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The dimension of metrizable subspaces of Eberlein compacta
and Eberlein compactifications of metrizable spaces

by

Michael G. Charalambous (Karlovassi)

Abstract. We prove that every Baire subspace Y of c0(Γ ) has a dense Gδ metrizable
subspace X with dimX ≤ dimY . We also prove that the Kimura–Morishita Eberlein
compactifications of metrizable spaces preserve large inductive dimension. The proofs rely
on new and old results concerning the dimension of uniform spaces.

1. Introduction and brief summary of results. Amir and Linden-
strauss [1] defined Eberlein compact spaces to be those compact spaces that
are homeomorphic to weakly compact subsets of Banach spaces. They proved
that a space is Eberlein compact iff it is homeomorphic to a compact sub-
space of c0(S) for some set S, where c0(S) is the subspace of the prod-
uct of unit intervals

∏
s∈S Is consisting of the points x = (xs) such that

{s ∈ S : xs > ε} is finite for each positive ε. It is known that every Eberlein
compact space contains a dense Gδ subspace which is metrizable. In fact,
Dimov [6] has extended this result by showing that every Baire subspace Y
of c0(S) contains a dense Gδ-subspace X which is metrizable. In Section 4
of this paper, we prove that dimX ≤ dimY . This is obtained as an applica-
tion of Theorem 1, the main result of Section 3, which concerns the covering
dimension of uniform spaces. Section 4 also contains characterizations of
metrizable and Eberlein compact spaces in terms of families of functions
generating their topology.

It should be noted that for a dense metrizable subspace X of a compact
space Y , we do not necessarily have dimX ≤ dimY . For if X is Roy’s
example in [13], then X is metrizable and dimX = 1 while indX = 0.
Therefore X has a compactification Y with dimY = 0.

It is also of interest to note that Kimura and Morishita [9] have recently
proved that every metrizable space M has an Eberlein compactification E
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with dimE = dimM . In Section 5, we show that, in fact, IndE = dimM .
The proof relies heavily on properties of inductive dimensions of uniform
spaces.

A very general subset theorem due to Pasynkov [11] asserts that dimX ≤
dimY whenever X is a d-regular subspace of Y . In Section 6, where all
relevant definitions can be found, we show that a metrizable space is a
d-regular subspace of its Kimura–Morishita compactification. However, in
the case of the first result quoted in the abstract, it is not clear whether
the metrizable space X is a d-regular subspace of Y . Our final result is a
subset theorem that covers both the case just mentioned as well as the case
of d-regularity.

For the standard results in General Topology and Dimension Theory, we
refer the reader to [7] and [8], respectively.

2. Definitions and prerequisites. In this section, we give the nec-
essary definitions concerning the covering dimension of uniform spaces in-
troduced by the author in [2], and list the results needed in subsequent
sections.

The cozero set of a continuous function f : X → Y into a metric space
with a distinguished element 0 is defined by coz f = {x ∈ X : f(x) 6= 0}.
The uniformly open sets of a uniform space are the cozero sets of uniformly
continuous functions into the unit interval I. Their complements are called
uniformly closed. The dimension Dim of a uniform space X is defined to
be the least element n of {−1, 0, 1, 2, . . . ,∞} such that each finite cover of
X by uniformly open sets has a finite refinement of order ≤ n consisting
of uniformly open sets. Evidently, DimX = dimX if every cozero set of
X is uniformly open, e.g. if X is a metric space. If the uniformity on X is
U , the uniformly open (resp. closed) sets of X may be called U-open (resp.
U-closed), and we may write U-dimX instead of DimX, if it is necessary
to indicate the uniformity. Also, by abuse of notation, we use U instead of
UY for the subspace uniformity on any subset Y of X.

It should be remarked that the collection of uniformly open sets is closed
with respect to taking finite intersections and countable unions, and inverse
images under uniformly continuous functions of uniformly open sets (such
as open sets in a metric space) are uniformly open. Also, the uniformly open
sets of a subspace Y of X are exactly the traces on Y of the uniformly open
sets of X.

Dim has a number of interesting features, and we proceed to list those
needed in what follows. The first two results are taken from [2].

Proposition 1 (The subset theorem). For any subspace Y of a uniform
space X, DimY ≤ DimX.
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Proposition 2 (The countable sum theorem). Let X be the countable
union of uniformly closed subspaces with Dim ≤ n. Then DimX ≤ n.

Corollary 1. Let X be the countable union of subspaces each of which
is either uniformly closed or uniformly open and has Dim ≤ n. Then DimX
≤ n.

Proof. This follows from Propositions 1 and 2 on noting that each uni-
formly open set of a space X is the union of countably many uniformly
closed subspaces of X.

Corollary 2. Let X be the union of uniformly closed subspaces
F1, F2, . . . such that Dim(Fi \ Fi−1) ≤ n for each i ∈ N, where F0 = ∅.
Then DimX ≤ n.

Proof. We first apply induction to get DimFi ≤ n. Indeed, if DimFi−1

≤ n, then by Corollary 1, Dim((Fi \ Fi−1) ∪ Fi−1) ≤ n. Hence, by Proposi-
tion 1, DimFi ≤ n. Now, by Proposition 2, DimX ≤ n.

The following is essentially Theorem 4 of [5]. We have added the last
sentence whose truth is transparent from the proof.

Proposition 3. Let A be a subspace of a uniform space X with DimA
≤ n, and f : X → Y a uniformly continuous function into a metric space.
Then there are uniformly continuous functions gi : X → I, i ∈ N, such that
if h = f M 4{gi : i ∈ N} : X → Y × IN, then dimh(A) ≤ n. If Gi is a
uniformly open set of X containing A, i ∈ N, then gi may be chosen so that
coz gi ⊂ Gi.

Finally, we will need the following result from [4].

Proposition 4. Let (X,U) be the limit of an inverse system (Xα,Uα,
pα,β) of uniform spaces with Uα-dimXα ≤ n. Then U-dimX ≤ n.

3. Locally finite collections and dimension. Let S be a set and X
a metric space with metric % and a distinguished point 0. Let X(S) be the
the union of all X × {s}, s ∈ S, where all points (0, s) have been identified
to a single point 0. For each s ∈ S, let Xs denote the image of X×{s} under
this identification and let %s be the metric on Xs induced by % in the obvious
way. The hedgehog with |S| spines homeomorphic to X is X(S) with metric
d defined by d(x, y) = %s(x, y) if x, y ∈ Xs, and d(x, y) = %s1(x, 0)+%s2(y, 0)
if x ∈ Xs1 , y ∈ Xs2 and s1 6= s2.

With the notation just established, for a cardinal τ , J(τ), the hedgehog
of spininess τ , is I(S), where S is the set of ordinals < τ .

In this section, we will make use of hedgehogs of the form H(S), where
H denotes the Hilbert cube IN.
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Lemma 1. Let U1 be a uniformly open set of a uniform space X, A any
subset of U1 and U2, U3, . . . uniformly open subsets of U1. Then there exist
a uniformly continuous h : X → H and uniformly open sets V1, V2, . . . of H
such that U1 = cozh, dimh(A) ≤ DimA and h−1(Vi) = Ui for i = 1, 2, . . . .

Proof. Let f = 4{fi : i ∈ N} : X → IN, where each fi : X → I is
uniformly continuous with coz fi = Ui. The result now follows from Propo-
sition 3 on taking G1 = G2 = · · · = U1. Note that the h of Proposition 3 now
maps X into IN × IN, and we may take Vi to be the cozero set of the com-
posite of the projection onto the first copy of IN followed by the projection
onto the ith copy of I.

Lemma 2. Let {Hs : s ∈ S} be a locally finite family consisting of
mutually disjoint U-open sets of a uniform space (X,U). For each s ∈ S let
As be a subset of Hs with U-dimAs ≤ n. Let A =

⋃
As and H =

⋃
Hs.

Then there is a uniformity V finer than U on the topological space X such
that V-dimA ≤ n and U and V agree on X \H and also on each Hs.

Proof. By Lemma 1, for each s ∈ S, there is a U-uniformly continuous
hs : X → Hs such that Hs = cozhs and dimhs(As) ≤ n. Define h : X →
H(S) by h(x) = hs(x) if x belongs to some (necessarily unique) Hs, and
h(x) = 0 if x /∈ H. We note that h is continuous: If U is an open set of
H(S) not containing 0, then h−1(U) is clearly an open set of H, and if F
is a closed set of H(S) not containing 0, then h−1(F ) is closed as the union
of the closed (in X) shrinking {h−1

s (F ∩ Hs) : s ∈ S} of the locally finite
collection {Hs : s ∈ S}.

We let V be the coarsest uniformity on X that makes all maps h as
defined above uniformly continuous. As all such maps are U-uniformly con-
tinuous on X \H as well as on each Hs, it follows that U and V agree on
these sets. It remains to prove V-dimA ≤ n.

Consider a V-open cover {Ui : i = 1, . . . , k} of A. As As ∩ Ui is a U-
open set of As, it is the trace on As of some U-open set Vsi of Hs. By
Lemma 1, we may assume in the first paragraph of the present proof that
there are open sets Wsi of Hs with h−1

s (Wsi) = Vsi. Note that for each
s ∈ S, hs(As) ⊂ Hs \{0} and therefore B =

⋃
hs(As) is the topological sum

of hs(As), s ∈ S. Consequently, dimB ≤ n. Let {Gi : i = 1, . . . , k} be an
open cover of B of order ≤ n refining {B ∩ ⋃s∈SWsi : i = 1, . . . , k}. Then

{h−1(Gi) : i = 1, . . . , k} is a V-open cover of A of order ≤ n refining the
V-open cover {Ui : i = 1, . . . , k} of A. Hence V-dimA ≤ n.

Let F(S) denote the subset of
∏
s∈S Is consisting of all points x = (xs)

that have only a finite number of non-zero coordinates xs. It will be under-
stood to be equipped with the metric d defined by d(x, y) = sups∈S |xs−ys|.
It is important to note that for every finite subset T of S, the subspace
{x : xs = 0 for s /∈ T} of F(S) is homeomorphic to

∏
s∈T Is.
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A family of maps {fs : X → Is : s ∈ S}, where Is is a copy of the
unit interval, will be called locally finite (resp. point-finite) if the collection
{coz fs : s ∈ S)} is locally finite (resp. point-finite) in X. A point-finite
family {fs : X → Is : s ∈ S} induces a function f = 4s∈Sfs : X → F(S),
which is clearly continuous if the family of maps is locally finite.

Theorem 1. Let {fs : s ∈ S} be a locally finite family of uniformly
continuous maps on a uniform space (X,U) into the unit interval such that
U-dimGs ≤ n for each s ∈ S, where Gs = coz fs. Let f : X → F(S) be the
map induced by the family {fs : s ∈ S} and G =

⋃
s∈S Gs. Then there is a

uniformity V on X finer than U which agrees with U on X \ G, makes f
uniformly continuous and satisfies V-dimG ≤ n.

Proof. To begin with, we let U0 be the coarsest uniformity on X bigger
than U that makes f uniformly continuous. Let E0 = ∅, and for each n ∈ N,
let En consist of those points x of G for which the set {s ∈ S : x ∈ Gs} has
at most n elements. Let Hs = {x ∈ F(S) : xs > 0}∩f(X) and H =

⋃
s∈S Hs.

Clearly, f−1(Hs) = Gs, {Hs : s ∈ S} is a point-finite family consisting of
open sets of f(X), and for each n ∈ N, the set Fn consisting of those points x
of H for which {s ∈ S : x ∈ Hs} has at most n elements is closed in H.
Hence G = f−1(H) is U0-open and each En = f−1(Fn) is U0-closed in G.

Note that if A is a subset of X such that {s ∈ S : fs|A 6= 0} is finite, then
f |A is U-uniformly continuous and consequently U0|A = U|A. Therefore, by
the subset theorem, U0-dimA = U-dimA ≤ n for any subset A of X of the
form (Em \ Em−1) ∩⋂s∈M Gs, for any m ∈ N and any subset M of S with
|M | = m.

We construct by induction for each k ∈ N a uniformity Uk on X which
is finer than Uk−1, agrees with it on the set (X \ G) ∪ Ek−1 and satisfies
Uk-dim(Ek \ Ek−1) ≤ n and Uk-dimA ≤ n for any subset A of X of the
form (Em \ Em−1) ∩⋂s∈M Gs, for any m > k and any subset M of S with
|M | = m. Assume Uk−1 has been constructed as required. It suffices to
construct Uk with the properties just stated.

We observe that {(Fk \Fk−1)∩⋂s∈K Hs : K ⊂ S, |K| = k} is a discrete
(in the metric space H \ Fk−1) clopen cover of Fk \ Fk−1. Consequently,
there exist mutually disjoint open sets VK of H such that (Fk \ Fk−1) ∩⋂
s∈K Hs ⊂ VK ⊂

⋂
s∈K Hs. Let UK = f−1(VK) and U =

⋃{UK : K ⊂ S,
|K| = k}. Then AK = (Ek \ Ek−1) ∩ ⋂s∈K Gs ⊂ UK ⊂

⋂
s∈K Gs and

{UK : K ⊂ S, |K| = k} is a locally finite collection of X consisting of mutu-
ally disjoint Uk−1-open sets of G \Ek−1. Also, by the induction hypothesis,
Uk−1-dimAK ≤ n. We can therefore apply Lemma 2 to construct a unifor-
mity Uk on X finer than Uk−1 and agreeing with Uk−1 on each UK as well as
on X \U , which contains (X \G)∪Ek−1, and such that Uk-dim(Ek \Ek−1) ≤
n. Finally, consider a subset A of X of the form (Em \ Em−1) ∩ ⋂s∈M Gs,
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where m > k and M is a subset of S with |M | = m. Note that Uk−1 and
Uk agree on A \ U as well as on each A ∩ UK , and A ∩ UK 6= ∅ implies
K ⊂ M . Thus, A ∩ UK 6= ∅ for only finitely many K’s. By Proposition 1
and the induction hypothesis, Uk-dim(A \ U) = Uk−1-dim(A \ U) ≤ n and
Uk-dim(A ∩ UK) = Uk−1-dim(A ∩ UK) ≤ n. Now, Corollary 1 implies that
Uk-dimA ≤ n, which completes the construction.

To complete the proof, we let V be the uniformity on X generated by
U0,U1,U2, . . . . Evidently, V and Uk agree on Ek. Hence V-dim(Ek \ Ek−1)
≤ n. Finally, by Corollary 2, V-dimG ≤ n.

4. Topologies generated by families of maps. Recall that the topol-
ogy of a space X is said to be generated by a family of maps {fs : X → Ys :
s ∈ S} if it is the coarsest topology on X that makes every fs continuous.
This simply means that {f−1

s (G) : G open in Ys, s ∈ S} is a subbase for the
topology of X.

Theorem 2. A T1 space X is metrizable iff the topology of X is gener-
ated by a σ-locally finite collection of maps into I.

Proof. Suppose first that X is metrizable. Let {Gs : s ∈ Si, i ∈ N} be a
σ-locally finite base for the topology of X. Pick fs : X → I with coz fs = Gs
for each s ∈ Si and each i ∈ N. Then {fs : s ∈ Si, i ∈ N} is a σ-locally finite
collection of maps into I that generates the topology of X.

Conversely, let {fs : s ∈ Si, i ∈ N} be a σ-locally finite collection of maps
into I that generates the topology of X. For each i ∈ N, let fi = 4s∈Sifs :
X → F(Si) be the map induced by the locally finite collection {fs : s ∈ Si}.
Each fi is continuous and so is f = 4i∈Nfi : X → ∏

i∈N F(Si). First note
that f is injective. For if f(x) = f(y), then fs(x) = fs(y) for all s ∈ ⋃i Si,
which implies that {x} and {y} have the same closure and therefore x = y.
Also, a set of the form f−1

s (G), where G is open in I and s ∈ Si, is the
inverse image under f of the open set p−1

i (p−1
s (G)) of

∏
i∈N F(Si), where

pi :
∏
i∈N F(Si)→ F(Si) and ps : F(Si)→ Is are the obvious projections. As

these sets generate the topology of X, it follows that f is an embedding of
X into a metrizable space. Hence X is metrizable.

The proof of the following result is essentially the same as the proof of
(c)⇔(d) of Theorem 1.4 in [10], giving four characterizations of Eberlein
compact spaces. Condition (d) is Rosenthal’s characterization in terms of
σ-point-finite, separating families of cozero sets [12].

Theorem 3. A T1 space X can be embedded in some c0(S) iff the topol-
ogy of X is generated by a σ-point-finite collection of maps into I.

Proof. For s ∈ S and n ∈ N, let fs,n : c0(S) → I be the composite
of the projection c0(S) → Is followed by the map that sends x to 0 or



Dimension of subspaces of Eberlein compacta 47

((n + 1)x − 1))/n depending on whether x ≤ 1/(n+ 1) or x > 1/(n+ 1).
Then for each n, {fs,n : s ∈ S} is point-finite and one readily sees that
{fs,n : s ∈ S, n ∈ N} generates the topology of c0(S). Consequently, the
topology of any subspace X of c0(S) is generated by the σ-point-finite family
{fs,n|X : s ∈ S, n ∈ N}.

Conversely, suppose {fs : X → Is : s ∈ Si, i ∈ N} is a σ-point-finite
collection of maps into the unit interval that generates the topology of X.
Let S =

⋃
i∈N Si. Then f = 4s∈Sfs : X → ∏

s∈S Is is an embedding. For
each n ∈ N and s ∈ Sn, we can of course assume that fs maps into [0, 1/n].
Then fs(x) ≥ 1/n implies s ∈ S1 ∪ · · · ∪ Sn, which makes f an embedding
of X into c0(S).

One can readily deduce from Theorem 3 the well known result that the
product of countably many Eberlein compact spaces is Eberlein compact.

For our final result in this section, we will need the following lemma from
[14].

Lemma 3. Every point-finite family of open sets of a Baire space X is
locally finite on a dense open subset of X.

Theorem 4. A Baire subspace Y of c0(S) contains a dense Gδ metriz-
able subspace X with dimX ≤ dimY .

Proof. Theorem 3 yields a σ-point-finite family {gs : Y → Is : s ∈ Si,
i ∈ N} of maps into the unit interval that generates the topology of Y . For
each i ∈ N, {coz gs : s ∈ Si} is point-finite. By Lemma 3, {coz gs : s ∈ Si} is
locally finite on a dense open subset Xi of Y . Let X =

⋂
i∈NXi, and for each

s ∈ S =
⋃
i∈N Si, let fs = gs|X and Gs = coz fs. Then X is a dense Gδ of

the Baire space Y , and evidently, {fs : X → Is : s ∈ Si, i ∈ N} is a σ-locally
finite collection of maps into the unit interval generating the topology of X.
By Theorem 2, X is metrizable.

Let U0 denote the largest uniformity on Y . Then each Gs is an U0-open
set of X, and by the subset theorem, U0-dimGs ≤ U0-dimY = dimY . For
each i ∈ N, let fi = 4s∈Sifs : X → F(Si). Clearly, we can assume that for
each i ∈ N, there is s ∈ Si with Gs = X so that

⋃
s∈Si Gs = X. Applying

Theorem 1, we can construct uniformities U0 ⊂ U1 ⊂ U2 ⊂ · · · such that Ui
makes fi uniformly continuous and Ui-dimX ≤ n. Let U =

⋃
i∈N Ui. Then

(X,U) is the inverse limit of the sequence (X,Ui, pi,j), where each bonding
map is the identity function on X. Hence, by Proposition 4, U-dimX ≤ n.
Moreover, f = 4i∈Nfi : X → ∏

i∈N F(Si) is U-uniformly continuous in
addition to being, as in Theorem 2, a topological embedding. Consider an
open set G of X. Because f is an embedding, there is an open set H of∏
i∈N F(Si) with G = f−1(H). As f is U-uniformly continuous, G and thus

every open set of X is U-open. Hence dimX = U-dimX ≤ n.
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Example 1 at the end of Section 5 shows that in Theorem 4 we do not
always have dimX = dimY .

5. The inductive dimension of the Kimura–Morishita compact-
ification. In this section, we shall need various properties of the inductive
dimensions U-indX and U-IndX of a uniform space (X,U), which were
studied in [3], where proofs of all results that we quote can be found. Their
definitions are obtained by respectively replacing open sets and closed sets
by uniformly open sets and uniformly closed sets in the corresponding defi-
nitions of the inductive dimension ind and Ind of a topological space. Thus,
U-IndX = −1 (resp. U-indX = −1) iff X = ∅, and, for n = 0, 1, . . . ,
U-IndX ≤ n (resp. U-indX ≤ n) iff any disjoint uniformly closed sets
F1, F2 of X (resp. one of which is a singleton) are respectively contained in
disjoint uniformly open sets G1, G2 of X with U-Ind(X \ (G1∪G2)) ≤ n− 1
(resp. U-ind(X \ (G1 ∪G2)) ≤ n− 1).

Both these functions satisfy the subset theorem just as U-dim. In addi-
tion, U-Ind satisfies a countable sum theorem analogous to Proposition 2.
Also, indX ≤ U-indX ≤ U-IndX, IndX ≤ U-IndX, and if X is Lindelöf,
then U-indX = U-IndX. We will additionally need the following version of
the Urysohn inequality for U-Ind, which is slightly stronger than Proposition
10 of [3].

Proposition 5. Let A be a subspace of a uniform space (X,U) such that
U-IndA ≤ m and U-IndB ≤ n for every U-closed subset B of X disjoint
from A. Then U-IndX ≤ m+ n+ 1.

Sketch of proof. Let F1, F2 be disjoint uniformly closed subsets of X.
As in the proof of Proposition 10 of [3], F1, F2 are respectively contained in
disjoint uniformly open subsets G1, G2 of X with U-Ind(A \ (G1 ∪ G2)) ≤
m−1. By the obvious induction hypothesis, U-Ind(X \(G1∪G2)) ≤ (m− 1)
+ n+ 1 = m+ n. Hence U-IndX ≤ m+ n+ 1.

J(τ), the hedgehog of spininess τ , has an Eberlein compactification J∗(τ)
defined as follows (cf. [9]). With the notation established in the opening
paragraph of Section 3, the underlying set of J∗(τ) is I(S), where S is the
set of ordinals ≤ τ . Let p : I(S) → I be the function that sends 0 to 0 and
(x, s) to x. Also, for s < τ , let ps : I(S)→ I send (x, s) to x and everything
else to 0. The basic neighbourhoods of the various points of J∗(τ) are defined
to be the following: for 0, all sets of the form p−1([0, a)), 0 < a < 1; for points
of the form (x, s), where s < τ , all sets of the form p−1

s (U), where U is an
open interval of I containing x; finally, for points of the form (x, τ), all sets
of the form p−1(U) \⋃s∈F Is, where U is an open interval of I containing x
and F is a finite set of ordinals < τ .
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One readily checks that (J∗(τ) \ Iτ )∪ {0} is homeomorphic to J(τ) and
J∗(τ) is compact Hausdorff. It is Eberlein compact because the topology of
J∗(τ) is generated by the point-finite family of maps {p} ∪ {ps : s < τ}.

Observe that all basic neighbourhoods defined above are cozero sets and
are therefore uniformly open with respect to the unique uniformity on J ∗(τ),
and their closures are zero sets and are therefore uniformly closed.

We will be working inside the Eberlein compact space J∗(τ)N. Its unique
uniformity will be denoted by U . We use Q and P respectively for the sets
of rationals and of irrationals in (0, 1]. For each non-negative integer n, let

K∗n(τ) = {z = (zi) ∈ J∗(τ)N : |{i : p(zi) ∈ Q}| ≤ n},
M∗n(τ) = {z ∈ J∗(τ)N : |{i : p(zi) ∈ Q}| = n}.

Kimura and Morishita [9] have proved that a compact subspace of K∗n(τ)
has dim ≤ n, and every metrizable space M with dimM = n and wM = τ
has a compactification E inside K∗n(τ) with dimE = n. We claim that in
fact IndE = n. This will follow from Theorem 5, where we prove that every
Lindelöf subspace of K∗n(τ) has Ind ≤ n.

For any subset J of N with |J | = n, let

M∗n(τ, J) = {z ∈M∗n(τ) : p(zi) ∈ Q for i ∈ J}.

Lemma 4. For any J ⊂ N with |J | = n, U-indM ∗n(τ, J) = 0.

Proof. Let V be an open neighbourhood of a point z in J∗(τ)N. Consider
a neighbourhood U =

⋂
i∈L π

−1
i (Ui) of z with closure inside V , where L is

a finite subset of N containing J , πi is the ith projection from J∗(τ)N to
J∗(τ), and Ui is a basic neighbourhood of zi chosen so that p(BdUi) is
a subset of P if i ∈ J , and a subset of Q if i ∈ L \ J . Then in J∗(τ)N,
U is uniformly open, its closure is uniformly closed, and one can verify that
BdU ∩ (M∗n(τ, J)) = ∅. This clearly implies the result.

Theorem 5. For any Lindelöf subspace X of K∗n(τ), U-IndX ≤ n and
therefore IndX ≤ n.

Proof. M∗n(τ) is the union of subspaces Z1, Z2, . . . of the form {z ∈
M∗n(τ) : p(zi) = qi for i ∈ J}, where J is a subset of N with |J | = n and qi is
a fixed element of Q for each i ∈ J . For each i, by Lemma 4 and the subset
theorem, U-ind(X ∩ Zi) ≤ 0. Also, Zi is uniformly closed in K∗n(τ). Hence,
X ∩Zi is Lindelöf and therefore U-Ind(X ∩Zi) ≤ 0. Now, by the countable
sum theorem for U-Ind, we have U-Ind(X ∩M ∗n(τ)) ≤ 0.

In particular, Theorem 5 is valid for n = 0. Note that for k > 0, K∗n(τ)
is the disjoint union of K∗n−1(τ) and M∗n(τ). Assume that U-IndY ≤ n− 1
for any Lindelöf subspace Y of K∗n−1(τ). Then any uniformly closed subset
B of the Lindelöf space X disjoint from A = X ∩M ∗n(τ) will be a Lindelöf
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subspace of K∗n−1(τ) and hence U-IndB ≤ n − 1. Now, by Proposition 5,
U-IndX ≤ 0 + (n− 1) + 1 = n, which completes the proof.

We conclude this section with an example that complements Theorem 4.

Example 1. Let τ be the cardinality of the continuum and write
I \ {0} = {xs : s < τ}, where each point occurs continuum many times.
Let Y be the Eberlein compact subspace of J∗(τ) consisting of Iτ together
with all points (xs, s), s < τ . The set X of Gδ points of Y consists of the
points (xs, s), s < τ , together with 0. Clearly, X is the largest metrizable
Gδ subspace of Y , while dimX = 0 < dimY = 1.

6. Eberlein compactifications and the subset theorem. Let X
be a subspace of Y . Then X is a d-regular subspace of Y , or Y is a d-
regular extension of X, if every cozero set of a X is the union of a σ-locally
finite (in X) collection consisting of clopen subsets of traces on X of cozero
sets of Y . A very general subset theorem due to Pasynkov [11] asserts that
dimX ≤ dimY if X is a d-regular subspace of Y .

The Kimura–Morishita [9] compactifications turn out to be d-regular in
a very strong manner.

Theorem 6. Let {Gi,s : i ∈ N, s ∈ S} be a σ-discrete base of a metriz-
able space M with dimM = n and wM = τ , and set Gi =

⋃{Gi,s : s ∈ S}.
Then there is an embedding h : M → J(τ)N such that E = cl(h(M)) ⊂
K∗n(τ), where cl denotes closure in J∗(τ)N, and E contains cozero sets Hi

with Gi = h−1(Hi). In fact the set of all such maps is residual in the com-
plete metric space C(M,J(τ)N) of all maps of M into J(τ)N.

Proof. For each i, Gi =
⋃{Fi,j : j ∈ N}, where each Fi,j is closed in M .

By the work of Kimura and Morishita [9], the set of all embeddings h : M →
J(τ)N with E = cl(h(M)) ⊂ K∗n(τ) and cl(h(Fi,j)) ∩ cl(h(M \ Gi)) = ∅ for
all i, j ∈ N is residual in C(M,J(τ)N). For any one such h, pick a cozero set
Hi,j of E containing cl(h(Fi,j)) and disjoint from cl(h(M \Gi)). Finally, set
Hi =

⋃{Hi,j : j ∈ N}.
Call a subspace X of Y countably accessible if for every cozero set G of

X there are maps fi,s : X → I, i ∈ N, s ∈ S, such that each fi,s| coz fi,s has a
continuous extension from Y to I, {coz fi,s : s ∈ S} is locally finite in X for
each i, and G is open in the topology on X generated by {fi,s : i ∈ N, s ∈ S}.

Evidently, the metrizable subspace in Theorem 4 is a countably accessible
subspace of the Baire subspace of c0(S). Given a map g : Y → I and a clopen
subset U of X ∩ coz g, define f : X → I by f(x) = g(x) or 0 depending on
whether x belongs to U or not. Then f is continuous with coz f = U . Hence,
a d-regular subspace X of Y is countably accessible.
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We conclude this paper with the following subset theorem that gener-
alizes Pasynkov’s theorem [11] and also covers the case of the metrizable
subspace in Theorem 4.

Theorem 7. Let X be a countably accessible subspace of Y . Then dimX
≤ dimY .

Proof. Let G be a finite cozero cover of X and suppose dimY = n. Let
U−1 be the biggest uniformity on Y . Then U−1-dimX ≤ U−1-dimY = n.

Consider the set S of all uniformities W on X finer than U−1 and such
thatW-dimX ≤ n. Order S by inclusion. Then Proposition 4 readily implies
that the union of any chain of elements in S is again an element of S. Hence
there is a maximal element U0 in S.

Now suppose U = cozh for some map h : X → I such that h|U has
a continuous extension from Y to I. This implies that h is U0-uniformly
continuous on both U and X \ U . Let V be the uniformity on X finer than
U0 generated by all maps g : X → I such that each g is U0-uniformly
continuous on both U and X \ U . Then V agrees with U0 on both U and
X \U , and U is V-open. Consequently, by the subset theorem, V-dimU ≤ n
and V-dim(X \U) ≤ n. Therefore, by Corollary 1, V-dimX ≤ n. This means
that V = U0 and h is U0-uniformly continuous.

AsX is a countably accessible subspace of Y , there are maps fi,s : X → I,
i ∈ N, s ∈ S, such that each fi,s| coz fi,s has a continuous extension from Y
to I, {coz fi,s : s ∈ S} is locally finite in X for each i, and every member of G
is open in the topology on X generated by {fi,s : i ∈ N, s ∈ S}. Note that,
by the preceding paragraph, each fi,s is U0-uniformly continuous, and for
each i, we can assume coz fi,s = X for some s. For each i, let fi = 4s∈Sfi,s :
X → F(S). Applying Theorem 1, we can construct a uniformity Ui finer than
U0 such that Ui makes fi uniformly continuous and Ui-dimX ≤ n. Then,
by the definition of U0, Ui = U0. Thus, each fi and therefore f = 4i∈Nfi :
X → F(S)N is U0-uniformly continuous. As each fi,s is the composite of the
ith projection F(S)N → F(S) followed by the sth projection F(S)→ I, both
uniformly continuous, one readily sees that G is a subset of the topology
{f−1(G) : G open in F(S)N} on X. Consequently, G consists of U0-open
sets and therefore has a finite U0-open refinement of order ≤ U0-dimX ≤ n.
Thus, dimX ≤ n = dimY .
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