On universality of countable and weak products of sigma hereditarily disconnected spaces

by

Taras Banakh (Lviv) and Robert Cauty (Paris)

Abstract. Suppose a metrizable separable space Y is sigma hereditarily disconnected, i.e., it is a countable union of hereditarily disconnected subspaces. We prove that the countable power X^{ω} of any subspace $X \subset Y$ is not universal for the class \mathcal{A}_2 of absolute $G_{\delta\sigma}$ -sets; moreover, if Y is an absolute $F_{\sigma\delta}$ -set, then X^{ω} contains no closed topological copy of the Nagata space $\mathcal{N} = W(I, \mathbb{P})$; if Y is an absolute G_{δ} -set, then X^{ω} contains no closed copy of the Smirnov space $\sigma = W(I, 0)$.

On the other hand, the countable power X^{ω} of any absolute retract of the first Baire category contains a closed topological copy of each σ -compact space having a strongly countable-dimensional completion.

We also prove that for a Polish space X and a subspace $Y \subset X$ admitting an embedding into a σ -compact sigma hereditarily disconnected space Z the weak product $W(X,Y) = \{(x_i) \in X^{\omega} : \text{almost all } x_i \in Y\} \subset X^{\omega}$ is not universal for the class \mathcal{M}_3 of absolute $G_{\delta\sigma\delta}$ -sets; moreover, if the space Z is compact then W(X,Y) is not universal for the class \mathcal{M}_2 of absolute $F_{\sigma\delta}$ -sets.

A topological space X is called C-universal, where C is a class of spaces, if for every space $C \in C$ there is a closed embedding $f : C \to X$. It is well known that the Hilbert cube $Q = [0,1]^{\omega}$ is \mathcal{M}_0 -universal, whereas its pseudointerior $s = (0,1)^{\omega}$ is \mathcal{M}_1 -universal, where \mathcal{M}_0 and \mathcal{M}_1 are the Borel classes of compact and Polish spaces, respectively (all spaces considered in this paper are metrizable and separable, all maps are continuous). Let us remark that both Q and s are countable products of finite-dimensional spaces. This raises the following question: can the countable power X^{ω} of a finite-dimensional space X be C-universal for a higher Borel class C? Taking into account results of [BR] and [Ca₁], it was conjectured in [Ba] that the

²⁰⁰⁰ Mathematics Subject Classification: 54B10, 54F45, 54H05, 55M10, 55N10, 57N20.

Key words and phrases: universality, countable product, weak product, sigma hereditarily disconnected space, Nagata universal space.

The authors express their sincere thanks to Banach Center (Warsaw), where a considerable part of the paper was written.

countable power X^{ω} of any finite-dimensional (resp. strongly countabledimensional) space X is not \mathcal{A}_1 -universal (resp. \mathcal{A}_2 -universal). Here \mathcal{A}_1 and \mathcal{A}_2 are the Borel classes of σ -compact and absolute $G_{\delta\sigma}$ -spaces, respectively.

In this paper we confirm this conjecture. We define a space X to be sigma hereditarily disconnected provided X can be written as a countable union $X = \bigcup_{n=1}^{\infty} X_n$ of hereditarily disconnected spaces. Recall that a space X is hereditarily disconnected if it contains no connected subset containing more than one point (see [En, 1.4.2]).

For a class C of spaces we denote by C(c.d.) and C(s.c.d.) the subclasses of C consisting of countable-dimensional and strongly countable-dimensional spaces $C \in C$, respectively. Let us remark that each strongly countabledimensional space is countable-dimensional and each countable-dimensional space is sigma hereditarily disconnected.

THEOREM 1. (1) If a space X has a sigma hereditarily disconnected completion, then the countable power X^{ω} is not $\mathcal{A}_1(\text{s.c.d.})$ -universal.

(2) If a space X embeds into a sigma hereditarily disconnected absolute $F_{\sigma\delta}$ -space, then X^{ω} is not $\mathcal{A}_2(\text{c.d.})$ -universal.

(3) If a space X is sigma hereditarily disconnected, then X^{ω} is not \mathcal{A}_2 -universal.

For a class C of spaces let C(s.c.d.c.) denote the subclass of C consisting of spaces with a strongly countable-dimensional completion. The class $A_1(s.c.d.)$ from the first statement of Theorem 1 is the best possible in the following sense.

THEOREM 2. If X is an absolute retract of the first Baire category, then the countable power X^{ω} is $\mathcal{A}_1(\text{s.c.d.c.})$ -universal.

Clearly, there exist finite-dimensional σ -compact absolute retracts of the first Baire category, for example the space $X = D \setminus E$, where D is a dendrite with a dense set E of end-points.

Countable powers are partial cases of weak products

 $W(X, A) = \{ (x_i) \in X^{\omega} : x_i \in A \text{ for all but finitely many indices } i \},\$

where A is a subset of a space X.

The most known and important weak products are the Smirnov space $\sigma = W(I, \{0\})$ and the Nagata space $\mathcal{N} = W(I, \mathbb{P})$, where I = [0, 1] and \mathbb{P} is the set of irrational numbers in I. Note that both σ and \mathcal{N} are subsets of the Hilbert cube $Q = I^{\omega}$. It is well known that the Smirnov space σ is $\mathcal{A}_1(\text{s.c.d.})$ -universal [Mo₁] and the Nagata space \mathcal{N} is $\mathcal{A}_2(\text{c.d.})$ -universal [Mo₂]. Let us remark that according to Theorem 1 the Smirnov space σ admits no sigma hereditarily disconnected completion, while the Nagata space \mathcal{N} admits no embedding into a sigma hereditarily disconnected absolute $F_{\sigma\delta}$ -space. This answers Question 1.3 of [Mo₂]. Recently T. Radul

[Ra] (see also [BRZ, §4.1, Ex. 3]) has shown that the weak product $W(Q, \sigma)$ is universal for the additive Borel class \mathcal{A}_3 of absolute $F_{\sigma\delta\sigma}$ -spaces. Can the weak product W(X, Y) be \mathcal{C} -universal for a higher Borel class, if Yis finite-dimensional or strongly countable-dimensional? In particular, can W(X, Y) be universal for the multiplicative Borel classes \mathcal{M}_2 and \mathcal{M}_3 of absolute $F_{\sigma\delta}$ - and $G_{\delta\sigma\delta}$ -spaces, respectively?

We recall that a space X is defined to be σ -complete if X can be written as a countable union $X = \bigcup_{i=1}^{\infty} X_i$, where each X_i is complete-metrizable and closed in X.

THEOREM 3. Let Y be a subspace of a Polish space X.

(1) If Y has a sigma hereditarily disconnected completion, then the weak product W(X,Y) is not \mathcal{M}_2 -universal;

(2) If Y embeds into a σ -complete sigma hereditarily disconnected space, then W(X,Y) is not \mathcal{M}_3 -universal.

The proofs of our theorems rely on simple homological arguments, so we need to recall some standard notations from homology theory. For every integer $q \ge 0$ let $H_q(X)$ denote the qth singular homology group of a space X (reduced in dimension zero so that $H_0(X) = 0$ if and only if X is pathconnected) and let $H_*(X) = \bigoplus_{q=0}^{\infty} H_q(X)$. For closed subsets $B \subset A$ of the Hilbert cube Q we denote by j_B^A the homomorphism of $H_*(Q \setminus A)$ into $H_*(Q \setminus B)$ induced by inclusion. A closed subset A of Q is defined to be an *irreducible barrier for an element* $\alpha \in H_q(Q \setminus A)$ if $\alpha \neq 0$ but $j_B^A(\alpha) = 0$ for any closed proper subset $B \subset A$; and A is an *irreducible barrier in* Qif either A = Q or A is a closed irreducible barrier for some (non-trivial) element $\alpha \in H_q(X \setminus A), q \ge 0$.

The following lemma plays a crucial role in the proof of Theorems 1, 3 and seems to have an independent value.

MAIN LEMMA. For every countable cover $\{X_n\}_{n\in\mathbb{N}}$ of an irreducible barrier A in the Hilbert cube Q, one of the sets X_n contains a connected subset $C \subset X_n$ whose closure \overline{C} is an irreducible barrier in Q.

Proof of Main Lemma. We need the following two homological lemmas proven in $[Ca_2]$.

LEMMA 1. Suppose A is a closed subset of the Hilbert cube Q such that $H_q(Q \setminus A) \neq 0$ for some $q \geq 0$. Then A contains an irreducible barrier B for some $\alpha \in H_q(Q \setminus B)$.

LEMMA 2. If A is an irreducible barrier in Q then for every closed subset $B \subset A$ separating A we have $H_*(Q \setminus B) \neq 0$.

To prove the Main Lemma assume on the contrary that $\{X_n\}_{n=1}^{\infty}$ is a countable cover of an irreducible barrier $A \subset Q$ such that no X_n contains a connected subset C whose closure is an irreducible barrier in Q. To get a contradiction we will construct a decreasing sequence $A = A_0 \supset A_1 \supset \ldots$ of irreducible barriers in Q such that $A_n \cap X_n = \emptyset$ for every $n \ge 1$. Then by compactness of A we will find a point $a \in \bigcap_{n=1}^{\infty} A_n \subset A$ that does not belong to $\bigcup_{n=1}^{\infty} X_n \supset A$, a contradiction.

The construction of $\{A_n\}$ is inductive. Set $A_0 = A$ and suppose that for an $n \ge 0$ irreducible barriers $A_0 \supset \ldots \supset A_n$ satisfying $A_k \cap X_k = \emptyset$ for $1 \le k \le n$ have been constructed. By our hypothesis, $A_n \cap X_{n+1}$ is either disconnected or not dense in A_n . In both cases, one may easily construct a closed subset B separating A_n and missing X_{n+1} . By Lemma 2, we have $H_*(Q \setminus B) \ne 0$, and by Lemma 1, B contains an irreducible barrier A_{n+1} in Q. Evidently, A_{n+1} is as required because $A_{n+1} \cap X_{n+1} = \emptyset$.

Some auxiliary results. By a *subcube* of the Hilbert cube $Q = I^{\omega}$ we understand a subset of the form $\prod_{n \in \omega} I_n$, where each I_n is a closed non-degenerate interval in I and $I_n = I$ for all but finitely many indices n.

We define a subset X of Q to be q-dense in Q, for a non-negative integer q, if every map $f: K \to Q$ of an at most q-dimensional compactum K can be uniformly approximated by maps into X; and X is ∞ -dense if it is q-dense in Q for every $q \in \mathbb{N}$.

We will need another two homological lemmas proven in $[Ca_2]$ (Lemmas 3 and 4).

LEMMA 3. If $A \subset Q$ is an irreducible barrier for some $\alpha \in H_q(Q \setminus A)$, then for any subcube P of Q whose interior meets A we have $H_q(P \setminus A) \neq 0$.

LEMMA 4. If A is an irreducible barrier in $Q \times Q$ and Y is an ∞ -dense subset in Q, then there is a point $y \in Y$ such that $A \cap (\{y\} \times Q)$ contains an irreducible barrier B in $\{y\} \times Q$.

For any $q \geq 0$ let $\mathcal{N}_q = \{(t_i)_{i \in \omega} \in Q : \text{at most } q \text{ coordinates } t_i \text{ are rational} \}$ denote the analog of the Nöbeling space in the Hilbert cube. It is easily seen that \mathcal{N}_q is a G_{δ} -set in Q and $\mathcal{N} = \bigcup_{q=0}^{\infty} \mathcal{N}_q$.

LEMMA 5. For every $q \ge 0$ the sets σ , s, $Q \setminus s$, \mathcal{N} , and \mathcal{N}_q are q-dense in Q.

Proof. The q-density of σ , s, $Q \setminus s$ in Q is easily seen and well known. The q-density of \mathcal{N}_q in Q can be proven by analogy with the proof of the universality of the Nöbeling space (see [En, 1.11.5]). Finally, the q-density of \mathcal{N} in Q follows from the q-density of \mathcal{N}_q in Q and the inclusion $\mathcal{N}_q \subset \mathcal{N}$.

LEMMA 6. If $A \subset Q$ is an irreducible barrier for some $\alpha \in H_q(Q \setminus A)$ then $A \cap X$ is dense in A for every (q+1)-dense subset $X \subset Q$. *Proof.* Assume on the contrary that for some (q + 1)-dense set X ⊂ Q the intersection A ∩ X is not dense in A. Then there is an open set U ⊂ Q such that $U ∩ A ≠ \emptyset$ and $\overline{U} ∩ A ∩ X = \emptyset$. Let $B = A \setminus U$. Then B ≠ A and thus $j_B^A(\alpha) = 0$. Fix a q-dimensional polyhedron K, a function $f : K → Q \setminus A$, and an element $\beta ∈ H_q(K)$ with $f_*(\beta) = \alpha$. Since $j_B^A(\alpha) = 0$, there exists a (q+1)-dimensional polyhedron L containing K and a function $g : L → Q \setminus B$ such that g|K = f and $i_*(\beta) = 0$, where i is the embedding of K into L (see [Ma, p. 293]). If h : L → X is sufficiently near to g, then $h(L) ⊂ Q \setminus B$ and h|K is homotopic to f in $Q \setminus A$. This yields $f_*(\beta) = (h|K)_*(\beta)$ and from $h(L) ⊂ Q \setminus B$, we get $h(L) ∩ A ⊂ (A \setminus B) ∩ X = U ∩ A ∩ X = \emptyset$. Then in $H_q(Q \setminus A)$ we have $\alpha = f_*(\beta) = (h|K)_*(\beta) = h_* \circ i_*(\beta) = 0$, a contradiction. ■

In what follows we will need the following modification of the Main Lemma.

LEMMA 7. Suppose X is an ∞ -dense G_{δ} -set in Q and A is an irreducible barrier in Q. If $\{X_n\}_{n\in\mathbb{N}}$ is a countable cover of the set $A \cap X$, then one of the sets X_n contains a connected subset $C \subset X_n$ whose closure \overline{C} is an irreducible barrier in Q.

Proof. Since X is a G_{δ} -set in Q, we may write $A \setminus X = \bigcup_{n \in \mathbb{N}} A_n$, where each A_n is compact. Then we have a countable cover $\{A_n, X_n\}_{n \in \mathbb{N}}$ of the irreducible barrier A. By the Main Lemma, there is a connected set $C \subset Q$ such that \overline{C} is an irreducible barrier in Q and either $C \subset A_n$ or $C \subset X_n$. The case $C \subset A_n$ is impossible. Indeed, by the compactness of $A_n, \overline{C} \subset A_n$. Thus $C \cap X = \emptyset$, a contradiction with Lemma 6.

Finally, we need the following particular case of [BRZ, 3.1.1]:

LEMMA 8. Let X be a Polish space and $Y \subset X$.

(1) If Y is \mathcal{A}_2 -universal, then there is an embedding $\varphi : Q^{\omega} \to X$ such that $\varphi^{-1}(Y) = W(Q, s)$.

(2) If Y is \mathcal{M}_2 -universal, then there is an embedding $\varphi : Q^{\omega} \to X$ such that $\varphi^{-1}(Y) = Q^{\omega} \setminus W(Q, s)$.

(3) If Y is \mathcal{M}_3 -universal, then there is an embedding $\varphi : Q^{\omega} \to X$ such that $\varphi^{-1}(Y) = Q^{\omega} \setminus W(Q, \sigma)$.

Proof of Theorem 1. (1) Suppose X^{ω} is $\mathcal{A}_1(\text{s.c.d.})$ -universal and X has a sigma hereditarily disconnected completion Y. Since $\sigma \in \mathcal{A}_1(\text{s.c.d.})$, we may fix a closed embedding $\varphi : \sigma \to X^{\omega}$. By Lavrent'ev's Theorem, this embedding extends to an embedding $\overline{\varphi} : G \to Y^{\omega}$ of some G_{δ} -set $G \subset Q$ containing σ . Since $\varphi(\sigma)$ is closed in X^{ω} and dense in $\overline{\varphi}(G)$, we have $\overline{\varphi}^{-1}(X^{\omega}) = \sigma$. For $m \geq 0$ denote by $\varphi_m : G \to Y$ the composition of φ with the coordinate projection $\operatorname{pr}_m : Y^{\omega} \to Y$.

Using the fact that $Y \setminus X$ and σ are sigma hereditarily disconnected, write $Y \setminus X = \bigcup_{n=1}^{\infty} Y_n$ and $\sigma = \bigcup_{n=1}^{\infty} Z_n$, where Y_n and Z_n are hereditarily disconnected. Write also $Q \setminus G = \bigcup_{n=1}^{\infty} G_n$, where each G_n is compact. Since $\sigma \subset G$, we have $\sigma \cap G_n = \emptyset$ for $n \ge 1$.

Thus, the Hilbert cube $Q = \sigma \cup (Q \setminus G) \cup (G \setminus \sigma)$ has the countable cover $\{Z_n, G_n, \varphi_m^{-1}(Y_n)\}_{n,m\in\mathbb{N}}$. By the Main Lemma, there is a connected set $C \subset Q$ such that \overline{C} is an irreducible barrier in Q and either $C \subset Z_n$, $C \subset G_n$, or $C \subset \varphi_m^{-1}(Y_n)$ for some $n, m \in \mathbb{N}$.

Since all Z_n 's are hereditarily disconnected, no Z_n can contain the (connected) set C. Next, assuming that $C \subset G_n$ for some n, we derive from the compactness of G_n that $\overline{C} \subset G_n$ and thus $\overline{C} \cap \sigma = \emptyset$, a contradiction with Lemmas 6 and 5.

Thus $C \subset \varphi_m^{-1}(Y_n)$ for some $n, m \in \mathbb{N}$. Then $\varphi_m(C)$, being a connected subset of a hereditarily disconnected space, is a single point $y \in Y_n \subset Y \setminus X$. Since $\varphi_m^{-1}(y)$ is a closed subset in G missing σ , it follows that \overline{C} is an irreducible barrier in Q missing σ , contrary to Lemmas 6 and 5 again.

(2) Suppose X^{ω} is $\mathcal{A}_2(\text{c.d.})$ -universal and X embeds into a sigma hereditarily disconnected $F_{\sigma\delta}$ -space Y. Since $\mathcal{N} \in \mathcal{A}_2(\text{c.d.})$, we may fix a closed embedding $\varphi : \mathcal{N} \to X^{\omega}$. It follows easily from the Lavrent'ev Theorem that this embedding extends to an embedding $\overline{\varphi} : G \to Y^{\omega}$ of some $F_{\sigma\delta}$ -set $G \subset Q$ containing the Nagata space \mathcal{N} . As in the preceding case, observe that $\overline{\varphi}^{-1}(X^{\omega}) = \mathcal{N}$. For $m \geq 0$ let $\varphi_m = \operatorname{pr}_m \circ \varphi : G \to Y$.

Using the fact that $Y \setminus X$ and \mathcal{N} are sigma hereditarily disconnected, write $Y \setminus X = \bigcup_{n=1}^{\infty} Y_n$ and $\mathcal{N} = \bigcup_{n=1}^{\infty} Z_n$, where Y_n and Z_n are hereditarily disconnected. The complement $Q \setminus G$, being a $G_{\delta\sigma}$ -subset of Q^{ω} , can be written as $Q \setminus G = \bigcup_{n=1}^{\infty} G_n$, where each G_n is a G_{δ} -set in Q^{ω} . Observe that $\mathcal{N} \cap G_n = \emptyset$ for $n \geq 1$.

Thus, Q has the countable cover $\{Z_n, G_n, \varphi_m^{-1}(Y_n)\}_{n,m\in\mathbb{N}}$. By the Main Lemma, there is a connected set $C \subset Q$ such that \overline{C} is an irreducible barrier for some non-trivial $\alpha \in H_q(Q \setminus \overline{C})$ and either $C \subset G_n$, $C \subset Z_n$, or $C \subset \varphi_m^{-1}(Y_n)$ for some $n, m \in \mathbb{N}$.

As in the preceding case we can show that the last two inclusions are impossible. Thus, $C \subset G_n$ for some $n \geq 1$. Since C is dense in \overline{C} , we find that $\overline{C} \cap G_n$ is a dense G_{δ} -set in \overline{C} . By Lemma 6, $\overline{C} \cap \mathcal{N}_{q+1}$ is a dense G_{δ} -set in \overline{C} as well. Then by the Baire Theorem, $\overline{C} \cap \mathcal{N}_{q+1} \cap G_n$ is dense in \overline{C} . But $G_n \cap \mathcal{N}_{q+1} = \emptyset$ by construction, a contradiction.

(3) Suppose X is sigma hereditarily disconnected and X^{ω} is \mathcal{A}_2 -universal. Let Y be any completion of X. By Lemma 8, there is a map $\varphi : Q^{\omega} \to Y^{\omega}$ such that $\varphi^{-1}(X^{\omega}) = W(Q, s)$.

For $q_0, \ldots, q_n \in Q$ let $Q(q_0, \ldots, q_n) = \{(q_0, \ldots, q_n)\} \times \prod_{i>n} Q \subset Q^{\omega}$ and $s(q_0, \ldots, q_n) = \{(q_0, \ldots, q_n)\} \times \prod_{i>n} s \subset Q^{\omega}$. For $n \ge 0$ let $\varphi_n = \operatorname{pr}_n \circ \varphi : Q^{\omega} \to Y$.

By induction, for every $n \ge 0$ we will construct points $x_n \in X$, $q_n \in Q$ and a closed subset $A_n \subset Q(q_0, \ldots, q_n)$ such that

- (1) $q_n \not\in s;$
- (2) $A_n \supset A_{n+1};$
- (3) A_n is an irreducible barrier in $Q(q_0, \ldots, q_n)$;
- (4) $\varphi_n(A_n) = \{x_n\} \subset X.$

To get a contradiction, observe that the point $q = (q_n)_{n\geq 0} \in Q^{\omega}$, being the intersection of A_n 's, belongs to $\varphi^{-1}(X^{\omega}) = W(Q, s)$ by (4). On the other hand, (1) implies $q \notin W(Q, s)$.

Inductive step. Let $A_{-1} = Q^{\omega}$. Suppose that for some $n \geq -1$ the points $q_0, \ldots, q_n \in Q$ and the irreducible barrier $A_n \subset Q(q_0, \ldots, q_n)$ have been constructed. Write $X = \bigcup_{i=1}^{\infty} X_i$, where X_i are hereditarily disconnected. Observe that $s(q_0, \ldots, q_n) \subset W(Q, s)$ is a ∞ -dense G_{δ} -set in $Q(q_0, \ldots, q_n)$. Since the collection $\{A_n \cap \varphi_{n+1}^{-1}(X_i)\}_{i \in \mathbb{N}}$ covers $A_n \cap s(q_0, \ldots, q_n)$, we may apply Lemma 7 to find an $i \in \mathbb{N}$ and a connected set $C \subset A_n \cap \varphi_{n+1}^{-1}(X_i)$ such that \overline{C} is an irreducible barrier in $Q(q_0, \ldots, q_n)$. Since $\varphi_{n+1}(C)$ is a connected subset of the hereditarily disconnected space X_i , we have $\varphi_{n+1}(C) = \{x_{n+1}\}$ for some $x_{n+1} \in X_i \subset X$. Then $\varphi_{n+1}(\overline{C}) = \{x_{n+1}\}$ as well. By Lemma 4, there is a $q_{n+1} \in Q \setminus s$ such that $\overline{C} \cap Q(q_0, \ldots, q_{n+1})$ contains an irreducible barrier A_{n+1} in $Q(q_0, \ldots, q_{n+1})$. Evidently, the points x_{n+1} , q_{n+1} , and the set A_{n+1} satisfy the conditions (1)–(4).

Proof of Theorem 3. Let Y be a subspace of a Polish space X.

(1) Suppose Y has a sigma hereditarily disconnected completion Y and the weak product W(X, Y) is \mathcal{M}_2 -universal. By Lemma 8, there is an embedding $\varphi: Q^{\omega} \to X^{\omega}$ such that $\varphi^{-1}(W(X, Y)) = Q^{\omega} \setminus W(Q, s)$. For $n \ge 0$ let $\varphi_n: Q^{\omega} \to X$ be the composition of φ and the coordinate projection $\operatorname{pr}_n: X^{\omega} \to X$.

By induction, for every $n \ge 0$ we will construct a point $q_n \in Q$ and a closed subset $A_n \subset Q(q_0, \ldots, q_n)$ such that

- (1) $A_n \supset A_{n+1};$
- (2) A_n is an irreducible barrier in $Q(q_0, \ldots, q_n)$;
- (3) either $\varphi_n(A_n) \subset Y$ or $\varphi_n(A_n) \subset X \setminus Y$;
- (4) $q_n \in s$ if and only if $\varphi_n(A_n) \subset Y$.

To get a contradiction, observe that the point $q = (q_n)_{n\geq 0} \in Q^{\omega}$ is the intersection of the sets A_n . Let $x = (x_n)_{n\geq 0} = \varphi(q) \in X^{\omega}$. By (3) and (4), $x_n \in Y$ if and only if $q_n \in s$. This yields $\varphi(q) = (x_n) \in W(X, Y)$ if and only if $q = (q_n) \in W(Q, s)$, contrary to $\varphi^{-1}(W(X, Y)) = Q^{\omega} \setminus W(Q, s)$.

Inductive step. Let $A_{-1} = Q^{\omega}$. Suppose that for some $n \geq -1$ the points $q_0, \ldots, q_n \in Q$ and the irreducible barrier $A_n \subset Q(q_0, \ldots, q_n)$ have

been constructed. According to the Lavrent'ev Theorem, we may assume \hat{Y} to be a subspace of X. Write $\hat{Y} = \bigcup_{i=1}^{\infty} Y_i$ and $X \setminus \hat{Y} = \bigcup_{i=1}^{\infty} F_i$, where for every $i \geq 1$, Y_i is a hereditarily disconnected set and F_i is closed in X. Because the countable collection $\{\varphi_{n+1}^{-1}(Y_i), \varphi_{n+1}^{-1}(F_i) : i \in \mathbb{N}\}$ covers the irreducible barrier A_n , we may apply the Main Lemma to find a connected set $C \subset A_n$ such that \overline{C} is an irreducible barrier in $Q(q_0, \ldots, q_n)$ and either $C \subset \varphi_{n+1}^{-1}(F_i)$ or $C \subset \varphi_{n+1}^{-1}(Y_i)$ for some i.

We claim that either $\varphi_{n+1}(\overline{C}) \subset X \setminus Y$ or $\varphi_{n+1}(\overline{C}) \subset Y$. Indeed, if $C \subset \varphi_{n+1}^{-1}(F_i)$, then $\varphi_{n+1}(\overline{C}) \subset F_i \subset X \setminus Y$ (because F_i is closed in X). If $C \subset \varphi_{n+1}^{-1}(Y_i)$, then because C is connected and Y_i is hereditarily disconnected, we deduce that $\varphi_{n+1}(C)$ consists of a unique point $y \in Y_i$. Then $\varphi_{n+1}(\overline{C}) = \{y\}$ and hence $\varphi_{n+1}(\overline{C}) \subset Y$ if $y \in Y$ and $\varphi_{n+1}(\overline{C}) \subset X \setminus Y$ otherwise.

By Lemma 4, there is a point $q_{n+1} \in Q$ such that $\overline{C} \cap Q(q_0, \ldots, q_{n+1})$ contains an irreducible barrier A_{n+1} in $Q(q_0, \ldots, q_{n+1})$. Moreover, since sand $Q \setminus s$ are ∞ -dense in Q the point q_{n+1} can be chosen so that $q_{n+1} \in s$ if and only if $\varphi_{n+1}(\overline{C}) \subset Y$. Evidently, the point q_{n+1} and the set A_{n+1} satisfy the conditions (1)–(4).

(2) Suppose Y embeds into a σ -complete sigma hereditarily disconnected space \widehat{Y} and the weak product W(X, Y) is \mathcal{M}_3 -universal. By Lemma 8, there is an embedding $\varphi : Q^{\omega} \to X^{\omega}$ such that $\varphi^{-1}(W(X, Y)) = Q^{\omega} \setminus W(Q, \sigma)$. For $n \geq 0$ let $\varphi_n = \operatorname{pr}_n \circ \varphi : Q^{\omega} \to X$. Let also $\pi_n : Q^{\omega} \to Q$ be the projection onto the *n*th coordinate.

According to the Lavrent'ev Theorem, we may assume \widehat{Y} to be a subspace of X. Write $\widehat{Y} = \bigcup_{k=1}^{\infty} Y_k$, where each Y_k is an absolute G_{δ} -set closed in \widehat{Y} . Denote by \overline{Y}_k the closure of Y_k in X. Write also $\sigma = \bigcup_{k=1}^{\infty} I_k$, where I_k are compact subsets of Q. By induction for every $k \ge 0$ we will construct a partition of $\{0, \ldots, k\}$ into three subsets $H_i(k)$, i = 1, 2, 3, so that

(1) for $i = 1, 2, H_i(k) \subset H_i(k')$ if $k \le k'$.

For every $r \in \bigcup_{k \ge 0} H_1(k) \cup H_2(k)$ we will construct a point $q_r \in Q$ and for every $k \ge 0$ we let

$$P_k = \bigcap_{r \in H_1(k) \cup H_2(k)} \pi_r^{-1}(q_r) \subset Q^{\omega}$$

and $P_{-1} = Q^{\omega}$. By (1) we have $P_k \supset P_{k+1}$ for every k. We shall also construct a subcube R_k of P_k and an irreducible barrier A_k in R_k such that the following conditions are satisfied for every k:

(2) $A_k \supset A_{k+1}$; (3) if $r \in H_1(k)$, then $q_r \in \sigma$ and $\varphi_r(A_k) \subset Y$; (4) if $r \in H_2(k)$, then $q_r \in Q \setminus \sigma$ and $\varphi_r(A_k) \subset X \setminus Y$; (5) if $r \in H_3(k)$, then $R_k \cap \pi_r^{-1}(I_k) = \emptyset$ and $\varphi_r(A_k) \cap \overline{Y}_k = \emptyset$. To get a contradiction, observe that by (2) there exists a point $z = (z_r) \in \bigcap_{k\geq 0} A_k$. By (3)–(5), $z_r \in \sigma$ if and only if $\varphi_r(z) \in Y$. Thus $z \in W(Q, \sigma)$ if and only if $\varphi(z) \in W(X, Y)$, contrary to $\varphi^{-1}(W(X, Y)) = Q^{\omega} \setminus W(Q, \sigma)$.

Inductive construction. Let $R_{-1} = A_{-1} = Q^{\omega}$. Suppose k = 0 or $k \ge 1$ and our objects are constructed up to order k - 1. Let $k = r_0, r_1, \ldots, r_l$ be the elements of the set $\{k\} \cup H_3(k-1)$. We shall construct two finite decreasing sequences

$$R_{k-1} = U_{-1} \supset U_0 \supset \ldots \supset U_l, \quad A_{k-1} = B_{-1} \supset B_0 \supset \ldots \supset B_l$$

where U_j is a subcube in R_{k-1} and B_j is an irreducible barrier in U_j for $j \leq l$. From the construction of these sets we will see to which of the sets $H_i(k)$ an element r_j should be assigned (elements of $\{0, \ldots, k\} \setminus \{r_0, \ldots, r_l\}$ belong to $H_1(k)$ or $H_2(k)$ according to (1)).

Suppose for $j \ge 0$ the sets U_{j-1} and B_{j-1} are constructed. We distinguish two cases:

(a) $\varphi_{r_j}^{-1}(X \setminus \overline{Y}_k) \cap B_{j-1} \neq \emptyset$. Then we can find a subcube U_j in U_{j-1} whose interior in U_{j-1} meets the barrier B_{j-1} and $U_j \subset \varphi_{r_j}^{-1}(X \setminus \overline{Y}_k)$. By Lemmas 1 and 3, $B_{j-1} \cap U_j$ contains an irreducible barrier B_j in U_j . We assign r_j to $H_3(k)$.

(b) $\varphi_{r_j}(B_{j-1}) \subset \overline{Y}_k$. Since Y_k is closed in \widehat{Y} we get $\overline{Y}_k \cap \widehat{Y} = Y_k$. Recalling that Y_k is a sigma hereditarily disconnected absolute G_{δ} -set, write $Y_k = \bigcup_{i=1}^{\infty} D_i$ and $\overline{Y}_k \setminus \widehat{Y} = \overline{Y}_k \setminus Y_k = \bigcup_{i=1}^{\infty} F_i$, where the sets D_i are hereditarily disconnected and F_i are closed in X. Then the countable collection $\{\varphi_{r_j}^{-1}(D_i), \varphi_{r_j}^{-1}(F_i) : i \in \mathbb{N}\}$ covers the irreducible barrier B_{j-1} . By the Main Lemma, there is a connected subset $C \subset B_{j-1}$ such that \overline{C} is an irreducible barrier in B_{j-1} and either $C \subset \varphi_{r_j}^{-1}(F_i)$ or $C \subset \varphi_{r_j}^{-1}(D_i)$ for some i. As in the preceding proof, we have either $\varphi_{r_j}(\overline{C}) \subset Y$ or $\varphi_{r_j}(\overline{C}) \subset X \setminus Y$. Let $U_j = U_{j-1}, B_j = \overline{C}$, and assign z_j to $H_1(k)$ if $\varphi_{r_j}(B_j) \subset Y$ and to $H_2(k)$ if $\varphi_{r_i}(B_j) \subset X \setminus Y$.

Thus we constructed the sets $H_i(k)$, i = 1, 2, 3. Since the complement of the closed set $\bigcup_{r \in H_3(k)} \pi_r^{-1}(I_k)$ is ∞ -dense in U_l , we may find a subcube $K \subset U_l$ whose interior relative to U_l meets the barrier B_l and such that $K \cap \bigcup_{r \in H_3(k)} \pi_r^{-1}(I_k) = \emptyset$ (see Lemma 6). By Lemma 1, the set $B_l \cap K$ contains an irreducible barrier B in K.

Applying Lemma 4 find for every $r \in H_1(k) \setminus H_1(k-1)$ a point $q_r \in \sigma$ and for every $r \in H_2(k) \setminus H_2(k-1)$ a point $q_r \in Q \setminus s$ such that $B \cap P_k$ contains an irreducible barrier A_k in the subcube $R_k = P_k \cap K$ of P_k . Clearly, the constructed objects satisfy the conditions (1)–(5).

Proof of Theorem 2. First we recall some definitions. Let $0 \le n \le \infty$. A subset A of a space X is called a Z_n -set in X if A is closed in X and every map $f: I^n \to X$ of the *n*-dimensional cube can be uniformly approximated by maps into $X \setminus A$. A space X is called a σZ_n -space if X can be written as a countable union $X = \bigcup_{i=1}^{\infty} X_i$ of Z_n -sets X_i in X. Note that each σZ_n -space is a σZ_m -space for every $m \leq n$. Observe also that a space X is of the first Baire category if and only if X is a σZ_0 -space.

The following fact is proven in [BT].

LEMMA 9. If an absolute retract X is a σZ_0 -space, then for every $n \in \mathbb{N}$ its nth power X^n is a σZ_{n-1} -space.

In Lemma 5.4 of [DMM] T. Dobrowolski, W. Marciszewski, and J. Mogilski have proven that if an absolute retract X is a σZ_{∞} -space, then for every σ -compact space A there is a proper map $f : A \to X$. Modifying their arguments and using results of [To] one may prove

LEMMA 10. If for some $n \ge 0$ an absolute retract X is a σZ_n -space, then for every n-dimensional σ -compact space A there exists a proper map $f: A \to X$.

For a class C of spaces and $n \ge 0$ let $C[n] = \{C \in C : \dim(C) \le n\}$. Let us recall that a map $f : A \to X$ is *proper* provided the preimage $f^{-1}(K)$ of any compact subset $K \subset X$ is compact.

LEMMA 11. If X is an absolute retract of the first Baire category, then for every $n \in \mathbb{N}$ its power X^{3n+2} is $\mathcal{A}_1[n]$ -universal.

Proof. Fix *n* ∈ N and a *σ*-compact space *A* with dim(*A*) ≤ *n*. By Lemmas 9 and 10 there exists a proper map *f* : *A* → *X*^{*n*+1}. Since *X*, being an absolute retract, contains a topological copy of the interval *I*, we can apply the classical Menger–Nöbeling–Lefschetz Theorem [En, 1.11.4] to find an embedding *g* : *A* → *X*^{2*n*+1}. Then *e* = (*f*, *g*) : *A* → *X*^{*n*+1} × *X*^{2*n*+1} = *X*^{3*n*+2} is a closed embedding. ■

Proof of Theorem 2. By [To, 4.1, 2.4] the space X embeds into a complete-metrizable absolute retract \widetilde{X} so that X is homotopy dense in \widetilde{X} . The latter means that there is a homotopy $h: \widetilde{X} \times [0,1] \to \widetilde{X}$ such that $h(\widetilde{X} \times (0,1]) \subset X$ and h(x,0) = x for every $x \in \widetilde{X}$.

Let $A \in \mathcal{A}_1(\text{s.c.d.c.})$, i.e., A is a σ -compact space having a strongly countable-dimensional completion C. By the Compactification Theorem [En, 5.3.5] the space C has a strongly countable-dimensional metrizable compactification K. Write $K = \bigcup_{i=0}^{\infty} K_i$, where each $K_i \subset K_{i+1}$ is a compact finite-dimensional subspace of K.

By Lemma 11, the countable power X^{ω} is $\mathcal{A}_1[n]$ -universal for all $n \in \mathbb{N}$. Then Theorem 3.1.1 of [BRZ] implies that for every *i* there exists an embedding $f_i: K_n \to \widetilde{X}^{\omega}$ with $f_i^{-1}(X^{\omega}) = K_n \cap A$. Since X^{ω} is homotopy dense in the absolute retract \widetilde{X}^{ω} , the map f_i can be extended to a map $\overline{f}_i: K \to \widetilde{X}^{\omega}$ such that $\overline{f}_i(K \setminus K_i) \subset X^{\omega}$. Consider the map $f = (\overline{f}_i)_{i=0}^{\infty} : K \to (\widetilde{X}^{\omega})^{\omega}$ and notice that it is an embedding with $f^{-1}((X^{\omega})^{\omega}) = A$. Thus the restriction $f|A: A \to (X^{\omega})^{\omega}$ is a closed embedding, i.e., the space X^{ω} , being homeomorphic to $(X^{\omega})^{\omega}$, is $\mathcal{A}_1(\text{s.c.d.c.})$ -universal.

Some questions and comments. The exponent 3n + 2 in Lemma 11 is not optimal. In fact, for every locally path-connected space X of the first Baire category the power X^{2n+1} is $\mathcal{A}_1[n]$ -universal for every $n \geq 0$. The proof of this statement requires more involved arguments and will be given in another paper.

QUESTION 1. For which Borel classes C is there an absolute retract $A \in C[1]$ whose power A^{n+1} is C[n]-universal for every $n \in \mathbb{N}$?

QUESTION 2. Suppose that X, Y are finite-dimensional σ -compact absolute retracts of the first Baire category. Are their countable powers X^{ω} and Y^{ω} homeomorphic?

Note that by Theorem 2 each of the spaces X^{ω} , Y^{ω} embeds as a closed subset into the other. By Lemma 9 these spaces are σZ_n -spaces for every $n \in \mathbb{N}$. By Theorem 1 and Lemma 5.4 of [DMM], they are not σZ -spaces, so that the standard technique of absorbing spaces (see [BRZ]) cannot be applied to answer Question 2.

Let us remark that the second assertion of Theorem 3 generalizes [Ca₃], the first assertion of Theorem 1 generalizes a result of [BR], and the third one generalizes [Ca₁]. As mentioned in the introduction, the Nagata space \mathcal{N} admits no embedding into a sigma hereditarily disconnected absolute $F_{\sigma\delta}$ -space. In this context it would be interesting to know answers to the following questions.

QUESTION 3. Suppose $F \supset \mathcal{N}$ is an $F_{\sigma\delta}$ -subset in Q containing the Nagata space \mathcal{N} .

(a) Does F contain a Hilbert cube (cf. [En, 5.3.6])?

(b) Is F strongly infinite-dimensional?

(c) Does $F \setminus \mathcal{N}$ contain an arc? Note that $F \setminus \mathcal{N}$ is connected, moreover, $A \cap (F \setminus \mathcal{N})$ is connected for every irreducible barrier A in Q.

(d) Does F contain a copy I of [0,1] such that $I \cap \mathcal{N}$ is a countable dense subset of I? Note that F always contains a copy K of the Cantor set such that $K \cap \mathcal{N}$ is countable and dense in K.

QUESTION 4. Does there exist a countable-dimensional absolute $F_{\sigma\delta}$ -space containing a copy of each countable-dimensional compactum?

According to [En, 5.3.11 and 7.1.33], the Smirnov space σ contains a copy of all Smirnov cubes. This shows that there are σ -compact strongly

countable-dimensional spaces containing compacta of arbitrary high transfinite dimension ind.

The Main Lemma implies that irreducible barriers in Q are not sigma hereditarily disconnected. In fact, every sigma hereditarily disconnected compactum is weakly infinite-dimensional [Kr, §6]. It is not clear if the converse is also true.

QUESTION 5. Is every weakly infinite-dimensional compactum sigma hereditarily disconnected?

It was remarked by R. Pol that this question is connected with the known open problem on existence of a weakly infinite-dimensional compactum whose square is strongly infinite-dimensional: such a compactum cannot be sigma hereditarily disconnected. Observe that the example of an uncountable-dimensional weakly infinite-dimensional compactum constructed by R. Pol [Po] is sigma hereditarily disconnected.

References

- [Ba] T. Banakh, Some problems in infinite-dimensional topology, Mat. Stud. 8 (1997), 123–125.
- [BC] T. Banakh and R. Cauty, On universality of finite powers of certain one-dimensional absolute retracts, preprint.
- [BR] T. Banakh and T. Radul, On universality of countable powers of absolute retracts, Ukraïn. Mat. Zh. 48 (1996), 540–542.
- [BRZ] T. Banakh, T. Radul and M. Zarichnyĭ, Absorbing Sets in Infinite-Dimensional Manifolds, VNTL Publishers, Lviv, 1996.
- [BT] T. Banakh and Kh. Trushchak, Z_n -sets and the disjoint n-cells property in products of ANR's, Mat. Stud. 13 (2000), no. 1, 74–78.
- [BM] M. Bestvina and J. Mogilski, Characterizing certain incomplete infinite-dimensional absolute retracts, Michigan Math. J. 33 (1986), 291–313.
- [Ca1] R. Cauty, Sur l'universalité des produits de rétractes absolus, Bull. Polish Acad. Sci. Math. 44 (1996), 453–456.
- [Ca₂] —, La classe borélienne ne détermine pas le type topologique de $C_p(X)$, Serdica Math. J. 24 (1998), 307–318.
- [Ca₃] —, Solution d'un problème de Radul sur les ensembles absorbants, Mat. Stud. 7 (1997), 201–204.
- [DMM] T. Dobrowolski, W. Marciszewski and J. Mogilski, On topological classification of function spaces $C_p(X)$ of low Borel complexity, Trans. Amer. Math. Soc. 328 (1991), 307–324.
- [En] R. Engelking, Theory of Dimensions, Finite and Infinite, Sigma Ser. Pure Math. 10, Heldermann, Lemgo, 1995.
- [Kr] J. Krasinkiewicz, *Essential mappings onto products of manifolds*, in: Geometric and Algebraic Topology, Banach Center Publ. 18, PWN, 1986, 377–406.
- [Ma] W. S. Massey, Homology and Cohomology Theory, Monogr. Textbooks Pure Appl. Math. 46, Dekker, New York, 1978.

- [Mo₁] J. Mogilski, Characterizing the topology of infinite-dimensional σ -compact manifolds, Proc. Amer. Math. Soc. 92 (1984), 111–118.
- [Mo₂] —, Universal finite-to-one map and universal countable-dimensional spaces, Topology Appl. 68 (1996), 187–194.
- [Po] R. Pol, A weakly infinite-dimensional compactum which is not countable-dimensional, Proc. Amer. Math. Soc. 82 (1981), 634–636.
- [Ra] T. Radul, Absorbing sets in countable products of absolute retracts, unpublished manuscript.
- [To] H. Toruńczyk, Concerning locally homotopy negligible sets and characterization of l₂-manifolds, Fund. Math. 101 (1978), 93–110; correction: ibid. 125 (1985), 89–93.

Department of Mathematics Lviv University Universytetska 1 Lviv 79000, Ukraine E-mail: tbanakh@franko.lviv.ua Université Paris VI UFR 920 Boîte courrier 172 4, Place Jussieu 75252 Paris Cedex 05, France E-mail: cauty@math.jussieu.fr

Received 16 February 1999; in revised form 9 October 2000