On universality of countable and weak products of sigma hereditarily disconnected spaces

by
Taras Banakh (Lviv) and Robert Cauty (Paris)

Abstract

Suppose a metrizable separable space Y is sigma hereditarily disconnected, i.e., it is a countable union of hereditarily disconnected subspaces. We prove that the countable power X^{ω} of any subspace $X \subset Y$ is not universal for the class \mathcal{A}_{2} of absolute $G_{\delta \sigma}$-sets; moreover, if Y is an absolute $F_{\sigma \delta}$-set, then X^{ω} contains no closed topological copy of the Nagata space $\mathcal{N}=W(I, \mathbb{P}) ;$ if Y is an absolute G_{δ}-set, then X^{ω} contains no closed copy of the Smirnov space $\sigma=W(I, 0)$.

On the other hand, the countable power X^{ω} of any absolute retract of the first Baire category contains a closed topological copy of each σ-compact space having a strongly countable-dimensional completion.

We also prove that for a Polish space X and a subspace $Y \subset X$ admitting an embedding into a σ-compact sigma hereditarily disconnected space Z the weak product $W(X, Y)=\left\{\left(x_{i}\right) \in X^{\omega}\right.$: almost all $\left.x_{i} \in Y\right\} \subset X^{\omega}$ is not universal for the class \mathcal{M}_{3} of absolute $G_{\delta \sigma \delta}$-sets; moreover, if the space Z is compact then $W(X, Y)$ is not universal for the class \mathcal{M}_{2} of absolute $F_{\sigma \delta}$-sets.

A topological space X is called \mathcal{C}-universal, where \mathcal{C} is a class of spaces, if for every space $C \in \mathcal{C}$ there is a closed embedding $f: C \rightarrow X$. It is well known that the Hilbert cube $Q=[0,1]^{\omega}$ is \mathcal{M}_{0}-universal, whereas its pseudointerior $s=(0,1)^{\omega}$ is \mathcal{M}_{1}-universal, where \mathcal{M}_{0} and \mathcal{M}_{1} are the Borel classes of compact and Polish spaces, respectively (all spaces considered in this paper are metrizable and separable, all maps are continuous). Let us remark that both Q and s are countable products of finite-dimensional spaces. This raises the following question: can the countable power X^{ω} of a finite-dimensional space X be \mathcal{C}-universal for a higher Borel class \mathcal{C} ? Taking into account results of $[\mathrm{BR}]$ and $\left[\mathrm{Ca}_{1}\right]$, it was conjectured in $[\mathrm{Ba}]$ that the

[^0]countable power X^{ω} of any finite-dimensional (resp. strongly countabledimensional) space X is not \mathcal{A}_{1}-universal (resp. \mathcal{A}_{2}-universal). Here \mathcal{A}_{1} and \mathcal{A}_{2} are the Borel classes of σ-compact and absolute $G_{\delta \sigma}$-spaces, respectively.

In this paper we confirm this conjecture. We define a space X to be sigma hereditarily disconnected provided X can be written as a countable union $X=\bigcup_{n=1}^{\infty} X_{n}$ of hereditarily disconnected spaces. Recall that a space X is hereditarily disconnected if it contains no connected subset containing more than one point (see [En, 1.4.2]).

For a class \mathcal{C} of spaces we denote by \mathcal{C} (c.d.) and \mathcal{C} (s.c.d.) the subclasses of \mathcal{C} consisting of countable-dimensional and strongly countable-dimensional spaces $C \in \mathcal{C}$, respectively. Let us remark that each strongly countabledimensional space is countable-dimensional and each countable-dimensional space is sigma hereditarily disconnected.

THEOREM 1. (1) If a space X has a sigma hereditarily disconnected completion, then the countable power X^{ω} is not \mathcal{A}_{1} (s.c.d.)-universal.
(2) If a space X embeds into a sigma hereditarily disconnected absolute $F_{\sigma \delta}$-space, then X^{ω} is not \mathcal{A}_{2} (c.d.)-universal.
(3) If a space X is sigma hereditarily disconnected, then X^{ω} is not \mathcal{A}_{2} universal.

For a class \mathcal{C} of spaces let \mathcal{C} (s.c.d.c.) denote the subclass of \mathcal{C} consisting of spaces with a strongly countable-dimensional completion. The class \mathcal{A}_{1} (s.c.d.) from the first statement of Theorem 1 is the best possible in the following sense.

TheOrem 2. If X is an absolute retract of the first Baire category, then the countable power X^{ω} is \mathcal{A}_{1} (s.c.d.c.)-universal.

Clearly, there exist finite-dimensional σ-compact absolute retracts of the first Baire category, for example the space $X=D \backslash E$, where D is a dendrite with a dense set E of end-points.

Countable powers are partial cases of weak products
$W(X, A)=\left\{\left(x_{i}\right) \in X^{\omega}: x_{i} \in A\right.$ for all but finitely many indices $\left.i\right\}$, where A is a subset of a space X.

The most known and important weak products are the Smirnov space $\sigma=W(I,\{0\})$ and the Nagata space $\mathcal{N}=W(I, \mathbb{P})$, where $I=[0,1]$ and \mathbb{P} is the set of irrational numbers in I. Note that both σ and \mathcal{N} are subsets of the Hilbert cube $Q=I^{\omega}$. It is well known that the Smirnov space σ is \mathcal{A}_{1} (s.c.d.)-universal $\left[\mathrm{Mo}_{1}\right]$ and the Nagata space \mathcal{N} is \mathcal{A}_{2} (c.d.)-universal $\left[\mathrm{Mo}_{2}\right]$. Let us remark that according to Theorem 1 the Smirnov space σ admits no sigma hereditarily disconnected completion, while the Nagata space \mathcal{N} admits no embedding into a sigma hereditarily disconnected absolute $F_{\sigma \delta}$-space. This answers Question 1.3 of $\left[\mathrm{Mo}_{2}\right]$. Recently T. Radul
[Ra] (see also [BRZ, §4.1, Ex. 3]) has shown that the weak product $W(Q, \sigma)$ is universal for the additive Borel class \mathcal{A}_{3} of absolute $F_{\sigma \delta \sigma}$-spaces. Can the weak product $W(X, Y)$ be \mathcal{C}-universal for a higher Borel class, if Y is finite-dimensional or strongly countable-dimensional? In particular, can $W(X, Y)$ be universal for the multiplicative Borel classes \mathcal{M}_{2} and \mathcal{M}_{3} of absolute $F_{\sigma \delta^{-}}$and $G_{\delta \sigma \delta}$-spaces, respectively?

We recall that a space X is defined to be σ-complete if X can be written as a countable union $X=\bigcup_{i=1}^{\infty} X_{i}$, where each X_{i} is complete-metrizable and closed in X.

Theorem 3. Let Y be a subspace of a Polish space X.
(1) If Y has a sigma hereditarily disconnected completion, then the weak product $W(X, Y)$ is not \mathcal{M}_{2}-universal;
(2) If Y embeds into a σ-complete sigma hereditarily disconnected space, then $W(X, Y)$ is not \mathcal{M}_{3}-universal.

The proofs of our theorems rely on simple homological arguments, so we need to recall some standard notations from homology theory. For every integer $q \geq 0$ let $H_{q}(X)$ denote the q th singular homology group of a space X (reduced in dimension zero so that $H_{0}(X)=0$ if and only if X is pathconnected) and let $H_{*}(X)=\bigoplus_{q=0}^{\infty} H_{q}(X)$. For closed subsets $B \subset A$ of the Hilbert cube Q we denote by j_{B}^{A} the homomorphism of $H_{*}(Q \backslash A)$ into $H_{*}(Q \backslash B)$ induced by inclusion. A closed subset A of Q is defined to be an irreducible barrier for an element $\alpha \in H_{q}(Q \backslash A)$ if $\alpha \neq 0$ but $j_{B}^{A}(\alpha)=0$ for any closed proper subset $B \subset A$; and A is an irreducible barrier in Q if either $A=Q$ or A is a closed irreducible barrier for some (non-trivial) element $\alpha \in H_{q}(X \backslash A), q \geq 0$.

The following lemma plays a crucial role in the proof of Theorems 1, 3 and seems to have an independent value.

Main Lemma. For every countable cover $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ of an irreducible barrier A in the Hilbert cube Q, one of the sets X_{n} contains a connected subset $C \subset X_{n}$ whose closure \bar{C} is an irreducible barrier in Q.

Proof of Main Lemma. We need the following two homological lemmas proven in [Ca_{2}].

Lemma 1. Suppose A is a closed subset of the Hilbert cube Q such that $H_{q}(Q \backslash A) \neq 0$ for some $q \geq 0$. Then A contains an irreducible barrier B for some $\alpha \in H_{q}(Q \backslash B)$.

Lemma 2. If A is an irreducible barrier in Q then for every closed subset $B \subset A$ separating A we have $H_{*}(Q \backslash B) \neq 0$.

To prove the Main Lemma assume on the contrary that $\left\{X_{n}\right\}_{n=1}^{\infty}$ is a countable cover of an irreducible barrier $A \subset Q$ such that no X_{n} contains a connected subset C whose closure is an irreducible barrier in Q. To get a contradiction we will construct a decreasing sequence $A=A_{0} \supset A_{1} \supset \ldots$ of irreducible barriers in Q such that $A_{n} \cap X_{n}=\emptyset$ for every $n \geq 1$. Then by compactness of A we will find a point $a \in \bigcap_{n=1}^{\infty} A_{n} \subset A$ that does not belong to $\bigcup_{n=1}^{\infty} X_{n} \supset A$, a contradiction.

The construction of $\left\{A_{n}\right\}$ is inductive. Set $A_{0}=A$ and suppose that for an $n \geq 0$ irreducible barriers $A_{0} \supset \ldots \supset A_{n}$ satisfying $A_{k} \cap X_{k}=\emptyset$ for $1 \leq k \leq n$ have been constructed. By our hypothesis, $A_{n} \cap X_{n+1}$ is either disconnected or not dense in A_{n}. In both cases, one may easily construct a closed subset B separating A_{n} and missing X_{n+1}. By Lemma 2, we have $H_{*}(Q \backslash B) \neq 0$, and by Lemma $1, B$ contains an irreducible barrier A_{n+1} in Q. Evidently, A_{n+1} is as required because $A_{n+1} \cap X_{n+1}=\emptyset$.

Some auxiliary results. By a subcube of the Hilbert cube $Q=I^{\omega}$ we understand a subset of the form $\prod_{n \in \omega} I_{n}$, where each I_{n} is a closed non-degenerate interval in I and $I_{n}=I$ for all but finitely many indices n.

We define a subset X of Q to be q-dense in Q, for a non-negative integer q, if every map $f: K \rightarrow Q$ of an at most q-dimensional compactum K can be uniformly approximated by maps into X; and X is ∞-dense if it is q-dense in Q for every $q \in \mathbb{N}$.

We will need another two homological lemmas proven in $\left[\mathrm{Ca}_{2}\right]$ (Lemmas 3 and 4).

Lemma 3. If $A \subset Q$ is an irreducible barrier for some $\alpha \in H_{q}(Q \backslash A)$, then for any subcube P of Q whose interior meets A we have $H_{q}(P \backslash A) \neq 0$.

Lemma 4. If A is an irreducible barrier in $Q \times Q$ and Y is an ∞-dense subset in Q, then there is a point $y \in Y$ such that $A \cap(\{y\} \times Q)$ contains an irreducible barrier B in $\{y\} \times Q$.

For any $q \geq 0$ let $\mathcal{N}_{q}=\left\{\left(t_{i}\right)_{i \in \omega} \in Q\right.$: at most q coordinates t_{i} are rational\} denote the analog of the Nöbeling space in the Hilbert cube. It is easily seen that \mathcal{N}_{q} is a G_{δ}-set in Q and $\mathcal{N}=\bigcup_{q=0}^{\infty} \mathcal{N}_{q}$.

Lemma 5. For every $q \geq 0$ the sets $\sigma, s, Q \backslash s, \mathcal{N}$, and \mathcal{N}_{q} are q-dense in Q.

Proof. The q-density of $\sigma, s, Q \backslash s$ in Q is easily seen and well known. The q-density of \mathcal{N}_{q} in Q can be proven by analogy with the proof of the universality of the Nöbeling space (see [En, 1.11.5]). Finally, the q-density of \mathcal{N} in Q follows from the q-density of \mathcal{N}_{q} in Q and the inclusion $\mathcal{N}_{q} \subset \mathcal{N}$.

Lemma 6. If $A \subset Q$ is an irreducible barrier for some $\alpha \in H_{q}(Q \backslash A)$ then $A \cap X$ is dense in A for every $(q+1)$-dense subset $X \subset Q$.

Proof. Assume on the contrary that for some $(q+1)$-dense set $X \subset Q$ the intersection $A \cap X$ is not dense in A. Then there is an open set $U \subset Q$ such that $U \cap A \neq \emptyset$ and $\bar{U} \cap A \cap X=\emptyset$. Let $B=A \backslash U$. Then $B \neq A$ and thus $j_{B}^{A}(\alpha)=0$. Fix a q-dimensional polyhedron K, a function $f: K \rightarrow Q \backslash A$, and an element $\beta \in H_{q}(K)$ with $f_{*}(\beta)=\alpha$. Since $j_{B}^{A}(\alpha)=0$, there exists a $(q+1)$-dimensional polyhedron L containing K and a function $g: L \rightarrow Q \backslash B$ such that $g \mid K=f$ and $i_{*}(\beta)=0$, where i is the embedding of K into L (see [Ma, p. 293]). If $h: L \rightarrow X$ is sufficiently near to g, then $h(L) \subset Q \backslash B$ and $h \mid K$ is homotopic to f in $Q \backslash A$. This yields $f_{*}(\beta)=(h \mid K)_{*}(\beta)$ and from $h(L) \subset Q \backslash B$, we get $h(L) \cap A \subset(A \backslash B) \cap X=U \cap A \cap X=\emptyset$. Then in $H_{q}(Q \backslash A)$ we have $\alpha=f_{*}(\beta)=(h \mid K)_{*}(\beta)=h_{*} \circ i_{*}(\beta)=0$, a contradiction.

In what follows we will need the following modification of the Main Lemma.

Lemma 7. Suppose X is an ∞-dense G_{δ}-set in Q and A is an irreducible barrier in Q. If $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ is a countable cover of the set $A \cap X$, then one of the sets X_{n} contains a connected subset $C \subset X_{n}$ whose closure \bar{C} is an irreducible barrier in Q.

Proof. Since X is a G_{δ}-set in Q, we may write $A \backslash X=\bigcup_{n \in \mathbb{N}} A_{n}$, where each A_{n} is compact. Then we have a countable cover $\left\{A_{n}, X_{n}\right\}_{n \in \mathbb{N}}$ of the irreducible barrier A. By the Main Lemma, there is a connected set $C \subset Q$ such that \bar{C} is an irreducible barrier in Q and either $C \subset A_{n}$ or $C \subset X_{n}$. The case $C \subset A_{n}$ is impossible. Indeed, by the compactness of $A_{n}, \bar{C} \subset A_{n}$. Thus $C \cap X=\emptyset$, a contradiction with Lemma 6.

Finally, we need the following particular case of [BRZ, 3.1.1]:
Lemma 8. Let X be a Polish space and $Y \subset X$.
(1) If Y is \mathcal{A}_{2}-universal, then there is an embedding $\varphi: Q^{\omega} \rightarrow X$ such that $\varphi^{-1}(Y)=W(Q, s)$.
(2) If Y is \mathcal{M}_{2}-universal, then there is an embedding $\varphi: Q^{\omega} \rightarrow X$ such that $\varphi^{-1}(Y)=Q^{\omega} \backslash W(Q, s)$.
(3) If Y is \mathcal{M}_{3}-universal, then there is an embedding $\varphi: Q^{\omega} \rightarrow X$ such that $\varphi^{-1}(Y)=Q^{\omega} \backslash W(Q, \sigma)$.

Proof of Theorem 1. (1) Suppose X^{ω} is \mathcal{A}_{1} (s.c.d.)-universal and X has a sigma hereditarily disconnected completion Y. Since $\sigma \in \mathcal{A}_{1}$ (s.c.d.), we may fix a closed embedding $\varphi: \sigma \rightarrow X^{\omega}$. By Lavrent'ev's Theorem, this embedding extends to an embedding $\bar{\varphi}: G \rightarrow Y^{\omega}$ of some G_{δ}-set $G \subset Q$ containing σ. Since $\varphi(\sigma)$ is closed in X^{ω} and dense in $\bar{\varphi}(G)$, we have $\bar{\varphi}^{-1}\left(X^{\omega}\right)=\sigma$. For $m \geq 0$ denote by $\varphi_{m}: G \rightarrow Y$ the composition of φ with the coordinate projection $\mathrm{pr}_{m}: Y^{\omega} \rightarrow Y$.

Using the fact that $Y \backslash X$ and σ are sigma hereditarily disconnected, write $Y \backslash X=\bigcup_{n=1}^{\infty} Y_{n}$ and $\sigma=\bigcup_{n=1}^{\infty} Z_{n}$, where Y_{n} and Z_{n} are hereditarily disconnected. Write also $Q \backslash G=\bigcup_{n=1}^{\infty} G_{n}$, where each G_{n} is compact. Since $\sigma \subset G$, we have $\sigma \cap G_{n}=\emptyset$ for $n \geq 1$.

Thus, the Hilbert cube $Q=\sigma \cup(Q \backslash G) \cup(G \backslash \sigma)$ has the countable cover $\left\{Z_{n}, G_{n}, \varphi_{m}^{-1}\left(Y_{n}\right)\right\}_{n, m \in \mathbb{N}}$. By the Main Lemma, there is a connected set $C \subset Q$ such that \bar{C} is an irreducible barrier in Q and either $C \subset Z_{n}$, $C \subset G_{n}$, or $C \subset \varphi_{m}^{-1}\left(Y_{n}\right)$ for some $n, m \in \mathbb{N}$.

Since all Z_{n} 's are hereditarily disconnected, no Z_{n} can contain the (connected) set C. Next, assuming that $C \subset G_{n}$ for some n, we derive from the compactness of G_{n} that $\bar{C} \subset G_{n}$ and thus $\bar{C} \cap \sigma=\emptyset$, a contradiction with Lemmas 6 and 5 .

Thus $C \subset \varphi_{m}^{-1}\left(Y_{n}\right)$ for some $n, m \in \mathbb{N}$. Then $\varphi_{m}(C)$, being a connected subset of a hereditarily disconnected space, is a single point $y \in Y_{n} \subset Y \backslash X$. Since $\varphi_{m}^{-1}(y)$ is a closed subset in G missing σ, it follows that \bar{C} is an irreducible barrier in Q missing σ, contrary to Lemmas 6 and 5 again.
(2) Suppose X^{ω} is \mathcal{A}_{2} (c.d.)-universal and X embeds into a sigma hereditarily disconnected $F_{\sigma \delta}$-space Y. Since $\mathcal{N} \in \mathcal{A}_{2}$ (c.d.), we may fix a closed embedding $\varphi: \mathcal{N} \rightarrow X^{\omega}$. It follows easily from the Lavrent'ev Theorem that this embedding extends to an embedding $\bar{\varphi}: G \rightarrow Y^{\omega}$ of some $F_{\sigma \delta}$-set $G \subset Q$ containing the Nagata space \mathcal{N}. As in the preceding case, observe that $\bar{\varphi}^{-1}\left(X^{\omega}\right)=\mathcal{N}$. For $m \geq 0$ let $\varphi_{m}=\operatorname{pr}_{m} \circ \varphi: G \rightarrow Y$.

Using the fact that $Y \backslash X$ and \mathcal{N} are sigma hereditarily disconnected, write $Y \backslash X=\bigcup_{n=1}^{\infty} Y_{n}$ and $\mathcal{N}=\bigcup_{n=1}^{\infty} Z_{n}$, where Y_{n} and Z_{n} are hereditarily disconnected. The complement $Q \backslash G$, being a $G_{\delta \sigma}$-subset of Q^{ω}, can be written as $Q \backslash G=\bigcup_{n=1}^{\infty} G_{n}$, where each G_{n} is a G_{δ}-set in Q^{ω}. Observe that $\mathcal{N} \cap G_{n}=\emptyset$ for $n \geq 1$.

Thus, Q has the countable cover $\left\{Z_{n}, G_{n}, \varphi_{m}^{-1}\left(Y_{n}\right)\right\}_{n, m \in \mathbb{N}}$. By the Main Lemma, there is a connected set $C \subset Q$ such that \bar{C} is an irreducible barrier for some non-trivial $\alpha \in H_{q}(Q \backslash \bar{C})$ and either $C \subset G_{n}, C \subset Z_{n}$, or $C \subset$ $\varphi_{m}^{-1}\left(Y_{n}\right)$ for some $n, m \in \mathbb{N}$.

As in the preceding case we can show that the last two inclusions are impossible. Thus, $C \subset G_{n}$ for some $n \geq 1$. Since C is dense in \bar{C}, we find that $\bar{C} \cap G_{n}$ is a dense G_{δ}-set in \bar{C}. By Lemma $6, \bar{C} \cap \mathcal{N}_{q+1}$ is a dense G_{δ}-set in \bar{C} as well. Then by the Baire Theorem, $\bar{C} \cap \mathcal{N}_{q+1} \cap G_{n}$ is dense in \bar{C}. But $G_{n} \cap \mathcal{N}_{q+1}=\emptyset$ by construction, a contradiction.
(3) Suppose X is sigma hereditarily disconnected and X^{ω} is \mathcal{A}_{2}-universal. Let Y be any completion of X. By Lemma 8 , there is a map $\varphi: Q^{\omega} \rightarrow Y^{\omega}$ such that $\varphi^{-1}\left(X^{\omega}\right)=W(Q, s)$.

For $q_{0}, \ldots, q_{n} \in Q$ let $Q\left(q_{0}, \ldots, q_{n}\right)=\left\{\left(q_{0}, \ldots, q_{n}\right)\right\} \times \prod_{i>n} Q \subset Q^{\omega}$ and $s\left(q_{0}, \ldots, q_{n}\right)=\left\{\left(q_{0}, \ldots, q_{n}\right)\right\} \times \prod_{i>n} s \subset Q^{\omega}$. For $n \geq 0$ let $\varphi_{n}=\operatorname{pr}_{n} \circ \varphi:$ $Q^{\omega} \rightarrow Y$.

By induction, for every $n \geq 0$ we will construct points $x_{n} \in X, q_{n} \in Q$ and a closed subset $A_{n} \subset Q\left(q_{0}, \ldots, q_{n}\right)$ such that
(1) $q_{n} \notin s ;$
(2) $A_{n} \supset A_{n+1}$;
(3) A_{n} is an irreducible barrier in $Q\left(q_{0}, \ldots, q_{n}\right)$;
(4) $\varphi_{n}\left(A_{n}\right)=\left\{x_{n}\right\} \subset X$.

To get a contradiction, observe that the point $q=\left(q_{n}\right)_{n \geq 0} \in Q^{\omega}$, being the intersection of A_{n} 's, belongs to $\varphi^{-1}\left(X^{\omega}\right)=W(Q, s)$ by (4). On the other hand, (1) implies $q \notin W(Q, s)$.

Inductive step. Let $A_{-1}=Q^{\omega}$. Suppose that for some $n \geq-1$ the points $q_{0}, \ldots, q_{n} \in Q$ and the irreducible barrier $A_{n} \subset Q\left(q_{0}, \ldots, q_{n}\right)$ have been constructed. Write $X=\bigcup_{i=1}^{\infty} X_{i}$, where X_{i} are hereditarily disconnected. Observe that $s\left(q_{0}, \ldots, q_{n}\right) \subset W(Q, s)$ is a ∞-dense G_{δ}-set in $Q\left(q_{0}, \ldots, q_{n}\right)$. Since the collection $\left\{A_{n} \cap \varphi_{n+1}^{-1}\left(X_{i}\right)\right\}_{i \in \mathbb{N}}$ covers $A_{n} \cap s\left(q_{0}, \ldots, q_{n}\right)$, we may apply Lemma 7 to find an $i \in \mathbb{N}$ and a connected set $C \subset A_{n} \cap \varphi_{n+1}^{-1}\left(X_{i}\right)$ such that \bar{C} is an irreducible barrier in $Q\left(q_{0}, \ldots, q_{n}\right)$. Since $\varphi_{n+1}(C)$ is a connected subset of the hereditarily disconnected space X_{i}, we have $\varphi_{n+1}(C)=$ $\left\{x_{n+1}\right\}$ for some $x_{n+1} \in X_{i} \subset X$. Then $\varphi_{n+1}(\bar{C})=\left\{x_{n+1}\right\}$ as well. By Lemma 4 , there is a $q_{n+1} \in Q \backslash s$ such that $\bar{C} \cap Q\left(q_{0}, \ldots, q_{n+1}\right)$ contains an irreducible barrier A_{n+1} in $Q\left(q_{0}, \ldots, q_{n+1}\right)$. Evidently, the points x_{n+1}, q_{n+1}, and the set A_{n+1} satisfy the conditions (1)-(4).

Proof of Theorem 3. Let Y be a subspace of a Polish space X.
(1) Suppose Y has a sigma hereditarily disconnected completion \widehat{Y} and the weak product $W(X, Y)$ is \mathcal{M}_{2}-universal. By Lemma 8, there is an embedding $\varphi: Q^{\omega} \rightarrow X^{\omega}$ such that $\varphi^{-1}(W(X, Y))=Q^{\omega} \backslash W(Q, s)$. For $n \geq 0$ let $\varphi_{n}: Q^{\omega} \rightarrow X$ be the composition of φ and the coordinate projection $\operatorname{pr}_{n}: X^{\omega} \rightarrow X$.

By induction, for every $n \geq 0$ we will construct a point $q_{n} \in Q$ and a closed subset $A_{n} \subset Q\left(q_{0}, \ldots, q_{n}\right)$ such that
(1) $A_{n} \supset A_{n+1}$;
(2) A_{n} is an irreducible barrier in $Q\left(q_{0}, \ldots, q_{n}\right)$;
(3) either $\varphi_{n}\left(A_{n}\right) \subset Y$ or $\varphi_{n}\left(A_{n}\right) \subset X \backslash Y$;
(4) $q_{n} \in s$ if and only if $\varphi_{n}\left(A_{n}\right) \subset Y$.

To get a contradiction, observe that the point $q=\left(q_{n}\right)_{n \geq 0} \in Q^{\omega}$ is the intersection of the sets A_{n}. Let $x=\left(x_{n}\right)_{n \geq 0}=\varphi(q) \in X^{\omega}$. By (3) and (4), $x_{n} \in Y$ if and only if $q_{n} \in s$. This yields $\varphi(q)=\left(x_{n}\right) \in W(X, Y)$ if and only if $q=\left(q_{n}\right) \in W(Q, s)$, contrary to $\varphi^{-1}(W(X, Y))=Q^{\omega} \backslash W(Q, s)$.

Inductive step. Let $A_{-1}=Q^{\omega}$. Suppose that for some $n \geq-1$ the points $q_{0}, \ldots, q_{n} \in Q$ and the irreducible barrier $A_{n} \subset Q\left(q_{0}, \ldots, q_{n}\right)$ have
been constructed. According to the Lavrent'ev Theorem, we may assume \widehat{Y} to be a subspace of X. Write $\widehat{Y}=\bigcup_{i=1}^{\infty} Y_{i}$ and $X \backslash \widehat{Y}=\bigcup_{i=1}^{\infty} F_{i}$, where for every $i \geq 1, Y_{i}$ is a hereditarily disconnected set and F_{i} is closed in X. Because the countable collection $\left\{\varphi_{n+1}^{-1}\left(Y_{i}\right), \varphi_{n+1}^{-1}\left(F_{i}\right): i \in \mathbb{N}\right\}$ covers the irreducible barrier A_{n}, we may apply the Main Lemma to find a connected set $C \subset A_{n}$ such that \bar{C} is an irreducible barrier in $Q\left(q_{0}, \ldots, q_{n}\right)$ and either $C \subset \varphi_{n+1}^{-1}\left(F_{i}\right)$ or $C \subset \varphi_{n+1}^{-1}\left(Y_{i}\right)$ for some i.

We claim that either $\varphi_{n+1}(\bar{C}) \subset X \backslash Y$ or $\varphi_{n+1}(\bar{C}) \subset Y$. Indeed, if $C \subset$ $\varphi_{n+1}^{-1}\left(F_{i}\right)$, then $\varphi_{n+1}(\bar{C}) \subset F_{i} \subset X \backslash Y$ (because F_{i} is closed in X). If $C \subset$ $\varphi_{n+1}^{-1}\left(Y_{i}\right)$, then because C is connected and Y_{i} is hereditarily disconnected, we deduce that $\varphi_{n+1}(C)$ consists of a unique point $y \in Y_{i}$. Then $\varphi_{n+1}(\bar{C})=$ $\{y\}$ and hence $\varphi_{n+1}(\bar{C}) \subset Y$ if $y \in Y$ and $\varphi_{n+1}(\bar{C}) \subset X \backslash Y$ otherwise.

By Lemma 4 , there is a point $q_{n+1} \in Q$ such that $\bar{C} \cap Q\left(q_{0}, \ldots, q_{n+1}\right)$ contains an irreducible barrier A_{n+1} in $Q\left(q_{0}, \ldots, q_{n+1}\right)$. Moreover, since s and $Q \backslash s$ are ∞-dense in Q the point q_{n+1} can be chosen so that $q_{n+1} \in s$ if and only if $\varphi_{n+1}(\bar{C}) \subset Y$. Evidently, the point q_{n+1} and the set A_{n+1} satisfy the conditions (1)-(4).
(2) Suppose Y embeds into a σ-complete sigma hereditarily disconnected space \widehat{Y} and the weak product $W(X, Y)$ is \mathcal{M}_{3}-universal. By Lemma 8 , there is an embedding $\varphi: Q^{\omega} \rightarrow X^{\omega}$ such that $\varphi^{-1}(W(X, Y))=Q^{\omega} \backslash W(Q, \sigma)$. For $n \geq 0$ let $\varphi_{n}=\operatorname{pr}_{n} \circ \varphi: Q^{\omega} \rightarrow X$. Let also $\pi_{n}: Q^{\omega} \rightarrow Q$ be the projection onto the nth coordinate.

According to the Lavrent'ev Theorem, we may assume \widehat{Y} to be a subspace of X. Write $\widehat{Y}=\bigcup_{k=1}^{\infty} Y_{k}$, where each Y_{k} is an absolute G_{δ}-set closed in \widehat{Y}. Denote by \bar{Y}_{k} the closure of Y_{k} in X. Write also $\sigma=\bigcup_{k=1}^{\infty} I_{k}$, where I_{k} are compact subsets of Q. By induction for every $k \geq 0$ we will construct a partition of $\{0, \ldots, k\}$ into three subsets $H_{i}(k), i=1,2,3$, so that
(1) for $i=1,2, H_{i}(k) \subset H_{i}\left(k^{\prime}\right)$ if $k \leq k^{\prime}$.

For every $r \in \bigcup_{k \geq 0} H_{1}(k) \cup H_{2}(k)$ we will construct a point $q_{r} \in Q$ and for every $k \geq 0$ we let

$$
P_{k}=\bigcap_{r \in H_{1}(k) \cup H_{2}(k)} \pi_{r}^{-1}\left(q_{r}\right) \subset Q^{\omega}
$$

and $P_{-1}=Q^{\omega}$. By (1) we have $P_{k} \supset P_{k+1}$ for every k. We shall also construct a subcube R_{k} of P_{k} and an irreducible barrier A_{k} in R_{k} such that the following conditions are satisfied for every k :
(2) $A_{k} \supset A_{k+1}$;
(3) if $r \in H_{1}(k)$, then $q_{r} \in \sigma$ and $\varphi_{r}\left(A_{k}\right) \subset Y$;
(4) if $r \in H_{2}(k)$, then $q_{r} \in Q \backslash \sigma$ and $\varphi_{r}\left(A_{k}\right) \subset X \backslash Y$;
(5) if $r \in H_{3}(k)$, then $R_{k} \cap \pi_{r}^{-1}\left(I_{k}\right)=\emptyset$ and $\varphi_{r}\left(A_{k}\right) \cap \bar{Y}_{k}=\emptyset$.

To get a contradiction, observe that by (2) there exists a point $z=\left(z_{r}\right) \in$ $\bigcap_{k \geq 0} A_{k}$. By (3)-(5), $z_{r} \in \sigma$ if and only if $\varphi_{r}(z) \in Y$. Thus $z \in W(Q, \sigma)$ if and only if $\varphi(z) \in W(X, Y)$, contrary to $\varphi^{-1}(W(X, Y))=Q^{\omega} \backslash W(Q, \sigma)$.

Inductive construction. Let $R_{-1}=A_{-1}=Q^{\omega}$. Suppose $k=0$ or $k \geq 1$ and our objects are constructed up to order $k-1$. Let $k=r_{0}, r_{1}, \ldots, r_{l}$ be the elements of the set $\{k\} \cup H_{3}(k-1)$. We shall construct two finite decreasing sequences

$$
R_{k-1}=U_{-1} \supset U_{0} \supset \ldots \supset U_{l}, \quad A_{k-1}=B_{-1} \supset B_{0} \supset \ldots \supset B_{l}
$$

where U_{j} is a subcube in R_{k-1} and B_{j} is an irreducible barrier in U_{j} for $j \leq l$. From the construction of these sets we will see to which of the sets $H_{i}(k)$ an element r_{j} should be assigned (elements of $\{0, \ldots, k\} \backslash\left\{r_{0}, \ldots, r_{l}\right\}$ belong to $H_{1}(k)$ or $H_{2}(k)$ according to (1)).

Suppose for $j \geq 0$ the sets U_{j-1} and B_{j-1} are constructed. We distinguish two cases:
(a) $\varphi_{r_{j}}^{-1}\left(X \backslash \bar{Y}_{k}\right) \cap B_{j-1} \neq \emptyset$. Then we can find a subcube U_{j} in U_{j-1} whose interior in U_{j-1} meets the barrier B_{j-1} and $U_{j} \subset \varphi_{r_{j}}^{-1}\left(X \backslash \bar{Y}_{k}\right)$. By Lemmas 1 and 3, $B_{j-1} \cap U_{j}$ contains an irreducible barrier B_{j} in U_{j}. We assign r_{j} to $H_{3}(k)$.
(b) $\varphi_{r_{j}}\left(B_{j-1}\right) \subset \bar{Y}_{k}$. Since Y_{k} is closed in \widehat{Y} we get $\bar{Y}_{k} \cap \widehat{Y}=Y_{k}$. Recalling that Y_{k} is a sigma hereditarily disconnected absolute G_{δ}-set, write $Y_{k}=\bigcup_{i=1}^{\infty} D_{i}$ and $\bar{Y}_{k} \backslash \widehat{Y}=\bar{Y}_{k} \backslash Y_{k}=\bigcup_{i=1}^{\infty} F_{i}$, where the sets D_{i} are hereditarily disconnected and F_{i} are closed in X. Then the countable collection $\left\{\varphi_{r_{j}}^{-1}\left(D_{i}\right), \varphi_{r_{j}}^{-1}\left(F_{i}\right): i \in \mathbb{N}\right\}$ covers the irreducible barrier B_{j-1}. By the Main Lemma, there is a connected subset $C \subset B_{j-1}$ such that \bar{C} is an irreducible barrier in B_{j-1} and either $C \subset \varphi_{r_{j}}^{-1}\left(F_{i}\right)$ or $C \subset \varphi_{r_{j}}^{-1}\left(D_{i}\right)$ for some i. As in the preceding proof, we have either $\varphi_{r_{j}}(\bar{C}) \subset Y$ or $\varphi_{r_{j}}(\bar{C}) \subset X \backslash Y$. Let $U_{j}=U_{j-1}, B_{j}=\bar{C}$, and assign z_{j} to $H_{1}(k)$ if $\varphi_{r_{j}}\left(B_{j}\right) \subset Y$ and to $H_{2}(k)$ if $\varphi_{r_{j}}\left(B_{j}\right) \subset X \backslash Y$.

Thus we constructed the sets $H_{i}(k), i=1,2,3$. Since the complement of the closed set $\bigcup_{r \in H_{3}(k)} \pi_{r}^{-1}\left(I_{k}\right)$ is ∞-dense in U_{l}, we may find a subcube $K \subset U_{l}$ whose interior relative to U_{l} meets the barrier B_{l} and such that $K \cap \bigcup_{r \in H_{3}(k)} \pi_{r}^{-1}\left(I_{k}\right)=\emptyset$ (see Lemma 6). By Lemma 1, the set $B_{l} \cap K$ contains an irreducible barrier B in K.

Applying Lemma 4 find for every $r \in H_{1}(k) \backslash H_{1}(k-1)$ a point $q_{r} \in \sigma$ and for every $r \in H_{2}(k) \backslash H_{2}(k-1)$ a point $q_{r} \in Q \backslash s$ such that $B \cap P_{k}$ contains an irreducible barrier A_{k} in the subcube $R_{k}=P_{k} \cap K$ of P_{k}. Clearly, the constructed objects satisfy the conditions (1)-(5).

Proof of Theorem 2. First we recall some definitions. Let $0 \leq n \leq \infty$. A subset A of a space X is called a Z_{n}-set in X if A is closed in X and every
$\operatorname{map} f: I^{n} \rightarrow X$ of the n-dimensional cube can be uniformly approximated by maps into $X \backslash A$. A space X is called a σZ_{n}-space if X can be written as a countable union $X=\bigcup_{i=1}^{\infty} X_{i}$ of Z_{n}-sets X_{i} in X. Note that each σZ_{n}-space is a σZ_{m}-space for every $m \leq n$. Observe also that a space X is of the first Baire category if and only if X is a σZ_{0}-space.

The following fact is proven in [BT].
LEmmA 9. If an absolute retract X is a σZ_{0}-space, then for every $n \in \mathbb{N}$ its nth power X^{n} is a σZ_{n-1}-space.

In Lemma 5.4 of [DMM] T. Dobrowolski, W. Marciszewski, and J. Mogilski have proven that if an absolute retract X is a σZ_{∞}-space, then for every σ-compact space A there is a proper map $f: A \rightarrow X$. Modifying their arguments and using results of [To] one may prove

Lemma 10. If for some $n \geq 0$ an absolute retract X is a σZ_{n}-space, then for every n-dimensional σ-compact space A there exists a proper map $f: A \rightarrow X$.

For a class \mathcal{C} of spaces and $n \geq 0$ let $\mathcal{C}[n]=\{C \in \mathcal{C}: \operatorname{dim}(C) \leq n\}$. Let us recall that a map $f: A \rightarrow X$ is proper provided the preimage $f^{-1}(K)$ of any compact subset $K \subset X$ is compact.

Lemma 11. If X is an absolute retract of the first Baire category, then for every $n \in \mathbb{N}$ its power $X^{3 n+2}$ is $\mathcal{A}_{1}[n]$-universal.

Proof. Fix $n \in \mathbb{N}$ and a σ-compact space A with $\operatorname{dim}(A) \leq n$. By Lemmas 9 and 10 there exists a proper map $f: A \rightarrow X^{n+1}$. Since X, being an absolute retract, contains a topological copy of the interval I, we can apply the classical Menger-Nöbeling-Lefschetz Theorem [En, 1.11.4] to find an embedding $g: A \rightarrow X^{2 n+1}$. Then $e=(f, g): A \rightarrow X^{n+1} \times X^{2 n+1}=X^{3 n+2}$ is a closed embedding.

Proof of Theorem 2. By [To, 4.1, 2.4] the space X embeds into a comp-lete-metrizable absolute retract \widetilde{X} so that $\underset{\sim}{X}$ is homotopy dense in \widetilde{X}. The latter means that there is a homotopy $h: \widetilde{X} \times[0,1] \rightarrow \widetilde{X}$ such that $h(\widetilde{X} \times$ $(0,1]) \subset X$ and $h(x, 0)=x$ for every $x \in \widetilde{X}$.

Let $A \in \mathcal{A}_{1}$ (s.c.d.c.), i.e., A is a σ-compact space having a strongly countable-dimensional completion C. By the Compactification Theorem [En, 5.3.5] the space C has a strongly countable-dimensional metrizable compactification K. Write $K=\bigcup_{i=0}^{\infty} K_{i}$, where each $K_{i} \subset K_{i+1}$ is a compact finite-dimensional subspace of K.

By Lemma 11, the countable power X^{ω} is $\mathcal{A}_{1}[n]$-universal for all $n \in \mathbb{N}$. Then Theorem 3.1.1 of [BRZ] implies that for every i there exists an embed$\operatorname{ding} f_{i}: K_{n} \rightarrow \widetilde{X}^{\omega}$ with $f_{i}^{-1}\left(X^{\omega}\right)=K_{n} \cap A$. Since X^{ω} is homotopy dense in the absolute retract \widetilde{X}^{ω}, the map f_{i} can be extended to a map $\bar{f}_{i}: K \rightarrow \widetilde{X}^{\omega}$
such that $\bar{f}_{i}\left(K \backslash K_{i}\right) \subset X^{\omega}$. Consider the map $f=\left(\bar{f}_{i}\right)_{i=0}^{\infty}: K \rightarrow\left(\widetilde{X}^{\omega}\right)^{\omega}$ and notice that it is an embedding with $f^{-1}\left(\left(X^{\omega}\right)^{\omega}\right)=A$. Thus the restriction $f \mid A: A \rightarrow\left(X^{\omega}\right)^{\omega}$ is a closed embedding, i.e., the space X^{ω}, being homeomorphic to $\left(X^{\omega}\right)^{\omega}$, is \mathcal{A}_{1} (s.c.d.c.)-universal.

Some questions and comments. The exponent $3 n+2$ in Lemma 11 is not optimal. In fact, for every locally path-connected space X of the first Baire category the power $X^{2 n+1}$ is $\mathcal{A}_{1}[n]$-universal for every $n \geq 0$. The proof of this statement requires more involved arguments and will be given in another paper.

Question 1. For which Borel classes \mathcal{C} is there an absolute retract $A \in$ \mathcal{C} [1] whose power A^{n+1} is $\mathcal{C}[n]$-universal for every $n \in \mathbb{N}$?

Question 2. Suppose that X, Y are finite-dimensional σ-compact absolute retracts of the first Baire category. Are their countable powers X^{ω} and Y^{ω} homeomorphic?

Note that by Theorem 2 each of the spaces X^{ω}, Y^{ω} embeds as a closed subset into the other. By Lemma 9 these spaces are σZ_{n}-spaces for every $n \in \mathbb{N}$. By Theorem 1 and Lemma 5.4 of $[\mathrm{DMM}]$, they are not σZ-spaces, so that the standard technique of absorbing spaces (see [BRZ]) cannot be applied to answer Question 2.

Let us remark that the second assertion of Theorem 3 generalizes $\left[\mathrm{Ca}_{3}\right]$, the first assertion of Theorem 1 generalizes a result of $[\mathrm{BR}]$, and the third one generalizes $\left[\mathrm{Ca}_{1}\right]$. As mentioned in the introduction, the Nagata space \mathcal{N} admits no embedding into a sigma hereditarily disconnected absolute $F_{\sigma \delta}$-space. In this context it would be interesting to know answers to the following questions.

Question 3. Suppose $F \supset \mathcal{N}$ is an $F_{\sigma \delta}$-subset in Q containing the $N a$ gata space \mathcal{N}.
(a) Does F contain a Hilbert cube (cf. [En, 5.3.6])?
(b) Is F strongly infinite-dimensional?
(c) Does $F \backslash \mathcal{N}$ contain an arc? Note that $F \backslash \mathcal{N}$ is connected, moreover, $A \cap(F \backslash \mathcal{N})$ is connected for every irreducible barrier A in Q.
(d) Does F contain a copy I of $[0,1]$ such that $I \cap \mathcal{N}$ is a countable dense subset of I ? Note that F always contains a copy K of the Cantor set such that $K \cap \mathcal{N}$ is countable and dense in K.

QUESTION 4. Does there exist a countable-dimensional absolute $F_{\sigma \delta-}$ space containing a copy of each countable-dimensional compactum?

According to [En, 5.3.11 and 7.1.33], the Smirnov space σ contains a copy of all Smirnov cubes. This shows that there are σ-compact strongly
countable-dimensional spaces containing compacta of arbitrary high transfinite dimension ind.

The Main Lemma implies that irreducible barriers in Q are not sigma hereditarily disconnected. In fact, every sigma hereditarily disconnected compactum is weakly infinite-dimensional $[\mathrm{Kr}, \S 6]$. It is not clear if the converse is also true.

QUESTION 5. Is every weakly infinite-dimensional compactum sigma hereditarily disconnected?

It was remarked by R. Pol that this question is connected with the known open problem on existence of a weakly infinite-dimensional compactum whose square is strongly infinite-dimensional: such a compactum cannot be sigma hereditarily disconnected. Observe that the example of an uncountable-dimensional weakly infinite-dimensional compactum constructed by R. Pol [Po] is sigma hereditarily disconnected.

References

[Ba] T. Banakh, Some problems in infinite-dimensional topology, Mat. Stud. 8 (1997), 123-125.
[BC] T. Banakh and R. Cauty, On universality of finite powers of certain one-dimensional absolute retracts, preprint.
[BR] T. Banakh and T. Radul, On universality of countable powers of absolute retracts, Ukraïn. Mat. Zh. 48 (1996), 540-542.
[BRZ] T. Banakh, T. Radul and M. Zarichny̆̌, Absorbing Sets in Infinite-Dimensional Manifolds, VNTL Publishers, Lviv, 1996.
[BT] T. Banakh and Kh. Trushchak, Z_{n}-sets and the disjoint n-cells property in products of ANR's, Mat. Stud. 13 (2000), no. 1, 74-78.
[BM] M. Bestvina and J. Mogilski, Characterizing certain incomplete infinite-dimensional absolute retracts, Michigan Math. J. 33 (1986), 291-313.
[Ca1] R. Cauty, Sur l'universalité des produits de rétractes absolus, Bull. Polish Acad. Sci. Math. 44 (1996), 453-456.
$\left[\mathrm{Ca}_{2}\right] \quad$-, La classe borélienne ne détermine pas le type topologique de $C_{p}(X)$, Serdica Math. J. 24 (1998), 307-318.
[Ca3] -, Solution d'un problème de Radul sur les ensembles absorbants, Mat. Stud. 7 (1997), 201-204.
[DMM] T. Dobrowolski, W. Marciszewski and J. Mogilski, On topological classification of function spaces $C_{p}(X)$ of low Borel complexity, Trans. Amer. Math. Soc. 328 (1991), 307-324.
[En] R. Engelking, Theory of Dimensions, Finite and Infinite, Sigma Ser. Pure Math. 10, Heldermann, Lemgo, 1995.
[Kr] J. Krasinkiewicz, Essential mappings onto products of manifolds, in: Geometric and Algebraic Topology, Banach Center Publ. 18, PWN, 1986, 377-406.
[Ma] W. S. Massey, Homology and Cohomology Theory, Monogr. Textbooks Pure Appl. Math. 46, Dekker, New York, 1978.
[Mo_{1}] J. Mogilski, Characterizing the topology of infinite-dimensional σ-compact manifolds, Proc. Amer. Math. Soc. 92 (1984), 111-118.
[Mo_{2}] -, Universal finite-to-one map and universal countable-dimensional spaces, Topology Appl. 68 (1996), 187-194.
[Po] R. Pol, A weakly infinite-dimensional compactum which is not countable-dimensional, Proc. Amer. Math. Soc. 82 (1981), 634-636.
[Ra] T. Radul, Absorbing sets in countable products of absolute retracts, unpublished manuscript.
[To] H. Toruńczyk, Concerning locally homotopy negligible sets and characterization of l_{2}-manifolds, Fund. Math. 101 (1978), 93-110; correction: ibid. 125 (1985), 89-93.

Department of Mathematics
Université Paris VI
Lviv University
Universytetska 1
Lviv 79000, Ukraine
Boîte courrier 172
E-mail: tbanakh@franko.lviv.ua
4, Place Jussieu
75252 Paris Cedex 05, France
E-mail: cauty@math.jussieu.fr

Received 16 February 1999;
in revised form 9 October 2000

[^0]: 2000 Mathematics Subject Classification: 54B10, 54F45, 54H05, 55M10, 55N10, 57N20.
 Key words and phrases: universality, countable product, weak product, sigma hereditarily disconnected space, Nagata universal space.

 The authors express their sincere thanks to Banach Center (Warsaw), where a considerable part of the paper was written.

