
spaces, up to homotopies, by taking Xi ∈ A to xi ∈ Q[[x]] ∼= (Lxx)1 for
0 ≤ i ≤ n − 1. Graphically, this isomorphism means adding a mark to a
circle without marks (see Figure 27).

x

Fig. 27. Adding a mark to a circle
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y x

x y

Fig. 28. Commutativity of mark removal

It is easy to see that the maps

LxyL
y
x

τy−→ Lxx
ν−1
x−→ A〈1〉 and LxyL

y
x

τx−→ Lyy
ν−1
y−→ A〈1〉

are homotopic. This implies consistency between two ways to remove two
marks from a circle (Figure 28).

Combining with the associativity property for mark removal and addi-
tion, we conclude that the factorizations assigned to two circles with arbi-
trary number of marks are canonically isomorphic in the homotopy category
of 2-complexes of Q-vector spaces (Figure 29).

Fig. 29. Canonical isomorphism of 2-periodic complexes assigned to marked circles

Remark. This canonical isomorphism allows us to view ι and ε as maps
between Q and the 2-complex assigned to a circle with an arbitrary number
of marks.

Suppose we have a collection of factorizations Mi, i ∈ I, each with
potential wi which is a signed sum of xn+1

j for j in a subset of I. Let us
tensor Mi’s and a number of arc factorizations L together in some way to
produce a network of factorizations (as in Figure 30 top left). Each arc in
the network has potential xn+1. We divide arcs into internal and external
arcs. External arcs are those with at least one loose endpoint. The resulting
tensor product Z1 =

⊗
iMi is a factorization with potential which is a

signed sum of xn+1
j , over all loose endpoints j. The sign is determined by

the orientation of the network near j.
Suppose now we tensor Mi’s and several arc factorizations together so

as to produce the same network but, possibly, with different marks (as in
Figure 30 top right). Denote this tensor product by Z2. Our results imply
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Proposition 22. The factorizations Z1 and Z2 are canonically isomor-
phic (in the homotopy category). The isomorphism is natural in Mi’s, in
the following sense. If f : Mr → Nr is a homomorphism of factorizations,
for some r, and Z ′1 (respectively , Z ′2) is obtained from Z1 (respectively , Z2)
by substituting Nr for Mr in the tensor product , then the diagram

Z1
∼=−−−−→ Z2

f

y f

y
Z ′1

∼=−−−−→ Z ′2
commutes (see Figure 30).

M
  1

M
  3

M
2

M
  1

M
  3

M
2

M
  1

M
  3

N
  2

M
  1

M
  3

N
  2

f f

Fig. 30. Canonical isomorphism of networks; a map f : M2 → N2 induces a homomor-
phism of factorizations assigned to whole networks; the diagram is commutative.

Realization of the identity functor (multi-variable case). Given a multi-
variable potential w = w(x1, . . . , xk), we can write

w(x)− w(y) =
k∑
i=1

wi(xi − yi)

where

wi =
w(y1, . . . , yi−1, xi, . . . , xk)− w(y1, . . . , yi, xi+1, . . . , xk)

xi − yi
are polynomials in x’s and y’s. Let L be the tensor product (over i from 1
to k) of factorizations

R
wi−→ R

xi−yi−→ R

where R = Q[[x, y]].
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Proposition 23. For any potential w1(z) and any factorization M with
potential w(y)− w1(z) the tensor product L⊗y M is isomorphic in the ho-
motopy category of factorizations to the factorization M with y’s relabeled
as x’s. The isomorphism is functorial in M .

Proof. Apply Proposition 9 repeatedly to exclude y1, . . . , yk.

Proposition 23 says, essentially, that tensoring with L is the identity
functor. Also, we have

HomHMF(L,L) ∼= Q[[x]]w(x), Ext1HMF(L,L) ∼= 0,

i.e., the endomorphism ring of L is the Jacobian algebra of w. Note that
Theorem 1 applied to L implies Proposition 4.

The results of the previous subsection and of Section 9 can be general-
ized from xn+1 to arbitrary multi-variable potentials, but we postpone this
analysis to a later paper.

5. Homogeneous potentials and graded factorizations

Homogeneous potentials and graded factorizations. Suppose that each
variable xi is given a positive integer degree pi and the potential w is homo-
geneous of degree p. Then w belongs to the Jacobian ideal,

w =
1
p

∑
i

pixi
∂f

∂xi

(Euler’s formula), so that the Milnor and Tyurina algebras are isomorphic.
The ring of power series with coefficients in a field is local. After switching

from rings to graded rings, the role of the power series rings is played by
polynomial rings whose generators are in positive degrees only, since these
rings have only one maximal homogeneous ideal. From now on in this paper
we work with homogeneous potentials and switch from the power series ring
to the ring of polynomials. From here on R is a polynomial ring.

A graded (or homogeneous) factorization with a homogeneous potential
w of degree 2(n+ 1) consists of free graded R-modules M0,M1 and degree
n+ 1 homomorphisms d0, d1 such that d1d0 = w (this implies d0d1 = w),

M0 d0−→M1 d1−→M0.

A homomorphism of graded factorizations is required to have degree 0, while
a homotopy should have degree −n− 1. Each of the six categories of factor-
izations described in Section 3 has a graded version, denoted in lowercase
letters. For instance, hmfw is the homotopy category of graded factoriza-
tions of w with finite-dimensional cohomology. This category is triangu-
lated.
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We denote by {m} the grading shift up by m. The factorization M{m}
has the form

M0{m} d0−→M1{m} d1−→M0{m}.

The cohomological shift functor 〈1〉 does not change the grading of M0,M1,
and commutes with the grading shift functor {m}.

All results and constructions of Sections 2, 3 and 4 easily extend to
graded factorizations. There is no need to complete tensor products of fac-
torizations in the graded case. The factorization {a, b} is defined for homo-
geneous a, b with deg(a) + deg(b) = 2(n+ 1), and has the form

R
a−→ R{n+ 1− deg(a)} b−→ R.

We shifted the degree of the middle R so that the differentials would have
degree n+ 1. Then

{a, b}〈1〉 = {b, a}{deg(b)− n− 1}.

Notice two different uses of curly brackets: to denote Koszul factorizations
and shifts.

When extending the subsection ‘Realization of the identity functor (one-
variable case)’ of Section 4 to the graded case, we give the variables x, y, z
degree 2. The factorization Lxy has the form

R
πxy−−→ R{1− n} x−y−−→ R.

The isomorphism in Proposition 15 has degree 0, assuming M is a graded
factorization.

The cohomologyH(M) of a homogeneous factorization is a Z2⊕Z-graded
Q-vector space,

H(M) =
⊕

i∈{0,1}, j∈Z
H i,j(M).

We define the graded dimension of M as

gdim(M) :=
∑

j∈Z, i∈{0,1}

dimH i,j(M) qjsi.

Then, for external tensor product M ⊗N,

gdim(M ⊗N) = gdim(M) gdim(N),

assuming the relation s2 = 1. The dimension of M is the q = s = 1 special-
ization of the graded dimension.

The algebra A (cohomology of CPn−1), defined in the previous section, is
naturally graded. We shift the grading of A down by n− 1 so that deg(1) =
1− n, and, more generally, deg(Xi) = 2i+ 1− n. The unit map ι : Q→ A
and the trace map ε : A → Q have degree 1 − n, while the multiplication
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in A has degree n − 1. To a circle without marks we assign the 2-complex
A〈1〉 of graded vector spaces.

Let M be a homogeneous factorization of finite rank. If the endomor-
phism ring Hommf(M,M) contains a degree 0 idempotent e, we can decom-
pose M into a direct sum of factorizations, M = eM ⊕ (1 − e)M . Suppose
instead that the quotient ring Homhmf(M,M) contains an idempotent e.
Let I be the kernel of the quotient map

Hommf(M,M)
f−→ Homhmf(M,M),

and J the ideal in Hommf(M,M) of endomorphisms that induce the
zero map on cohomology. Note that I ⊂ J, and J is a nilpotent ideal in
Hommf(M,M), since a degree 0 endomorphism cannot have coefficients of
arbitrary large degrees. Thus, JN = 0 for some N, and therefore, IN = 0.
Nilpotent ideals have the lifting idempotents property (exercise, or see [Be,
Theorem 1.7.3]). There exists an idempotent ẽ ∈ Hommf(M,M) that lifts e,
that is, f(ẽ) = e. It allows us to decompose M = ẽM ⊕ (1− ẽ)M . We state
this as

Proposition 24. The category hmfw has the splitting idempotents prop-
erty.

Remark. The category HMFw has this property as well, which can be
seen by a slight modification of the above argument, using the fact that⋂
N J

N = 0 and lifting e recursively.
An additive category is called Krull–Schmidt if any object has the unique

decomposition property. In other words, if M∼=
⊕

i∈IMi and M∼=
⊕

j∈J Nj ,
for some sets I, J and indecomposables Mi, Nj , then there is a bijection
z : I → J such that Mi

∼= Nz(i).

Proposition 25. The category hmfw is Krull–Schmidt.

Proof. Any object of hmfw is isomorphic to a finite rank factorization.
This and Proposition 24 imply that the endomorphism ring of any indecom-
posable in hmfw is local. Proposition 25 follows.

For graded factorizations M,N with finite-dimensional cohomology there
is an isomorphism of graded R-modules

HomHMF(M,N) =
⊕
i∈Z

Homhmf(M{i}, N).

Given a graded cyclic Koszul factorization {a,b}, its graded dual is

(17) {a,b}• ∼= {−b,a} ∼= {a,−b}〈m〉
{∑

i

deg(ai)−m(n+ 1)
}
,

where the sequences a and b have length m.
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Quasi-homogeneous potentials. A potential that is homogeneous with re-
spect to some basis in R is called quasi-homogeneous. A quasi-homogeneous
potential lies in its Jacobian ideal. From the work of K. Saito [Sa] we
know that the converse is true: only quasi-homogeneous potentials lie in
their Jacobian ideal (so that the Milnor and Tyurina algebras are iso-
morphic). To a mathematician, quasi-homogeneous singularities are distin-
guished by the existence of the associated Frobenius manifold [BV], [D],
and other special properties [AGV], [Di], [Ku]. From a string theorist’s
viewpoint, each quasi-homogeneous singularity gives rise to the rich struc-
ture of a (super) conformal 2D field theory [VW], [M], while an arbitrary
isolated singularity only produces a 2D topological field theory, the latter
equivalent to a commutative Frobenius algebra (a 0-dimensional Gorenstein
ring).

In the rest of the paper we are dealing exclusively with homogeneous
potentials.

6. Planar graphs and factorizations

Factorization from a planar graph. We consider graphs of a particular
kind embedded in a disc (for an example see Figure 7). A graph can have
both unoriented and oriented edges, and oriented loops. Unoriented edges
are called “wide” and depicted correspondingly. Any unoriented edge has
two oriented edges entering it at one vertex, and two oriented edges leaving
it at the other. Oriented edges might end on the boundary of the disc.
Inside the disc we allow only trivalent vertices where a wide edge and a pair
of oriented edges meet. An oriented edge is internal if none of its endpoints
is on the boundary of the disc. Otherwise, the edge is called external. Any
internal edge has one or more marks placed on it. We also treat boundary
points as marks; this ensures that each external edge has a mark. Additional
marks on external edges are allowed. An oriented loop may or may not have
marks.

If Γ is such a graph, we denote by m(Γ ) the set of its marks and by ∂Γ
the set of boundary points, the latter a subset of m(Γ ). If i ∈ ∂Γ, the sign
of i, denoted s(i), is 1 if the edge at i is oriented outward, and −1 if the edge
is oriented inward. For instance, boundary points marked 1, 2, 7 in Figure 7
have sign 1, and points 4, 8, 9 have sign −1.

Let R = Q[xi : i ∈ m(Γ )] be the ring of polynomials in variables xi, over
all marks i, and R′ be its subring Q[xi : i ∈ ∂Γ ]. We introduce a grading on
R and R′ by giving each xi degree 2.

Assign to Γ the potential

w(Γ ) =
∑
i∈∂Γ

s(i)xn+1
i .
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To Γ we now associate a graded factorization C(Γ ) over the ring R′

with potential w(Γ ). First, to a wide edge t bounded by marks 1, 2, 3, 4 as
in Figure 5 we assign a factorization with potential

wt = xn+1
1 + xn+1

2 − xn+1
3 − xn+1

4 .

Starting with formal variables x, y, we can write xn+1+yn+1 as a polynomial
in x+ y and xy. Let g be this polynomial,

g(x+ y, xy) = xn+1 + yn+1.

Explicitly,

g(s1, s2) = sn+1
1 + (n+ 1)

∑
1≤i≤(n+1)/2

(−1)i

i

(
n− i
i− 1

)
si2s

n+1−2i
1 .

wt can be written as

wt = g(x1 + x2, x1x2)− g(x3 + x4, x3x4)
= g(x1 + x2, x1x2)− g(x3 + x4, x1x2)

+ g(x3 + x4, x1x2)− g(x3 + x4, x3x4)

=
g(x1 + x2, x1x2)− g(x3 + x4, x1x2)

x1 + x2 − x3 − x4
(x1 + x2 − x3 − x4)

+
g(x3 + x4, x1x2)− g(x3 + x4, x3x4)

x1x2 − x3x4
(x1x2 − x3x4).

Let

u1 = u1(x1, x2, x3, x4) =
g(x1 + x2, x1x2)− g(x3 + x4, x1x2)

x1 + x2 − x3 − x4
,(18)

u2 = u2(x1, x2, x3, x4) =
g(x3 + x4, x1x2)− g(x3 + x4, x3x4)

x1x2 − x3x4
.(19)

Note that u1 and u2 are polynomials, and

wt = u1(x1 + x2 − x3 − x4) + u2(x1x2 − x3x4).

To t we assign the graded factorization

Ct := {(u1, u2), (x1 + x2 − x3 − x4, x1x2 − x3x4)}{−1}.
In other words, Ct is the tensor product of graded factorizations

Rt
u1−→ Rt{1− n}

x1+x2−x3−x4−−−−−−−−−→ Rt

and
Rt

u2−→ Rt{3− n}
x1x2−x3x4−−−−−−−→ Rt,

with the grading shifted down by 1.
In general, a wide edge t will be bounded by marks i, j, k, l. Then Ct is

defined as above, with 1, 2, 3, 4 converted into i, j, k, l.
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If α is an arc in an oriented edge (or in an oriented loop) bounded by
marks i and j and oriented from j to i, we denote by Lij the factorization

Rα
πij−→ Rα

xi−xj−→ Rα

where Rα = Q[xi, xj ] and

πij =
xn+1
i − xn+1

j

xi − xj
.

This factorization was introduced earlier, in Section 4, as the factorization
assigned to an arc.

To an oriented loop without marks we assign the 2-complex A〈1〉 (see
Section 4).

Finally, we define C(Γ ) as the tensor product of Ct over all wide edges t,
of Lij over all α, and of A〈1〉 over all markless loops in Γ . The tensor product
is formed over suitable intermediate rings so that C(Γ ) is a free module of
finite rank over R. For instance, to form C(Γ ) for Γ in Figure 7, we first
tensor Ct1 with L3

5 over the ring Q[x3], and then tensor the result with Ct2
over Q[x5]. In conclusion, we tensor Ct1 ⊗ L3

5 ⊗ Ct2 with L7
6 over Q[x6].

Properties. Clearly, C(Γ ) is a factorization with potential w(Γ ). We
treat it as a graded factorization over the ring R′ of polynomials in boundary
variables. w(Γ ) is a nondegenerate potential in this ring. If a graph has at
least one internal mark, C(Γ ) has infinite rank as an R′-module.

Proposition 26. For any graph Γ, the factorization C(Γ ) lies in
hmfw(Γ ).

Proof. In other words, C(Γ ) has finite-dimensional cohomology. This
follows at once from results of Section 3.

Suppose that Γ ′ is obtained from Γ by placing a different collection
of internal marks on oriented edges and loops of Γ . Then the two graphs
have the same potential w(Γ ′) = w(Γ ) assigned to them, and factorization
C(Γ ′) belongs to the category hmfw(Γ ) since the graphs share the same set
of boundary points.

Proposition 27. There is a canonical isomorphism in hmfw(Γ )

C(Γ ′) ∼= C(Γ ).

Proof. This is a special case of Proposition 22.

Maps χ0 and χ1. Consider the graphs Γ 0, Γ 1 depicted in Figure 8. The
factorization C(Γ 0) is the tensor product of the factorizations L1

4 and L2
3,

and is given by(
R(∅)

R(ab){2− 2n}

)
P0−→
(
R(a){1− n}
R(b){1− n}

)
P1−→
(

R(∅)
R(ab){2− 2n}

)
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where

P0 =
(
π14 x2 − x3

π23 x4 − x1

)
, P1 =

(
x1 − x4 x2 − x3

π23 −π14

)
,

πij =
n∑
k=0

xki x
n−k
j ,

and we assigned labels a, b to L1
4 and L2

3. The factorization C(Γ 1) is(
R(∅){−1}

R(a′b′){3− 2n}

)
Q1−−→

(
R(a′){−n}
R(b′){2− n}

)
Q2−−→

(
R(∅){−1}

R(a′b′){3− 2n}

)
,

with

Q1 =
(
u1 x1x2 − x3x4

u2 x3 + x4 − x1 − x2

)
,

Q2 =
(
x1 + x2 − x3 − x4 x1x2 − x3x4

u2 −u1

)
.

We assigned labels a′, b′ to the two factorizations (with degenerate poten-
tials) whose tensor product is C(Γ 1).

A map between C(Γ 0) and C(Γ 1) can be described by a pair of 2 × 2
matrices (U0, U1). Let χ0 : C(Γ 0)→ C(Γ 1) be given by the pair

U0 =
(
x4 − x2 + µ(x1 + x2 − x3 − x4) 0

a1 1

)
,

U1 =
(
x4 + µ(x1 − x4) µ(x2 − x3)− x2

−1 1

)
,

where
a1 = (µ− 1)u2 +

u1 + x1u2 − π23

x1 − x4

and µ ∈ Z. Different choices of µ give homotopic maps. The map χ0 has
degree 1.

Let χ1 : C(Γ 1)→ C(Γ 0) be given by the pair of matrices (V0, V1):

V0 =
(

1 0
a2 a3

)
, V1 =

(
1 x3 + λ(x2 − x3)
1 x1 + λ(x4 − x1)

)
,

where

a2 = λu2 +
u1 + x1u2 − π23

x4 − x1
, a3 = λ(x3 + x4 − x1 − x2) + x1 − x3

and λ ∈ Z. Different choices of λ give homotopic maps. The map χ1 has
degree 1.
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The composition χ1χ0 is described by the pair (V0U0, V1U1). Computing
the products and specializing to µ = 1− λ we get

(20) V0U0 = V1U1 = (x1 − x3 + λ(x3 + x4 − x1 − x2)) I,

where I is the identity 2 × 2 matrix. Therefore, the composition χ1χ0 is
homotopic to the multiplication by the x1 − x3 endomorphism of C(Γ 0),

χ1χ0 = m(x1 − x3).

This is obtained by setting λ = 0 in (20). Choosing instead λ = 1, we see that
χ1χ0 is homotopic to multiplication by x4 − x2. There is no contradiction
here, since the endomorphism of multiplication by x1 + x2 − x3 − x4 is
null-homotopic.

Likewise, the composition χ0χ1 is homotopic to the multiplication by
x1 − x3 (and to the multiplication by x4 − x2) endomorphism of C(Γ 1).

Disjoint union. Given two graphs Γ1, Γ2 with potentials w1, w2, the po-
tential of their disjoint union Γ1tΓ2 is the exterior sum w1+w2. An example
of a disjoint union is depicted in Figure 31. More often than not, this opera-
tion is not uniquely determined by Γ1 and Γ2, since we can place Γ2 between
any pair of adjacent exterior legs of Γ1. When Γ2 has no exterior legs, we can
place it inside any region of Γ1, including those not adjacent to the border
of the disc.

Γ 1 Γ 2

Fig. 31. A disjoint union of Γ1 and Γ2

Proposition 28. There is a canonical isomorphism in hmfw1+w2

C(Γ1 t Γ2) ∼= C(Γ1)⊗Q C(Γ2).

Proof. This is obvious from the definition of C(Γ ).

Corollary 11. If Γ2 is a disjoint union of Γ1 and a loop, then

C(Γ2) ∼= C(Γ1)〈1〉 ⊗Q A.

Direct sum decomposition I. For the graphs Γ1, Γ depicted in Figure 32,
C(Γ1), C(Γ ) are (R′, w)-factorizations, where R′ = Q[x2, x3] and w =
xn+1

2 − xn+1
3 . Notice that C(Γ ) has infinite rank as a (R′, w)-factorization.
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x2

x3

Γ 1

x1

x2

x3

Γ

Fig. 32. Graphs Γ1 and Γ

It can also be viewed as a factorization over the larger ring Q[x1, x2, x3] but
with a degenerate potential.

Proposition 29. There is an isomorphism in hmfw

C(Γ )〈1〉 ∼=
n−2⊕
i=0

C(Γ1){2− n+ 2i}.

Proof. Let Γ2 be the disjoint union of Γ1 and a circle with one mark (see
Figure 33). Define grading-preserving maps

α : C(Γ1)〈1〉 → C(Γ ){n− 2}, β : C(Γ ){2− n} → C(Γ1)〈1〉
as follows. α is the composition (Figure 33)

C(Γ1)〈1〉 ι′−→ C(Γ2){n− 1} χ0−→ C(Γ ){n− 2},
where ι′ is the tensor product of the identity of C(Γ1) with the “unit” map ι.

0χ
x1

x2

x3

Γ 2

ι

x3

x2

Γ 1

x1

x3

x2

Γ

Fig. 33. Map α

χ 1
x1

x2

x3

Γ 2

ε
x1

x3

x2

Γ

x2

x3

Γ 1

Fig. 34. Map β

β is the composition (Figure 34)

C(Γ ){2− n} χ1−→ C(Γ2){1− n} ε′−→ C(Γ1)〈1〉,
where ε′ is the product of the identity of C(Γ1) with the trace map ε.
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Define grading-preserving maps αi, βi for 0 ≤ i ≤ n− 2 by

αi : C(Γ1)〈1〉 → C(Γ ){n− 2− 2i}, αi =
i∑

j=0

m(xj1x
i−j
2 )α,

βi : C(Γ ){n− 2− 2i} → C(Γ1)〈1〉, βi = βm(xn−i−2
1 ).

Here m(xj1x
i−j
2 ) denotes the endomorphism of C(Γ ) which is the multipli-

cation by xj1x
i−j
2 .

Lemma 1. βjαi = δi,jζ Id.

Proof. We have

βjαi =
i∑

k=0

βm(xn−j−2
1 )m(xk1x

i−k
2 )α =

i∑
k=0

ε′χ1χ0m(xn−j−2
1 )m(xk1x

i−k
2 )ι′

=
i∑

k=0

ε′m(x1 − x3)m(xn+k−j−2
1 xi−k2 )ι′

=
i∑

k=0

ε′m(x1 − x2)m(xn+k−j−2
1 xi−k2 )ι′

=
i∑

k=0

ε′m(x1 − x2)m(xn+k−j−2
1 xi−k2 )ι′

= ε′m(xn+i−j−1
1 − xn−j−2

1 xi+1
2 )ι′ = ε′m(xn+i−j−1

1 )ι′

= ε(Xn+i−j−1) Id = δi,jζ Id .

In the third equality we used the fact that χ1χ0 = m(x1 − x3), and in
the fourth that m(x2) = m(x3) as endomorphisms of C(Γ2). Recall that
ζ = ε(Xn−1) is a nonzero rational number.

The lemma implies that the map

(21) α′ =
n−2∑
i=0

αi :
n−2⊕
i=0

C(Γ1)〈1〉{2 + 2i− n} → C(Γ )

is an inclusion of a direct summand, since β′α′ = Id, where

β′ =
n−2∑
i=0

βi : C(Γ )→
n−2⊕
i=0

C(Γ1)〈1〉{2 + 2i− n}.

In particular, α′ induces an injective map H(α′) on cohomology of these
factorizations. The factorization C(Γ1) has dimension 2, and the factoriza-
tion on the left hand side of (21) has dimension 2(n−1). To finish the proof
of Proposition 29 it suffices to show that H(α′) is bijective, which, in turn,
follows from the following lemma.
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Lemma 2. The factorization C(Γ ) has dimension 2(n− 1).

Proof. The quotient of C(Γ ) by the ideal (x2, x3) is a 2-complex, and
a free module of rank 4 over the ring R1 = Q[x1]. It is the cyclic Koszul
complex of the pair {((n+ 1)xn1 ,−(n+ 1)xn−1

1 ), (0, 0)}, since

u1|x1=x4, x2=0, x3=0 = (n+ 1)xn1 , u2|x1=x4, x2=0, x3=0 = −(n+ 1)xn−1
1 .

By changing coordinates using a suitable automorphism γ of N = R1 ⊕R1,
as explained at the end of Section 2, we see that this 2-complex is isomorphic
to the cyclic Koszul complex of the pair {(xn1

1 , 0), (0, 0)}. The complex

{xn−1
1 , 0} : R1

xn−1
1−→ R1

0−→ R1

has cohomology of dimension n − 1. Tensoring it with {0, 0} doubles the
dimension. Thus,

dimH(C(Γ )) = dimH({(xn−1
1 , 0), (0, 0)}) = 2(n− 1).

Proposition 29 follows.

x
2

x
1

x
3

x
4

x
5

x
6

Γ

x
1

x
2

x
3

x
4

Γ 1

Fig. 35

Direct sum decomposition II. Consider factorizations C(Γ ), C(Γ1), where
Γ, Γ1 are now the graphs depicted in Figure 35. Both C(Γ ), C(Γ1) are
(R′, w)-factorizations, where R′ = Q[x1, x2, x3, x4] and

w = xn+1
1 + xn+1

2 − xn+1
3 − xn+1

4 .

The factorization C(Γ ) has infinite rank.

Proposition 30. There is an isomorphism in hmfw

C(Γ ) ∼= C(Γ1){1} ⊕ C(Γ1){−1}.

Proof. Let R = Q[x1, . . . , x6], s1 = x5 + x6, s2 = x5x6 and R0 =
Q[x1, x2, x3, x4, s1, s2]. The ring R is a free module of rank 2 over its sub-
ring R0.

We have C(Γ1) = {a,b}{−1}, where a = (u1, u2), b = (x1 + x2 −
x3 − x4, x1x2 − x3x4), and u1 = u1(x1, x2, x3, x4), u2 = u2(x1, x2, x3, x4).
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Hence C(Γ ) = {ã, b̃}{−2} where

(22) (ã, b̃) =


u′1 x1 + x2 − x5 − x6

u′2 x1x2 − x5x6

u′′1 x5 + x6 − x3 − x4

u′′2 x5x6 − x3x4


and

u′1 = u1(x1, x2, x5, x6), u′2 = u2(x1, x2, x5, x6),
u′′1 = u1(x5, x6, x3, x4), u′′2 = u2(x5, x6, x3, x4).

The first column of (22) lists entries of ã, the second lists entries of b̃. All
coefficients of ã and b̃ lie in R0. Let {ã, b̃}0 be the restriction of {ã, b̃}
to R0, i.e., the tensor product of the factorizations

R0
ai−→ R0

bi−→ R0

where ai, bi are the entries of ã, b̃. We can decompose

{ã, b̃} ∼= {ã, b̃}0 ⊕ {ã, b̃}0{2}
as an (R0, w)-factorization, since R ∼= R0 ⊕ R0{2} as graded R0-modules.
The potential w does not depend on the variables s1, s2 in R0; the third
entry of b̃ is s1−x3−x4 and the fourth s2−x3x4. Applying Proposition 10
to exclude s1 and s2, we conclude that {ã, b̃}0 is isomorphic in the category
hmfw to {a,b}. Proposition 30 follows.

Direct sum decomposition III. Consider the graphs Γ, Γ1, Γ2 of Figure 36.

Γ 1

x1 x2

x3
x4

x1 x25x

x6x4 x3

Γ Γ 2

x1 x2

x4 x3

Fig. 36. Graphs Γ1, Γ, Γ2

C(Γ ), C(Γ1), C(Γ2) are homogeneous factorizations with the potential

w = xn+1
1 − xn+1

2 + xn+1
3 − xn+1

4

over the ring R′ = Q[x1, x2, x3, x4].

Proposition 31. There is a direct sum decomposition in hmfw

C(Γ ) ∼= C(Γ2)⊕ (
n−3⊕
i=0

C(Γ1)〈1〉{3− n+ 2i}).
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Proof. Define grading-preserving maps

α : C(Γ1)〈1〉 → C(Γ ){n− 3}, β : C(Γ ){n− 3} → C(Γ1)〈1〉

as follows. α is the composition (see Figure 37)

C(Γ1)〈1〉 ι′−→ C(Γ3){n− 1}
χ′0−→ C(Γ ){n− 3},

where ι is the tensor product of the identity of C(Γ1) with the “unit” map
ι from Q〈1〉 to the factorization assigned to a circle with two marks. χ′0 is
the composition of two χ0 maps.

ι

Γ 1

x1 x2

x4 x3

0χ

x1 x25x

x6

Γ 3

x4 x3

x1 x25x

x6x4 x3

Γ

Fig. 37. Map α

β is the dual composition (see Figure 38)

C(Γ )
χ′1−→ C(Γ3){−2} ε′−→ C(Γ1)〈1〉{n− 3},

where ε′ is the tensor product of the identity of C(Γ1) with the trace map,
and χ′1 is the composition of two χ1 maps.

χ 1

x1 x25x

x6x4 x3

Γ

x1 x25x

x6

Γ 3

x4 x3

ε

Γ 1

x1 x2

x4 x3

Fig. 38. Map β

Define grading-preserving maps αi, βi for 0 ≤ i ≤ n− 3 by

αi : C(Γ1)〈1〉{3− n+ 2i} → C(Γ ), αi = m(xi5)α,

βi : C(Γ )→ C(Γ1)〈1〉{3− n+ 2i}, βi = β
∑

a+b+c=n−3−i
m(xa1x

b
3x
c
5).

Lemma 3. βjαi = δi,jζ Id.

Proof. A computation similar to the one in the proof of Lemma 1. We
leave the details to the reader.
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Let α′ =
∑n−3

i=0 αi and β′ = ζ−1
∑n−3

i=0 βi, considered as grading-preserv-
ing maps between

N =
n−3⊕
i=0

C(Γ1)〈1〉{3− n+ 2i}

and C(Γ ). Then β′α′ = IdN , so that α′β′ is an idempotent endomorphism
of C(Γ ) in the category hmfw. The splitting idempotents property in hmfw
(Proposition 24) implies that C(Γ ) ∼= N ⊕M for some graded factoriza-
tion M .

Lemma 4. gdimC(Γ ) = sq−1[n− 1](1 + sq1−n)(1 + sq3−n).

Proof. gdimC(Γ ) is the graded dimension of the cohomology of the 2-
complex C(Γ )/mC(Γ ), where m is the maximal ideal (x1, x2, x3, x4) of R′ =
Q[x1, x2, x3, x4]. This quotient is a free module of rank 16 over the ring
R1 = Q[x5, x6], and, after the shift by {2}, the cyclic Koszul complex (over
R1) of the pair

(a,b) =


u′1 x5 − x6

u′2 0
u′′1 x6 − x5

u′′2 0

 ,

where

u′1 = u1(x1, x5, x6, x4)|x1=x4=0, u′′1 = u1(x3, x6, x5, x2)|x2=x3=0,

u′2 = u2(x1, x5, x6, x4)|x1=x4=0, u′′2 = u2(x3, x6, x5, x2)|x2=x3=0.

We can modify this pair using transformations described at the end of Sec-
tion 2 without changing its graded dimension. For instance, we can add
the first entry of the second column to the third, simultaneously with sub-
tracting the third entry of the first column from the first entry of the same
column. This corresponds to a suitable change of basis in the free R1-module
R⊕4

1 . The resulting pair is
u′1 − u′′1 x5 − x6

u′2 0
u′′1 0
u′′2 0

 .

Moreover, u′1 − u′′1 = 0, since {a,b} is a 2-complex, and x5 − x6 is not a
zero divisor. Using Proposition 9, we can cross out the first row of the above
matrix and quotient the rest of the entries by the relation x5 = x6 without
changing the cohomology and graded dimension of this 2-complex. Thus, it
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suffices to find the graded dimension of the pair

(a1,b1) =

 u′2|x6=x5 0
u′′1|x6=x5 0
u′′2|x6=x5 0


over the ring Q[x5]. A direct computation tells us that

u′2|x6=x5 = (n+ 1)xn5 ,
u′′1|x6=x5 = −(n+ 1)xn−1

5 ,

u′′2|x6=x5 = −(n+ 1)xn−1
5 .

Adding suitable multiples of the last entry of the first column to other entries
of this column and dividing by n+ 1, we simplify the 2-complex to 0 0

0 0
xn−1

5 0

 .

The graded dimension of this 2-complex is the product of the graded dimen-
sions of its rows (everything now is over the ring Q[x5]), since all rows but
one consist of zeros. The entries (n + 1)xn5 and −(n + 1)xn−1

5 have degrees
2n and 2n−2, respectively. Therefore, the graded dimension of the first row
is 1+sq1−n, while the graded dimension of the second row is 1+sq3−n. The
graded dimension of {xn−1

5 , 0} is s(qn−1 +qn−3 + · · ·+q3−n) = sq[n−1]. The
graded dimension of C(Γ ) is q−2 times the product of these three graded
dimensions. The lemma follows.

The graded dimension of C(Γ1) is the product of the graded dimensions
of the factorizations assigned to its two arcs. Thus,

gdimC(Γ1) = (1 + sq1−n)2.

Likewise,
gdimC(Γ2) = (1 + sq1−n)2.

Recall that earlier we decomposed C(Γ ) ∼= N ⊕M . Therefore,

gdimC(Γ ) = gdimN + gdimM.

Clearly,
gdimN = s[n− 2] gdimC(Γ1).

Lemma 5. C(Γ2) and M have the same graded dimension.

Proof. This follows from Lemma 4 and the above equations. In the com-
putation we use the fact that s2 = 1.

Lemma 6. gdim ExtHMF(C(Γ2), C(Γ )) = q2n−2[2][n][n− 1].
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The Ext groups here are computed in the category HMFw, and are nat-
urally Z⊕Z2-graded, since the factorizations are homogeneous. The graded
dimension gdim is the Poincaré polynomial of a Z⊕Z2-graded vector space.

Proof of Lemma 6. We start with the isomorphism

ExtHMF(C(Γ2), C(Γ )) ∼= H(C(Γ )⊗R′ C(Γ2)•){2n− 2}
of Z⊕ Z2-graded vector spaces, implying the equality of the graded dimen-
sions of the two sides. The 2-complex whose cohomology is computed on the
right hand side (without the shift) is isomorphic to the 2-complex C(Γ4),
where Γ4, shown in Figure 39, is given by coupling Γ2 to Γ .

Fig. 39. Graph Γ4

Applying Propositions 30 and 29, we find that gdimC(Γ4) = [2][n][n−1].
Lemma 6 follows.

Furthermore,

gdim ExtHMF(C(Γ2), C(Γ1)) = q2n−2[n]s.

Indeed, the left hand side, up to the shift {2n − 2}, is isomorphic to the
cohomology of the factorization assigned to the graph given by coupling
Γ1 and Γ2. This graph is a circle. The variable s appears because Ext1 is
nontrivial.

Since the factorization N is the direct sum of C(Γ1)’s with shifts, we
can compute the graded dimension of ExtHMF(C(Γ2), N), and hence of the
groups ExtHMF(C(Γ2),M), as the difference of two graded dimensions. The
result is

(23) gdim ExtHMF(C(Γ2),M) = q2n−2[n]2.

Similarly, we compute that

(24) gdim ExtHMF(M,C(Γ2)) = q2n−2[n]2.

To avoid the last computation, we could invoke Theorem 1 and its graded
version (see [B, Example 10.1.6]) to show that the graded dimensions of the
two Ext groups are equal.

Since q2n−2[n]2 ∈ 1 + qZ[q], we obtain the following corollary.

Corollary 12. The vector space of morphisms between C(Γ2) and M
in hmfw is isomorphic to Q.
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In other words, any two nontrivial grading-preserving morphisms from
C(Γ2) to M are multiples of each other, and similarly for morphisms in the
opposite direction.

After stripping off contractible summands from M we obtain a graded
factorization of rank 2 which has the form

R′ ⊕R′{2− 2n} → R′{1− n} ⊕R′{1− n} → R′ ⊕R′{2− 2n}.
Assume from now on that M has been reduced to this minimal form. Then
we strengthen the corollary, by noticing the absence of homotopies of degree
−1 − n between C(Γ2) and M . We conclude that the space of grading-
preserving morphisms between C(Γ2) and M in mfw is one-dimensional
(i.e. even before throwing out null-homotopic morphisms).

Let θ be a nontrivial grading-preserving morphism from C(Γ2) to M,
and θ′ a nontrivial grading-preserving morphism from M to C(Γ2). Each of
these morphisms is unique up to scaling by a nonzero rational number.

Lemma 7. The composition θ′θ is nonzero.

Proof. Recall that a morphism between two factorizations can be de-
scribed by a pair of matrices (F0, F1) with polynomial coefficients. Define
the rank of a morphism as the rank of F0, treated as a matrix over the
quotient field of the polynomial ring. The matrices F0 and F1 have the same
rank.

The factorization C(Γ2) has the form(
R

R{2− 2n}

)
P0−→
(
R{1− n}
R{1− n}

)
P1−→
(

R

R{2− 2n}

)
,

where

P0 =
(
π12 x3 − x4

π34 x2 − x1

)
, P1 =

(
x1 − x2 x3 − x4

π34 −π12

)
.

The factorization M has the form(
R

R{2− 2n}

)
V0−→
(
R{1− n}
R{1− n}

)
V1−→
(

R

R{2− 2n}

)
,

where V0, V1 are matrices with homogeneous entries (of degrees equal to the
degrees of the matching entries in P1, P2) such that V1V0 = w · Id.

Note that if θ′θ is homotopic to 0, then it is actually zero, since there are
no homotopies of degree −n− 1 from C(Γ2) to itself. Assume that θ′θ = 0.
This is only possible if the ranks of both θ′ and θ are equal to 1. Let θ be
given by a pair of matrices

Θ0 =
(
f11 f12

f21 f22

)
, Θ1 =

(
g11 g12

g21 g22

)
.
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Since θ has zero degree, we see that all entries of Θ1 as well as the diagonal
entries of Θ0 are rationals, f12 = 0, and f21 is a polynomial of degree 2n−2.

Assume that f22 6= 0. Then we can rescale a basis vector of M0 so that
f22 = 1. Since Θ0 has rank 1, we see that f11 = 0. By changing the basis in
M1 if necessary, we can assume g21 = 0. Let

V0 =
(
v11 v12

v21 v22

)
.

The equation Θ1P0 = V0Θ0 implies

v22f21 = g22π34, v22 = g22(x2 − x1).

This forces g22 = 0, since π34 is not divisible by x2−x1. Then v22 = 0, which
implies that det(V0) = −v12v21. This determinant must divide w2 (which is
the determinant of V1V0). This is impossible since v12 is a homogeneous
linear function of x1, x2, x3, x4 and

w = xn+1
1 − xn+1

2 + xn+1
3 − xn+1

4 .

Therefore, f22 = 0. The equation Θ1P0 = V0Θ0 implies

g11(x3 − x4) + g12(x2 − x1) = 0, g21(x3 − x4) + g22(x2 − x1) = 0.

Since gij are rational numbers, they are all zeros. This is a contradiction,
since Θ1 should have rank 1.

The lemma implies that θ′θ is a nonzero multiple of the identity mor-
phism of C(Γ2). In addition, we know that C(Γ2) and M have the same
graded dimension. Therefore, C(Γ2) and M are isomorphic in hmfw. Propo-
sition 31 follows.

Direct sum decomposition IV. Consider the graphs Γi, 1 ≤ i ≤ 4, de-
picted in Figure 40. The factorizations C(Γi) have potential

w = xn+1
1 + xn+1

2 + xn+1
3 − xn+1

4 − xn+1
5 − xn+1

6 .

We view them as factorizations over the ring R′ = Q[x1, . . . , x6].
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Fig. 40. Graphs Γ1, Γ2, Γ3, Γ4
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Proposition 32. There is an isomorphism in hmfw

C(Γ1)⊕ C(Γ2) ∼= C(Γ3)⊕ C(Γ4).

Proof. If n = 1, then C(Γi) = 0 for all i, and the proposition is trivial.
Assuming n > 1, we introduce another factorization. Let

s1 = x1 + x2 + x3, s4 = x4 + x5 + x6,

s2 = x1x2 + x1x3 + x2x3, s5 = x4x5 + x4x6 + x5x6,

s3 = x1x2x3, s6 = x4x5x6.

Let Rs ⊂ R′ be the subring generated by s1, . . . , s6. It is isomorphic to the
polynomial ring in s1, . . . , s6. As an Rs-module, R′ is free of rank 36. Define
a 3-variable polynomial h by

h(s1, s2, s3) = xn+1
1 + xn+1

2 + xn+1
3 .

Then

w = h(s1, s2, s3)− h(s4, s5, s6)

=
h(s1, s2, s3)− h(s4, s2, s3)

s1 − s4
(s1 − s4)

+
h(s4, s2, s3)− h(s4, s5, s3)

s2 − s5
(s2 − s5)

+
h(s4, s5, s3)− h(s4, s5, s6)

s3 − s6
(s3 − s6)

= v1α1 + v2α2 + v3α3,

where

α1 = s1 − s4 = x1 + x2 + x3 − x4 − x5 − x6,

α2 = s2 − s5 = x1x2 + x1x3 + x2x3 − x4x5 − x4x6 − x5x6,

α3 = s3 − s6 = x1x2x3 − x4x5x6,

v1 =
h(s1, s2, s3)− h(s4, s2, s3)

s1 − s4
,

v2 =
h(s4, s2, s3)− h(s4, s5, s3)

s2 − s5
,

v3 =
h(s4, s5, s3)− h(s4, s5, s6)

s3 − s6
.

v1, v2, v3 are polynomials in x1, . . . , x6. The quotient of Rs by the ideal
(α1, α2, α3) is isomorphic to Q[s1, s2, s3]. The images of v1, v2, v3 in this
quotient ring have the form

∂h(s1, s2, s3)
∂s1

,
∂h(s1, s2, s3)

∂s2
,

∂h(s1, s2, s3)
∂s3

.
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It is well-known that the quotient of Q[s1, s2, s3] by the ideal generated by
these derivatives is isomorphic to the cohomology ring of the Grassmannian
of 3-dimensional subspaces of Cn (see [MC, p. 127], for example). Thus,
there is an algebra isomorphism

(25) Rs/(α1, α2, α3, v1, v2, v3) ∼= H∗(Gr(3, n),Q).

In the degenerate case n = 2 both sides are zero.
Likewise, the quotient ring R′/(α1, α2, α3, v1, v2, v3) is the cohomology

ring of the configuration space

{N1 ⊂ N2 ⊂ N3 ⊃ N ′2 ⊃ N ′1 | dimNi = dimN ′i = i, Ni, N
′
i ⊂ Cn}.

Lemma 8. The sequence (α1, α2, α3, v1, v2, v3) and each of its permuta-
tions are regular sequences in the rings Rs and R′.

Proof. The length of the sequence equals the number of generators of the
polynomial rings Rs and R′. Since the quotient rings by the ideal generated
by this sequence are finite-dimensional, the sequence is regular.

Let Υ be the following (R′, w)-factorization:

Υ := {(v1, v2, v3), (α1, α2, α3)}{−3}.

Υ is the tensor product of the factorizations

R′
v1−→ R′{1− n} α1−→ R′,

R′
v2−→ R′{3− n} α2−→ R′,

R′
v3−→ R′{5− n} α3−→ R′,

shifted by {−3}. One could think of Υ as the factorization assigned to the
diagram in the lower left corner of Figure 4.

Proposition 32 will follow from

Proposition 33. There is an isomorphism in hmfw

C(Γ1) ∼= Υ ⊕ C(Γ4).

Indeed, the factorization C(Γ1) turns into C(Γ3), and C(Γ2) into C(Γ4)
if we permute x1 with x3 and x4 with x6. The factorization Υ is invariant
under this operation, since αi’s and vi’s are, so that Proposition 33 also
implies the isomorphism

C(Γ3) ∼= Υ ⊕ C(Γ2).

Then both sides in the equation of Proposition 32 are isomorphic to Υ ⊕
C(Γ2)⊕ C(Γ4). Thus, it suffices to establish Proposition 33.

The proof of Proposition 33 occupies the next 10 pages.

Lemma 9. C(Γ4) is a direct summand of C(Γ1).
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Proof. Let

g0 = χ0r0, C(Γ4) r0−→ C(Γ5)
χ0−→ C(Γ1)

be the composition depicted in Figure 41.
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Fig. 41. Map g0

Proposition 30 implies that C(Γ5) ∼= C(Γ4){−1} ⊕ C(Γ4){1}, and r0
is defined to be the inclusion of C(Γ4) into C(Γ5) as the direct summand
C(Γ4){−1}. The maps r0 and χ0 have degrees −1 and 1, respectively, so
that g0 is grading-preserving.

Let
g1 = r1χ1, C(Γ1)

χ1−→ C(Γ5) r1−→ C(Γ4)

be the composition depicted in Figure 42.
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Fig. 42. Map g1

r1 is the projection of C(Γ5) ∼= C(Γ4){−1} ⊕ C(Γ4){1} onto the second
direct summand (the direct sum decomposition is the one obtained in the
proof of Proposition 30).

We compute

g1g0 = r1χ1χ0r0 = r1m(x8 − x6)r0 = r1m(x8)r0,

since r1m(x6)r0 = 0. The proof of Proposition 30 implies that r1m(x8)r0 is
a nonzero multiple of the identity morphism. Therefore, g0 is split injective,
and C(Γ4) is a direct summand of C(Γ1).
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Let M be the complement of C(Γ4) in C(Γ1),

C(Γ1) ∼= M ⊕ C(Γ4).

Lemma 10. gdimC(Γ1) = q−3(1 + q2)(1 + sq1−n)(1 + sq3−n)2 if n > 2.

Proof. Similar to that of Lemma 4. Up to a shift, C(Γ1) is the Koszul
factorization {a,b} for some length 6 sequences whose entries are polyno-
mials in x1, . . . , x6 and in three other variables (say y1, y2, y3) assigned to
the three internal marks of Γ1. We can exclude two of these variables us-
ing Proposition 9, and then specialize to x1 = · · · = x6 = 0, since we are
computing cohomology. The details are left to the reader.

In particular, if n > 2, the dimension of C(Γ1) is 16. If n = 2, the
factorization C(Γ1) has dimension 8, which is also the dimension of C(Γ4).
Hence, M = 0 if n = 2, and there is an isomorphism C(Γ1) ∼= C(Γ4). The
factorization Υ is contractible (v3 = 3 if n = 2), and Propositions 33, 32
follow. From now on we assume n > 2.

It is easy to see that

gdimC(Γ4) = q−1(1 + sq1−n)2(1 + sq3−n),
gdimΥ = q−3(1 + sq1−n)(1 + sq3−n)(1 + sq5−n).

Therefore,

gdimM = gdimC(Γ1)− gdimC(Γ4) = gdimΥ.

Thus, M and Υ have the same graded dimension.

Lemma 11.

gdim Ext(Υ,C(Γ4)) = q3n−3[2][n][n− 1][n− 2].

Proof. The Ext groups in the lemma are isomorphic to the cohomology
of the 2-complex

C(Γ4)⊗ Υ• ∼= {a,b}〈1〉{3n− 9},

where

(a,b) =



π36 x3 − x6

u1(x1, x2, x4, x5) x1 + x2 − x4 − x5

u2(x1, x2, x4, x5) x1x2 − x4x5

α1 v1

α2 v2

α3 v3


Pass to the subring R′′ of R′ = Q[x1, . . . , x6] generated by

x′1 = x1 + x2, x′2 = x1x2, x3, x′4 = x4 + x5, x′5 = x4x5, x6,
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and denote by {a,b}0 the cyclic Koszul complex of the pair (a,b) viewed
as a pair in R′′ (this is possible since all coefficients of a and b lie in R′′).
Then

gdimH({a,b}) = q2[2]2 gdimH({a,b}0).

We use the first three lines of (a,b)0 to exclude x6, x
′
4, and x′5, and denote

by (a1,b1) the pair obtained by crossing out the first three lines of (a,b)0
and passing to the quotient ring of R′′ by the relations x6 = x′4 = x′5 = 0.
Then a1 = (0, 0, 0), b1 = (−v1,−v2,−v3),

H({a,b}0) ∼= H({a1,b1}) ∼= H((0, 0, 0), (v1, v2, v3)),

and the lemma follows easily, since (v1, v2, v3) is a regular sequence in the
quotient ring R′′′ = R′′/(x6, x

′
4, x
′
5), and R′′′/(v1, v2, v3) is isomorphic to the

cohomology ring of the partial flag variety

{N2 ⊂ N3 | dim(Ni) = i, N3 ⊂ Cn}.

Lemma 12.

gdim Ext(Υ,C(Γ1)) = q3n−3[2]3[n][n− 1][n− 2].

Proof. The Ext groups in the lemma are isomorphic to the cohomology
of the 2-complex C(Γ1) ⊗ Υ•. This is a complex of free R1-modules, where
R1 is the ring of polynomials in x1, . . . , x6 and three “internal” variables
corresponding to the three marks in Γ1. Passing to a suitable subring (over
which R1 is a free rank 4 module) and excluding several variables, one can
show that C(Γ1) ⊗ Υ• is isomorphic (up to contractible complexes) to the
direct sum of four copies of C(Γ1)⊗ Υ• with shifts, implying

gdim Ext(Υ,C(Γ1)) = [2]2 gdim Ext(Υ,C(Γ4)).

The lemmas imply

gdim Ext(Υ,M) = gdim Ext(Υ,C(Γ1))− gdim Ext(Υ,C(Γ4))
= q3n−3[2][3][n][n− 1][n− 2].

Since q3n−3[2][3][n][n−1][n−2] ∈ 1+qZ[q], the space of degree 0 morphisms
from Υ to M is one-dimensional. Let θ be a nontrivial (not null-homotopic)
degree 0 morphism from Υ to M .

Lemma 13. θ is an isomorphism of factorizations.

Proof. The factorization Υ has the form
R′{−3}

R′{5− 2n}
R′{3− 2n}
R′{1− 2n}

 Λ0−→


R′{2− n}
R′{−n}

R′{−2− n}
R′{6− 3n}

 Λ1−→


R′{−3}

R′{5− 2n}
R′{3− 2n}
R′{1− 2n}

 ,
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where

Λ0 =


v3 −α2 −α1 0
v2 α3 0 −α1

v1 0 α3 α2

0 v1 −v2 v3

 , Λ1 =


α3 α2 α1 0
−v2 v3 0 α1

−v1 0 v3 −α2

0 −v1 v2 α3

 .

We can assume that the factorization M = M0⊕M1 has no contractible
summands. Since it has the same graded dimension as Υ, we can write M
as

(26)


R′{−3}

R′{5− 2n}
R′{3− 2n}
R′{1− 2n}

 Π0−−→


R′{2− n}
R′{−n}

R′{−2− n}
R′{6− 3n}

 Π1−−→


R′{−3}

R′{5− 2n}
R′{3− 2n}
R′{1− 2n}


for some 4 × 4 matrices Π0, Π1 with homogeneous entries whose degrees
match the degrees of the entries of Λ0, Λ1. Let Π0 = (aij)4i,j=1 and Π1 =
(bij)4i,j=1. The entry a14 is a degree n + 1 homomorphism from R′{1 − 2n}
to R′{2 − n}, and necessarily a rational number. If a14 6= 0, then M con-
tains a contractible summand, which is a contradiction. Therefore, a14 = 0.
Likewise, b14 = 0 if n > 4.

We can write the morphism θ via a pair of matrices

Θ0 = (cij)4i,j=1, Θ1 = (fij)4i,j=1.

Since θ is a morphism of factorizations, the diagram

Υ 0 Λ0−−−−→ Υ 1 Λ1−−−−→ Υ 0

Θ0

y Θ1

y Θ0

y
M0 Π0−−−−→ M1 Π1−−−−→ M0

is commutative, and the following relations hold:

Π0Θ0 = Θ1Λ0,(27)
Π1Θ1 = Θ0Λ1.(28)

θ is grading-preserving. If n > 4, then the sequences of degree shifts (−3, 5−
2n, 3−2n, 1−2n) and (2−n,−n,−2−n, 6−3n) are strictly decreasing, and
the matrices Θ0, Θ1 are lower-triangular, cij = fij = 0 for i < j, since there
are no grading-preserving homomorphisms from R′{k1} to R′{k2} if k2 > k1.
If n = 4, the sequences are not strictly decreasing, but changing bases in M0

and M1 if necessary, we can assume that Θ0 and Θ1 are lower-triangular in
this case too. When n = 3, we cannot assume right away that Θ0 and Θ1

are lower-triangular. We postpone considering the cases n = 3 and n = 4,
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and from now on until two paragraphs after the proof of Lemma 18 restrict
to the case n > 4.

θ is an isomorphism iff both Θ0 and Θ1 are invertible over the ring R′.
Since they are lower-triangular with rational diagonal entries, they are in-
vertible iff all diagonal entries are nonzero. Moreover, Θ1 is invertible iff Θ0 is
invertible. This is due to the equation Π0Θ0Λ

−1
0 = Θ1 and the fact that the

determinants of Π0 and Λ0 are nonzero multiples of w2 (to verify this prop-
erty, use the fact that w is an irreducible polynomial, Λ0Λ1 = Π0Π1 = wI,
and Π0 has coefficients in the same degrees as Λ0).

Thus, θ is an isomorphism iff Θ0 is invertible.
The matrix equation (27) can be rewritten as 16 equations for the entries

of the matrices Π0, Θ0, Θ1. Three of these equations have the form

a24c44 = −α1f22,

a34c44 = −α1f32 + α2f33,

a44c44 = −α1f42 + α2f43 + v3f44.

Lemma 14. c44 6= 0.

Proof. Assume c44 = 0. Then the above equations reduce to

0 = −α1f22,

0 = −α1f32 + α2f33,

0 = −α1f42 + α2f43 + v3f44.

Since f22, f33, f44 ∈ Q, and the sequence (α1, α2, v3) is regular, the equations
imply

f22 = f32 = f33 = f44 = 0.

The last equation of the three above simplifies to

f42α1 = f43α2.

Since α1 and α2 are relatively prime,

f42 = α2z0, f43 = α1z0,

for some polynomial z0.
Three of the equations in (28) are

b24f44 = α1c22,

b34f44 = α1c32 − α2c33,

b44f44 = α1c42 − α2c43 + α3c44.

Since f44 = 0, and (α1, α2, α3) is a regular sequence, we derive

c22 = c32 = c33 = c44 = 0,
and

c42 = α2z1, c43 = α1z1,

for some polynomial z1.
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The remaining terms of the matrix equations (27), (28) imply

f21 = −a24z1, f31 = −a34z1, f41 = α3z0 − a44z1,

c21 = b24z0, c31 = b34z0, c41 = b44z0 − v3z1.
Let Z0, Z1 be 4×4 matrices with the only nonzero entry z0 (respectively, z1)
at the intersection of the fourth row and the first column. Then

Θ0 = Π1Z0 − Z1Λ0, Θ1 = Z0Λ1 −Π0Z1.

We see that θ is homotopic to 0 through the homotopy (Z0,−Z1). This
contradicts our assumption on θ. Therefore, c44 6= 0, and Lemma 14 is
proved.

Lemma 15. f44 6= 0.

Proof. An argument in the proof of the previous lemma shows that f44

= 0 implies c44 = 0.

Since f44 6= 0 and c44 6= 0, by rescaling the last basis vector in M0 and
in M1, we can assume

f44 = c44 = 1.

To finish the proof of Lemma 13 in the case n > 3, we assume to the
contrary that θ is not an isomorphism.

Lemma 16. f11 = 0 if θ is not an isomorphism.

Proof. Suppose f11 6= 0. By changing the first basis vector in M1 if
necessary, we can reduce to the case

f11 = 1, f21 = f31 = f41 = 0.

Entry (1, 3) of equation (27) is

a13c33 = −α1f11 = −α1.

Therefore c33 6= 0, and we assume, without loss of generality (by changing
the third basis vector in M0), that

c33 = 1, c43 = 0.

Then a13 = −α1, and equation (27), entry (1, 2), simplifies to

−α2 = a12c22 − α1c32.

Since α2 is not divisible by α1, we know that c22 6= 0. Changing the second
basis vector in M0, we assume

c22 = 1, c32 = 0, c42 = 0, a12 = −α2.

Since c22 = c33 = c44 = 1 and Θ0 is not invertible (as we assumed that θ is
not an isomorphism), necessarily c11 = 0.
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Entry (1, 1) of (27) can be written as

v3 = −α2c21 − α1c31.

Contradiction, since v3 is not in the ideal (α1, α2). Lemma 16 follows.

Lemma 17. c11 = 0 if θ is not an isomorphism.

Proof. Suppose otherwise (c11 6= 0) and change the first basis vector of
M0 so that

c11 = 1, c21 = c31 = c41 = 0.

From the previous lemma we know that f11 = 0. Entry (1, 3) of (28) reads
α1 = b13f33. We see that f33 6= 0, and after modifying the third basis vector
of M1 we assume

f33 = 1, f43 = 0, b13 = α1.

Entry (1, 2) of the equation (28) reads

α2 = b12f22 + α1f32.

Since α2 does not factor, f22 6= 0, and we can reduce to the case

f22 = 1, f32 = f42 = 0, b12 = α2.

Entry (1, 1) of (28) simplifies to

α3 = α2f21 + α1f31.

Contradiction, since α3 is not in the ideal generated by α1 and α2. Lemma 17
follows.

By now, we have reduced our considerations to the case

f44 = c44 = 1, f11 = c11 = 0.

Lemma 18. f33 = 0 if θ is not an isomorphism.

Proof. If f33 6= 0, we can assume f33 = 1, f43 = 0. Entry (1, 3) of
equation (28) becomes b13 = 0. Note that b12 6= 0; otherwise b11 (which is a
polynomial of degree 3 in xi’s) would be the only nonzero entry in the first
row of Π1, and a divisor of detΠ1, which is proportional to w2. Since w is
irreducible, this is impossible, so that b12 6= 0.

Entry (1, 2) of (28) simplifies to b12f22 = 0. Thus, f22 = 0. Entry (1, 1)
of the same equation reduces to b12f21 = 0. Thus, f21 = 0.

Next, entries (2, 3) and (2, 4) of (28) reduce to

b24 = α1c22, b23 = α1c21.

Entry (2, 2) simplifies to

b23f32 + b24f42 = α2c21 + v3c22.

Since v3 is not in the ideal generated by α1, α2, we know that c22 = 0. Then
b24 = α1c22 = 0 (entry (2, 4) of (28)). Entry (2, 3) tells us that b23 = α1c21,
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while entry (2, 2) reduces to α2c21 = α1c21f32. Since α2 is not divisible by α1,
we have c21 = 0 and b23 = 0.

Switching to equation (27), and looking at entry (4, 4), we get a44 =
v3 − α1f42, while entry (4, 3) simplifies to

−v2 − α1f41 = a43c33 + (v3 − α1f42)c43.

Since v2 does not lie in the ideal (α1, v3), we have c33 6= 0. Then we can
assume c33 = 1, c43 = 0. Entries (1, 3) and (2, 3) tell us that a13 = a23 = 0.

To summarize, we have shown that

a13 = a23 = a24 = 0.

Also, a14 = 0. Therefore, the matrix Π0 is block lower-diagonal. Its deter-
minant is a nonzero multiple of w2. The determinant of Π0 is divisible by
the determinant of its lower-diagonal 2× 2 block(

a33 a34

a43 a44

)
=
(

α3 − α1f31 α2 − α1f32

−v2 − α1f41 v3 − α1f42

)
.

The only possibility is for this determinant to be a nonzero multiple of w,
leading to the equation

(α3 − α1f31)(v3 − α1f42) + (α2 − α1f32)(v2 + α1f41) = λw

for some λ ∈ Q. Using w = α1v1 + α2v2 + α3v3, we reduce the equation to

α1(−v1 − α3f42 − v3f31 + α1f31f42 + α2f41 − v2f32 − α1f32f41) = (λ− 1)w.

Since w is not divisible by α1, we have λ = 1, and the equation becomes

−v1 − α3f42 − v3f31 + α1f31f42 + α2f41 − v2f32 − α1f32f41 = 0.

Contradiction, since v1 does not belong to the ideal generated by α1, α2,
α3, v2, v3. Lemma 18 follows.

Entries (4, 3) and (4, 4) of equation (28) now become

b44f43 = α1c41 + v3c43 + v2,

b44 = α1c42 − α2c43 + α3,

implying
v2 = f43(α1c42 − α2c43 + α3)− α1c41 − v3c43.

This is impossible, since v2 does not lie in the ideal (α1, α2, α3, v3).
Therefore, θ is invertible and Υ is isomorphic to M if n > 4. Lemma 13

and Propositions 33, 32 follow in the case n > 4.

If n = 4, the sequences of degree shifts in M0,M1 (see formula (26)) are
(−3,−3,−5,−7) and (−2,−4,−6,−6). These sequences are decreasing, and
the matrices Θ0, Θ1 are block lower-triangular. By changing bases in M0 and
M1 if necessary, we can assume that Θ0 and Θ1 are lower-triangular. The
entry b14 of Π1 is a homogeneous linear polynomial in the x’s. If b14 = 0,
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Lemmas 14–18 hold for n = 4 as well (with the simplification that z0 = 0 in
the proof of Lemma 14), and we are done. Assume now that b14 6= 0. Then

• f44 = 0 (from equation (28), entry (1, 4)),
• c22 = 0 (equation (28), entry (2, 4)),
• c33 = 0 (equation (28), entry (3, 4)),
• c32 = 0 (equation (28), entry (3, 4)),
• c44 = 0 (equation (28), entry (4, 4)),
• f22 = 0 (equation (27), entry (2, 4)),
• f11 = 0 (equation (27), entry (1, 3)),
• f33 = 0 (equation (27), entry (3, 4)),
• f32 = 0 (equation (27), entry (3, 4)).

Furthermore, b14f43 = α1c11 (equation (28), entry (1, 3)), and b14f42 = α2c11

(equation (28), entry (1, 2)). Since α1 and α2 are relatively prime, this is only
possible if c11 = 0, which, in turn, implies f43 = 0, f42 = 0. Next, c21 = 0
(equation (28), entry (2, 2)), and c31 = 0 (equation (28), entry (3, 2)). From
the remaining equations we derive

c41 = zv3, c42 = −zα2, c43 = −zα1,

f21 = za24, f31 = za34, f41 = za44,

for some rational number z. Therefore, θ is null-homotopic, through the
homotopy (0, Z), where Z is the 4× 4 matrix with the only nonzero entry z
in the lower left corner. Contradiction. Lemma 13 and Propositions 33, 32
follow in the case n = 4.

If n = 3, the degree conditions force the coefficients

a14, b23, c21, c14, c23, c24, c34, f12, f13, f14, f23, f43

to be zero. By changing bases in M0,M1, if necessary, we can assume that
c13 = f24 = 0.

Lemma 19. c44 6= 0 if n = 3.

Proof. Suppose to the contrary that c44 = 0. Three of the equations (27)
reduce to

0 = −α1f22,

0 = −α1f42 + v3f44,

0 = −α1f32 + α2f33 + v3f34,

implying that
f22 = f44 = f42 = f33 = 0.

Equation (28), entry (2, 4), implies c22 = 0, while entry (3, 3) implies c33 =
c31 = 0. From entry (1, 3) we derive c11 = 0, and from the entry (1, 3) of
(27) that f11 = 0. The remaining entries of the two matrix equations force
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the other entries of Θ0, Θ1 to have the form

c12 = z0b13, c32 = z0b33,

c41 = −v3z1, c42 = b43z0 + α2z1, c43 = z1α1,

f21 = −z1a24, f31 = −z1a34 − xv2, f41 = −z1a44,

f32 = z0v3, f34 = z0α1.

Therefore, we can write

Θ0 = Z1Λ0 +Π1Z0, Θ1 = Π0Z1 + Z0Λ1,

for matrices Z0, Z1 which have zero entries save for z0 in (3, 2) in Z0 and −z1
in (4, 1) in Z1, with z0, z1 ∈ Q. Thus, θ is homotopic to 0 and the lemma
follows.

The proof of the lemma mimicked very closely the proof of Lemma 14.
The proofs of the following lemmas are omitted, since they are parallel to
those of Lemmas 15–18.

Lemma 20. f33 6= 0 if n = 3.

Lemma 21. f11 = 0 if n = 3 and θ is not an isomorphism.

Lemma 22. c22 = 0 if n = 3 and θ is not an isomorphism.

Lemma 23. f44 = 0 if n = 3 and θ is not an isomorphism.

We can assume that f33 = c44 = 1. Entries (4, 3) and (4, 4) of equation
(28) now become

b43 = α1c41 + v3c43 + v2,

b43f34 = α1c42 − α2c43 + α3,

leading to a contradiction. Lemma 13 and Propositions 33, 32 follow in the
remaining case n = 3.

Shifts. Direct sum decompositions in the above propositions often con-
tain terms shifted by 〈1〉. In general, if there is a direct sum decomposition
that contains C(Γ1) and C(Γ2) for a pair of graphs Γ1, Γ2, to determine
whether C(Γ2) will be shifted by 〈1〉 relative to C(Γ1) modify Γ1, Γ2 by
substituting a pair of arcs for each wide edge of these graphs (right to left
transformation in Figure 8). The graphs will turn into collections of arcs and
circles inside a disc. The two collections share the set of boundary points.
Glue them together along their boundaries to get a collection of circles on a
2-sphere. If the number of circles plus half the number of boundary points
is odd, there is a shift by 〈1〉. Otherwise, C(Γ1) and C(Γ2) are unshifted
relative to each other.

Closed graphs. We say that Γ is closed if it has no boundary points.
C(Γ ) is a 2-complex (d2 = 0) iff Γ is closed. In this subsection we assume
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that Γ is closed. Define the parity of Γ (denoted p(Γ )) as the number of
circles in the modification of Γ described above (erase a neighborhood of
each wide edge, and add two oriented arcs in place of this edge). Let H(Γ )
be the cohomology groups of C(Γ ). Since C(Γ ) has cohomology only in
degree p(Γ ), we have

H(Γ ) = Hp(Γ )(C(Γ )).

Internal grading of C(Γ ) makes H(Γ ) into a Z-graded Q-vector space.

Proposition 34. The graded dimension of H(Γ ) is the invariant Pn(Γ ),∑
j∈Z

dimHj(Γ ) qj = Pn(Γ ).

This follows from the direct sum decompositions obtained in this section
and the well-known fact that skein relations in Figure 3 suffice to evaluate
Pn(Γ ) for any graph Γ .

Examples of homologically regular pairs. We continue to assume that
Γ is closed, and hence C(Γ ) is a 2-complex. It is cohomology H(Γ ) con-
centrated in one degree only. C(Γ ) is the cyclic Koszul complex {a,b} for
a suitable pair (a,b) with ab = 0. If H0(Γ ) 6= 0, then H1(Γ ) = 0, and
the pair (a,b) is homologically regular, in the terminology of Section 2. If
H1(Γ ) 6= 0, we can permute ai with bi in the sequences a,b, for some i, to
produce a homologically regular pair. Thus, any closed graph gives rise to a
homologically regular pair.

The simplest example of a homologically regular pair is (0,b), where b
is a regular sequence.

For any pair, H({a,b}) is a module over the ring R. Note that if b is
regular, the cohomology H0({0,b}) is a cyclic module over R, isomorphic
to R/(b). Modifications of (0,b) using symmetries from the group G in Sec-
tion 2 do not change the cohomology and its module structure. All examples
of homologically regular pairs given in Section 2 have the property that H0

is a cyclic R-module.

Fig. 43. Graph Γ

Curiously, homologically regular pairs (a,b) assigned to certain graphs
Γ have the property that H0 is not a cyclic R-module. The simplest example
of such Γ is shown in Figure 43. We assume that n > 2, and each oriented
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edge has one mark (not shown on the diagram). The graded dimension of
H0(C(Γ )〈1〉) is

[n][n− 1](2[n− 1] + [n− 3])

and has the form q5−3n(2 + x), where x ∈ qZ[q]. Since the ring R of poly-
nomials in edge variables is nonnegatively graded, with Q in degree 0, the
cohomology of C(Γ )〈1〉 is not a cyclic module over R (it is Q ⊕ Q in the
lowest degree). Hence, the pair (a,b) assigned to this graph cannot be ob-
tained from any pair of the form (0,b′) using symmetries from the group
G (see the end of Section 2). Thus, the pair assigned to Γ is homologically
regular and “intrinsically cyclic”, unlike pairs {0,b′} whose cyclic Koszul
complexes are just the Koszul complexes of b′ with collapsed grading.

7. Tangle diagrams and complexes of factorizations

Complexes of factorizations. To any additive category C associate the
category K(C) with objects being bounded complexes of objects of C and
morphisms being morphisms of complexes up to homotopy. The category
K(C) is triangulated.

Recall that hmfw is the category of graded factorizations with potential
w and finite-dimensional cohomology, up to homotopy. Let Kw = K(hmfw),
the homotopy category of hmfw. An object of Kw is Z⊕ Z⊕ Z2-graded.

We distinguish the three shift functors in Kw, the shifts functors 〈1〉, {1}
coming from hmfw and the shift [1] in the category of complexes. These
three functors pairwise commute.

Example. If w is a potential in the empty set of variables, hmfw is the
homotopy category of 2-periodic complexes of graded Q-vector spaces with
finite-dimensional cohomology. Any object of hmfw is then isomorphic to its
cohomology, which is a Z⊕Z2-graded vector space, and hmfw is equivalent
to the category of Z ⊕ Z2-graded finite-dimensional vector spaces. Kw is
equivalent to the homotopy category of this category, and therefore to the
category of Z⊕ Z⊕ Z2-graded finite-dimensional vector spaces.

Tangles in a ball. By a tangle L we mean a proper embedding of an
oriented compact 1-manifold into a ball B3. We fix a great circle on the
boundary 2-sphere of B3 and require that the boundary points of the em-
bedded 1-manifold lie on this great circle. A diagram D of L is a generic
projection of L onto the plane of the great circle. An isotopy of a tangle
should not move its boundary points.

A marked diagram (also denoted D) is a diagram with several marks
placed on D so that any segment bounded by crossings has at least one
mark (see an example in Figure 44). Boundary points also count as marks.
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Fig. 44. A marked diagram of a tangle

Let m(D) be the set of marks of D, and ∂D the set of boundary points
(it is a subset of m(D)). Let R be the ring of polynomials in xi, i ∈ m(D),
and R′ the ring of polynomials in xi, i ∈ ∂D.

We separate crossings of D into positive and negative as explained in
Figure 45.

positive negative

Fig. 45. Positive and negative crossings

Given a crossing p, let Γ 0, Γ 1 be its two resolutions (see Figure 9). To a
positive crossing assign the complex of factorizations (also see Figure 46)

0→ C(Γ 0){1− n} χ0−→ C(Γ 1){−n} → 0.

To a negative crossing assign the complex

0→ C(Γ 1){n} χ1−→ C(Γ 0){n− 1} → 0.

In both cases we place C(Γ 0) in cohomological degree 0. Denote this complex
by Cp.

{1−n} {−n} 0

0 1

= 0

= 0 {n}

−1 0

0{n−1}

Fig. 46. Complex assigned to a crossing

To D associate the complex of factorizations C(D) which is the tensor
product of Cp over all crossings p of Lij over all arcs j → i, and of A〈1〉 over
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all crossingless markless circles of D (if such exist). The tensoring is done
over appropriate polynomial rings so that C(D), as an R-module, is free of
finite rank.

For instance, to produce C(D) for D in Figure 44, we tensor Cp1 with
Cp2 over Q[x6, x8], and tensor the result with Cp3 over Q[x7].

We proceed by tensoring Cp1 ⊗ Cp2 ⊗ Cp3 with L4
5 over Q[x4, x5], and

with L9
2 over Q[x9], so that

C(D) = Cp1 ⊗ Cp2 ⊗ Cp3 ⊗ L4
5 ⊗ L9

2.

C(D), for any diagram D, is a complex of graded (R′, w)-factorizations,
where

w =
∑
i∈∂D

±xn+1
i ,

with signs determined by orientations of D near boundary points. Thus,
C(D) is an object of the category Kw.

Proposition 35. The complexes C(D) and C(D′) are canonically iso-
morphic if D′ differs from D only by marks.

Proof. This follows at once from Proposition 22.

Theorem 2. The complexes C(D) and C(D′) are isomorphic in Kw if
D and D′ are two diagrams of the same tangle L.

Proof. It suffices to check the assertion when D and D′ are related by a
single Reidemeister move. This is done in the next section.

Corollary 13. The isomorphism class of the object C(D) in the cate-
gory Kw is an invariant of the tangle L.

Link homology. When L is a link, the ring R′ equals Q, and hmfw is
isomorphic to the category of finite-dimensional Z⊕Z⊕Z2-graded Q-vector
spaces. Cohomology groups are nontrivial only in the cyclic degree which
is the number of components of L modulo 2. This reduces the grading of
cohomology of C(D) to Z⊕ Z.

Denote the resulting cohomology groups by

Hn(D) =
⊕
i,j∈Z

H i,j
n (D).

It is clear from the construction that the Euler characteristic of Hn(D) is
the polynomial Pn(L),

Pn(L) =
∑
i,j∈Z

(−1)iqj dimQH
i,j
n (D).

The isomorphism classes of the vector spaces H i,j
n (D) depend only on L.

Denote by hi,jn (L) the dimension of H i,j
n (D). This is an invariant of the
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link L. For each n, we can put them together into a 2-variable polynomial
invariant of L,

hn(L) =
∑
i,j

tiqjhi,jn (L).

Reduced link homology. Choose a component of L, and a mark i on
D that belongs to this component. For each resolution Γ of L, the vector
space H(Γ ) is a free module over the ring A ∼= Q[xi]/(xni ). Let Q̃ be the
one-dimensional graded A-module, placed in degree 0, and

C̃(D) := C(D)⊗A Q̃.

The complexes C̃(D) and C̃(D′) are quasi-isomorphic if D and D′ represent
the same link with the same preferred component. Denote the cohomology
groups of C̃(D) by H̃ i,j

n (D), and their dimensions by h̃i,jn (L). Then

h̃n(L) :=
∑
i,j

tiqj h̃i,jn (L)

is a two-variable polynomial invariant of L with a preferred component. Its
specialization to t = −1 is the one-variable polynomial Pn(L)/[n], which is
another common normalization for this one-variable specialization of HOM-
FLYPT.

8. Invariance under Reidemeister moves

D Γ 1

Fig. 47. Type I move

Type I move. Consider the Figure 47 case of the type I move. We follow
the notations from the proof of Proposition 29. In particular, Γ, Γ1, and Γ2

are as in Figure 33. The complex C(D) has the form

0→ C(Γ2)〈1〉{1− n} χ0−→ C(Γ ){−n} → 0.

Let α̃i, for 0 ≤ i ≤ n− 1, be the map

α̃i : C(Γ1){2i+ 2− 2n} → C(Γ2)〈1〉{1− n}, α̃i =
i∑

j=0

m(xj1x
i−j
2 )ι′.

Let Y1 ⊂ C(Γ2)〈1〉{1− n} be the image of⊕
0≤i≤n−2

C(Γ1){2i+ 2− 2n}
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under the map

α̃ =
n−2∑
i=0

α̃i,

and Y2 ⊂ C(Γ2)〈1〉{1− n} the image of C(Γ1) under the map α̃n−1.
There is a direct sum decomposition in hmfw

C(Γ2)〈1〉{1− n} ∼= Y1 ⊕ Y2.

Furthermore, χ0(Y2) = 0, and the restriction of χ0 to Y1 is an isomorphism
from Y1 to C(Γ ){−n}. Therefore, in the category Kw, the complex C(D) is
isomorphic to the direct sum of

0→ Y1
∼=−→ C(Γ ){−n} → 0 and 0→ Y2 → 0,

with Y2 in cohomological degree 0. Since the first summand is contractible,
C(D) is isomorphic to Y2

∼= C(Γ1) in the category Kw.
The invariance under other cases of the type I move can be verified

similarly.

D Γ 0

Fig. 48. Type IIa move

Type IIa move. Consider the diagrams D and Γ 0 of Figure 48. The
complex C(D),

0→ C−1(D) ∂−1

−→ C0(D) ∂0

−→ C1(D)→ 0,

has the form (see Figure 49)

0→ C(Γ00){1} (f1,f3)t−−−−−→
C(Γ01)
⊕

C(Γ10)

(f2,−f4)−−−−−→ C(Γ11){−1} → 0,

where f1, f4 are given by the map χ1 (corresponding to the topology change
in the lower halves of the diagrams Γ00, Γ10), and f2, f3 are given by χ0

(topology change in the upper halves of Γ00, Γ01).
We know that

C(Γ10) ∼= C(Γ 1){1} ⊕ C(Γ 1){−1},(29)
C(Γ01) ∼= C(Γ 0),(30)
C(Γ00) ∼= C(Γ11) ∼= C(Γ 1).(31)

where Γ 0, Γ 1 are the diagrams of Figure 8, and here and further on the
isomorphisms are in the category hmfw, for the potential w = xn+1

1 +xn+1
2 −

xn+1
3 − xn+1

4 .
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Fig. 49. Four resolutions of D in the type IIa move

Fix isomorphisms (29), (30), (31). Under these isomorphisms, f3, f4 be-
come two-component maps

f3 = (f03, f13)t, f4 = (f04, f14),

where for instance f03 (respectively, f13) is a degree 0 (respectively, degree 2)
endomorphism of C(Γ 1).

Lemma 24.

(i) C(Γ 1) has no negative degree endomorphisms in hmfw. The only
degree 0 endomorphisms are multiples of the identity.

(ii) The space of degree 2 endomorphisms of C(Γ 1) is 3-dimensional if
n > 2. Multiplications by x1, x2, x3, x4 span this space, with the only
relation m(x1 + x2 − x3 − x4) = 0.

(iii) The space of degree 2 endomorphisms of C(Γ 1) is 2-dimensional if
n = 2. Multiplications by x1, x2, x3, x4 span this space, with relations
m(x1 + x2) = 0 and m(x3 + x4) = 0.

Proof. Since C(Γ 1){1} is the Koszul factorization for the pair

((u1, u2), (x1 + x2 − x3 − x4, x1x2 − x3x4)),

the complex HomR(C(Γ 1), C(Γ 1)) is isomorphic to the Koszul complex of
the sequence

(32) (x1 + x2 − x3 − x4, x1x2 − x3x4, u1, u2),

with the grading collapsed from Z to Z2 (for the definition of u1, u2 see Sec-
tion 6). This sequence is regular, so that the cohomology of this 2-complex
is

Q[x1, x2, x3, x4]/(x1 + x2 − x3 − x4, x1x2 − x3x4, u1, u2).
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Part (i) of the lemma follows, since this cohomology is isomorphic, as a
graded Q-algebra, to EndHMF(C(Γ 1)). If n > 2, all terms in (32) but the
first are homogeneous polynomials in x’s that are at least quadratic. Part
(ii) follows. If n = 2, the term u2 is linear, and we get the additional relation
m(x3 + x4) = 0.

Remark. If n = 1, there is nothing to prove, since C(Γ ) = 0 whenever
Γ has a wide edge, and the whole story becomes trivial.

From the lemma we deduce that f03 and f14 are rational multiples of
the identity, while f13, f04 are multiplications by linear combinations of
x1, x2, x3, x4.

C(D) is a complex, so that ∂0∂−1 = 0. We compute

0 = ∂0∂−1 = f2f1 − f4f3 = m(x1 − x3)− f14f13 − f04f03.

Therefore, either f14 6= 0, or f03 6= 0, since multiplication by x1 − x3 is a
nontrivial endomorphism of C(Γ 1).

Assume that f14 6= 0. Then f14 is a nonzero multiple of the identity. By
rescaling, we normalize f14 to be the identity.

Lemma 25. f03 6= 0.

Proof. Suppose that f03 = 0. Then f13 = m(x1 − x3). The composition
of f3 with the map χ1 in the opposite direction, where the topology change
takes place around the upper wide edge of Γ10, is multiplication by x1− x6,
which is the same as multiplication by x1 − x2 (since multiplications by x2

and x6 are homotopic endomorphisms of C(Γ00)). The map χ1, restricted
to the summand C(Γ 1){−1} of C(Γ10), is multiplication by some rational
number z. Under the assumption f03 = 0, we have

m(x1 − x2) = χ1f3 = χ1f13 = z ·m(x1 − x3).

Therefore,
m((1− z)x1 − x2 + zx3) = 0.

This is impossible, by Lemma 24. Lemma 25 follows.

Likewise, if f03 6= 0, we can show that f14 6= 0. Thus, both f03 and f14

are nonzero multiples of the identity morphism. We normalize so that each
of them is the identity map. The differential

∂−1 : C−1(D)→ C0(D)

is split injective. Since f14 is the identity, the differential

∂0 : C0(D)→ C1(D)

is split surjective. We can twist the direct sum decomposition

C0(D) ∼= C(Γ 0)⊕ C(Γ 1){1} ⊕ C(Γ 1){−1}
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so that f03, f14 become the only nonzero entries in the matrices describ-
ing the differentials ∂−1, ∂0, and C(D) breaks into the direct sum of three
complexes

0→ C(Γ 0) → 0,

0→ C(Γ 1){1}
∼=→ C(Γ 1){1} → 0,

0→C(Γ 1){−1}
∼=→ C(Γ 1){−1} → 0.

The last two complexes are contractible. Therefore, C(D) and C(Γ 0) are
isomorphic in the category Kw.

D Γ 2

Fig. 50. Type IIb move

Type IIb move. Consider the diagrams D and Γ2 of Figure 50. The com-
plex C(D) has the form (see Figure 51)

0→ C(Γ00){1} (f1,f3)t−−−−−→
C(Γ01)
⊕

C(Γ10)

(f2,−f4)−−−−−→ C(Γ11){−1} → 0.

Γ 00

Γ 10

f1

f2f3

f4

Γ 01

Γ 11

Fig. 51. Commutative square of resolutions of D, type IIb move

There are isomorphisms in hmfw

C(Γ00){1} ∼=
n−2⊕
i=0

C(Γ1)〈1〉{3− n+ 2i},(33)

C(Γ11){−1} ∼=
n−2⊕
i=0

C(Γ1)〈1〉{1− n+ 2i},(34)

C(Γ10) ∼=
n−1⊕
i=0

C(Γ1)〈1〉{1− n+ 2i},(35)
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C(Γ01) ∼= (
n−3⊕
i=0

C(Γ1)〈1〉{3− n+ 2i})⊕ C(Γ2),(36)

where Γ1 and Γ2 are as in Figure 36.
The proof of the invariance under type I move implies that f4 is split sur-

jective. Likewise, f3 is split injective. Since the category hmfw has splitting
idempotents, we can decompose C0(D) into the direct sum

C0(D) ∼= Im(∂−1)⊕ Y1 ⊕ Y2

so that ∂0 restricts to an isomorphism from Y1 to C(Γ11){−1} and ∂0Y2 = 0.
Therefore, C(D) is isomorphic to the direct sum of complexes

0→ Y2 → 0,

0→ C(Γ00){1}
∼=→ Im(∂−1)→ 0,

0→ Y1
∼=→ C(Γ11){−1} → 0.

From formulas (33)–(36) we obtain

C0(D) ∼= C(Γ01)⊕ C(Γ10) ∼= C(Γ00){1} ⊕ C(Γ11){−1} ⊕ C(Γ2).

The category hmfw is Krull–Schmidt (objects have unique direct sum de-
compositions into indecomposables). Therefore, Y2

∼= C(Γ2) and the com-
plexes C(D) and 0 → C(Γ2) → 0 are isomorphic. This concludes our proof
of the invariance under the type IIb move.

Type III move. We need to show that C(D) and C(D′) are isomorphic
for D,D′ of Figure 52.

DD

Fig. 52. Type III move

The diagram D has eight resolutions, denoted Γijk, for i, j, k ∈ {0, 1}
(see Figure 53). The complex C(D){−3n} has the form

0→ C(Γ111) d−3

−→

 C(Γ011){−1}
C(Γ010){−1}
C(Γ110){−1}


d−2

−→

 C(Γ100){−2}
C(Γ010){−2}
C(Γ001){−2}

 d−1

−→ C(Γ000){−3} → 0

with C(Γ000){−3} in cohomological degree 0. We depicted this complex in
Figure 53.
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Γ 111

 000Γ

Γ 010

Γ 101

Γ 100

Γ 001

Γ 011

Γ 110

Fig. 53. Resolution cube of D

The diagrams Γ100 and Γ001 are isotopic, so that C(Γ100) and C(Γ001)
are isomorphic factorizations. Moreover,

(37) C(Γ101) ∼= C(Γ100){1} ⊕ C(Γ100){−1},
and from Proposition 33 we know that

C(Γ111) ∼= C(Γ100)⊕ Υ.
The differential d−3 is injective on C(Γ100) ⊂ C(Γ111). In fact, its middle
component (the map to C(Γ101){−1}) is injective, which follows from our
construction of the inclusion C(Γ100) ⊂ C(Γ111) and the proof of the invari-
ance under the type IIa move.

The factorization d−3(C(Γ100)) is a direct summand of C−2(D){−3n}.
Thus, C(D){−3n} contains a contractible summand

(38) 0→ C(Γ100) d−3

−→ C(Γ100)→ 0.

The direct sum decomposition (37) can be selected so that

C(Γ101){−1} ∼= p101d
−3C(Γ100)⊕ C(Γ100){−2}

where p101 is the projection onto the middle summand of C−2(D){−3n}.
The differential d−2 is injective on C(Γ100){−2} ⊂ C(Γ101){−1}, since

its middle component is a nonzero multiple of the identity. Furthermore,
the image of C(Γ100){−2} ⊂ C(Γ101){−1} under d−2 is a direct summand
of C−1(D). Hence, the complex C(D){−3n} contains a contractible direct
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summand isomorphic to

(39) 0→ C(Γ100){−2} d−2

−→ C(Γ100){−2} → 0.

After splitting off the contractible direct summands (38) and (39), the com-
plex C(D){−3n} reduces to the complex C of the form

0→ Υ
d−3

−→

(
C(Γ011){−1}
C(Γ110){−1}

)
d−2

−→

(
C(Γ010){−2}
C(Γ100){−2}

)
d−1

−→ C(Γ000){−3} → 0

(see Figure 54). To the diagram Y on the left of the figure we assign the
factorization Υ .

 000Γ

Γ 010

Γ 100 Γ 001

Γ 011

Γ 110

Υ

Fig. 54. Complex C

In the rest of the section we assume that n > 2 (proofs for n = 2 are
easier since then Υ = 0).

Lemma 26. For each arrow in Figure 54 with some diagram Z1 as the
source and Z2 as the target , the space of grading-preserving morphisms

Homhmf(C(Z1), C(Z2){−1})
is one-dimensional.

Proof. Straightforward, similar to the proof of Corollary 12. The details
are omitted.

Denote by c1, . . . , c8 the nontrivial morphisms from the above lemma.
Each morphism is determined up to multiplication by a nonzero rational
number. Figure 55 shows how the indices i of ci’s match the eight arrows of
Figure 54. We choose ci’s so that each square in Figure 55 commutes.
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c 1

c 2

c 3

c 4

c 5

c 6

c 7

c 8

Fig. 55. Indices and arrows

The differential in C is grading-preserving. Therefore, it has the form

d−3 =
(
λ1c1

λ2c2

)
, d−2 =

(
λ3c3 λ5c5

λ4c4 λ6c6

)
, d−1 =

(
λ7c7

λ8c8

)
for some rational numbers λ1, . . . , λ8.

Lemma 27. For any two composable arrows Z1 → Z2 → Z3 in Figure 54,
the corresponding homomorphism of factorizations

cjci : C(Z1)→ C(Z3){−2}
is nonzero in hmfw.

Proof. For instance, to show that c7c3 6= 0, we note that this composition
is the product of two χ1 maps (up to rescaling by a nonzero rational number),
one for each wide edge of Γ011. Compose it with the “dual” product of two
χ0 maps, as in Figure 56. Assign variables x1, . . . , x6 to the endpoints of
our diagrams in the same way as in Figure 42. Then the Figure 56 map is
m(x1 − x5)m(x2 − x6). This is a nontrivial endomorphism of C(Γ000), so
that the composition c7c3 is nonzero.

Γ 010  000ΓΓ 011Γ 010 000Γ

χ  0 χ  1χ  0 χ  1

Fig. 56. Composing c7c3 with its dual

Identical arguments take care of the other three compositions that end
in Γ000. Similar but longer computations can be used to check nontriviality
of each of the four compositions cjci that start at Y .

The category Kw has an automorphism (tensoring with the complex as-
signed to the inverse braid of D) that takes C(D) to C(D′′) where D′′ is the
diagram made up of three disjoint oriented arcs. Since C(D′′) is indecom-
posable in Kw, the same is true of C(D) and C ∼= C(D). Indecomposability
of C together with the above lemma implies that none of the coefficients
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λ1, . . . , λ8 is 0. By rescaling, we can set

λ1 = λ2 = λ4 = λ5 = λ7 = λ8 = 1, λ3 = λ6 = −1.

The complex C is therefore invariant under the “flip” which transposes x1

with x3 and x4 with x6. This flip takes C(D) to C(D′), thus, C is isomorphic
in Kw to C(D′). We have C(D) ∼= C ∼= C(D′). The invariance under the
Reidemeister move III of Figure 52 follows.

9. Factorizations and 2-dimensional TQFTs with corners. Let
I be a finite set and s : I → {1,−1} a map, which we call the orientation
map. We say that s is balanced if the sets s−1(1) and s−1(−1) have the same
cardinality (i.e., s takes as many elements of I to 1 as it does to −1). From
now on we assume that s is balanced.

To (I, s) we assign the category CobI,s whose objects are oriented one-
dimensional manifolds N with boundary I such that the orientation of N
induces the orientation s on I = ∂N . Morphisms from N0 to N1 are oriented
2-dimensional surfaces S with boundary N0 ∪ −N1 ∪ I × [0, 1] and corners
I × {0} t I × {1}.

Let RI be the ring of polynomials in xi, i ∈ I, and set

w(I, s) =
∑
i∈I

s(i)xn+1
i ∈ RI .

To an object N ∈ CobI,s we can assign a factorization C(N) with po-
tential w(I, s). The factorization is the tensor product (over Q) of Lij over
all arcs j → i in N, and of A〈1〉, one for each circle in N . We would like to
extend this assignment to a functor from CobI,s to the category of factoriza-
tions. To do this, pick a morphism S in CobI,s and write it as a composition
of simple cobordisms (cobordisms with only one critical point). To the cobor-
disms of creation and annihilation of a circle we assign the maps ι, ε, defined
in Section 4. To the saddle point cobordism between 1-manifolds N0, N1 of
Figure 57 we want to associate a map

η : C(N0)→ C(N1)〈1〉{1− n}.
To define η, assign labels a1, a2, b1, b2 to the components of N0, N1 as indi-
cated in Figure 57.

x2

x4

x1

x3

a1 a2

N 0

x1 x2

x3x4

b1

b2

N 1

Fig. 57
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The factorization C(N0) has the form(
R(∅)

R(a1a2){2− 2n}

)
P0−→
(
R(a1){1− n}
R(a2){1− n}

)
P ′0−→
(

R(∅)
R(a1a2){2− 2n}

)
,

where

P0 =
(
π14 x3 − x2

π32 x4 − x1

)
, P ′0 =

(
x1 − x4 x3 − x2

π32 −π14

)
,

and R = Q[x1, x2, x3, x4].
The factorization C(N1)〈1〉 is given by(
R(b1){1− n}
R(b2){1− n}

)
P1−→
(

R(∅)
R(b1b2){2− 2n}

)
P ′1−→
(
R(b1){1− n}
R(b2){1− n}

)
,

where

P1 =
(
x2 − x1 x4 − x3

−π34 π12

)
, P ′1 =

(
−t12 x4 − x3

−π34 x1 − x2

)
,

and R = Q[x1, x2, x3, x4].
η is given by the pair of matrices(

e123 + e124 + (x4 − x3)r 1
−e134 − e234 + (x1 − x2)r 1

)
,

(
−1 1

−e123 − e234 + (x1 − x4)r −e134 − e124 + (x3 − x2)r

)
,

with
eijk =

∑
a+b+c=n−1

xai x
b
jx
c
k

and r being an arbitrary polynomial of degree n − 2 in x1, . . . , x4. Up to
chain homotopy, η does not depend on r.

η generates HomHMF(C(N0), C(N1)〈1〉) as an R-module, and we should
assign η to the saddle point cobordism. There is a problem, though. The
diagrams in Figure 57 are invariant under rotation by 180◦, but η acquires
a sign after the rotation. Namely, if we transpose x1 with x3, x2 with x4,
a1 with a2, and b1 with b2 in the formula for η, the resulting map is −η.
Thus, η can be canonically defined only up to sign.

If the saddle point cobordism takes place not between arcs, but between
components of N0, N1, some of which are circles, we add marks to each
component, select a suitable pair of arcs bounded by marks (and, possibly,
by boundary points), apply η to that pair, and finally erase marks. It is
easy to see that, up to sign, the resulting map does not depend on the
intermediate choices.
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Let H′I,s be the category with the same objects as hmfw(I,s) but mor-
phisms being the Ext groups ExtHMF(M0,M1), with f and −f identified for
all f ∈ ExtHMF(M0,M1). We use Ext groups rather than just Hom’s since
the shift 〈1〉 is built into ι, ε, and η.

Given a surface S which is an object of CobI,s, write it as a product of
cobordisms with only one critical point and define C(S) as the corresponding
product of ι, ε, and η’s. Recall that our definition of ε contained a parameter
ζ ∈ Q∗. To make ε compatible with η we must set ζ to either 1/(n+ 1) or
−1/(n+ 1) (so that εη = ±Id if the saddle point cobordism goes from an
arc to the union of a circle and an arc).

Proposition 36. ±C(S) does not depend on the presentation of S as
a product of elementary cobordisms.

The proof is left to the reader.
Thus, we obtain a functor from the cobordism category CobI,s to the

category H′I,s. The shifts υ1(S), υ2(S) in

±C(S) : C(N0)→ C(N1)〈υ1(S)〉{υ2(S)}
are as follows. Glue N0 and N1 along the common boundary I, and count
the number υ of components in the closed 1-manifold that results. υ1(S) is
the parity of υ + |I|/2, while

υ2(S) = (n− 1)
(
χ(S)− |I|

2

)
where χ(S) is the Euler characteristic of S.

2-functor. In the above construction we fixed the boundary of one-
manifolds. If we put together all categories CobI,s over various I and s
(and consider decompositions of I into pairs of disjoint sets, to view N
with ∂N = I as a morphism) we get a 2-category of oriented surfaces with
corners. The functors

C : CobI,s → H′I,s
extend to a 2-functor from this 2-category of cobordisms to the 2-category of
factorizations with potentials as objects, factorizations as morphisms, and
elements of Ext groups between factorizations (with f and −f identified) as
2-morphisms. We leave the details to the reader.

10. Projective invariance for cobordisms of tangles. As before,
we consider oriented tangles in a ball B3. Fix a great circle on the ball’s
boundary, choose a finite subset I of this circle and a balanced “orientation”
function s : I → {1,−1}. Let TCI,s be the category of tangle cobordisms
with objects oriented tangles L in B3 with oriented boundary (I, s) and
morphisms from L0 to L1 oriented surfaces S embedded in B3 × [0, 1] with
boundary
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∂S = L0 × {0} ∪ L1 × {1} ∪ I × [0, 1]

and corners I × {0} ∪ I × {1}, up to isotopy that fixes the boundary.

Circle creation Circle annihilation Saddle point

Fig. 58. Movie moves of simple cobordisms

A cobordism S admits a combinatorial description via a sequence of
plane diagrams of its cross-sections with B3× k, for various k ∈ [0, 1]. Each
consecutive pair of diagrams differ either by a Reidemeister move, or a Morse
move, the latter describing a simple cobordism with one critical point (Fig-
ure 58). Such sequences are referred to as movies. Two sequences describe
the same cobordism if they can be connected through a finite sequence of
movie moves, shown in Figures 59, 60. We assume that the reader is familiar
with this theory, and refer to [CS1], [CS2] and references therein for details.

1

4

5

2

6

3

7

Fig. 59. Movie moves 1–7
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8 9

11

10

13

15

12

14

Fig. 60. Movie moves 8–15

Let w = w(I, s) be the potential defined in the preceding section. Earlier,
we associated an isomorphism C(D1) ∼= C(D2) in the category Kw to a
Reidemeister move between the tangle diagrams D1 and D2. Aping the last
section, assign the maps ι, ε, η to the circle creation, circle annihilation, and
saddle point moves (see Figure 58), respectively.

Given a movie z = (z0, . . . , zm) representing a surface S, assign to z the
morphism in Kw:

C(z) : C(z0)→ C(zm)〈υ1(S)〉{υ2(S)}
by composing the maps associated to each move zi → zi+1 in z. The quan-
tities υ1(S), υ2(S) were defined at the end of the previous section.

Proposition 37. Up to overall multiplication by nonzero rational num-
bers, the map C(z) (viewed as a morphism in the category Kw) does not
depend on the movie presentation z of S.

Proof. For a given movie move of Figures 59, 60, denote the top frame
by b1, the bottom frame by b2, the left movie by Sl and the right movie by Sr.
We need to show that the morphisms C(Sl) and C(Sr) are proportional,
C(Sl) = λC(Sr) for some λ ∈ Q∗.
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The movies Sl and Sr in movie move 6 are compositions of Reidemeister
moves. Therefore,

C(Sl), C(Sr) : C(b1)→ C(b2)

are isomorphisms. Let b be the tangle diagram which consists of four parallel
disjoint segments (the crossingless diagram of the trivial braid). There is an
automorphism of Kw (tensoring with C(b′1), where b′1 is the “inverse” of the
braid diagram b1) which takes C(b1) to C(b). Therefore,

HomKw(C(b1), C(b1)) ∼= HomKw(C(b), C(b)).

The vector space on the right hand side is isomorphic to Q (the only degree
0 endomorphisms of C(b) are multiples of the identity). Hence

HomKw(C(b1), C(b2)) ∼= HomKw(C(b1), C(b1)) ∼= Q

(the isomorphisms are not canonical, though), and C(Sl), C(Sr) are propor-
tional.

This argument applies to moves 1, 2, 3, 4, 5, 7, 9, 10, 11 as well, and to
all versions of these moves (various orientations, overcrossing/undercrossing
variations, etc.)

Move 8 follows from the compatibility of ι, ε, and η (see Section 9).
In move 12, the maps

C(Sl), C(Sr) : C(b1)→ C(b2)〈1〉{n− 1}

are nontrivial and lie in the one-dimensional Q-vector space

HomKw(C(b1), C(b2)〈1〉{n− 1}).

Therefore, the maps are proportional. The same argument works for other
versions of this move, and for all versions of moves 13, 14, 15 (for moves
14, 15 change {n− 1} to {1− n}). Proposition 37 follows.

The above proof is based on the observation that the space of homs
between C(b1) and C(b2) (with a suitable shift) is one-dimensional. The
same approach was used in [Kh4] to show functoriality of the homology
theory H from [Kh1] (see Jacobsson [J] for a different proof), and by Dror
Bar-Natan [BN2] to prove functoriality of his refinement of H.

We denote by C(S) the set {λC(z) | λ ∈ Q∗}. This is an invariant of the
cobordism S.

In particular, given a diagram D of a tangle L, the object C(D) of Kw

is canonically (up to rescaling) associated to L. We denote this object by
C(L) (recall that it is a complex of graded matrix factorizations, treated as
an object of Kw).

Given a diagram D of an oriented link L, the homology groups Hn(D)
are Q-vector spaces canonically assigned to L (up to overall rescaling by
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nonzero rational numbers). We denote these groups by Hn(L) and their
graded summands by H i,j

n (L).
Thus, an oriented link cobordism S between L0 and L1 induces a homo-

morphism
C(S) : Hn(L0)→ Hn(L1),

well-defined up to rescalings by nonzero rationals, and for each i, j restricts
to homomorphisms

H i,j
n (L0)→ H i,j+(1−n)χ(S)

n (L1),

where χ(S) is the Euler characteristic of S. The collection of maps C(S)
over all link cobordisms S is a functor from the category of link cobordisms
to the category of bigraded Q-vector spaces (with morphisms being graded
linear maps with the equivalence relation f ∼ λf for λ ∈ Q∗). The Euler
characteristic of Hn(L) is the polynomial

Pn(L) =
∑
i,j

(−1)iqj dimQH
i,j
n (L).

2-functor. So far we considered tangles with a fixed oriented boundary
(I, s). By switching from tangles in a ball to tangles in R2×[0, 1] and varying
possible boundaries one can form the 2-category of tangle cobordisms (see
[F], [BL], and references therein). Our construction can be extended to a
2-functor from the 2-category of oriented tangle cobordisms to a 2-category
with potentials w(I, s) as objects, complexes of matrix factorizations as 1-
morphisms, and homomorphisms between (suitably shifted) complexes as
2-morphisms (of course, we will have to quotient by null-homotopic mor-
phisms, and identify morphisms that are multiples of each other, f ∼= λf for
λ ∈ Q∗). This 2-functor is braided monoidal.

11. A generalization. Each complex simple Lie algebra g gives rise to
a polynomial invariant of links whose components are decorated by finite-
dimensional irreducible representations of g (see [RT]). The polynomial
Pn results if g = sln and every component is assigned the fundamental
n-dimensional representation V of sln. Murakami, Ohtsuki, and Yamada
[MOY] develop a calculus of trivalent graphs that helps understand the
polynomial invariant of links with components colored by arbitrary exterior
powers of V (the ith exterior power ΛiV is often called the ith fundamental
representation of sln). Although their construction also extends the invari-
ant to spacial trivalent graphs, here we will only look at planar graphs. Each
edge of a graph is oriented and labeled by a number from 1 to n− 1. Every
vertex is trivalent and the sum of the labels at the edges entering the vertex
minus the sum of the labels at the edges leaving it is a multiple of n.
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i1 i2 i3 =+ + n

i1 i2 = i3+

i1 i1

i1i1

i2 i2

i2i2

i3 i3

i3i3

Fig. 61. The four types of vertices

To every such graph Γ an invariant 〈Γ 〉 is assigned, taking values in
Z[q, q−1]. The invariant is unchanged if the orientation of an edge is reversed
simultaneously with changing the label from i to n− i. We use this transfor-
mation to reduce our considerations to graphs with all labels at most n/2.
We split the vertices into four types by the number (zero to three) of edges
oriented into the vertex (see Figure 61).

The construction of Section 6 generalizes to a homology theory H(Γ ) for
graphs Γ as above. We will now sketch this generalization and its conjectural
extension to link homology. For convenience, assume that n is even.

Denote by i(e) the number assigned to an edge e, and select a set s(e)
of cardinality i(e) such that the sets assigned to different edges are disjoint.
Suppose that a vertex v bounds the edges e1, e2, e3. To v we assign the
potential

wv =
∑

j∈s(e1)ts(e2)ts(e3)

±xn+1
j

where the sign is + if the edge ek leaves v and j ∈ s(ek), and − otherwise
(note that the potential of an edge e is ±

∑
j∈s(e) x

n+1
j ).

Let Q[s(e)] be the ring of polynomials in xj , j ∈ s(e), and denote by
S(e) its subring of symmetric polynomials. Let

Rv := S(e1)⊗Q S(e2)⊗Q S(e3)

be the tensor product of the three rings. Then wv ∈ Rv.
Consider first the case when the edges e1, e2, e3 are oriented away from v.

Then i(e1) + i(e2) + i(e3) = n. Let σk(v) be the kth elementary symmetric
function in the xj ’s for j in the set s(e1) t s(e2) t s(e3). Write

wv =
∑
j

xn+1
j =

n∑
k=1

σk(v)gk(v)

for some gk(v)’s (which are not uniquely defined, of course).
To v we assign the factorization Cv which is the tensor product of

Rv
gk(v)−−−→ Rv

σk(v)−−−→ Rv
over 1 ≤ k ≤ n.
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If the edges e1, e2, e3 are all oriented towards v, then

wv = −
∑
j

xn+1
j = −

n∑
k=1

σk(v)gk(v),

and to v we assign the factorization Cv which is the tensor product of

Rv
gk(v)−−−→ Rv

−σk(v)−−−−→ Rv
over 1 ≤ k ≤ n.

Suppose now that, say, e1, e2 are oriented away from v and e3 towards v.
Then i(e3) = i(e1) + i(e2) and

wv =
∑

j∈s(e1)ts(e2)

xn+1
j −

∑
j∈s(e3)

xn+1
j .

Let σ′k be the kth elementary symmetric function in xj , j ∈ s(e1) t s(e2),
and σ′′k be the kth elementary symmetric function in xj , j ∈ s(e3). Since wv
belongs to the ideal of Rv generated by the differences σ′k−σ′′k , we can write

wv =
i(e3)∑
k=1

(σ′k − σ′′k)gk(v)

for some gk(v) ∈ Rv, 1 ≤ k ≤ i(e3). Now assign to the vertex v the factor-
ization Cv which is the tensor product of

Rv
gk(v)−−−→ Rv

σ′k−σ
′′
k−−−−→ Rv

for 1 ≤ k ≤ i(e3).
Likewise, assign to v the tensor product of

Rv
gk(v)−−−→ Rv

σ′′k−σ
′
k−−−−→ Rv

if two edges e1, e2 are oriented inwards, and e3 outwards.
If Γ does not contain loops, define H(Γ ) as the homology of the 2-

complex C(Γ ) which is the tensor product of Cv over all vertices v of Γ .
The tensor product is taken over intermediate rings S(e) for various edges e,
so that C(Γ ) is a finite-rank module over the ring

⊗
e S(e).

When loops are present in Γ, a loop labeled i will “contribute” to the ten-
sor product Cv the cohomology of the Grassmannian Gr(i, n) of i-dimensio-
nal subspaces in Cn.

We conjecture that H(Γ ) has cohomology in only one out of its two
degrees. An additional Z-grading on H(Γ ) comes from grading on the rings
S(e), with deg(xj) = 2. We conjecture that the graded dimension of H(Γ )
is the invariant 〈Γ 〉 (up to obvious normalizations such as multiplication by
a power of q, etc.).

The above construction should work when n is even. If n is odd, add
a variable xv to each vertex with all edges oriented in, and to each vertex
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with all edges out. Then add x2
v to the potential wv, enlarge the ring Rv by

adjoining the variable xv, and modify the factorization Cv correspondingly.
We omit the details.

Given a diagram D of an oriented framed link L colored by numbers from
1 to n − 1, each crossing can be resolved in a number of ways into planar
graphs, and the invariant Pn(L) is a linear combination of 〈Γ 〉 for various
resolutions Γ of D, with coefficients which are plus or minus powers of q (see
Section 5 of [MOY]). We conjecture that, likewise, the Q-vector spaces H(Γ )
can be naturally strung together into a complex C(D) whose (bigraded)
cohomology groups are invariants of L and have graded Euler characteristic
Pn(L). For each n, this homology theory of colored oriented framed links
in R3 should be functorial under (oriented, framed, and suitably decorated)
link cobordisms; it should also extend to a homology theory of (decorated)
spatial trivalent graphs, and be functorial under (carefully defined) graph
cobordisms in R3 × [0, 1].
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