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Thorn orthogonality and domination in unstable theories
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Alf Onshuus (Bogotá) and Alexander Usvyatsov (Lisboa)

Abstract. We study orthogonality, domination, weight, regular and minimal types
in the contexts of rosy and super-rosy theories.

1. Introduction and preliminaries. There are several questions that
motivated this research. First, it is natural to extend the concepts of domi-
nation, regularity and weight to rosy theories (as has already been done in
the simple unstable context). One reason for doing this is “decomposition”
theorems: one would like to analyze an arbitrary type in terms of types that
can be studied and classified more easily: regular (admitting a pregeometry),
minimal, etc. We prove several results of this kind. These provide a comple-
mentary picture to the recent work of Assaf Hasson and the first author [4]
where minimal types in super-rosy theories are investigated. For example,
the two articles combined throw some light on types in theories interpretable
in o-minimal structures.

Another motivation came from our desire to understand and develop the
concept of strong dependence [9]. It has recently become clear that this notion
is strongly connected to weight. In [11] the second author shows that every
strongly dependent type has rudimentarily finite generically stable weight.
Hence a stable theory is strongly dependent precisely when every type has
finite weight. The latter conclusion has also been observed by Adler [1], who
studied the notion of “burden”, which generalizes weight and makes sense in
any theory. A related concept (within the context of dependent theories) is
investigated by the authors in [7]. A natural question is: given a dependent
theory with a good enough independence relation, does strong dependence al-
ways imply finite “weight”? More precisely, is thorn-weight finite in a strongly
dependent rosy theory? We give a positive answer to this question.
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Several directions pursued in this paper require a delicate analysis of
existence of mutually indiscernible (sometimes þ-Morley) sequences. Claims
of this form are proved in Section 2.

The paper is organized as follows:
We start by defining notions related to forking and þ-forking, quoting

some of the relevant results and proving others that will be needed through-
out the paper.

Most of the paper is devoted to understanding þ-orthogonality and the
role of þ-weight-1, þ-regular, and þ-minimal types in rosy, super-rosy, and
finite Uþ-rank structures. We show many results analogous to those in sta-
ble (and simple) theories, and conclude with a strong decomposition the-
orem for types of finite rank in rosy theories. As already mentioned, this
result suggests that analysis of minimal types (as is done e.g. in [4]) leads
to understanding of all types in a rosy theory of finite rank (e.g., a theory
interpretable in an o-minimal structure).

Section 2 defines þ-weight and relates it to existence of mutually indis-
cernible þ-Morley sequences, which helps us understand þ-weight better in
strongly dependent and, more generally, strong (rosy) theories.

Section 3 gives proofs of certain basic results on thorn-weight, thorn-
domination and regularity. Many of these proofs follow the lines of classical
ones, but we still go through them carefully, and where the proofs diverge,
we give alternative proofs for the þ-forking context or explain how to bridge
the gaps. In this section we also show that every type in a strong rosy theory
has finite thorn-weight.

Section 4 is devoted to decomposition results of an arbitrary type to
“geometric” objects—þ-regular types in super-rosy theories and þ-minimal
types in theories of finite Uþ-rank.

We have recently learnt that Hans Adler has also given (in an unpublished
note) a proof of the fact that in a rosy theory, rudimentarily finite þ-weight
implies finite þ-weight (Theorem 3.14). Both his and our proofs of this fact
are mostly based on Wagner’s argument [12] for simple theories, which is
itself a generalization of Hyttinen’s results [5] in the stable context.

In contrast, the analysis of finite rank theories in Section 4 is not close
to the existing proofs for stable and simple theories. Several useful tech-
nical tools applicable in this and related contexts are developed, the main
one being Proposition 4.6. We believe that these tools should have many
applications. Sharper results related to coordinatization can be found in a
subsequent work [2].

1.1. Notations and assumptions. Given a theory T , we will work
inside its monster model denoted by C. By “monster” we mean that all car-
dinals we mention are “small” (i.e. smaller than the saturation of C), all sets
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are small subsets of C, all models are small elementary submodels of C, and
truth values of all formulae and all types are calculated in C. We denote
tuples (finite unless said otherwise) by lower case letters a, b, c etc., sets by
A,B,C etc., models by M,N etc.

By a ≡A b we mean tp(a/A) = tp(b/A). Recall that this is equivalent to
having σ ∈ Aut(C/A) satisfying σ(a) = b.

Given an order type O, a sequence I = 〈ai : i ∈ O〉 and j ∈ O, we often
denote the set {ai : i < j} by a<j . Similarly for a≤j , a>j etc. We also often
identify the sequence I with the set

⋃
I; that is, when no confusion can arise

we write tp(a/I) etc.
We will write a |̂

A
B for “tp(a/AB) does not fork over A” even if T is

not simple. Although non-forking is generally not an independence relation,
we still find this notation convenient.

For simplicity we assume T = T eq for all theories T mentioned in this
paper.

1.2. þ-forking. Since the paper deals with þ-forking and its properties,
we will now define the basic concepts related to this notion. The following
definitions and facts can be found in [6].

Definition 1.1. Let ϕ(x, y) be a formula, b be a tuple and C be any
set.
• ϕ(x, b) strongly divides over D if b is not algebraic over D and the set

{ϕ(x, b′)}b′|=tp(b/D)

is k-inconsistent for some k ∈ N.
• ϕ(x̄, b) þ-divides over C if there is some D ⊃ C such that ϕ(x, b)

strongly divides over D.
• ϕ(x, b) þ-forks over C if there are finitely many formulae ψ1(x, b1), . . . ,
ψn(x, bn) such that ϕ(x, b) `

∨
i ψi(x, bi) and ψi(x, bi) þ-divides over

C for 1 ≤ i ≤ n.
We define a theory to be rosy if it does not admit arbitrarily long þ-

forking chains. By this we mean a series of types {pλ(x)}λ∈Λ such that pλ(x)
is a forking extension of pσ(x) for σ < λ and Λ can have arbitrarily large
cardinality (equivalently, one can ask for the existence of Λ with cardinality
larger than i|T |).

Naturally, we say that a (partial) type þ-divides/forks over a set A if it
contains a formula which þ-divides/forks over A.

For strong dividing, it is not convenient to make the analogous definition
and we will in general avoid speaking of strongly dividing types. If the set
of parameters is finite, it is convenient make sure that the strongly dividing
type uses “all” the parameters so that we are able to use algebraic closure
much more efficiently.
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Definition 1.2. Let p(x, b) be a (partial) type over a finite tuple b. We
say that p(x, b) strongly divides over a set D if there is a formula ϕ(x, b) ∈
p(x, b) which strongly divides over D.

Remark 1.1. Notice that the definition of strong dividing (for formulae)
implies the following.

(i) If ϕ(x, a) strongly divides over A, then for every b |= ϕ(x, a) the
type tp(a/Ab) is algebraic (whereas tp(a/A) is non-algebraic).

(ii) ϕ(x, a) strongly divides over A if and only if
• a 6∈ acl(A),
• for every infinite non-constant indiscernible sequence 〈ai : i < ω〉

in tp(a/A), the set {ϕ(x, ai) : i < ω} is inconsistent.
(iii) Let a, b, A be such that a 6∈ acl(A) and A is finite. Then tp(b/Aa)

strongly divides over A if and only if a ∈ acl(Ab′) for any b′ |=
tp(b/Aa).

(iv) If ϕ(x, a) strongly divides over A and B ⊃ A is such that a 6∈ acl(B)
then ϕ(x, a) strongly divides over B.

Proof. (i) Suppose ϕ(x, a) strongly divides over A (so in particular a 6∈
acl(A)), and let b |= ϕ(x, a). By the definition, there are only finitely many
a1, . . . , ak−1 (say, a1 = a) in tp(a/A) such that ϕ(b, ai). In particular, there
are only finitely many realizations of tp(a/Ab), as required.

(ii) The “only if” direction is clear. For the “if” direction, suppose that
ϕ(x, a) does not strongly divide over A, but a 6∈ acl(A). Then for every k < ω

there is a subset {a1, . . . , ak} of tp(a/A) such that ∃x
∧k
i=1 ϕ(x, ai). By com-

pactness, for any cardinal µ there is a sequence 〈aα : α < µ〉 of realizations
of tp(a/A) such that ∃x

∧k
i=1 ϕ(x, aαi) for every α1 < · · · < αk < µ. By Fact

1.5 below there is such an infinite (non-constant) indiscernible sequence.
(iii) The “only if” direction follows from (i). On the other hand, assume

that a 6∈ acl(A) and tp(b/Aa) does not strongly divide over A, but for any
b′ |= tp(b/Aa) we have a ∈ acl(Ab′). By (ii), for every formula ϕ(x, a) ∈
tp(b/Aa) there is an indiscernible sequence 〈ai : i < ω〉 in tp(a/A) such that
{ϕ(x, ai) : i < ω} is consistent. Let p(x, a) = tp(b/Aa). By compactness,
there is an indiscernible sequence 〈ai : i < ω〉 in tp(a/A) such that q(x) =⋃
i<ω p(x, ai) is consistent (and moreover a0 = a). Let b′ |= q(x). Clearly

a = a0 6∈ acl(Ab′), since ai ≡Ab′ a0 for all i. This contradicts the assumptions.
(iv) follows easily from (ii).

Recall that a formula ϕ(x, y) is called stable if it does not have the order
property (see [10]).

Fact 1.2. If a stable formula ϕ(x, y) witnesses that a type p(x, a) forks
over A, then there is a ϕ-formula witnessing that p(x, a) þ-forks over A. In
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particular, in any stable theory the concepts of þ-forking and forking coin-
cide.

Proof. This is Lemma 5.1.1 in [6].

As with stable theories, for many of our results we will need the exis-
tence of a global rank based on the independence notion, which in this case
corresponds to þ-forking.

Definition 1.3. Let M be a model. We define the Uþ-rank to be the
foundation rank of the order given by the þ-forking relation on types consis-
tent with M . A theory T will be called super-rosy whenever the Uþ-rank of
any type in any model of T is ordinal valued.

Fact 1.3. Let T be a super-rosy theory and let a, b, A be subsets of a
model M of T . Then

Uþ(tp(b/aA))+Uþ(tp(a/A))≤Uþ(tp(ab/A))≤Uþ(tp(b/aA))⊕Uþ(tp(a/A)).

Proof. Theorem 4.1.10 in [6].

We will need the following easy but important observation. It will allow
us to understand how far we need to extend the types to get þ-dividing from
þ-forking and strong dividing from þ-dividing; it will be the key to the proof
of the decomposition theorem for a type of finite þ-rank in Section 4. The
proof is quite close to the proof of Lemmas 3.1, 3.2 and 3.4 in [3]. However,
we prove (and need) a slightly different result, so we include a proof.

Observation 1.4. Let M be a model of a rosy theory T , and let a, b, A
be tuples (and sets) in M . Then the following hold:

(i) Let p(x, a) be a type over Aa which þ-forks over A. Then there is
a non-þ-forking extension p(x, a, a′) of p(x, a) such that p(x, a′) þ-
divides over A.

(ii) Let a, b be tuples and A be a set such that tp(b/Aa) þ-divides over A.
Then there is some e and some finite a0 ∈ dcl(Aa) such that b |̂ þ

Aa
e

and such that tp(b/Aea) contains a formula φ(x, a0) which strongly
divides over Ae. In particular, if tp(b/Aa) is a type of ordinal valued
Uþ-rank, then Uþ(tp(b/Aae)) < Uþ(tp(b/Ae)).

Proof. (i) Let p(x, a) be as in (i) and let b |= p(x, a). By definition, there
are finitely many formulae ϕi(x, ai) such that

p(x, a) `
n∨
i=1

ϕi(x, ai)

and ϕ(x, ai) þ-divides over A. By extension of þ-independence we know that
there are a′1, . . . , a′n |= tp(a1 . . . an/Aa) such that b |̂ þ

Aa
a′1 . . . a

′
n.
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So tp(b/Aaa′1 . . . a
′
n) ` ϕm(x, a′m) for some m; defining a′ := a′m and

p(x, a, a′) := tp(b/Aaa′), we see by construction that p(x, a, a′) is as desired.
(ii) Let a, b and A be as in (ii). By the definition of þ-dividing there is

some e′ and some ϕ(x, a0) ∈ tp(b/Aa) such that ϕ(x, a0) strongly divides
over Ae′. Note that in particular a0 6∈ acl(Ae′).

Let e |= tp(e′/Aa) be such that b |̂ þ
Aa
e. Since e |= tp(e′/Aa) and a0 ∈

dcl(Aa), strong dividing is preserved. Moreover, a 6∈ acl(Ae).

Finally, we will prove the well known Fact 1.7 which will simplify a lot of
the proofs. Before we start with the proof, we will need several combinatorial
statements.

The following classical result is originally due to Morley, although it is
often referred to as “Erdős–Rado argument” since it is an easy consequence
of the Erdős–Rado theorem and compactness:

Fact 1.5. Let λ be a cardinal. Then there exists µ > λ such that for
every set A of cardinality λ and a sequence 〈ai : i < µ〉 of tuples there exists
an ω-type q(x0, x1, . . .) of an A-indiscernible sequence such that for every
n < ω there exist i1 < · · · < in < µ such that the restriction of q to the first
n variables equals tp(ai1 . . . ain/A).

We will sometimes denote µ as above by µ(λ).

Remark 1.6. Let A be a set, A ⊆ B, and I an A-indiscernible sequence.
Then there exists I ′ with I ′ ≡A I such that I ′ indiscernible over B.

Proof. First extend I to be long enough so that Fact 1.5 can be applied
to it with λ = |B|+ |T |. Then there exists I ′ indiscernible over B such that
every n-type of I ′ over B “appears” in I. In particular I ′ has the same type
over A as I (since I was A-indiscernible and A ⊆ B).

Fact 1.7. Let a |̂ þ
A
B. Then there is a þ-Morley sequence I over B based

on A starting with a.

Proof. First, construct a non-þ-forking sequence I ′ = 〈a′i : i < µ〉 in
tp(a/B) based on A starting with A by the standard construction, that
is, a′0 = a, a′i ≡B a, a′i |̂

þ
A
Ba′<i. Moreover, make µ large enough so that

using Erdős–Rado (more precisely, Fact 1.5, see also Remark 1.6) one can
find I which is an ω-sequence, B-indiscernible, and every n-type of I over
B “appears” in I ′. Clearly I is a þ-Morley sequence over B based on A.
Moreover, since every element of I ′ satisfies tp(a/B), so does every element
of I, so by applying an automorphism over B we may assume that I starts
with a.

1.3. Dependence, strong dependence and dp-minimality. Recall
that a theory T is called dependent if there does not exist a formula which
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exemplifies the independence property. We are mostly going to use the fol-
lowing equivalent definition:

Fact 1.8. T is dependent if and only if there do not exist an indiscernible
sequence I = 〈ai : i < λ〉, a formula ϕ(x, y) and b̄ such that both

{i : |= ϕ(ai, b)} and {i : |= ¬ϕ(ai, b)}

are unbounded in λ.

The following definitions were motivated by the notions of strong depen-
dence of Shelah (see e.g. [9]) and appear in [11] and [7]. In the definitions
below we denote tuples by x̄, ā (in order to stress the difference between
singletons and finite tuples of arbitrary length).

Definition 1.4.

(i) A randomness pattern of depth κ for a (partial) type p over a set
A is an array 〈b̄αi : α < κ, i < ω〉 and formulae ϕα(x̄, ȳα) for α < κ
such that
(a) the sequences Iα = 〈b̄αi : i < ω〉 are mutually indiscernible over

A, that is, Iα is indiscernible over AI 6=α,
(b) len(b̄αi ) = len(ȳα),
(c) for every η ∈ κω, the set

Γη={ϕα(x̄, b̄αη(α)) : α < κ} ∪ {¬ϕα(x̄, b̄αi ) : α<κ, i<ω, i 6=η(α)}

is consistent with p.
(ii) A (partial) type p over a set A is called strongly dependent if there

does not exist a randomness pattern for p of depth ω.
(iii) The dependence rank (dp-rank) of a (partial) type p over a set A is

the supremum of all κ such that there exists a randomness pattern
for p of depth κ.

(iv) A (partial) type over a set A is called dp-minimal if the dp-rank
of p is 1. In other words, p is dp-minimal if there does not exist a
randomness pattern for p of depth 2.

(v) A theory is called strongly dependent/dp-minimal if the partial type
x = x is (here x is a singleton).

(vi) Let T be dependent. A type p is called strongly generically stable if
it is strongly dependent and generically stable.

Remark 1.9. Note that by mutual indiscernibility, in clause (c) of the
definition of a randomness pattern it is enough to demand that the set

{ϕα(x̄, b̄α0 ) : α < κ} ∪ {¬ϕα(x̄, b̄αi ) : α < κ, 1 ≤ i < ω}

is consistent with p.
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Remark 1.10. Note that Shelah basically shows in [9, Observation 1.7]
that if there exists a type p(x̄) which is not strongly dependent, then there
exists such a type p′(x) with x being a singleton. Therefore if there exists
a non-strongly dependent type, then T is not strongly dependent and the
definitions above make sense.

Note that if in the definition of a randomness pattern all formulae are
the same, we get the independence property:

Observation 1.11. A theory T is dependent if and only if it does not ad-
mit a randomness pattern of some/any infinite depth with ϕα(x̄, ȳ) = ϕ(x̄, ȳ)
for all α if and only if T does not admit a randomness pattern of depth |T |+.

Proof. By compactness.

A related notion, which will be convenient for us to consider, was inves-
tigated by Adler in [1]. We are going to use a slightly different terminology
(some of it comes from [7]).

Definition 1.5.

(i) A dividing pattern of depth κ for a (partial) type p over a set A is
an array 〈b̄αi : α < κ, i < ω〉 and formulae ϕα(x̄, ȳα) for α < κ such
that
(a) the sequences Iα = 〈b̄αi : i < ω〉 are mutually indiscernible

over A, that is, Iα is indiscernible over AI 6=α,
(b) len(b̄αi ) = len(ȳα),
(c) for every η ∈ κω, the set {ϕα(x̄, b̄αη(α)) : α < κ} is consistent

with p,
(d) for every α < κ, the set {ϕα(x, bαi ) : i < ω} is inconsistent

with p.
(ii) A (partial) type p over a set A is called strong if there does not exist

a dividing pattern for p of depth κ = ω.
(iii) A theory is called strong if every finitary type is strong.

Remark 1.12. As in Remark 1.9, note that by mutual indiscernibility,
in clause (c) of the definition of a dividing pattern it is enough to demand
that the set {ϕα(x̄, b̄α0 ) : α < κ} is consistent with p.

The reader is encouraged to have a look at [1] for the discussion of strong
theories. A theory is strong and dependent if and only if it is strongly depen-
dent (as suggested by the name), and this is the case we are mostly interested
in; but there are also strong theories which are simple unstable, and even
SOP2.

A version of the following easy lemma was proven by the authors in [7] in
order to establish the connection between randomness and dividing patterns.



Thorn orthogonality and domination 249

It is also implicit in some proofs in [1]. For completeness, we include a proof
suggested by the referee (which is somewhat different from the one in [7]).

Lemma 1.13.

(i) Let p(x) be a type over a set A, let I = 〈bi〉i∈O be a sequence indis-
cernible over A, and let ϕ(x, y) be a formula such that p(x)∪ϕ(x, bi)
is consistent for some (all) i and {ϕ(x, bi)}i∈O is k-inconsistent with
p for some k ∈ N. Then

p(x) ∪ {ϕ(x, bl)} ∪ {¬ϕ(x, bi)}i 6=l
is consistent for all l.

(ii) Any dividing pattern is also a randomness pattern.
(iii) Clause (ii) also holds when the depth n < ω is replaced with any

cardinal κ.

Proof. (i) Without loss of generality, O = Q and l = 0. Let a |= p ∪
φ(x, b0). Since {ϕ(x, bi) : i ∈ O} is inconsistent with p, by compactness
and indiscernibility there are only finitely many qj ∈ O such that a |=
ϕ(b, bqj ). Let O′ be the set which results after removing from O those finitely
many qj . Then O′ is order-isomorphic to O; by indiscernibility there is an
Ab0-automorphism σ moving 〈bq : q ∈ O′〉 to 〈bq : q ∈ O〉. Then σ(a) satisfies
p ∪ ϕ(x, b0) ∪ ¬ϕ(x, bq) : q 6= 0, as required.

(ii) follows from (i) by induction, and (iii) follows from (ii) by compact-
ness.

2. þ-weight, crisscrossed þ-forking, and indiscernible sequences.
The purpose of this section is to define the notion of þ-weight and to relate it
to the existence of certain mutually indiscernible sequences, which will lead
to the conclusion (Theorem 2.7) that in a strong rosy theory every type has
rudimentarily finite þ-weight.

Throughout the section we will assume that T is rosy.

2.1. þ-weight. We define þ-pre-weight and þ-weight of a type p. We
will denote them by pwtþ(p) and wtþ(p). Note that Fact 1.2 implies that in
stable theories þ-weight coincides with the usual notion of weight.

Definition 2.1.

• Let p(x) be any type over some set A. We will say that a, 〈bi〉ni=1

witnesses pwtþ(p(x)) ≥ n (þ-pre-weight of p is at least n) if a |= p(x),
〈bi〉ni=1 is A-þ-independent and a 6 |̂ þ

A
bi for all i, j. If n is maximal

such that such a witness exists, we will say that a, 〈bi〉ni=1 witnesses
pwtþ(p(x)) = n and that p has þ-pre-weight n.
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• We say that a type p has finite þ-pre-weight if pwtþ(p) < ω. We say
that a type p has rudimentarily finite þ-pre-weight if one cannot find
an infinite witness {bi : i < ω} as above.
• Let p(x) be any type over some set A. We will say that a,B, 〈bi〉ni=1

witnesses wtþ(p(x)) ≥ n (þ-weight of p is at least n) if a |= p(x),
a |̂ þ

A
B, 〈bi〉ni=1 is B-þ-independent and a 6 |̂ þ bi for all i, j. If n is

maximal such that such a witness exists, we will say that a,B, 〈bi〉ni=1

witnesses wtþ(p(x)) = n and that p has þ-weight n.
• We say that a type p has finite þ-weight if wtþ(p) < ω. We say that a

type p has rudimentarily finite þ-weight if every non-þ-forking exten-
sion of p has rudimentarily finite pre-weight.

It follows from the definition that wtþ(p) ≥ n if and only if there exists
a non-þ-forking extension of p with þ-pre-weight at least n.

Notice also that one could define infinite þ-pre-weight and weight as
usual, but we will be concerned only with finite þ-weights in this paper.

2.2. Crisscrossed forking. In order to establish the main result of this
section, Theorem 2.7, we find it convenient to relate weight to the following
concept of “crisscrossed” (þ-)forking. This notion might be familiar to some
readers from an earlier preprint of the authors, not intended for publication
(an older version of [7]).

Definition 2.2.

(i) We say that a tuple 〈ϕi(x, āi)〉i<n and a set A witness n-crisscrossed
strong-dividing (n-cc-strong-dividing) if |= ∃x

∧
i ϕi(x, ā

i), ϕi(x, āi)
strongly divides over A and āi |̂ þ

A
〈āj〉j 6=i for all i.

(ii) We say that a tuple 〈ϕi(x, āi)〉i<n and a set A witness n-crisscrossed
þ-dividing (n-cc-þ-dividing) if |= ∃x

∧
i ϕi(x, ā

i), ϕi(x, āi) þ-divides
over A and āi |̂ þ

A
〈āj〉j 6=i for all i.

(iii) We say that a tuple 〈ϕi(x, āi)〉i<n and a set A witness n-crisscrossed
þ-forking (n-cc-þ-forking) if |= ∃x

∧
i ϕi(x, ā

i), ϕi(x, āi) þ-forks over
A and āi |̂ þ

A
〈āj〉j 6=i for all i.

(iv) We say that T admits n-cc-þ-forking (or þ-dividing or strong divid-
ing) if there exists a tuple 〈ϕi(x, āi)〉i<n witnessing n-cc-þ-forking
(or þ-dividing or strong forking) over A, with x being a single-
ton.

(v) Let p be a type over a set A. We say that a tuple 〈ϕi(x, āi)〉i<n
witnesses n-cc-þ-forking (or þ-dividing or strong dividing) in
p if 〈ϕi(x, āi)〉i<n and A witness n-cc-þ-forking (or þ-dividing
or strong dividing) and the formula

∧
i ϕi(x, ā

i) is consistent
with p.
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(vi) We say that a type p ∈ S(A) admits n-cc-þ-forking (or þ-dividing
or strong dividing) if there exists a tuple 〈ϕi(x, āi)〉i<n witnessing
n-cc-þ-forking (or þ-dividing or strong dividing) in p.

Remark 2.1. The following are direct consequences of the definitions.

(i) T admits n-cc-þ-forking if and only if there exists a set A and a type
p ∈ S1(A) which admits n-cc-þ-forking.

(ii) Let T be rosy. Then a type p ∈ S(A) does not admit n-cc-þ-forking
if and only if it has pre-þ-weight less than n.

(iii) So a rosy T does not admit n-cc-þ-forking if and only if every 1-type
has pre-þ-weight less than n if and only if every 1-type has þ-weight
less than n.

The following technical result is quite useful.

Theorem 2.2. The following are equivalent for any p ∈ S(A):

(i) p admits n-cc-þ-forking.
(ii) p admits n-cc-þ-dividing.
(iii) There is an extension p(x,B) of p(x) such that p(x,B) admits n-cc-

strong dividing.

Proof. It is clear that if an extension of a type has a witness for n-cc-
strong dividing then the same tuple is a witness of n-cc-þ-dividing, and any
witness for n-cc-þ-dividing is a witness of n-cc-þ-forking. We will prove that
(i) implies (iii) for n = 2. The general case will follow by a straightforward
induction on n using the properties of þ-forking in rosy theories.

(i)⇒(iii). Let
{ϕ(x, ā), ψ(x, b̄)}, A

be a 2-cc-þ-forking witness for p. By definition there are finitely many for-
mulae ϕi(x, āi), ψj(x, b̄j) and tuples c̄, d̄ such that

(1) ϕ(x, ā) |=
ka∨
i=1

ϕi(x, āi), ψ(x, b̄) |=
ka∨
i=1

ψi(x, b̄i),

and

(2)
ϕi(x, āi) strongly divides over Ac̄ for all i,
ψj(x, b̄j) strongly divides over Ad̄ for all j.

By hypothesis ā |̂ þ
A
b̄, so by extension of þ-independence (on both sides)

we may assume that
āāic̄ |̂ þ

A
b̄b̄j d̄

(we only need to preserve tp(āāic̄/A) and tp(b̄b̄j d̄/A) to preserve the impli-
cations and inconsistency required to witness strong dividing).
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Since ϕ(x, ā) ∧ ψ(x, b̄) is consistent with p, it is clear from (1) that the
conjunction ϕi(x, āi) ∧ ψj(x, b̄j) is consistent with p for some i, j. By mono-
tonicity of þ-forking independence we know that āi |̂ A b̄j , so (2) implies
that (ϕi(x, āi), ψj(x, b̄j)), A is a witness for cc-þ-dividing. This is enough to
show (ii).

To complete the proof of (i)⇒(iii), notice that monotonicity of þ-forking
implies in particular that āi |̂ þ

Ac
d, b̄j |̂ þ

Ad
c, and āi |̂ þ

Acd
b̄j .

Since by definition āi 6∈ acl(Ac) and b̄j 6∈ acl(Ad) we see that āi, b̄j 6∈
acl(Acd): e.g., āi 6∈ acl(Ac), but āi |̂ þ

Ac
d, so āi 6∈ acl(Acd).

So

(3)
ϕ(x, āi) strongly divides over Acd,
ψ(x, b̄j) strongly divides over Acd,
āi |̂ þ

Acd
b̄j .

Let B := Acd, let p(x,B, āi, b̄j) be a non-þ-forking extension of p(x) ∪
{ϕ(x, āi)∪ψ(x, b̄j)} and let p(x,B) be the restriction of p(x,B, āi, b̄j) to B.
All the conditions in the definition of 2-cc-strong dividing are satisfied, which
completes the proof of the theorem.

2.3. Finite þ-weight and strong dependence. The main goal of this
subsection is to characterize, in rosy theories, strong dependence in terms of
the þ-pre-weight. In order to do this, we will need to prove the existence of
mutually þ-Morley sequences. The procedures will also bring some light on
what is needed to characterize strong dependence within dependent theories
(or Adler’s “strongness” within arbitrary theories) in terms of weight with
respect to some independence notion.

Observation 2.3. Let {Ii : i < n} be sequences such that Ii is a þ-
Morley sequence over AI<i based on A. Then Ii is a non-þ-forking sequence
over AI 6=i based on A.

Proof. We need to prove that āij |̂
þ
A
āi<jI

6=i where we define Ii = 〈āij :
j < µi〉.

By the assumptions, āij |̂
þ
A
āi<jI

<i for all i, j. Hence by transitivity and
finite character of þ-forking, we have I>i |̂ þ

A
I≤i for all i, in particular

I>i |̂ þ
A
āi≤jI

<i for all i, j. By transitivity again, combining āij |̂
þ
A
āi<jI

<i

and I>i |̂ þ
A
āi≤jI

<i, we have āi≤j |̂
þ
A
I 6=i.

Therefore, since āij |̂
þ
A
āi<j , we get āij |̂

þ
A
āi<jI

6=i, as required.

Lemma 2.4. Let {āi : i < n} be a set of tuples and let {Ii : i < n} be
sequences such that
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• for each i < n the sequence Ii is AI<ia>i-indiscernible,
• Ii starts with āi.

Then there exist sequences {J i : i < n} such that

• for each i < n the sequence J i is AJ 6=i-indiscernible,
• Ii ≡Aai J i. So in particular, J i starts with āi.

Moreover, if Ii are þ-Morley sequences over AI<ia>i based on A, then we
can make J i þ-Morley over AI 6=i based on A.

Proof. Exactly the same construction is used to prove both parts of the
lemma. To avoid being repetitive, we will prove the “moreover” part. The
proof of the first part is the same, except that without the extra assumptions
we cannot get the stronger conclusion. So assume the sequence of Ii’s is a
þ-Morley sequence over AI<ia>i based on A.

We need to make sure that Ii can be made indiscernible over AI 6=i and
not only over AI<ia>i. So assume that len(Ii) = µi = µ(

∑
µ<i + |A|+ |T |)

as in Fact 1.5. We will make our way “backwards”, that is, by downward
induction on i, starting with i = n.

Assume that for ` > i, I` are þ-Morley ω-sequences over AI 6=` based
on A, whereas for ` ≤ i we still have I` of length µ` which are þ-Morley
sequences over AI<`ā>` based on A, non-þ-forking over AI 6=` (we have the
last assumption by Observation 2.3).

By Fact 1.5 we can find J i which is an indiscernible ω-sequence over AI 6=i
such that every n-type of J i over AI 6=i “appears” in Ii. So in particular J i
has the same type over AI<iā>i as Ii. Moreover, since þ-forking has finite
character, J i is non-þ-forking over AI 6=i.

Notice that given a finite tuple b̄ in J i the question of whether for some
ᾱ = α1 < · · · < αk < ω and β̄ = β1 < · · · < βk < ω we have ā`ᾱ ≡b̄I 6=`,i ā`β̄
amounts to the same question over some b̄′ in Ii. Since these were indis-
cernible, we find that for any ` > i the sequence I` is still indiscernible over
AI 6=`,iJ i. Using a similar argument one can also make sure that for ` 6= i, I`
is still a non-þ-forking sequence over AI 6=`,iJ i.

So J i satisfies all the requirements, except that we need the first element
of it to be āi. Note, though, that the first element of J i has the same type
over I<iā>i as āi. So applying an automorphism over I<iā>i, we obtain a
new J i that starts with āi and a new I` for ` > i which have all the required
properties, completing the proof of the inductive step.

Lemma 2.5. Let {āi : i < n} be a set of tuples which is þ-independent
over a set A. Then there exist sequences {Ii : i < n} such that
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• for each i < n the sequence Ii is a þ-Morley sequence over AI 6=i based
on A. So Ii is AI 6=i-indiscernible and Ii |̂ þ

A
I 6=i,

• Ii starts with āi.

Proof. We construct sequences Ii such that Ii is a þ-Morley sequence over
AI<iā>i based on A. By Lemma 2.4, this is enough to obtain the desired
conclusion. The construction is by induction on i < n.

The case i = 0 follows from Fact 1.7.
So let i > 0, and assume that I<i already exist. Note that I0 |̂ þ

A
ā>0 and

I1 |̂ þ
A
I0ā>1, hence I0I1 |̂ þ

A
a>1. Continuing, we see that I<i |̂ þ

A
ā≥i. By

symmetry and transitivity, āi |̂ þ
A
I<iā>i, and we can apply Fact 1.7 again.

We are now able to prove that strong dependence implies boundedness
(by ω) of cc-strongly dividing patterns and of þ-weight.

Proposition 2.6. If a type p admits an n-cc-strong-dividing witness,
then dp-rank(p) ≥ n.

Proof. Let 〈ψi(x, āi)〉i<n and a set A witness n-cc-strong dividing, that
is,

∧
i ψi(x, ā

i) is consistent with p, ψi(x, āi) strongly divides over A and
āi |̂ þ

A
〈āj〉j 6=i for all i.

By the definition of strong dividing, āi 6∈ acl(A). Since {āi : i < n} is
þ-independent, we can build as in Lemma 2.5 sequences Ii = 〈āij : j < ω〉
such that

• Ii is a þ-Morley sequence over AI 6=i based on A,
• āi0 = āi.

For each i < n and k < ω denote ψki (x) = ψki (x, āi<k) =
∧
j<k ψi(x, ā

i
j).

Note that since ψi(x, āi0) strongly divides over A, for some k < ω the formula
ψki (x) is inconsistent.

So we clearly have a þ-dividing pattern (see Definition 1.5) for p of
depth n; applying Lemma 1.13(ii), we are done.

Theorem 2.7. If T is strongly dependent (and rosy) then every (fini-
tary) type has rudimentarily finite þ-weight. If T is dp-minimal then every
1-type has þ-weight 1. Moreover, the conclusion is true if we just assume that
T is strong and rosy.

Proof. This now follows easily from Remark 2.1, Theorem 2.2 and Propo-
sition 2.6.

For the “moreover” part note that Lemma 2.5 only assumes rosiness, and
in Proposition 2.6 we show, in fact, existence of a dividing pattern.

The next section will be devoted to showing the equivalence between
“rudimentarily finite þ-weight” and “finite þ-weight”.
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3. þ-orthogonality and þ-regularity in rosy structures. The first
part of this section is devoted to developing the analogous notions of domi-
nation, orthogonality, weight and regularity in the þ-forking context and the
properties such notions have under different hypotheses. We will start with
the relevant definitions.

Throughout the section we will assume that T is rosy.

Definition 3.1.

• Two types p(x) and q(x) are almost þ-orthogonal if they are over a
common domain B and for any tuples a |= p′ and b |= q′ we have
a |̂ þ

B
b. This is denoted by p ⊥þ

a q.
• Two types p and q are þ-orthogonal if any non-þ-forking extensions
p′ and q′ of p and q respectively to a common domain are almost
þ-orthogonal. This is denoted by p ⊥þ q.
• Let A be a set, and a, b tuples. We say that a þ-dominates b over A

if for every c the relation b 6 |̂ þ
A
c implies a 6 |̂ þ

A
c. In this case we write

bCþ
A a.

• We say that a, b are th-domination equivalent over A if they dominate
each other over A. Clearly, this is an equivalence relation. In this case
we write a ./þ

A b.
• Let p(x) and q(x) be types over A and B respectively. We will say

that p(x) þ-dominates q(x) if there are realizations a, b of p and q

respectively such that a |̂ þ
A
B, b |̂ þ

B
A and b Cþ

A∪B a. If A = B, we
say that p þ-dominates q over A.
• We say that types p and q are þ-equidominant if there are non-forking

extensions p′, q′ of p, q respectively to a common domain C and real-
izations a′ |= p′, b′ |= q′ which are domination equivalent over C. In
this case we write p onþ q.

Remark 3.1. Note that equidominance is not (in general) an equivalence
relation on types. Note also that if two types dominate each other, they are
not necessarily equidominant (even if the domination is over the same set
A of parameters), not even in stable theories. The problem is that whereas
dominance on elements (over a set A) is transitive, dominance on types is
generally not. See Section 5.2 of [12] for a further discussion of this matter
and examples.

3.1. Basic properties. Here we list the basic properties of þ-weight,
þ-domination and þ-orthogonality. Some of the results and proofs in this sub-
section are very similar, and sometimes completely analogous to the results
in simple theories (see Section 5.2 of [12]).
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Lemma 3.2.

(i) If a |̂ þ
A
b then wtþ(a/A) = wtþ(a/Ab).

(ii) wtþ(ab/A) ≤ wtþ(a/A)+wtþ(b/A). Equality holds whenever a |̂ þ
A
b.

Proof. The proofs are the same as the proofs of Lemmas 5.2.3 and 5.2.4
in [12], replacing instances of forking by þ-forking.

The following is very easy:

Observation 3.3. Suppose that a is þ-dominated by b over a set A,
and A′ ⊇ A is such that a |̂ þ

A
A′ and b |̂ þ

A
A′. Then a is þ-dominated by b

over A′.

Observation 3.4. Suppose aCþ
A b. Then wtþ(a/A) ≤ wtþ(b/A).

Proof. Assume that wtþ(a/A) ≥ n. Then there are A′, {ci : i < n}
witnessing this; that is, a |̂ þ

A
A′, {ci : i < n} is an A′-þ-independent set,

and a 6 |̂ þ
A
ci for all i. Let b′ ≡Aa b be such that b′ |̂ þ

Aa
A′. So ab′ |̂ þ

A
A′,

hence by the previous observation, a is dominated by b′ over A′. So b′ |̂ þ
A′
ci

for all i. In particular, wtþ(b/A) ≥ wtþ(b′/A′) ≥ n, as required.

Observation 3.5.

• If p, q ∈ S(A) are not almost þ-orthogonal and pwtþ(q) = 1, then p
dominates q over A.
• The relation p 6⊥A q is an equivalence relation on types over A of
þ-pre-weight 1.

Proof. Easy (see 5.2.11 and 5.2.12 in [12]).

The following two lemmas are easy but very useful.

Lemma 3.6. Assume bCþ
A a. Then there exists B containing A such that

a |̂
A
B (hence b |̂

A
B) such that abCþ

B a.

Proof. We try to choose by induction on α < |T |+ an increasing and
continuous sequence of sets Aα such that A0 = A and for all α we have:

• ab 6 |̂ þ
Aα
Aα+1,

• a |̂ þ
Aα
Aα+1 (hence b |̂ þ

Aα
Aα+1).

By local character of þ-independence, there is α < |T |+ such that it is
impossible to choose Aα+1. Denote B = Aα. It is easy to see that all the
requirements are satisfied.

Lemma 3.7. Assume that abCþ
Aa, a 6 |̂

þ
A
c, b |̂ þ

A
c and wtþ(tp(c/A)) = 1.

Then bcCþ
A a.
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Proof. Assume a |̂ þ
A
d. Since abCþ

A a, we have ab |̂ þ
A
d, hence a |̂ þ

Ab
d.

Let A′ = Ab. Then c |̂ þ
A
A′ and c 6 |̂ þ

A′
a (otherwise, by transitivity c |̂ þ

A
ab).

Since wtþ(c/A) = 1, clearly c |̂ þ
A′
d (otherwise, remembering that a |̂ þ

A′
d,

we would conclude that a, d witness pwtþ(c/A′) ≥ 2). Hence bc |̂ þ
A
d, as

required.

Observation 3.8. Let p ∈ S(B) and a,B, b1, . . . , bn witness pwtþ(p)=n.
Then aCþ

B b1 . . . bn.

Proof. Assume c 6 |̂ þ
B
a and c |̂ þ

B
b1 . . . bn. Then the set {c, b1, . . . , bn} is

B-þ-independent, and it witnesses pwtþ(a/B) ≥ n+ 1, a contradiction.

3.2. From rudimentarily finite to finite. We will now prove that if a
type has rudimentarily finite þ-weight, it has finite þ-weight. As with stable
theories, in order to show this we found it necessary to prove the very inter-
esting fact that a type of (rudimentarily) finite þ-weight is þ-equidominant
with a finite free product of þ-weight-1 types.

A good start would be showing that every type of rudimentarily finite
weight is “related” (in terms of non-þ-orthogonality) to þ-weight-1 types.
The following two lemmas generalize Hyttinen’s results from [5] on types in
a stable theory, and we adapt his technique to the rosy context.

Lemma 3.9. Let p ∈ S(A), and assume that

(i) a,A′, {b1, . . . , bn} witness wtþ(p) ≥ n. That is, a |̂ þ
A
A′, {b1, . . . , bn}

are þ-independent over A′ and a 6 |̂ þ
A′
bi for all i.

(ii) There is no C extending A′ such that the following three conditions
hold:
(a) a |̂ þ

A′
C,

(b) b1 . . . bn−1 |̂ þ
A′
Cbn,

(c) bn 6 |̂ þ
A′
C.

Then

(1) Whenever a |̂ þ
A′
c and a |̂ þ

A′bn
c, we have bn |̂ þ

A′
c.

(2) If, furthermore, wtþ(tp(bn/A′)) > 1, then there are B and b′n, b′n+1

such that a,B, {b1, . . . , bn−1, b
′
n, b
′
n+1} witness wtþ(p) ≥ n+ 1.

Proof. (1) Assume bn 6 |̂ þ
A′
c but a |̂ þ

A′
c and a |̂ þ

A′bn
c. Without loss of

generality c |̂ þ
A′bna

b1 . . . bn−1, hence c |̂ þ
A′bn

b1 . . . bn−1. Let C = A′c. It is
easy to see that (a)–(c) above hold for C (e.g. (b) holds by symmetry and
transitivity), contradicting assumption (ii) of the lemma.

(2) Assume wtþ(tp(bn/A′)) > 1. This means that there are B ⊇ A′ and
c, d such that
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• bn |̂ þ
A′
B,

• c |̂ þ
B
d,

• bn 6 |̂ þ
B
c and bn 6 |̂ þ

B
d.

Again we may assume without loss of generality ab1 . . . bn−1 |̂ þ
A′bn

Bcd. It is
easy to see that the assumptions of the lemma still hold after replacing A′

with B. So part (1) holds as well. In particular, since bn 6 |̂ þ
B
c and bn 6 |̂ þ

B
d,

whereas a |̂ þ
Bbn

c and a |̂ þ
Bbn

d, we have a 6 |̂ þ
B
c and a 6 |̂ þ

B
d. Choosing

b′n = c, b′n+1 = d, we are done.

Lemma 3.10. Let p ∈ S(A) be a type of rudimentarily finite þ-weight.
Then p is non-þ-orthogonal to a type of þ-weight 1.

Moreover, suppose that a |= p,B = {bi : i < m}, d are such that a,A, {bi :
i < m} ∪ {d} witness wtþ(p) ≥ m+ 1. Then there exist D ⊇ A and d′ such
that

• wtþ(d′/A′) = 1,
• a,D, {bi : i < m} ∪ {d′} witness wtþ(p) ≥ m+ 1.

Proof. By considering a non-þ-forking extension it is clear that the lemma
follows from the “moreover” part.

We will prove that if the conclusion fails we can witness that p has rudi-
mentarily infinite þ-weight, thus contradicting the hypothesis of the lemma.

Assume towards a contradiction that the conclusion fails and construct
by induction on n ≥ m sets An, Bn and tuples dn such that

• Bn = {bi : i < n}, so |Bn| = n,
• Am = A, Bm = B, dm = d,
• the sequences 〈An : n < ω〉 and 〈Bn : n < ω〉 are increasing,
• a,An, Bn = {bi : i < n} ∪ {dn} witness wtþ(p) ≥ n+ 1.

The case n = m is given, so suppose we have An, Bn and dn as above.
By local character of þ-independence, we can replace A by A′ satisfy-

ing the assumptions of Lemma 3.9 with bn there replaced by our d: if given
some A′ there exists a C as in (ii) of Lemma 3.9 above, it satisfies all the
requirements of A′ in (i), so we can replace A′ with C and continue; local
character of þ-forking and the fact that d 6 |̂ þ

A′
C guarantee that the pro-

cess will eventually stop. So by Lemma 3.9 (and the assumption towards
contradiction), we can “split” d into two elements bn and dn+1, that is, find
An+1, bn, dn+1 such that a,An+1, {bi : i < n}∪{dn+1} witness wtþ(p) ≥ n+1,
as required.

Let Aω =
⋃
n<ω An and Bω =

⋃
n<ω Bn. Clearly, Bω is an infinite witness

for wtþ(p) ≥ ℵ0, contradicting p having rudimentarily finite weight.
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Since this construction contradicts our hypothesis, we know that for some
n we have wtþ(dn/An) = 1. But then D = An, d

′ = dn satisfy the conditions
required in the conclusion of the lemma.

We are finally ready to prove that a type of rudimentarily finite þ-weight
has finite þ-weight. The proof will be based on Observation 3.11, but first
we make the following (temporary) definition.

Definition 3.2. Let p = tp(a/A) be any type.
We will say that a witness a,A, {bi : i < m} is a nice witness of wtþ(p) ≥

m if ab0 . . . bm−1 CA a and wtþ(bi/A) = 1 for all i.
We will say that a witness a,A, {bi : i < m} of wtþ(p) ≥ m is contained

in a witness a,A′, {bi : i < n} of wtþ(p) ≥ n if A ⊂ A′, (bi)i<n |̂ AA
′, and

m ≤ n. We say that the first witness is properly contained in the second one
if m < n.

We will say that a (nice) witness is maximal if it is not properly contained
in any other (nice) witness.

Observation 3.11. Let p = tp(a/A) be a type of rudimentarily finite
weight. Then every witness a,A, {bi : i < m} of wtþ(p) ≥ m is contained
in a maximal witness a,A′, {bi : i < n}. Even more, every nice witness
a,A, {bi : i < m} of wtþ(p) ≥ m is contained in a witness a,A′, {bi : i < n}
to wtþ(p) ≥ n which is maximal among all nice witnesses.

Proof. The proof is precisely the same as the proof of Lemma 3.10 above:
If there is no maximal witness, then we can construct by induction on

n < ω increasing witnesses An, Bn = {Bi : i < n}; taking the unions of these
sets, we get a contradiction.

Notice that, a priori, this does not mean that every such maximal witness
has the same size, or that there are no different such witnesses of finite
unbounded cardinalities so that the þ-weight of p could still be infinite.

The proof of the following lemma shows that the size of any nice maximal
witness (in particular with wtþ(bi) = 1) is the same finite number n, which
must a posteriori be equal to wtþ(p); that every type of rudimentarily finite
weight has finite weight follows as an easy corollary.

Lemma 3.12. Let p be a type of rudimentarily finite þ-weight. Then any
maximal nice witness a,A′, {bi : i < m} of wtþ(p) ≥ m satisfies a ./þ

A′

b0 . . . bn−1.

Proof. Let a,A′ and b0 . . . bn−1 be as in the statement of the lemma. It
is clearly enough to make sure that aCþ

A′ b0 . . . bn−1.
So suppose a 6 |̂ þ

A′
c but b0 . . . bn−1 |̂ þ

A′
c. Then by definition a,A′, B ∪

{c} witness wtþ(p) ≥ n + 1. By Lemma 3.10 there are D, c′ such that
a,D,B ∪ {c′} witness wtþ(p) ≥ n + 1 and wtþ(c′/D) = 1. By Lemma 3.7,
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b0 . . . bn−1c
′ Cþ

A′ a. By Lemma 3.6 we may assume ab0 . . . bn−1c
′ Cþ

A′ a. So
a,A′, b0 . . . bn−1c

′ is a nice witness of wtþ(p) ≥ n+ 1, contradicting the max-
imality of a,A′, b0 . . . bn−1.

The following easy observation shows that nice witnesses exist.

Observation 3.13. Let p = tp(a/A) be a non-algebraic type of rudimen-
tarily finite weight. Then there exists a nice witness of wtþ(p) ≥ 1.

Proof. By Lemma 3.10 we can find b with wtþ(b/A′) = 1 where A′ is the
domain over which a 6 |̂ þ

A′
b. Since wtþ(b/A′) = 1 and a 6 |̂ þ

A′
b, Observation

3.5 implies that bCþ
Aa. Finally, we can assume abCþ

A′ a by Lemma 3.6, which
finishes the proof.

We have finally reached our goal.

Theorem 3.14. Let p ∈ S(A) be a non-algebraic type of rudimentarily
finite þ-weight. Then wtþ(p) < ℵ0 and p is þ-equidominant with a finite free
product of þ-weight-1 types. More precisely, there exist a,A′, {bi : i < n} such
that

• a,A′, {bi : i < n} witness that wtþ(p) ≥ n,
• wtþ(bi/A′) = 1 for all i,
• a ./þ

A′ b0 . . . bn−1.

Proof. Let a,A′, B = {bi : i < n} be such that

(i) a,A′, {bi : i < n} witness that wtþ(p) ≥ n,
(ii) wtþ(bi/A′) = 1 for all i,
(iii) aB Cþ

A′ a,
(iv) {bi : i < n} is maximal satisfying (i)–(iii). In other words, if there

are A′′ ⊇ A′, B′′ ⊇ B satisfying (i)–(iii), then B′′ = B.

In other words, a,A′, B is a maximal nice witness for wtþ(p) ≥ n. It is
easy to see that such A′, B exist: Observation 3.13 gives us a non-empty B0

satisfying (i)–(iii). Since p has rudimentarily finite weight, by Observation
3.11 we know that B0 is contained in a maximal B, as required in (i)–(iv)
above.

By Lemma 3.12, a ./þ
A′ b0 . . . bn−1. By Lemma 3.2 and Observation 3.4 it

follows that p has finite weight n.

Reading carefully the above proof, we obtain the following more precise
statement.

Corollary 3.15. Let p be a type of rudimentarily finite þ-weight. Then
wtþ(p) = n for some n < ω, and any maximal nice witness a,A′, {bi : i < m}
of wtþ(p) ≥ m satisfies m = n and a ./þ

A′ b0 . . . bn−1.
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Corollary 3.16. In a strongly dependent (and even strong) rosy theory,
every type has finite þ-weight.

Proof. By Theorems 2.7 and 3.14.

3.3. þ-regular types. We will finish this section by investigating basic
properties of þ-regular types. Their definition is the analogue of the definition
of regular types in the stable and simple context.

Definition 3.3. A type r(x) over A is þ-regular if given any B ⊃ A,
a þ-forking extension q(x) ∈ S(B) of r(x), and a non-þ-forking extension
p(x) ∈ S(B) of r(x), the extension q(x) is almost þ-orthogonal to p(x).

We originally proved the following desired property of þ-regular types,
assuming finite þ-weights, as an easy corollary of the definition of þ-regularity
and the results we have so far in this section. The referee then pointed out
the following proof which makes no use of finite þ-weight.

Proposition 3.17. A þ-regular type has þ-weight 1.

Proof. Let p(x) := tp(a/A) be a þ-regular type, and assume towards a
contradiction that we have a witness a, {b1, b2} for pwtþ(p) ≥ 2.

Let 〈ai〉i≤ω be a þ-Morley sequence in tp(a/Ab1) with aω = a and
〈ai〉i<ω |̂ þ

Ab1a
b2. Notice that, since 〈ai〉i<ω |̂ þ

Ab1
a, we have 〈ai〉i<ω |̂ þ

Ab1
ab2

and in particular

(4) b2 |̂ þ
A
〈ai〉i<ω.

But tp(a/A〈ai〉i<ωb1) is finitely satisfiable in A〈ai〉i<ω, so a |̂ A〈ai〉i<ω b1 and

a |̂ þ
A〈ai〉i<ω

b1. Hence a 6 |̂ þ
A
〈ai〉i<ω.

Let n be minimal with a 6 |̂ þ
A
〈ai〉i<n. By minimality (and the fact that

tp(a/〈ai〉i<k) = tp(ak/〈ai〉i<k) for all k), the sequence 〈ai〉i<n is indepen-
dent over A. But it is also independent over Ab2 by (4) so by transitivity
a 6 |̂ þ

Ab2
〈ai〉i<n. But tp(a/Ab2) is a forking extension of p and tp(ak/〈ai〉i<kb2)

is a non-forking extension of p(x) for all 0 ≤ k ≤ n − 1, which implies that
at some point we will contradict þ-regularity of p.

We conclude by pointing out the following unsurprising but important
property of a regular type:

Observation 3.18. Let p ∈ S(A) be a þ-regular type. Define (as usual),
for a tuple c̄ of realizations of p,

clp(c̄) = {a |= p : a 6 |̂ þ
A
c̄}.

Then (pC, clp) is a pregeometry.
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Proof. The proof is quite easy and it is the same as the standard proof
of the analogous result for (forking) regular types.

Remark 3.19. We should mention that the converse of Observation 3.18
is true assuming stability of p(x) (see [8]). In the general—rosy—context,
however, we have been unable to either prove it or show a counterexample.

4. Super-rosy theories and types of finite Uþ-rank. The goal of
this section is proving that under reasonable assumptions, any type can be
“decomposed” into a finite product of “geometric” types.

4.1. Exchange and decomposition in types of finite weight. Re-
call that in Theorem 3.14 we in particular proved the following.

Theorem 4.1. Let p ∈ S(A) be such that wtþ(p) = n. Then there exists
a set B with A ⊆ B and b1, . . . , bn þ-independent over B such that p on
tp(b1 . . . bn/B) and wtþ(bi/B) = 1.

We will improve this statement by replacing þ-weight-1 types in the con-
clusion by regular types (in the super-rosy context) and þ-minimal types (in
the finite rank context).

Lemma 4.2 (Exchange Lemma). Let a, b1, . . . , bn be a þ-weight-1 witness
of wtþ(tp(a/A)) = n. Let q be a type with dom(q) ⊃ A such that q is not
þ-orthogonal to tp(bn/A) and wtþ(q) = 1. Then there is some b |= q and some
B such that a,B, 〈b1, . . . , bn−1, b〉 witness tp(a/A) has þ-weight n. Moreover,
if a ./þ

A b1 . . . bn, then we can find B such that both a ./þ
B b1 . . . bn−1bn and

a ./þ
B b1 . . . bn−1b.

Proof. Let b′ |= q, B′ be such that bn |̂ þ
A
B′, b′ |̂ þ

A
B′ and b′ 6 |̂ þ

B′
bn

(such b′ and B′ exist as tp(bn/A) and q are not þ-orthogonal).
Without loss of generality Bb |̂ þ

Abn
ab1 . . . bn−1. In particular, ab1 . . .

bn |̂ þ
A
B and b1 . . . bn−1 |̂ þ

B
bnb, and so the set {b, b1, . . . , bn−1} is indepen-

dent over B.
Now if a |̂ þ

B
b, then a, b witness wtþ(tp(bn/B)) ≥ 2, which contra-

dicts our assumptions (via Lemma 3.2). So a 6 |̂ þ
B
b and by the definition

a,B, 〈b1, . . . , bn−1, b〉 witnesses tp(a/A) has þ-weight n.
For the “moreover” part, assume that a ./þ

A b1 . . . bn. Recall that by Obser-
vations 3.6 and 3.3 we may assume ab1 . . . bnCþ

Aa (that is, first replace A with
some A′ such that a |̂ þ

A
A′, b1 . . . bn |̂ þ

A
A′, and ab1 . . . bn Cþ

A′ a, and then
find B), hence (by 3.3 again) ab1 . . . bnCþ

Ba. By Lemma 3.7, b1 . . . bn−1bC
þ
Ba.

Finally by Observation 3.8 we have b1 . . . bn−1bn ./
þ
B a and b1 . . . bn−1b ./

þ
B a,

as required.
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4.2. þ-regularity and decomposition in the super-rosy case. As
in the super-stable case, we first prove the existence of “many” þ-regular types
in a super-rosy theory, which makes the theory of þ-regular types relevant.
We will also point out that all super-rosy types in a rosy theory have finite
þ-weight (hence the results of the previous section apply in the super-rosy
context).

Proposition 4.3. Let T be super-rosy. Then every type p with domain
A is non-þ-orthogonal to a þ-regular type q with domain B ⊃ A.

Proof. The proof is a variation of the proof of Proposition 5.1.11 in [12].
Let P be the set of types r such that dom(r) = B ⊃ A and r is

not almost þ-orthogonal to p, and let q be a type in P of minimal Uþ-
rank. Let a′, b be realizations of p, q respectively such that a′ |̂ þ

A
B and

a′ 6 |̂ þ
B
b.

Suppose q is not þ-regular so there is some c′, b′, C ′ such that c′, b′ |= q,
b′ |̂ þ

B
C ′, c′ 6 |̂ þ

B
C ′ and b′ 6 |̂ þ

C′
c′.

Since tp(b′/B) = tp(b/B) = q there is an automorphism fixing B and
sending c′, b′, C ′ to elements c, b, C and let a |= p realize a non-þ-forking ex-
tension of tp(a′/bB) to bBC. So a |̂ þ

bB
C, and since b |̂ þ

B
C, by transitivity

we have ab |̂ þ
B
C, which implies that a |̂ þ

B
C; it follows that a |̂ þ

A
C (recall

that a′ |̂ þ
A
B and tp(a/B) = tp(a′/B)).

Notice also that a 6 |̂ þ
C
b (as a 6 |̂ þ

B
b and a |̂ þ

B
C).

So we have a |̂ þ
A
C, a 6 |̂ þ

C
b, b |̂ þ

B
C, c 6 |̂ þ

B
C and b 6 |̂ þ

C
c. In particular

Uþ(tp(c/C)) < Uþ(tp(c/B)) = Uþ(tp(b/B))

and
Uþ(tp(b/Cc)) < Uþ(tp(b/C)) = Uþ(tp(b/B));

by minimality of Uþ(tp(b/B)) (among all types in P) we deduce that tp(c/C)
and tp(b/Cc) are not in P; so in particular a |̂ þ

C
c and a |̂ þ

Cc
b. By transi-

tivity a |̂ þ
C
bc and a |̂ þ

C
b, a contradiction.

Proposition 4.4. Let p(x) be a type such that

Uþ(p) =
k∑
i=1

ωαini.

Then p has þ-weight at most
∑k

i=1 ni.

Proof. This is word for word the same proof as for Theorem 5.2.5 in [12]
using the þ-forking version of Lascar’s inequalities (Fact 1.3).

As an easy corollary we obtain the following theorem which strengthens
Theorem 4.1 in the super-rosy context.
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Theorem 4.5.

• Any super-rosy type has finite þ-weight.
• Let T be super-rosy and p ∈ S(A). Then wtþ(p) = n for some n < ω
and there exists a set B with A ⊆ B and b1, . . . , bn þ-independent over
B such that p on tp(b1 . . . bn/B) and tp(bi/B) are þ-regular.

Proof. The first item follows immediately from Proposition 4.4.
To prove the second item, notice first that wtþ(p) is finite by Proposition

4.4. Now apply Theorem 4.1 combined with existence of þ-regular types
(Proposition 4.3) and the Exchange Lemma (Lemma 4.2), recalling that by
Proposition 3.17, þ-regular types have þ-weight 1.

4.3. Types of finite Uþ-rank. The following proposition is an inter-
esting result with many consequences in theories of finite Uþ-rank.

Proposition 4.6.

• Let p(x) = tp(b/A) be any type such that Uþ(p) = α + 1. Then there
is a finite tuple a and a tuple e such that Uþ(tp(b/Aa)) = α, b |̂ þ

A
e,

b |̂ þ
Aa
e, tp(b/Aa) contains a formula which strongly divides over Ae

and Uþ(tp(a/Ae)) = 1.
• If p(x) = tp(b/A) is any type of þ-rank α + 1 then there is a non-þ-
forking extension tp(b/Ae) of p and a finite tuple a ∈ acl(Abe) such
that tp(a/Ae) is minimal.

Proof. The second item follows immediately from the first one. To prove
the first item, notice that we can choose a′ finite so that p(x, a′) over Aa′
is a þ-dividing extension of p(x) and Uþ(tp(b/Aa′)) = α. By Observation
1.42 there is some e and some finite a ∈ dcl(Aa′) such that b |̂ þ

Aa′
e and

tp(b/Aa′e) contains a formula φ(x, a) which strongly divides over Ae, so in
particular a ∈ acl(Abe). Note that

α=Uþ(tp(b/Aa))=Uþ(tp(b/Aae))<Uþ(tp(b/Ae))≤Uþ(tp(b/A))=α+ 1,

hence Uþ(tp(b/Ae)) = Uþ(tp(b/A)) = α + 1; in particular, b |̂ þ
A
e. By Las-

car’s inequalities we know that

Uþ(tp(ba/Ae)) = Uþ(tp(b/Ae)) + Uþ(tp(a/Abe)) = α+ 1 + 0 = α+ 1

and

Uþ(b/Aae) + Uþ(tp(a/Ae)) ≤ Uþ(tp(ba/Ae)) ≤ Uþ(b/Aae)⊕Uþ(tp(a/Ae)).

So
α+ Uþ(tp(a/Ae)) ≤ α+ 1 ≤ α⊕Uþ(tp(a/Ae)),

and the result follows.
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Notice that Proposition 4.6 provides the inductive step, in theories of
finite Uþ-rank, for any property which is closed under non-þ-forking restric-
tions and coordinatized types (in the sense that if a type p is coordinatized
by types having the property, then p must have the property). This has nice
consequences (it was strongly used, for example, in [4]). Some of the more
direct consequences include the following.

Corollary 4.7. Let p(x) be any type of finite Uþ-rank. Then p(x) is
non-þ-orthogonal to a þ-minimal type.

Proof. By Proposition 4.6 given p(x) = tp(b/A) of finite Uþ-rank, there
is a non-þ-forking extension tp(b/Ae) and an element a ∈ acl(Abe) such
that tp(a/Ae) is þ-minimal. Clearly tp(b/Ae) and tp(a/Ae) are non-almost-
þ-orthogonal.

Corollary 4.8. Let p ∈ S(A) be a type of finite Uþ-rank. Then
wtþ(p) = n for some finite n and there is a set B with A ⊆ B, and b1, . . . , bn
independent over B such that p on tp(b1 . . . bn/B) and Uþ(tp(bi/B)) = 1.

Proof. The fact that a type of finite Uþ-rank has finite þ-weight follows
from Proposition 4.4. The rest of the assertions follow from Theorem 4.1
using the Exchange Lemma and Corollary 4.7.

We will conclude this section by making some remarks about Proposition
4.6. Let us first recall the following definition.

Definition 4.1. Wewill say that tp(a/A) is coordinatizable by þ-minimal
types if there are a0, a1, . . . , aN such that an ∈ acl(Aa) for all n, aN = a,
and tp(an+1/Aa0 . . . an) has Uþ-rank one.

We will say that tp(a/A) is coordinatizable by minimal types if there are
a0, a1, . . . , aN such that an ∈ acl(Aa) for alln, aN =a, and tp(an+1/Aa0 . . . an)
has U-rank one.

Whenever a0, a1, . . . , aN witness that tp(a/A) is coordinatizable by (þ-)
minimal types, we will say that a0, a1, . . . , aN is a (þ-)coordinatizing sequence
of tp(a/A).

At first glance, it would appear that one could coordinatize a non-þ-
forking extension of any type of finite Uþ-rank by repeatedly applying Propo-
sition 4.6. However, this would prove a coordinatization theorem in the stable
case, which is known not to be true, as the following example shows.

Example 4.9. Let L := {L,E} be such that L is a ternary relation
and E a binary relation and let T be the theory that states that E is an
equivalence relation with infinitely many infinite classes and such that L
defines an affine space on each E-class (so L(x, y, z) ⇒ E(x, y) ∧ E(x, z) ∧
E(y, z)). A natural model M of this theory is a sheaf of affine planes in-
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dexed by a line, where E(x, y) if and only if x and y are in the same plane
and L(x, y, z) happens whenever x, y, z are collinear points in the same E-
class.

Let g be a ∅-generic E-class in M and a a g-generic point in g. The
conclusion of Proposition 4.6 applied to the type tp(a/g) can be seen in
the following way: Let b be any point in g such that a |̂ þ

g
b and let l be

the line through a and b (so that l := {x : L(x, a, b)}). Then tp(a/gb) is a
non-forking extension of tp(a/g), l ∈ acl(ab) and tp(l/gb) is a þ-minimal
type.

Going back to coordinatization, if we try to coordinatize tp(a/∅) the first
step is tp(a/g) and tp(g/∅). The next step, however, would be to coordinatize
the non-þ-forking extension tp(a/gb) of tp(a/g). But b 6 |̂ þ

∅ a (and the reader
can check that this is true for every possible b we can choose) so this does not
help at all in trying to coordinatize tp(a/∅), or any non-þ-forking extension
of it. In fact, it is not hard to check that tp(a/∅) cannot be coordinatized in
terms of þ-minimal types.

This gives a superstable (even ω-stable) example where no coordina-
tization is possible, which illustrates the limitations of Proposition 4.6 to
get a full coordinatization result for super-rosy theories. This means that
even under very strong assumptions on the theory, one cannot hope to an-
alyze a finite rank type from the minimal components in terms of Defini-
tion 4.1.

This was overcome first by Zilber for uncountably categorical theories
and later by Hrushovski for superstable theories. They proved coordinati-
zation results, but instead of requiring each of the “intermediate” types to
be minimal, they required first that each of the types be either minimal or
strongly related to a strongly minimal set (“almost strongly minimal”), and
second that one could control the automorphism groups of the types via a
definable group (the “binding group”). This allowed one to have a very deep
control of the types in terms of minimal types and to have strong combinato-
rial manipulations that eventually lead to group and field existence theorems
which were some of the most important results in geometric stability the-
ory.

That said, the question of whether or not a finite rank type can be co-
ordinatized as defined in Definition 4.1 is still quite interesting, and when
possible, would allow a stronger analysis than the one provided by Zilber and
Hrushovski. This makes the understanding of the limitations of Proposition
4.6 quite important. The main issue (with Proposition 4.6) is that we have
no control over the parameter e we need to pass from þ-dividing to strong
dividing. In the affine space, for example, this e cannot be overlooked, nor
can we have any control over where it comes from.
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This has two main consequences. On the one hand, once we try to use
Proposition 4.6 inductively and coordinatize tp(b/Aae), the f we need can
be taken to be such that b |̂ þ

Aa
f but there is no hope to find one with

b |̂ þ
A
f . Another consequence is that we can only coordinatize a non-þ-

forking extension of types of rank α + i by types of rank α and rank i
when i = 1, but we cannot do the same for i > 1 without further assump-
tions.

It seems that this lack of control over the choice of e could be some-
what overcome if we had extra assumptions (definable choice seems be
the right notion), but even this assumption seems not enough to get any
coordinatization-like result beyond possibly the finite Uþ-rank case. How-
ever, coordinatization is such a useful tool, and the connections with defin-
able choice are so unclear, that even results assuming finite Uþ-rank would
be quite interesting. Some progress on this question has recently been made
in [2].
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